quantrs2_sim/error_correction/
mod.rs

1//! Quantum Error Correction Module
2//!
3//! This module provides quantum error correction capabilities for protecting
4//! quantum information against noise and decoherence.
5//!
6//! # Overview
7//!
8//! Quantum error correction is essential for creating fault-tolerant quantum computers.
9//! It allows us to encode quantum information in a way that we can detect and correct
10//! errors that may occur during computation.
11//!
12//! This module implements various quantum error correction codes:
13//!
14//! * **Bit Flip Code**: Protects against X (bit flip) errors
15//! * **Phase Flip Code**: Protects against Z (phase flip) errors
16//! * **Shor Code**: Protects against arbitrary single-qubit errors
17//! * **5-Qubit Perfect Code**: The smallest code that can correct arbitrary single-qubit errors
18//!
19//! # Usage
20//!
21//! To use quantum error correction in your quantum circuits:
22//!
23//! 1. Create an error correction code object
24//! 2. Use the object to generate encoding and decoding circuits
25//! 3. Incorporate these circuits into your quantum program
26//!
27//! ```rust,no_run
28//! use quantrs2_circuit::builder::Circuit;
29//! use quantrs2_core::qubit::QubitId;
30//! use quantrs2_sim::error_correction::{BitFlipCode, ErrorCorrection};
31//! use quantrs2_sim::statevector::StateVectorSimulator;
32//!
33//! // Create a bit flip code object
34//! let code = BitFlipCode;
35//!
36//! // Define qubits for encoding
37//! let logical_qubits = vec![QubitId::new(0)];
38//! let ancilla_qubits = vec![QubitId::new(1), QubitId::new(2)];
39//!
40//! // Generate encoding circuit
41//! let encode_circuit = code.encode_circuit(&logical_qubits, &ancilla_qubits);
42//!
43//! // Define qubits for syndrome extraction and correction
44//! let encoded_qubits = vec![QubitId::new(0), QubitId::new(1), QubitId::new(2)];
45//! let syndrome_qubits = vec![QubitId::new(3), QubitId::new(4)];
46//!
47//! // Generate correction circuit
48//! let correction_circuit = code.decode_circuit(&encoded_qubits, &syndrome_qubits);
49//!
50//! // Create a main circuit and add the encoding and correction operations
51//! let mut circuit = Circuit::<5>::new();
52//! // ... add your operations here ...
53//! ```
54
55use crate::error::{Result, SimulatorError};
56use quantrs2_circuit::builder::Circuit;
57use quantrs2_core::qubit::QubitId;
58
59mod codes;
60
61pub use codes::*;
62
63/// Trait for quantum error correction codes
64pub trait ErrorCorrection {
65    /// Get the number of physical qubits required
66    fn physical_qubits(&self) -> usize;
67
68    /// Get the number of logical qubits encoded
69    fn logical_qubits(&self) -> usize;
70
71    /// Get the distance of the code (minimum number of errors it can detect)
72    fn distance(&self) -> usize;
73
74    /// Create a circuit to encode logical qubits into the error correction code
75    ///
76    /// # Arguments
77    ///
78    /// * `logical_qubits` - The qubits containing the logical information to encode
79    /// * `ancilla_qubits` - Additional qubits used for the encoding
80    ///
81    /// # Returns
82    ///
83    /// A Result containing the circuit with encoding operations, or an error if insufficient qubits
84    fn encode_circuit(
85        &self,
86        logical_qubits: &[QubitId],
87        ancilla_qubits: &[QubitId],
88    ) -> Result<Circuit<16>>;
89
90    /// Create a circuit to decode and correct errors
91    ///
92    /// # Arguments
93    ///
94    /// * `encoded_qubits` - The qubits that contain the encoded information
95    /// * `syndrome_qubits` - Additional qubits used for syndrome extraction and error correction
96    ///
97    /// # Returns
98    ///
99    /// A Result containing the circuit with error detection and correction operations, or an error if insufficient qubits
100    fn decode_circuit(
101        &self,
102        encoded_qubits: &[QubitId],
103        syndrome_qubits: &[QubitId],
104    ) -> Result<Circuit<16>>;
105}
106
107/// Utility functions for error correction
108pub mod utils {
109    use super::*;
110    use quantrs2_circuit::builder::Circuit;
111
112    /// Creates a complete error-corrected circuit including encoding, noise, and correction
113    ///
114    /// # Arguments
115    ///
116    /// * `initial_circuit` - The initial circuit containing the quantum state to protect
117    /// * `code` - The error correction code to use
118    /// * `logical_qubits` - The qubits containing the logical information
119    /// * `ancilla_qubits` - Additional qubits used for encoding
120    /// * `syndrome_qubits` - Qubits used for syndrome extraction and correction
121    ///
122    /// # Returns
123    ///
124    /// A Result containing the complete circuit with error correction
125    pub fn create_error_corrected_circuit<T: ErrorCorrection, const N: usize>(
126        initial_circuit: &Circuit<N>,
127        code: &T,
128        logical_qubits: &[QubitId],
129        ancilla_qubits: &[QubitId],
130        syndrome_qubits: &[QubitId],
131    ) -> Result<Circuit<N>> {
132        let mut result = Circuit::<N>::new();
133
134        // Copy gates from initial circuit
135        for op in initial_circuit.gates() {
136            if op.qubits().is_empty() {
137                continue;
138            }
139
140            if op.name() == "H" && op.qubits().len() >= 1 {
141                let _ = result.h(op.qubits()[0]);
142            } else if op.name() == "X" && op.qubits().len() >= 1 {
143                let _ = result.x(op.qubits()[0]);
144            } else if op.name() == "Y" && op.qubits().len() >= 1 {
145                let _ = result.y(op.qubits()[0]);
146            } else if op.name() == "Z" && op.qubits().len() >= 1 {
147                let _ = result.z(op.qubits()[0]);
148            } else if op.name() == "S" && op.qubits().len() >= 1 {
149                let _ = result.s(op.qubits()[0]);
150            } else if op.name() == "T" && op.qubits().len() >= 1 {
151                let _ = result.t(op.qubits()[0]);
152            } else if op.name() == "CNOT" && op.qubits().len() >= 2 {
153                let _ = result.cnot(op.qubits()[0], op.qubits()[1]);
154            } else if op.name() == "CZ" && op.qubits().len() >= 2 {
155                let _ = result.cz(op.qubits()[0], op.qubits()[1]);
156            } else if op.name() == "CY" && op.qubits().len() >= 2 {
157                let _ = result.cy(op.qubits()[0], op.qubits()[1]);
158            } else if op.name() == "SWAP" && op.qubits().len() >= 2 {
159                let _ = result.swap(op.qubits()[0], op.qubits()[1]);
160            }
161        }
162
163        // Copy gates from encoding circuit
164        let encoder = code.encode_circuit(logical_qubits, ancilla_qubits)?;
165        for op in encoder.gates() {
166            if op.qubits().is_empty() {
167                continue;
168            }
169
170            if op.name() == "H" && op.qubits().len() >= 1 {
171                let _ = result.h(op.qubits()[0]);
172            } else if op.name() == "X" && op.qubits().len() >= 1 {
173                let _ = result.x(op.qubits()[0]);
174            } else if op.name() == "Y" && op.qubits().len() >= 1 {
175                let _ = result.y(op.qubits()[0]);
176            } else if op.name() == "Z" && op.qubits().len() >= 1 {
177                let _ = result.z(op.qubits()[0]);
178            } else if op.name() == "CNOT" && op.qubits().len() >= 2 {
179                let _ = result.cnot(op.qubits()[0], op.qubits()[1]);
180            } else if op.name() == "CZ" && op.qubits().len() >= 2 {
181                let _ = result.cz(op.qubits()[0], op.qubits()[1]);
182            }
183        }
184
185        // Compute encoded qubits (logical + ancilla)
186        let mut encoded_qubits = logical_qubits.to_vec();
187        encoded_qubits.extend_from_slice(ancilla_qubits);
188
189        // Copy gates from correction circuit
190        let correction = code.decode_circuit(&encoded_qubits, syndrome_qubits)?;
191        for op in correction.gates() {
192            if op.qubits().is_empty() {
193                continue;
194            }
195
196            if op.name() == "H" && op.qubits().len() >= 1 {
197                let _ = result.h(op.qubits()[0]);
198            } else if op.name() == "X" && op.qubits().len() >= 1 {
199                let _ = result.x(op.qubits()[0]);
200            } else if op.name() == "Y" && op.qubits().len() >= 1 {
201                let _ = result.y(op.qubits()[0]);
202            } else if op.name() == "Z" && op.qubits().len() >= 1 {
203                let _ = result.z(op.qubits()[0]);
204            } else if op.name() == "CNOT" && op.qubits().len() >= 2 {
205                let _ = result.cnot(op.qubits()[0], op.qubits()[1]);
206            } else if op.name() == "CZ" && op.qubits().len() >= 2 {
207                let _ = result.cz(op.qubits()[0], op.qubits()[1]);
208            }
209        }
210
211        Ok(result)
212    }
213
214    /// Analyzes the quality of error correction by comparing states before and after correction
215    ///
216    /// # Arguments
217    ///
218    /// * `ideal_state` - The amplitudes of the ideal (noise-free) state
219    /// * `noisy_state` - The amplitudes of the state with noise
220    /// * `corrected_state` - The amplitudes of the state after error correction
221    ///
222    /// # Returns
223    ///
224    /// A Result containing a tuple with (fidelity before correction, fidelity after correction)
225    pub fn analyze_correction_quality(
226        ideal_state: &[scirs2_core::Complex64],
227        noisy_state: &[scirs2_core::Complex64],
228        corrected_state: &[scirs2_core::Complex64],
229    ) -> Result<(f64, f64)> {
230        let fidelity_before = calculate_fidelity(ideal_state, noisy_state)?;
231        let fidelity_after = calculate_fidelity(ideal_state, corrected_state)?;
232
233        Ok((fidelity_before, fidelity_after))
234    }
235
236    /// Calculates the fidelity between two quantum states
237    ///
238    /// Fidelity measures how close two quantum states are to each other.
239    /// A value of 1.0 means the states are identical.
240    ///
241    /// # Arguments
242    ///
243    /// * `state1` - The first state's amplitudes
244    /// * `state2` - The second state's amplitudes
245    ///
246    /// # Returns
247    ///
248    /// The fidelity between the states (0.0 to 1.0)
249    pub fn calculate_fidelity(
250        state1: &[scirs2_core::Complex64],
251        state2: &[scirs2_core::Complex64],
252    ) -> Result<f64> {
253        use scirs2_core::Complex64;
254
255        if state1.len() != state2.len() {
256            return Err(SimulatorError::DimensionMismatch(format!(
257                "States have different dimensions: {} vs {}",
258                state1.len(),
259                state2.len()
260            )));
261        }
262
263        // Calculate inner product
264        let mut inner_product = Complex64::new(0.0, 0.0);
265        for (a1, a2) in state1.iter().zip(state2.iter()) {
266            inner_product += a1.conj() * a2;
267        }
268
269        // Fidelity is the square of the absolute value of the inner product
270        Ok(inner_product.norm_sqr())
271    }
272}