quantrs2_sim/error_correction/mod.rs
1//! Quantum Error Correction Module
2//!
3//! This module provides quantum error correction capabilities for protecting
4//! quantum information against noise and decoherence.
5//!
6//! # Overview
7//!
8//! Quantum error correction is essential for creating fault-tolerant quantum computers.
9//! It allows us to encode quantum information in a way that we can detect and correct
10//! errors that may occur during computation.
11//!
12//! This module implements various quantum error correction codes:
13//!
14//! * **Bit Flip Code**: Protects against X (bit flip) errors
15//! * **Phase Flip Code**: Protects against Z (phase flip) errors
16//! * **Shor Code**: Protects against arbitrary single-qubit errors
17//! * **5-Qubit Perfect Code**: The smallest code that can correct arbitrary single-qubit errors
18//!
19//! # Usage
20//!
21//! To use quantum error correction in your quantum circuits:
22//!
23//! 1. Create an error correction code object
24//! 2. Use the object to generate encoding and decoding circuits
25//! 3. Incorporate these circuits into your quantum program
26//!
27//! ```rust,no_run
28//! use quantrs2_circuit::builder::Circuit;
29//! use quantrs2_core::qubit::QubitId;
30//! use quantrs2_sim::error_correction::{BitFlipCode, ErrorCorrection};
31//! use quantrs2_sim::statevector::StateVectorSimulator;
32//!
33//! // Create a bit flip code object
34//! let code = BitFlipCode;
35//!
36//! // Define qubits for encoding
37//! let logical_qubits = vec![QubitId::new(0)];
38//! let ancilla_qubits = vec![QubitId::new(1), QubitId::new(2)];
39//!
40//! // Generate encoding circuit
41//! let encode_circuit = code.encode_circuit(&logical_qubits, &ancilla_qubits);
42//!
43//! // Define qubits for syndrome extraction and correction
44//! let encoded_qubits = vec![QubitId::new(0), QubitId::new(1), QubitId::new(2)];
45//! let syndrome_qubits = vec![QubitId::new(3), QubitId::new(4)];
46//!
47//! // Generate correction circuit
48//! let correction_circuit = code.decode_circuit(&encoded_qubits, &syndrome_qubits);
49//!
50//! // Create a main circuit and add the encoding and correction operations
51//! let mut circuit = Circuit::<5>::new();
52//! // ... add your operations here ...
53//! ```
54
55use crate::error::{Result, SimulatorError};
56use quantrs2_circuit::builder::Circuit;
57use quantrs2_core::qubit::QubitId;
58
59mod codes;
60
61pub use codes::*;
62
63/// Trait for quantum error correction codes
64pub trait ErrorCorrection {
65 /// Get the number of physical qubits required
66 fn physical_qubits(&self) -> usize;
67
68 /// Get the number of logical qubits encoded
69 fn logical_qubits(&self) -> usize;
70
71 /// Get the distance of the code (minimum number of errors it can detect)
72 fn distance(&self) -> usize;
73
74 /// Create a circuit to encode logical qubits into the error correction code
75 ///
76 /// # Arguments
77 ///
78 /// * `logical_qubits` - The qubits containing the logical information to encode
79 /// * `ancilla_qubits` - Additional qubits used for the encoding
80 ///
81 /// # Returns
82 ///
83 /// A Result containing the circuit with encoding operations, or an error if insufficient qubits
84 fn encode_circuit(
85 &self,
86 logical_qubits: &[QubitId],
87 ancilla_qubits: &[QubitId],
88 ) -> Result<Circuit<16>>;
89
90 /// Create a circuit to decode and correct errors
91 ///
92 /// # Arguments
93 ///
94 /// * `encoded_qubits` - The qubits that contain the encoded information
95 /// * `syndrome_qubits` - Additional qubits used for syndrome extraction and error correction
96 ///
97 /// # Returns
98 ///
99 /// A Result containing the circuit with error detection and correction operations, or an error if insufficient qubits
100 fn decode_circuit(
101 &self,
102 encoded_qubits: &[QubitId],
103 syndrome_qubits: &[QubitId],
104 ) -> Result<Circuit<16>>;
105}
106
107/// Utility functions for error correction
108pub mod utils {
109 use super::*;
110 use quantrs2_circuit::builder::Circuit;
111
112 /// Creates a complete error-corrected circuit including encoding, noise, and correction
113 ///
114 /// # Arguments
115 ///
116 /// * `initial_circuit` - The initial circuit containing the quantum state to protect
117 /// * `code` - The error correction code to use
118 /// * `logical_qubits` - The qubits containing the logical information
119 /// * `ancilla_qubits` - Additional qubits used for encoding
120 /// * `syndrome_qubits` - Qubits used for syndrome extraction and correction
121 ///
122 /// # Returns
123 ///
124 /// A Result containing the complete circuit with error correction
125 pub fn create_error_corrected_circuit<T: ErrorCorrection, const N: usize>(
126 initial_circuit: &Circuit<N>,
127 code: &T,
128 logical_qubits: &[QubitId],
129 ancilla_qubits: &[QubitId],
130 syndrome_qubits: &[QubitId],
131 ) -> Result<Circuit<N>> {
132 let mut result = Circuit::<N>::new();
133
134 // Copy gates from initial circuit
135 for op in initial_circuit.gates() {
136 if op.qubits().is_empty() {
137 continue;
138 }
139
140 if op.name() == "H" && op.qubits().len() >= 1 {
141 let _ = result.h(op.qubits()[0]);
142 } else if op.name() == "X" && op.qubits().len() >= 1 {
143 let _ = result.x(op.qubits()[0]);
144 } else if op.name() == "Y" && op.qubits().len() >= 1 {
145 let _ = result.y(op.qubits()[0]);
146 } else if op.name() == "Z" && op.qubits().len() >= 1 {
147 let _ = result.z(op.qubits()[0]);
148 } else if op.name() == "S" && op.qubits().len() >= 1 {
149 let _ = result.s(op.qubits()[0]);
150 } else if op.name() == "T" && op.qubits().len() >= 1 {
151 let _ = result.t(op.qubits()[0]);
152 } else if op.name() == "CNOT" && op.qubits().len() >= 2 {
153 let _ = result.cnot(op.qubits()[0], op.qubits()[1]);
154 } else if op.name() == "CZ" && op.qubits().len() >= 2 {
155 let _ = result.cz(op.qubits()[0], op.qubits()[1]);
156 } else if op.name() == "CY" && op.qubits().len() >= 2 {
157 let _ = result.cy(op.qubits()[0], op.qubits()[1]);
158 } else if op.name() == "SWAP" && op.qubits().len() >= 2 {
159 let _ = result.swap(op.qubits()[0], op.qubits()[1]);
160 }
161 }
162
163 // Copy gates from encoding circuit
164 let encoder = code.encode_circuit(logical_qubits, ancilla_qubits)?;
165 for op in encoder.gates() {
166 if op.qubits().is_empty() {
167 continue;
168 }
169
170 if op.name() == "H" && op.qubits().len() >= 1 {
171 let _ = result.h(op.qubits()[0]);
172 } else if op.name() == "X" && op.qubits().len() >= 1 {
173 let _ = result.x(op.qubits()[0]);
174 } else if op.name() == "Y" && op.qubits().len() >= 1 {
175 let _ = result.y(op.qubits()[0]);
176 } else if op.name() == "Z" && op.qubits().len() >= 1 {
177 let _ = result.z(op.qubits()[0]);
178 } else if op.name() == "CNOT" && op.qubits().len() >= 2 {
179 let _ = result.cnot(op.qubits()[0], op.qubits()[1]);
180 } else if op.name() == "CZ" && op.qubits().len() >= 2 {
181 let _ = result.cz(op.qubits()[0], op.qubits()[1]);
182 }
183 }
184
185 // Compute encoded qubits (logical + ancilla)
186 let mut encoded_qubits = logical_qubits.to_vec();
187 encoded_qubits.extend_from_slice(ancilla_qubits);
188
189 // Copy gates from correction circuit
190 let correction = code.decode_circuit(&encoded_qubits, syndrome_qubits)?;
191 for op in correction.gates() {
192 if op.qubits().is_empty() {
193 continue;
194 }
195
196 if op.name() == "H" && op.qubits().len() >= 1 {
197 let _ = result.h(op.qubits()[0]);
198 } else if op.name() == "X" && op.qubits().len() >= 1 {
199 let _ = result.x(op.qubits()[0]);
200 } else if op.name() == "Y" && op.qubits().len() >= 1 {
201 let _ = result.y(op.qubits()[0]);
202 } else if op.name() == "Z" && op.qubits().len() >= 1 {
203 let _ = result.z(op.qubits()[0]);
204 } else if op.name() == "CNOT" && op.qubits().len() >= 2 {
205 let _ = result.cnot(op.qubits()[0], op.qubits()[1]);
206 } else if op.name() == "CZ" && op.qubits().len() >= 2 {
207 let _ = result.cz(op.qubits()[0], op.qubits()[1]);
208 }
209 }
210
211 Ok(result)
212 }
213
214 /// Analyzes the quality of error correction by comparing states before and after correction
215 ///
216 /// # Arguments
217 ///
218 /// * `ideal_state` - The amplitudes of the ideal (noise-free) state
219 /// * `noisy_state` - The amplitudes of the state with noise
220 /// * `corrected_state` - The amplitudes of the state after error correction
221 ///
222 /// # Returns
223 ///
224 /// A Result containing a tuple with (fidelity before correction, fidelity after correction)
225 pub fn analyze_correction_quality(
226 ideal_state: &[scirs2_core::Complex64],
227 noisy_state: &[scirs2_core::Complex64],
228 corrected_state: &[scirs2_core::Complex64],
229 ) -> Result<(f64, f64)> {
230 let fidelity_before = calculate_fidelity(ideal_state, noisy_state)?;
231 let fidelity_after = calculate_fidelity(ideal_state, corrected_state)?;
232
233 Ok((fidelity_before, fidelity_after))
234 }
235
236 /// Calculates the fidelity between two quantum states
237 ///
238 /// Fidelity measures how close two quantum states are to each other.
239 /// A value of 1.0 means the states are identical.
240 ///
241 /// # Arguments
242 ///
243 /// * `state1` - The first state's amplitudes
244 /// * `state2` - The second state's amplitudes
245 ///
246 /// # Returns
247 ///
248 /// The fidelity between the states (0.0 to 1.0)
249 pub fn calculate_fidelity(
250 state1: &[scirs2_core::Complex64],
251 state2: &[scirs2_core::Complex64],
252 ) -> Result<f64> {
253 use scirs2_core::Complex64;
254
255 if state1.len() != state2.len() {
256 return Err(SimulatorError::DimensionMismatch(format!(
257 "States have different dimensions: {} vs {}",
258 state1.len(),
259 state2.len()
260 )));
261 }
262
263 // Calculate inner product
264 let mut inner_product = Complex64::new(0.0, 0.0);
265 for (a1, a2) in state1.iter().zip(state2.iter()) {
266 inner_product += a1.conj() * a2;
267 }
268
269 // Fidelity is the square of the absolute value of the inner product
270 Ok(inner_product.norm_sqr())
271 }
272}