quantrs2_sim/mixed_precision_impl/
analysis.rs

1//! Precision analysis and performance metrics for mixed-precision simulation.
2//!
3//! This module provides tools for analyzing numerical precision requirements,
4//! performance characteristics, and optimal precision selection strategies.
5
6use serde::{Deserialize, Serialize};
7use std::collections::HashMap;
8use std::time::Instant;
9
10use super::config::QuantumPrecision;
11
12/// Precision analysis result
13#[derive(Debug, Clone, Serialize, Deserialize)]
14pub struct PrecisionAnalysis {
15    /// Recommended precision for each operation type
16    pub recommended_precisions: HashMap<String, QuantumPrecision>,
17    /// Estimated numerical error for each precision
18    pub error_estimates: HashMap<QuantumPrecision, f64>,
19    /// Performance metrics for each precision
20    pub performance_metrics: HashMap<QuantumPrecision, PerformanceMetrics>,
21    /// Final precision selection rationale
22    pub selection_rationale: String,
23    /// Quality score (0-1, higher is better)
24    pub quality_score: f64,
25}
26
27/// Performance metrics for a specific precision
28#[derive(Debug, Clone, Serialize, Deserialize)]
29pub struct PerformanceMetrics {
30    /// Execution time in milliseconds
31    pub execution_time_ms: f64,
32    /// Memory usage in bytes
33    pub memory_usage_bytes: usize,
34    /// Throughput in operations per second
35    pub throughput_ops_per_sec: f64,
36    /// Energy efficiency score (operations per joule)
37    pub energy_efficiency: f64,
38}
39
40/// Precision analyzer for quantum operations
41pub struct PrecisionAnalyzer {
42    /// Current analysis state
43    analysis_state: AnalysisState,
44    /// Benchmark results for different precisions
45    benchmark_cache: HashMap<QuantumPrecision, PerformanceMetrics>,
46    /// Error tracking history
47    error_history: Vec<ErrorSample>,
48}
49
50/// Internal analysis state
51#[derive(Debug, Clone)]
52struct AnalysisState {
53    /// Number of operations analyzed
54    operations_count: usize,
55    /// Total analysis time
56    total_time: f64,
57    /// Current precision being analyzed
58    current_precision: QuantumPrecision,
59}
60
61/// Error sample for tracking numerical accuracy
62#[derive(Debug, Clone)]
63struct ErrorSample {
64    /// Precision level used
65    precision: QuantumPrecision,
66    /// Estimated numerical error
67    error: f64,
68    /// Operation type
69    operation_type: String,
70    /// Timestamp
71    timestamp: Instant,
72}
73
74impl PrecisionAnalysis {
75    /// Create a new empty analysis
76    pub fn new() -> Self {
77        Self {
78            recommended_precisions: HashMap::new(),
79            error_estimates: HashMap::new(),
80            performance_metrics: HashMap::new(),
81            selection_rationale: String::new(),
82            quality_score: 0.0,
83        }
84    }
85
86    /// Add a precision recommendation for an operation type
87    pub fn add_recommendation(&mut self, operation: String, precision: QuantumPrecision) {
88        self.recommended_precisions.insert(operation, precision);
89    }
90
91    /// Add an error estimate for a precision level
92    pub fn add_error_estimate(&mut self, precision: QuantumPrecision, error: f64) {
93        self.error_estimates.insert(precision, error);
94    }
95
96    /// Add performance metrics for a precision level
97    pub fn add_performance_metrics(
98        &mut self,
99        precision: QuantumPrecision,
100        metrics: PerformanceMetrics,
101    ) {
102        self.performance_metrics.insert(precision, metrics);
103    }
104
105    /// Set the selection rationale
106    pub fn set_rationale(&mut self, rationale: String) {
107        self.selection_rationale = rationale;
108    }
109
110    /// Calculate and set the quality score
111    pub fn calculate_quality_score(&mut self) {
112        let mut score = 0.0;
113        let mut count = 0;
114
115        // Score based on error estimates (lower error = higher score)
116        for (&precision, &error) in &self.error_estimates {
117            let error_score = 1.0 / (1.0 + error * 1000.0); // Normalize error
118            score += error_score;
119            count += 1;
120        }
121
122        // Score based on performance metrics
123        for (precision, metrics) in &self.performance_metrics {
124            let perf_score = metrics.throughput_ops_per_sec / 1000.0; // Normalize throughput
125            let mem_score = 1.0 / (1.0 + metrics.memory_usage_bytes as f64 / 1e9); // Normalize memory
126            score += (perf_score + mem_score) / 2.0;
127            count += 1;
128        }
129
130        if count > 0 {
131            self.quality_score = (score / count as f64).min(1.0);
132        }
133    }
134
135    /// Get the best precision for a given operation type
136    pub fn get_best_precision(&self, operation: &str) -> Option<QuantumPrecision> {
137        self.recommended_precisions.get(operation).copied()
138    }
139
140    /// Get overall recommended precision
141    pub fn get_overall_recommendation(&self) -> QuantumPrecision {
142        // Find the most commonly recommended precision
143        let mut precision_counts = HashMap::new();
144        for &precision in self.recommended_precisions.values() {
145            *precision_counts.entry(precision).or_insert(0) += 1;
146        }
147
148        precision_counts
149            .into_iter()
150            .max_by_key(|(_, count)| *count)
151            .map(|(precision, _)| precision)
152            .unwrap_or(QuantumPrecision::Single)
153    }
154
155    /// Check if analysis indicates good quality
156    pub fn is_high_quality(&self) -> bool {
157        self.quality_score > 0.8
158    }
159
160    /// Get summary statistics
161    pub fn get_summary(&self) -> AnalysisSummary {
162        AnalysisSummary {
163            num_operations_analyzed: self.recommended_precisions.len(),
164            overall_precision: self.get_overall_recommendation(),
165            quality_score: self.quality_score,
166            total_error_estimate: self.error_estimates.values().sum(),
167            avg_execution_time: self
168                .performance_metrics
169                .values()
170                .map(|m| m.execution_time_ms)
171                .sum::<f64>()
172                / self.performance_metrics.len().max(1) as f64,
173        }
174    }
175}
176
177/// Summary of precision analysis
178#[derive(Debug, Clone, Serialize, Deserialize)]
179pub struct AnalysisSummary {
180    /// Number of operation types analyzed
181    pub num_operations_analyzed: usize,
182    /// Overall recommended precision
183    pub overall_precision: QuantumPrecision,
184    /// Quality score (0-1)
185    pub quality_score: f64,
186    /// Total estimated numerical error
187    pub total_error_estimate: f64,
188    /// Average execution time across all precisions
189    pub avg_execution_time: f64,
190}
191
192impl PerformanceMetrics {
193    /// Create new performance metrics
194    pub fn new(
195        execution_time_ms: f64,
196        memory_usage_bytes: usize,
197        throughput_ops_per_sec: f64,
198        energy_efficiency: f64,
199    ) -> Self {
200        Self {
201            execution_time_ms,
202            memory_usage_bytes,
203            throughput_ops_per_sec,
204            energy_efficiency,
205        }
206    }
207
208    /// Create metrics from execution time and memory usage
209    pub fn from_time_and_memory(execution_time_ms: f64, memory_usage_bytes: usize) -> Self {
210        let throughput = if execution_time_ms > 0.0 {
211            1000.0 / execution_time_ms
212        } else {
213            0.0
214        };
215
216        // Estimate energy efficiency (simplified model)
217        let energy_efficiency = throughput / (memory_usage_bytes as f64 / 1e6);
218
219        Self::new(
220            execution_time_ms,
221            memory_usage_bytes,
222            throughput,
223            energy_efficiency,
224        )
225    }
226
227    /// Calculate performance score (0-1, higher is better)
228    pub fn performance_score(&self) -> f64 {
229        let time_score = 1.0 / (1.0 + self.execution_time_ms / 1000.0);
230        let memory_score = 1.0 / (1.0 + self.memory_usage_bytes as f64 / 1e9);
231        let throughput_score = self.throughput_ops_per_sec / 1000.0;
232        let energy_score = self.energy_efficiency / 1000.0;
233
234        (time_score + memory_score + throughput_score + energy_score) / 4.0
235    }
236
237    /// Compare with another metrics instance
238    pub fn is_better_than(&self, other: &Self) -> bool {
239        self.performance_score() > other.performance_score()
240    }
241}
242
243impl PrecisionAnalyzer {
244    /// Create a new precision analyzer
245    pub fn new() -> Self {
246        Self {
247            analysis_state: AnalysisState {
248                operations_count: 0,
249                total_time: 0.0,
250                current_precision: QuantumPrecision::Single,
251            },
252            benchmark_cache: HashMap::new(),
253            error_history: Vec::new(),
254        }
255    }
256
257    /// Analyze optimal precision for a given error tolerance
258    pub fn analyze_for_tolerance(&mut self, tolerance: f64) -> PrecisionAnalysis {
259        let mut analysis = PrecisionAnalysis::new();
260
261        // Test each precision level
262        for &precision in &[
263            QuantumPrecision::Half,
264            QuantumPrecision::Single,
265            QuantumPrecision::Double,
266        ] {
267            let error = precision.typical_error();
268            analysis.add_error_estimate(precision, error);
269
270            // Create synthetic performance metrics
271            let metrics = self.create_synthetic_metrics(precision);
272            analysis.add_performance_metrics(precision, metrics);
273
274            // Add recommendations based on tolerance
275            if precision.is_sufficient_for_tolerance(tolerance) {
276                analysis.add_recommendation("default".to_string(), precision);
277            }
278        }
279
280        // Set rationale
281        let rationale = format!(
282            "Analysis for tolerance {:.2e}: recommended precision based on error bounds and performance trade-offs",
283            tolerance
284        );
285        analysis.set_rationale(rationale);
286
287        // Calculate quality score
288        analysis.calculate_quality_score();
289
290        analysis
291    }
292
293    /// Benchmark a specific precision level
294    pub fn benchmark_precision(&mut self, precision: QuantumPrecision) -> PerformanceMetrics {
295        if let Some(cached) = self.benchmark_cache.get(&precision) {
296            return cached.clone();
297        }
298
299        let start_time = Instant::now();
300
301        // Simulate some work (in real implementation, this would run actual benchmarks)
302        std::thread::sleep(std::time::Duration::from_millis(1));
303
304        let execution_time = start_time.elapsed().as_millis() as f64;
305        let memory_usage = self.estimate_memory_usage(precision);
306
307        let metrics = PerformanceMetrics::from_time_and_memory(execution_time, memory_usage);
308        self.benchmark_cache.insert(precision, metrics.clone());
309
310        metrics
311    }
312
313    /// Add an error sample to the history
314    pub fn record_error(
315        &mut self,
316        precision: QuantumPrecision,
317        error: f64,
318        operation_type: String,
319    ) {
320        self.error_history.push(ErrorSample {
321            precision,
322            error,
323            operation_type,
324            timestamp: Instant::now(),
325        });
326    }
327
328    /// Get average error for a precision level
329    pub fn get_average_error(&self, precision: QuantumPrecision) -> f64 {
330        let errors: Vec<f64> = self
331            .error_history
332            .iter()
333            .filter(|sample| sample.precision == precision)
334            .map(|sample| sample.error)
335            .collect();
336
337        if errors.is_empty() {
338            precision.typical_error()
339        } else {
340            errors.iter().sum::<f64>() / errors.len() as f64
341        }
342    }
343
344    /// Clear the analysis state
345    pub fn reset(&mut self) {
346        self.analysis_state.operations_count = 0;
347        self.analysis_state.total_time = 0.0;
348        self.error_history.clear();
349        self.benchmark_cache.clear();
350    }
351
352    /// Create synthetic performance metrics for testing
353    fn create_synthetic_metrics(&self, precision: QuantumPrecision) -> PerformanceMetrics {
354        let base_time = 100.0; // Base execution time in ms
355        let execution_time = base_time * precision.computation_factor();
356
357        let base_memory = 1024 * 1024; // Base memory usage in bytes
358        let memory_usage = (base_memory as f64 * precision.memory_factor()) as usize;
359
360        PerformanceMetrics::from_time_and_memory(execution_time, memory_usage)
361    }
362
363    /// Estimate memory usage for a precision level
364    fn estimate_memory_usage(&self, precision: QuantumPrecision) -> usize {
365        let base_memory = 1024 * 1024; // 1MB base
366        (base_memory as f64 * precision.memory_factor()) as usize
367    }
368}
369
370impl Default for PrecisionAnalysis {
371    fn default() -> Self {
372        Self::new()
373    }
374}
375
376impl Default for PrecisionAnalyzer {
377    fn default() -> Self {
378        Self::new()
379    }
380}