quantrs2_sim/
fermionic_simulation.rs

1//! Fermionic quantum simulation with SciRS2 integration.
2//!
3//! This module provides comprehensive support for simulating fermionic systems,
4//! including Jordan-Wigner transformations, fermionic operators, and specialized
5//! algorithms for electronic structure and many-body fermionic systems.
6
7use scirs2_core::ndarray::{Array1, Array2, Array3};
8use scirs2_core::Complex64;
9use std::collections::HashMap;
10
11use crate::error::{Result, SimulatorError};
12use crate::pauli::{PauliOperator, PauliOperatorSum, PauliString};
13use crate::scirs2_integration::SciRS2Backend;
14
15/// Fermionic creation and annihilation operators
16#[derive(Debug, Clone, PartialEq, Eq, Hash)]
17pub enum FermionicOperator {
18    /// Creation operator c†_i
19    Creation(usize),
20    /// Annihilation operator c_i
21    Annihilation(usize),
22    /// Number operator n_i = c†_i c_i
23    Number(usize),
24    /// Hopping term c†_i c_j
25    Hopping { from: usize, to: usize },
26    /// Interaction term c†_i c†_j c_k c_l
27    Interaction { sites: [usize; 4] },
28}
29
30/// Fermionic operator string (product of fermionic operators)
31#[derive(Debug, Clone)]
32pub struct FermionicString {
33    /// Ordered list of fermionic operators
34    pub operators: Vec<FermionicOperator>,
35    /// Coefficient of the operator string
36    pub coefficient: Complex64,
37    /// Number of fermionic modes
38    pub num_modes: usize,
39}
40
41/// Sum of fermionic operator strings (fermionic Hamiltonian)
42#[derive(Debug, Clone)]
43pub struct FermionicHamiltonian {
44    /// Terms in the Hamiltonian
45    pub terms: Vec<FermionicString>,
46    /// Number of fermionic modes
47    pub num_modes: usize,
48    /// Whether the Hamiltonian is Hermitian
49    pub is_hermitian: bool,
50}
51
52/// Jordan-Wigner transformation for mapping fermions to qubits
53pub struct JordanWignerTransform {
54    /// Number of fermionic modes
55    num_modes: usize,
56    /// Cached Pauli string representations
57    pauli_cache: HashMap<FermionicOperator, PauliString>,
58}
59
60/// Fermionic simulator with SciRS2 optimization
61pub struct FermionicSimulator {
62    /// Number of fermionic modes
63    num_modes: usize,
64    /// Jordan-Wigner transformer
65    jw_transform: JordanWignerTransform,
66    /// Current fermionic state (in qubit representation)
67    state: Array1<Complex64>,
68    /// SciRS2 backend for optimization
69    backend: Option<SciRS2Backend>,
70    /// Simulation statistics
71    stats: FermionicStats,
72}
73
74/// Statistics for fermionic simulation
75#[derive(Debug, Clone, Default)]
76pub struct FermionicStats {
77    /// Number of Jordan-Wigner transformations performed
78    pub jw_transformations: usize,
79    /// Number of fermionic operators applied
80    pub fermionic_ops_applied: usize,
81    /// Time spent in Jordan-Wigner transformation
82    pub jw_time_ms: f64,
83    /// Memory usage for operator storage
84    pub operator_memory_bytes: usize,
85    /// Maximum Pauli string length encountered
86    pub max_pauli_string_length: usize,
87}
88
89impl FermionicOperator {
90    /// Check if operator is creation type
91    pub fn is_creation(&self) -> bool {
92        matches!(self, FermionicOperator::Creation(_))
93    }
94
95    /// Check if operator is annihilation type
96    pub fn is_annihilation(&self) -> bool {
97        matches!(self, FermionicOperator::Annihilation(_))
98    }
99
100    /// Get site index for single-site operators
101    pub fn site(&self) -> Option<usize> {
102        match self {
103            FermionicOperator::Creation(i)
104            | FermionicOperator::Annihilation(i)
105            | FermionicOperator::Number(i) => Some(*i),
106            _ => None,
107        }
108    }
109
110    /// Get canonical ordering for operator comparison
111    pub fn ordering_key(&self) -> (usize, usize) {
112        match self {
113            FermionicOperator::Creation(i) => (1, *i),
114            FermionicOperator::Annihilation(i) => (0, *i),
115            FermionicOperator::Number(i) => (2, *i),
116            FermionicOperator::Hopping { from, to } => (3, from.min(to) * 1000 + from.max(to)),
117            FermionicOperator::Interaction { sites } => {
118                let mut sorted_sites = *sites;
119                sorted_sites.sort();
120                (
121                    4,
122                    sorted_sites[0] * 1000000
123                        + sorted_sites[1] * 10000
124                        + sorted_sites[2] * 100
125                        + sorted_sites[3],
126                )
127            }
128        }
129    }
130}
131
132impl FermionicString {
133    /// Create new fermionic string
134    pub fn new(
135        operators: Vec<FermionicOperator>,
136        coefficient: Complex64,
137        num_modes: usize,
138    ) -> Self {
139        Self {
140            operators,
141            coefficient,
142            num_modes,
143        }
144    }
145
146    /// Create single fermionic operator
147    pub fn single_operator(
148        op: FermionicOperator,
149        coefficient: Complex64,
150        num_modes: usize,
151    ) -> Self {
152        Self::new(vec![op], coefficient, num_modes)
153    }
154
155    /// Create creation operator c†_i
156    pub fn creation(site: usize, coefficient: Complex64, num_modes: usize) -> Self {
157        Self::single_operator(FermionicOperator::Creation(site), coefficient, num_modes)
158    }
159
160    /// Create annihilation operator c_i
161    pub fn annihilation(site: usize, coefficient: Complex64, num_modes: usize) -> Self {
162        Self::single_operator(
163            FermionicOperator::Annihilation(site),
164            coefficient,
165            num_modes,
166        )
167    }
168
169    /// Create number operator n_i
170    pub fn number(site: usize, coefficient: Complex64, num_modes: usize) -> Self {
171        Self::single_operator(FermionicOperator::Number(site), coefficient, num_modes)
172    }
173
174    /// Create hopping term t c†_i c_j
175    pub fn hopping(from: usize, to: usize, coefficient: Complex64, num_modes: usize) -> Self {
176        Self::single_operator(
177            FermionicOperator::Hopping { from, to },
178            coefficient,
179            num_modes,
180        )
181    }
182
183    /// Multiply two fermionic strings
184    pub fn multiply(&self, other: &FermionicString) -> Result<FermionicString> {
185        if self.num_modes != other.num_modes {
186            return Err(SimulatorError::DimensionMismatch(
187                "Fermionic strings must have same number of modes".to_string(),
188            ));
189        }
190
191        let mut result_ops = self.operators.clone();
192        result_ops.extend(other.operators.clone());
193
194        // Apply fermionic anticommutation rules
195        let (canonical_ops, sign) = self.canonicalize_operators(&result_ops)?;
196
197        Ok(FermionicString {
198            operators: canonical_ops,
199            coefficient: self.coefficient * other.coefficient * sign,
200            num_modes: self.num_modes,
201        })
202    }
203
204    /// Canonicalize fermionic operators (apply anticommutation)
205    fn canonicalize_operators(
206        &self,
207        ops: &[FermionicOperator],
208    ) -> Result<(Vec<FermionicOperator>, Complex64)> {
209        let mut canonical = ops.to_vec();
210        let mut sign = Complex64::new(1.0, 0.0);
211
212        // Bubble sort with fermionic anticommutation
213        for i in 0..canonical.len() {
214            for j in (i + 1)..canonical.len() {
215                if canonical[i].ordering_key() > canonical[j].ordering_key() {
216                    // Swap with anticommutation sign
217                    canonical.swap(i, j);
218                    sign *= Complex64::new(-1.0, 0.0);
219                }
220            }
221        }
222
223        // Apply fermionic algebra rules (c_i c_i = 0, c†_i c_i = n_i, etc.)
224        let simplified = self.apply_fermionic_algebra(&canonical)?;
225
226        Ok((simplified, sign))
227    }
228
229    /// Apply fermionic algebra rules
230    fn apply_fermionic_algebra(&self, ops: &[FermionicOperator]) -> Result<Vec<FermionicOperator>> {
231        let mut result = Vec::new();
232        let mut i = 0;
233
234        while i < ops.len() {
235            if i + 1 < ops.len() {
236                match (&ops[i], &ops[i + 1]) {
237                    // c†_i c_i = n_i
238                    (FermionicOperator::Creation(a), FermionicOperator::Annihilation(b))
239                        if a == b =>
240                    {
241                        result.push(FermionicOperator::Number(*a));
242                        i += 2;
243                        continue;
244                    }
245                    // c_i c_i = 0 (skip both)
246                    (FermionicOperator::Annihilation(a), FermionicOperator::Annihilation(b))
247                        if a == b =>
248                    {
249                        // Result is zero - would need to handle this properly
250                        i += 2;
251                        continue;
252                    }
253                    // c†_i c†_i = 0 (skip both)
254                    (FermionicOperator::Creation(a), FermionicOperator::Creation(b)) if a == b => {
255                        // Result is zero - would need to handle this properly
256                        i += 2;
257                        continue;
258                    }
259                    _ => {
260                        result.push(ops[i].clone());
261                        i += 1;
262                    }
263                }
264            } else {
265                result.push(ops[i].clone());
266                i += 1;
267            }
268        }
269
270        Ok(result)
271    }
272
273    /// Compute Hermitian conjugate
274    pub fn hermitian_conjugate(&self) -> FermionicString {
275        let mut conjugate_ops = Vec::new();
276
277        // Reverse order and conjugate each operator
278        for op in self.operators.iter().rev() {
279            let conjugate_op = match op {
280                FermionicOperator::Creation(i) => FermionicOperator::Annihilation(*i),
281                FermionicOperator::Annihilation(i) => FermionicOperator::Creation(*i),
282                FermionicOperator::Number(i) => FermionicOperator::Number(*i),
283                FermionicOperator::Hopping { from, to } => FermionicOperator::Hopping {
284                    from: *to,
285                    to: *from,
286                },
287                FermionicOperator::Interaction { sites } => {
288                    // Reverse the order for interaction terms
289                    let mut rev_sites = *sites;
290                    rev_sites.reverse();
291                    FermionicOperator::Interaction { sites: rev_sites }
292                }
293            };
294            conjugate_ops.push(conjugate_op);
295        }
296
297        FermionicString {
298            operators: conjugate_ops,
299            coefficient: self.coefficient.conj(),
300            num_modes: self.num_modes,
301        }
302    }
303}
304
305impl FermionicHamiltonian {
306    /// Create new fermionic Hamiltonian
307    pub fn new(num_modes: usize) -> Self {
308        Self {
309            terms: Vec::new(),
310            num_modes,
311            is_hermitian: true,
312        }
313    }
314
315    /// Add term to Hamiltonian
316    pub fn add_term(&mut self, term: FermionicString) -> Result<()> {
317        if term.num_modes != self.num_modes {
318            return Err(SimulatorError::DimensionMismatch(
319                "Term must have same number of modes as Hamiltonian".to_string(),
320            ));
321        }
322
323        self.terms.push(term);
324        Ok(())
325    }
326
327    /// Add Hermitian conjugate terms automatically
328    pub fn make_hermitian(&mut self) {
329        let mut conjugate_terms = Vec::new();
330
331        for term in &self.terms {
332            let conjugate = term.hermitian_conjugate();
333            // Only add if it's different from the original term
334            if !self.terms_equal(term, &conjugate) {
335                conjugate_terms.push(conjugate);
336            }
337        }
338
339        self.terms.extend(conjugate_terms);
340        self.is_hermitian = true;
341    }
342
343    /// Check if two terms are equal
344    fn terms_equal(&self, term1: &FermionicString, term2: &FermionicString) -> bool {
345        term1.operators == term2.operators && (term1.coefficient - term2.coefficient).norm() < 1e-12
346    }
347
348    /// Create molecular Hamiltonian
349    pub fn molecular_hamiltonian(
350        num_modes: usize,
351        one_body_integrals: &Array2<f64>,
352        two_body_integrals: &Array3<f64>,
353    ) -> Result<Self> {
354        let mut hamiltonian = Self::new(num_modes);
355
356        // One-body terms: ∑_{i,j} h_{ij} c†_i c_j
357        for i in 0..num_modes {
358            for j in 0..num_modes {
359                if one_body_integrals[[i, j]].abs() > 1e-12 {
360                    let coeff = Complex64::new(one_body_integrals[[i, j]], 0.0);
361                    let term = FermionicString::new(
362                        vec![
363                            FermionicOperator::Creation(i),
364                            FermionicOperator::Annihilation(j),
365                        ],
366                        coeff,
367                        num_modes,
368                    );
369                    hamiltonian.add_term(term)?;
370                }
371            }
372        }
373
374        // Two-body terms: ∑_{i,j,k,l} V_{ijkl} c†_i c†_j c_l c_k
375        for i in 0..num_modes {
376            for j in 0..num_modes {
377                for k in 0..num_modes {
378                    if two_body_integrals[[i, j, k]].abs() > 1e-12 {
379                        for l in 0..num_modes {
380                            let coeff = Complex64::new(0.5 * two_body_integrals[[i, j, k]], 0.0);
381                            let term = FermionicString::new(
382                                vec![
383                                    FermionicOperator::Creation(i),
384                                    FermionicOperator::Creation(j),
385                                    FermionicOperator::Annihilation(l),
386                                    FermionicOperator::Annihilation(k),
387                                ],
388                                coeff,
389                                num_modes,
390                            );
391                            hamiltonian.add_term(term)?;
392                        }
393                    }
394                }
395            }
396        }
397
398        hamiltonian.make_hermitian();
399        Ok(hamiltonian)
400    }
401
402    /// Create Hubbard model Hamiltonian
403    pub fn hubbard_model(
404        sites: usize,
405        hopping: f64,
406        interaction: f64,
407        chemical_potential: f64,
408    ) -> Result<Self> {
409        let num_modes = 2 * sites; // Spin up and spin down
410        let mut hamiltonian = Self::new(num_modes);
411
412        // Hopping terms: -t ∑_{⟨i,j⟩,σ} (c†_{i,σ} c_{j,σ} + h.c.)
413        for i in 0..sites {
414            for sigma in 0..2 {
415                let site_i = 2 * i + sigma;
416
417                // Nearest neighbor hopping (1D chain)
418                if i + 1 < sites {
419                    let site_j = 2 * (i + 1) + sigma;
420
421                    // Forward hopping
422                    let hopping_term = FermionicString::hopping(
423                        site_i,
424                        site_j,
425                        Complex64::new(-hopping, 0.0),
426                        num_modes,
427                    );
428                    hamiltonian.add_term(hopping_term)?;
429
430                    // Backward hopping (Hermitian conjugate)
431                    let back_hopping_term = FermionicString::hopping(
432                        site_j,
433                        site_i,
434                        Complex64::new(-hopping, 0.0),
435                        num_modes,
436                    );
437                    hamiltonian.add_term(back_hopping_term)?;
438                }
439            }
440        }
441
442        // Interaction terms: U ∑_i n_{i,↑} n_{i,↓}
443        for i in 0..sites {
444            let up_site = 2 * i;
445            let down_site = 2 * i + 1;
446
447            let interaction_term = FermionicString::new(
448                vec![
449                    FermionicOperator::Number(up_site),
450                    FermionicOperator::Number(down_site),
451                ],
452                Complex64::new(interaction, 0.0),
453                num_modes,
454            );
455            hamiltonian.add_term(interaction_term)?;
456        }
457
458        // Chemical potential terms: -μ ∑_{i,σ} n_{i,σ}
459        for i in 0..num_modes {
460            let mu_term =
461                FermionicString::number(i, Complex64::new(-chemical_potential, 0.0), num_modes);
462            hamiltonian.add_term(mu_term)?;
463        }
464
465        Ok(hamiltonian)
466    }
467}
468
469impl JordanWignerTransform {
470    /// Create new Jordan-Wigner transformer
471    pub fn new(num_modes: usize) -> Self {
472        Self {
473            num_modes,
474            pauli_cache: HashMap::new(),
475        }
476    }
477
478    /// Transform fermionic operator to Pauli string
479    pub fn transform_operator(&mut self, op: &FermionicOperator) -> Result<PauliString> {
480        if let Some(cached) = self.pauli_cache.get(op) {
481            return Ok(cached.clone());
482        }
483
484        let pauli_string = match op {
485            FermionicOperator::Creation(i) => self.creation_to_pauli(*i)?,
486            FermionicOperator::Annihilation(i) => self.annihilation_to_pauli(*i)?,
487            FermionicOperator::Number(i) => self.number_to_pauli(*i)?,
488            FermionicOperator::Hopping { from, to } => self.hopping_to_pauli(*from, *to)?,
489            FermionicOperator::Interaction { sites } => self.interaction_to_pauli(*sites)?,
490        };
491
492        self.pauli_cache.insert(op.clone(), pauli_string.clone());
493        Ok(pauli_string)
494    }
495
496    /// Transform creation operator c†_i to Pauli string
497    fn creation_to_pauli(&self, site: usize) -> Result<PauliString> {
498        if site >= self.num_modes {
499            return Err(SimulatorError::IndexOutOfBounds(site));
500        }
501
502        let mut paulis = vec![PauliOperator::I; self.num_modes];
503
504        // Jordan-Wigner string: Z_0 Z_1 ... Z_{i-1} (X_i - i Y_i)/2
505        for j in 0..site {
506            paulis[j] = PauliOperator::Z;
507        }
508
509        // For creation: (X - iY)/2, we'll represent this as two terms
510        // This is a simplified representation - proper implementation would
511        // handle complex Pauli strings
512        paulis[site] = PauliOperator::X;
513
514        let ops: Vec<(usize, PauliOperator)> = paulis
515            .iter()
516            .enumerate()
517            .filter(|(_, &op)| op != PauliOperator::I)
518            .map(|(i, &op)| (i, op))
519            .collect();
520
521        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.5, 0.0))
522    }
523
524    /// Transform annihilation operator c_i to Pauli string
525    fn annihilation_to_pauli(&self, site: usize) -> Result<PauliString> {
526        if site >= self.num_modes {
527            return Err(SimulatorError::IndexOutOfBounds(site));
528        }
529
530        let mut paulis = vec![PauliOperator::I; self.num_modes];
531
532        // Jordan-Wigner string: Z_0 Z_1 ... Z_{i-1} (X_i + i Y_i)/2
533        for j in 0..site {
534            paulis[j] = PauliOperator::Z;
535        }
536
537        paulis[site] = PauliOperator::X;
538
539        let ops: Vec<(usize, PauliOperator)> = paulis
540            .iter()
541            .enumerate()
542            .filter(|(_, &op)| op != PauliOperator::I)
543            .map(|(i, &op)| (i, op))
544            .collect();
545
546        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.5, 0.0))
547    }
548
549    /// Transform number operator n_i to Pauli string
550    fn number_to_pauli(&self, site: usize) -> Result<PauliString> {
551        if site >= self.num_modes {
552            return Err(SimulatorError::IndexOutOfBounds(site));
553        }
554
555        let mut paulis = vec![PauliOperator::I; self.num_modes];
556
557        // n_i = c†_i c_i = (I - Z_i)/2
558        paulis[site] = PauliOperator::Z;
559
560        let ops: Vec<(usize, PauliOperator)> = paulis
561            .iter()
562            .enumerate()
563            .filter(|(_, &op)| op != PauliOperator::I)
564            .map(|(i, &op)| (i, op))
565            .collect();
566
567        PauliString::from_ops(self.num_modes, &ops, Complex64::new(-0.5, 0.0))
568    }
569
570    /// Transform hopping term to Pauli string
571    fn hopping_to_pauli(&self, from: usize, to: usize) -> Result<PauliString> {
572        // This would be a product of creation and annihilation operators
573        // Simplified implementation for now
574        let mut paulis = vec![PauliOperator::I; self.num_modes];
575
576        let min_site = from.min(to);
577        let max_site = from.max(to);
578
579        // Jordan-Wigner string between sites
580        for j in min_site..max_site {
581            paulis[j] = PauliOperator::Z;
582        }
583
584        paulis[from] = PauliOperator::X;
585        paulis[to] = PauliOperator::X;
586
587        let ops: Vec<(usize, PauliOperator)> = paulis
588            .iter()
589            .enumerate()
590            .filter(|(_, &op)| op != PauliOperator::I)
591            .map(|(i, &op)| (i, op))
592            .collect();
593
594        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.25, 0.0))
595    }
596
597    /// Transform interaction term to Pauli string
598    fn interaction_to_pauli(&self, sites: [usize; 4]) -> Result<PauliString> {
599        // Simplified implementation for four-fermion interaction
600        let mut paulis = vec![PauliOperator::I; self.num_modes];
601
602        for &site in &sites {
603            paulis[site] = PauliOperator::Z;
604        }
605
606        let ops: Vec<(usize, PauliOperator)> = paulis
607            .iter()
608            .enumerate()
609            .filter(|(_, &op)| op != PauliOperator::I)
610            .map(|(i, &op)| (i, op))
611            .collect();
612
613        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.0625, 0.0))
614    }
615
616    /// Transform fermionic string to Pauli operator sum
617    pub fn transform_string(
618        &mut self,
619        fermionic_string: &FermionicString,
620    ) -> Result<PauliOperatorSum> {
621        let mut pauli_sum = PauliOperatorSum::new(self.num_modes);
622
623        if fermionic_string.operators.is_empty() {
624            // Identity term
625            let mut identity_string = PauliString::new(self.num_modes);
626            identity_string.coefficient = fermionic_string.coefficient;
627            let _ = pauli_sum.add_term(identity_string);
628            return Ok(pauli_sum);
629        }
630
631        // For now, simplified implementation that handles single operators
632        if fermionic_string.operators.len() == 1 {
633            let pauli_string = self.transform_operator(&fermionic_string.operators[0])?;
634            let mut scaled_string = pauli_string.clone();
635            scaled_string.coefficient = pauli_string.coefficient * fermionic_string.coefficient;
636            let _ = pauli_sum.add_term(scaled_string);
637        } else {
638            // Multi-operator case would require more complex implementation
639            // For now, return identity with coefficient
640            let mut identity_string = PauliString::new(self.num_modes);
641            identity_string.coefficient = fermionic_string.coefficient;
642            let _ = pauli_sum.add_term(identity_string);
643        }
644
645        Ok(pauli_sum)
646    }
647
648    /// Transform fermionic Hamiltonian to Pauli Hamiltonian
649    pub fn transform_hamiltonian(
650        &mut self,
651        hamiltonian: &FermionicHamiltonian,
652    ) -> Result<PauliOperatorSum> {
653        let mut pauli_hamiltonian = PauliOperatorSum::new(self.num_modes);
654
655        for term in &hamiltonian.terms {
656            let pauli_terms = self.transform_string(term)?;
657            for pauli_term in pauli_terms.terms {
658                let _ = pauli_hamiltonian.add_term(pauli_term);
659            }
660        }
661
662        Ok(pauli_hamiltonian)
663    }
664}
665
666impl FermionicSimulator {
667    /// Create new fermionic simulator
668    pub fn new(num_modes: usize) -> Result<Self> {
669        let dim = 1 << num_modes;
670        let mut state = Array1::zeros(dim);
671        state[0] = Complex64::new(1.0, 0.0); // |0...0⟩ (vacuum state)
672
673        Ok(Self {
674            num_modes,
675            jw_transform: JordanWignerTransform::new(num_modes),
676            state,
677            backend: None,
678            stats: FermionicStats::default(),
679        })
680    }
681
682    /// Initialize with SciRS2 backend
683    pub fn with_scirs2_backend(mut self) -> Result<Self> {
684        self.backend = Some(SciRS2Backend::new());
685        Ok(self)
686    }
687
688    /// Set initial fermionic state
689    pub fn set_initial_state(&mut self, occupation: &[bool]) -> Result<()> {
690        if occupation.len() != self.num_modes {
691            return Err(SimulatorError::DimensionMismatch(
692                "Occupation must match number of modes".to_string(),
693            ));
694        }
695
696        // Create Fock state |n_0, n_1, ..., n_{N-1}⟩
697        let mut index = 0;
698        for (i, &occupied) in occupation.iter().enumerate() {
699            if occupied {
700                index |= 1 << (self.num_modes - 1 - i);
701            }
702        }
703
704        self.state.fill(Complex64::new(0.0, 0.0));
705        self.state[index] = Complex64::new(1.0, 0.0);
706
707        Ok(())
708    }
709
710    /// Apply fermionic operator
711    pub fn apply_fermionic_operator(&mut self, op: &FermionicOperator) -> Result<()> {
712        let start_time = std::time::Instant::now();
713
714        // Transform to Pauli representation
715        let pauli_string = self.jw_transform.transform_operator(op)?;
716
717        // Apply Pauli string to state
718        self.apply_pauli_string(&pauli_string)?;
719
720        self.stats.fermionic_ops_applied += 1;
721        self.stats.jw_transformations += 1;
722        self.stats.jw_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
723
724        Ok(())
725    }
726
727    /// Apply fermionic string
728    pub fn apply_fermionic_string(&mut self, fermionic_string: &FermionicString) -> Result<()> {
729        let pauli_sum = self.jw_transform.transform_string(fermionic_string)?;
730
731        // Apply each Pauli term
732        for pauli_term in &pauli_sum.terms {
733            self.apply_pauli_string(pauli_term)?;
734        }
735
736        Ok(())
737    }
738
739    /// Apply Pauli string to current state
740    fn apply_pauli_string(&mut self, pauli_string: &PauliString) -> Result<()> {
741        // This would need proper Pauli string application
742        // For now, placeholder implementation
743        Ok(())
744    }
745
746    /// Compute expectation value of fermionic operator
747    pub fn expectation_value(&mut self, op: &FermionicOperator) -> Result<Complex64> {
748        let pauli_string = self.jw_transform.transform_operator(op)?;
749
750        // Compute ⟨ψ|P|ψ⟩ where P is the Pauli string
751        let expectation = self.compute_pauli_expectation(&pauli_string)?;
752
753        Ok(expectation)
754    }
755
756    /// Compute Pauli string expectation value
757    fn compute_pauli_expectation(&self, pauli_string: &PauliString) -> Result<Complex64> {
758        // Simplified implementation
759        // Would need proper Pauli string expectation value computation
760        Ok(Complex64::new(0.0, 0.0))
761    }
762
763    /// Evolve under fermionic Hamiltonian
764    pub fn evolve_hamiltonian(
765        &mut self,
766        hamiltonian: &FermionicHamiltonian,
767        time: f64,
768    ) -> Result<()> {
769        // Transform to Pauli Hamiltonian
770        let pauli_hamiltonian = self.jw_transform.transform_hamiltonian(hamiltonian)?;
771
772        // Evolve under Pauli Hamiltonian (would use Trotter-Suzuki or exact methods)
773        self.evolve_pauli_hamiltonian(&pauli_hamiltonian, time)?;
774
775        Ok(())
776    }
777
778    /// Evolve under Pauli Hamiltonian
779    fn evolve_pauli_hamiltonian(
780        &mut self,
781        _hamiltonian: &PauliOperatorSum,
782        _time: f64,
783    ) -> Result<()> {
784        // Would implement time evolution under Pauli Hamiltonian
785        // Could use matrix exponentiation or Trotter-Suzuki decomposition
786        Ok(())
787    }
788
789    /// Get current state vector
790    pub fn get_state(&self) -> &Array1<Complex64> {
791        &self.state
792    }
793
794    /// Get number of particles in current state
795    pub fn get_particle_number(&self) -> f64 {
796        let mut total_number = 0.0;
797
798        for (index, amplitude) in self.state.iter().enumerate() {
799            let prob = amplitude.norm_sqr();
800            let popcount = index.count_ones() as f64;
801            total_number += prob * popcount;
802        }
803
804        total_number
805    }
806
807    /// Get simulation statistics
808    pub fn get_stats(&self) -> &FermionicStats {
809        &self.stats
810    }
811
812    /// Compute particle number correlation
813    pub fn particle_correlation(&mut self, site1: usize, site2: usize) -> Result<f64> {
814        let n1_op = FermionicOperator::Number(site1);
815        let n2_op = FermionicOperator::Number(site2);
816
817        let n1_exp = self.expectation_value(&n1_op)?.re;
818        let n2_exp = self.expectation_value(&n2_op)?.re;
819
820        // For ⟨n_i n_j⟩, would need to compute product operator expectation
821        let n1_n2_exp = 0.0; // Placeholder
822
823        Ok(n1_n2_exp - n1_exp * n2_exp)
824    }
825}
826
827/// Benchmark fermionic simulation
828pub fn benchmark_fermionic_simulation(num_modes: usize) -> Result<FermionicStats> {
829    let mut simulator = FermionicSimulator::new(num_modes)?;
830
831    // Create simple Hubbard model
832    let hamiltonian = FermionicHamiltonian::hubbard_model(num_modes / 2, 1.0, 2.0, 0.5)?;
833
834    // Apply some fermionic operators
835    let creation_op = FermionicOperator::Creation(0);
836    simulator.apply_fermionic_operator(&creation_op)?;
837
838    let annihilation_op = FermionicOperator::Annihilation(1);
839    simulator.apply_fermionic_operator(&annihilation_op)?;
840
841    // Evolve under Hamiltonian
842    simulator.evolve_hamiltonian(&hamiltonian, 0.1)?;
843
844    Ok(simulator.get_stats().clone())
845}
846
847#[cfg(test)]
848mod tests {
849    use super::*;
850
851    #[test]
852    fn test_fermionic_operator_creation() {
853        let op = FermionicOperator::Creation(0);
854        assert!(op.is_creation());
855        assert!(!op.is_annihilation());
856        assert_eq!(op.site(), Some(0));
857    }
858
859    #[test]
860    fn test_fermionic_string() {
861        let ops = vec![
862            FermionicOperator::Creation(0),
863            FermionicOperator::Annihilation(1),
864        ];
865        let string = FermionicString::new(ops, Complex64::new(1.0, 0.0), 4);
866        assert_eq!(string.operators.len(), 2);
867        assert_eq!(string.num_modes, 4);
868    }
869
870    #[test]
871    fn test_hubbard_hamiltonian() {
872        let hamiltonian = FermionicHamiltonian::hubbard_model(2, 1.0, 2.0, 0.5).unwrap();
873        assert_eq!(hamiltonian.num_modes, 4); // 2 sites × 2 spins
874        assert!(!hamiltonian.terms.is_empty());
875    }
876
877    #[test]
878    fn test_jordan_wigner_transform() {
879        let mut jw = JordanWignerTransform::new(4);
880        let creation_op = FermionicOperator::Creation(1);
881        let pauli_string = jw.transform_operator(&creation_op).unwrap();
882
883        assert_eq!(pauli_string.num_qubits, 4);
884        assert_eq!(pauli_string.operators[0], PauliOperator::Z); // Jordan-Wigner string
885        assert_eq!(pauli_string.operators[1], PauliOperator::X);
886    }
887
888    #[test]
889    fn test_fermionic_simulator() {
890        let mut simulator = FermionicSimulator::new(4).unwrap();
891
892        // Set initial state with one particle
893        simulator
894            .set_initial_state(&[true, false, false, false])
895            .unwrap();
896
897        let particle_number = simulator.get_particle_number();
898        assert!((particle_number - 1.0).abs() < 1e-10);
899    }
900
901    #[test]
902    fn test_fermionic_string_multiplication() {
903        let string1 = FermionicString::creation(0, Complex64::new(1.0, 0.0), 4);
904        let string2 = FermionicString::annihilation(1, Complex64::new(1.0, 0.0), 4);
905
906        let product = string1.multiply(&string2).unwrap();
907        assert!(!product.operators.is_empty());
908    }
909}