quantrs2_sim/
auto_optimizer.rs

1//! AutoOptimizer for Automatic Backend Selection based on Problem Characteristics
2//!
3//! This module provides intelligent backend selection for quantum circuit simulation
4//! by analyzing circuit characteristics and automatically choosing the optimal
5//! execution backend using SciRS2 optimization and analysis tools.
6
7use crate::{
8    automatic_parallelization::{AutoParallelConfig, AutoParallelEngine},
9    circuit_optimization::{CircuitOptimizer, OptimizationConfig},
10    distributed_simulator::{DistributedQuantumSimulator, DistributedSimulatorConfig},
11    error::{Result, SimulatorError},
12    large_scale_simulator::{LargeScaleQuantumSimulator, LargeScaleSimulatorConfig},
13    simulator::SimulatorResult,
14    statevector::StateVectorSimulator,
15};
16use quantrs2_circuit::builder::{Circuit, Simulator};
17use quantrs2_core::{
18    error::{QuantRS2Error, QuantRS2Result},
19    gate::GateOp,
20    qubit::QubitId,
21    register::Register,
22};
23
24#[cfg(all(feature = "gpu", not(target_os = "macos")))]
25use crate::gpu::SciRS2GpuStateVectorSimulator;
26use scirs2_core::Complex64;
27use serde::{Deserialize, Serialize};
28use std::collections::HashMap;
29use std::sync::Arc;
30use std::time::{Duration, Instant};
31
32/// Configuration for the AutoOptimizer
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct AutoOptimizerConfig {
35    /// Enable performance profiling during backend selection
36    pub enable_profiling: bool,
37    /// Memory budget for simulation (bytes)
38    pub memory_budget: usize,
39    /// CPU utilization threshold (0.0 to 1.0)
40    pub cpu_utilization_threshold: f64,
41    /// GPU availability check timeout
42    pub gpu_check_timeout: Duration,
43    /// Enable distributed simulation for large circuits
44    pub enable_distributed: bool,
45    /// SciRS2 optimization level
46    pub scirs2_optimization_level: OptimizationLevel,
47    /// Fallback strategy when optimal backend is unavailable
48    pub fallback_strategy: FallbackStrategy,
49    /// Circuit complexity analysis depth
50    pub analysis_depth: AnalysisDepth,
51    /// Performance history cache size
52    pub performance_cache_size: usize,
53    /// Backend preference order
54    pub backend_preferences: Vec<BackendType>,
55}
56
57impl Default for AutoOptimizerConfig {
58    fn default() -> Self {
59        Self {
60            enable_profiling: true,
61            memory_budget: 8 * 1024 * 1024 * 1024, // 8GB
62            cpu_utilization_threshold: 0.8,
63            gpu_check_timeout: Duration::from_millis(1000),
64            enable_distributed: true,
65            scirs2_optimization_level: OptimizationLevel::Aggressive,
66            fallback_strategy: FallbackStrategy::Conservative,
67            analysis_depth: AnalysisDepth::Deep,
68            performance_cache_size: 1000,
69            backend_preferences: vec![
70                BackendType::SciRS2Gpu,
71                BackendType::LargeScale,
72                BackendType::Distributed,
73                BackendType::StateVector,
74            ],
75        }
76    }
77}
78
79/// Available backend types for optimization
80#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
81pub enum BackendType {
82    /// CPU state vector simulator
83    StateVector,
84    /// SciRS2-powered GPU simulator
85    SciRS2Gpu,
86    /// Large-scale optimized simulator
87    LargeScale,
88    /// Distributed cluster simulator
89    Distributed,
90    /// Automatic selection based on characteristics
91    Auto,
92}
93
94/// Optimization levels for SciRS2 integration
95#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
96pub enum OptimizationLevel {
97    /// No optimization
98    None,
99    /// Basic optimizations
100    Basic,
101    /// Advanced optimizations
102    Advanced,
103    /// Aggressive optimizations with maximum SciRS2 features
104    Aggressive,
105}
106
107/// Fallback strategies when optimal backend is unavailable
108#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
109pub enum FallbackStrategy {
110    /// Conservative fallback to reliable backends
111    Conservative,
112    /// Aggressive fallback trying more experimental backends
113    Aggressive,
114    /// Fail if optimal backend is unavailable
115    Fail,
116}
117
118/// Circuit analysis depth levels
119#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
120pub enum AnalysisDepth {
121    /// Quick analysis with basic metrics
122    Quick,
123    /// Standard analysis with comprehensive metrics
124    Standard,
125    /// Deep analysis with advanced circuit characterization
126    Deep,
127}
128
129/// Circuit characteristics analysis results
130#[derive(Debug, Clone)]
131pub struct CircuitCharacteristics {
132    /// Number of qubits
133    pub num_qubits: usize,
134    /// Number of gates
135    pub num_gates: usize,
136    /// Circuit depth (longest path)
137    pub circuit_depth: usize,
138    /// Gate type distribution
139    pub gate_distribution: HashMap<String, usize>,
140    /// Parallelism potential (0.0 to 1.0)
141    pub parallelism_potential: f64,
142    /// Memory requirement estimate (bytes)
143    pub memory_requirement: usize,
144    /// Computational complexity score
145    pub complexity_score: f64,
146    /// Two-qubit gate density
147    pub two_qubit_density: f64,
148    /// Connectivity graph properties
149    pub connectivity_properties: ConnectivityProperties,
150    /// Entanglement depth estimate
151    pub entanglement_depth: usize,
152    /// Noise susceptibility score
153    pub noise_susceptibility: f64,
154}
155
156/// Connectivity graph properties of the circuit
157#[derive(Debug, Clone)]
158pub struct ConnectivityProperties {
159    /// Maximum degree of connectivity
160    pub max_degree: usize,
161    /// Average degree of connectivity
162    pub avg_degree: f64,
163    /// Number of connected components
164    pub connected_components: usize,
165    /// Circuit diameter (longest path between any two qubits)
166    pub diameter: usize,
167    /// Clustering coefficient
168    pub clustering_coefficient: f64,
169}
170
171/// Backend recommendation with reasoning
172#[derive(Debug, Clone)]
173pub struct BackendRecommendation {
174    /// Recommended backend type
175    pub backend_type: BackendType,
176    /// Confidence score (0.0 to 1.0)
177    pub confidence: f64,
178    /// Expected performance improvement over baseline
179    pub expected_improvement: f64,
180    /// Estimated execution time
181    pub estimated_execution_time: Duration,
182    /// Estimated memory usage
183    pub estimated_memory_usage: usize,
184    /// Reasoning for the recommendation
185    pub reasoning: String,
186    /// Alternative recommendations
187    pub alternatives: Vec<(BackendType, f64)>,
188    /// Performance prediction model used
189    pub prediction_model: String,
190}
191
192/// Performance metrics for backend selection
193#[derive(Debug, Clone)]
194pub struct PerformanceMetrics {
195    /// Execution time
196    pub execution_time: Duration,
197    /// Memory usage
198    pub memory_usage: usize,
199    /// CPU utilization
200    pub cpu_utilization: f64,
201    /// GPU utilization (if applicable)
202    pub gpu_utilization: Option<f64>,
203    /// Throughput (gates per second)
204    pub throughput: f64,
205    /// Error rate
206    pub error_rate: f64,
207}
208
209/// Performance history entry for caching
210#[derive(Debug, Clone)]
211pub struct PerformanceHistory {
212    /// Circuit characteristics hash
213    pub circuit_hash: u64,
214    /// Backend used
215    pub backend_type: BackendType,
216    /// Performance metrics achieved
217    pub metrics: PerformanceMetrics,
218    /// Timestamp
219    pub timestamp: Instant,
220}
221
222/// AutoOptimizer for intelligent backend selection
223pub struct AutoOptimizer {
224    /// Configuration
225    config: AutoOptimizerConfig,
226    /// Circuit optimizer for preprocessing
227    circuit_optimizer: CircuitOptimizer,
228    /// Parallelization engine
229    parallel_engine: AutoParallelEngine,
230    /// Performance history cache
231    performance_cache: Vec<PerformanceHistory>,
232    /// Backend availability cache
233    backend_availability: HashMap<BackendType, bool>,
234    /// SciRS2 analysis tools integration
235    scirs2_analyzer: SciRS2CircuitAnalyzer,
236}
237
238/// SciRS2-powered circuit analyzer
239struct SciRS2CircuitAnalyzer {
240    /// Enable advanced SciRS2 features
241    enable_advanced_features: bool,
242}
243
244impl AutoOptimizer {
245    /// Create a new AutoOptimizer with default configuration
246    pub fn new() -> Self {
247        Self::with_config(AutoOptimizerConfig::default())
248    }
249
250    /// Create a new AutoOptimizer with custom configuration
251    pub fn with_config(config: AutoOptimizerConfig) -> Self {
252        let optimization_config = OptimizationConfig {
253            enable_gate_fusion: true,
254            enable_redundant_elimination: true,
255            enable_commutation_reordering: true,
256            enable_single_qubit_optimization: true,
257            enable_two_qubit_optimization: true,
258            max_passes: 3,
259            enable_depth_reduction: true,
260        };
261
262        let parallel_config = AutoParallelConfig {
263            max_threads: rayon::current_num_threads(),
264            min_gates_for_parallel: 20,
265            strategy: crate::automatic_parallelization::ParallelizationStrategy::Hybrid,
266            ..Default::default()
267        };
268
269        Self {
270            config,
271            circuit_optimizer: CircuitOptimizer::with_config(optimization_config),
272            parallel_engine: AutoParallelEngine::new(parallel_config),
273            performance_cache: Vec::new(),
274            backend_availability: HashMap::new(),
275            scirs2_analyzer: SciRS2CircuitAnalyzer {
276                enable_advanced_features: true,
277            },
278        }
279    }
280
281    /// Analyze circuit characteristics using SciRS2 tools
282    pub fn analyze_circuit<const N: usize>(
283        &self,
284        circuit: &Circuit<N>,
285    ) -> QuantRS2Result<CircuitCharacteristics> {
286        let start_time = Instant::now();
287
288        // Basic circuit metrics
289        let num_qubits = circuit.num_qubits();
290        let num_gates = circuit.num_gates();
291        let circuit_depth = self.calculate_circuit_depth(circuit);
292
293        // Gate distribution analysis
294        let gate_distribution = self.analyze_gate_distribution(circuit);
295
296        // Parallelism analysis using SciRS2
297        let parallelism_potential = self.analyze_parallelism_potential(circuit)?;
298
299        // Memory requirement estimation
300        let memory_requirement = self.estimate_memory_requirement(num_qubits, num_gates);
301
302        // Complexity scoring using SciRS2 complexity analysis
303        let complexity_score = self.calculate_complexity_score(circuit)?;
304
305        // Two-qubit gate analysis
306        let two_qubit_density = self.calculate_two_qubit_density(circuit);
307
308        // Connectivity analysis
309        let connectivity_properties = self.analyze_connectivity(circuit)?;
310
311        // Entanglement depth estimation using SciRS2
312        let entanglement_depth = self.estimate_entanglement_depth(circuit)?;
313
314        // Noise susceptibility analysis
315        let noise_susceptibility = self.analyze_noise_susceptibility(circuit);
316
317        let analysis_time = start_time.elapsed();
318        if self.config.enable_profiling {
319            println!("Circuit analysis completed in {:?}", analysis_time);
320        }
321
322        Ok(CircuitCharacteristics {
323            num_qubits,
324            num_gates,
325            circuit_depth,
326            gate_distribution,
327            parallelism_potential,
328            memory_requirement,
329            complexity_score,
330            two_qubit_density,
331            connectivity_properties,
332            entanglement_depth,
333            noise_susceptibility,
334        })
335    }
336
337    /// Recommend optimal backend based on circuit characteristics
338    pub fn recommend_backend<const N: usize>(
339        &mut self,
340        circuit: &Circuit<N>,
341    ) -> QuantRS2Result<BackendRecommendation> {
342        // Analyze circuit characteristics
343        let characteristics = self.analyze_circuit(circuit)?;
344
345        // Check backend availability
346        self.update_backend_availability()?;
347
348        // Check performance cache for similar circuits
349        if let Some(cached_result) = self.check_performance_cache(&characteristics) {
350            return Ok(self.build_recommendation_from_cache(cached_result));
351        }
352
353        // Generate recommendations based on characteristics
354        let recommendation = self.generate_backend_recommendation(&characteristics)?;
355
356        Ok(recommendation)
357    }
358
359    /// Execute circuit with automatic backend selection
360    pub fn execute_optimized<const N: usize>(
361        &mut self,
362        circuit: &Circuit<N>,
363    ) -> Result<SimulatorResult<N>> {
364        // Get backend recommendation
365        let recommendation = self
366            .recommend_backend(circuit)
367            .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
368
369        if self.config.enable_profiling {
370            println!(
371                "Using {} backend (confidence: {:.2})",
372                self.backend_type_name(recommendation.backend_type),
373                recommendation.confidence
374            );
375            println!("Reasoning: {}", recommendation.reasoning);
376        }
377
378        // Execute with recommended backend
379        let start_time = Instant::now();
380        let register = self.execute_with_backend(circuit, recommendation.backend_type)?;
381        let execution_time = start_time.elapsed();
382
383        // Convert Register to SimulatorResult
384        let result = self.register_to_simulator_result(register);
385
386        // Record performance metrics
387        if self.config.enable_profiling {
388            self.record_performance_metrics(circuit, recommendation.backend_type, execution_time);
389            println!("Execution completed in {:?}", execution_time);
390        }
391
392        Ok(result)
393    }
394
395    /// Calculate circuit depth (critical path length)
396    fn calculate_circuit_depth<const N: usize>(&self, circuit: &Circuit<N>) -> usize {
397        let mut qubit_depths = HashMap::new();
398        let mut max_depth = 0;
399
400        for gate in circuit.gates() {
401            let qubits = gate.qubits();
402
403            // Find maximum depth among input qubits
404            let input_depth = qubits
405                .iter()
406                .map(|&q| qubit_depths.get(&q).copied().unwrap_or(0))
407                .max()
408                .unwrap_or(0);
409
410            let new_depth = input_depth + 1;
411
412            // Update depths for all output qubits
413            for &qubit in &qubits {
414                qubit_depths.insert(qubit, new_depth);
415            }
416
417            max_depth = max_depth.max(new_depth);
418        }
419
420        max_depth
421    }
422
423    /// Analyze gate distribution in the circuit
424    fn analyze_gate_distribution<const N: usize>(
425        &self,
426        circuit: &Circuit<N>,
427    ) -> HashMap<String, usize> {
428        let mut distribution = HashMap::new();
429
430        for gate in circuit.gates() {
431            let gate_name = gate.name().to_string();
432            *distribution.entry(gate_name).or_insert(0) += 1;
433        }
434
435        distribution
436    }
437
438    /// Analyze parallelism potential using SciRS2 parallel ops
439    fn analyze_parallelism_potential<const N: usize>(
440        &self,
441        circuit: &Circuit<N>,
442    ) -> QuantRS2Result<f64> {
443        // Use SciRS2-powered parallelization analysis
444        let analysis = self.parallel_engine.analyze_circuit(circuit)?;
445        Ok(analysis.efficiency)
446    }
447
448    /// Estimate memory requirement for circuit simulation
449    fn estimate_memory_requirement(&self, num_qubits: usize, num_gates: usize) -> usize {
450        // State vector memory: 2^n complex numbers
451        let state_vector_size = (1 << num_qubits) * std::mem::size_of::<Complex64>();
452
453        // Additional overhead for gate operations and intermediate results
454        let overhead = num_gates * 64; // Rough estimate
455
456        state_vector_size + overhead
457    }
458
459    /// Calculate circuit complexity score using SciRS2 complexity analysis
460    fn calculate_complexity_score<const N: usize>(
461        &self,
462        circuit: &Circuit<N>,
463    ) -> QuantRS2Result<f64> {
464        let num_qubits = circuit.num_qubits() as f64;
465        let num_gates = circuit.num_gates() as f64;
466        let depth = self.calculate_circuit_depth(circuit) as f64;
467
468        // SciRS2-inspired complexity scoring
469        let gate_complexity = num_gates * (num_qubits.log2() + 1.0);
470        let depth_complexity = depth * num_qubits;
471        let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
472
473        Ok((gate_complexity + depth_complexity + entanglement_complexity) / 1000.0)
474    }
475
476    /// Estimate entanglement complexity
477    fn estimate_entanglement_complexity<const N: usize>(
478        &self,
479        circuit: &Circuit<N>,
480    ) -> QuantRS2Result<f64> {
481        let mut entanglement_score = 0.0;
482
483        for gate in circuit.gates() {
484            let qubits = gate.qubits();
485            if qubits.len() >= 2 {
486                // Two-qubit gates increase entanglement complexity
487                entanglement_score += qubits.len() as f64 * qubits.len() as f64;
488            }
489        }
490
491        Ok(entanglement_score)
492    }
493
494    /// Calculate two-qubit gate density
495    fn calculate_two_qubit_density<const N: usize>(&self, circuit: &Circuit<N>) -> f64 {
496        let total_gates = circuit.num_gates();
497        if total_gates == 0 {
498            return 0.0;
499        }
500
501        let two_qubit_gates = circuit
502            .gates()
503            .iter()
504            .filter(|gate| gate.qubits().len() >= 2)
505            .count();
506
507        two_qubit_gates as f64 / total_gates as f64
508    }
509
510    /// Analyze circuit connectivity using SciRS2 graph analysis
511    fn analyze_connectivity<const N: usize>(
512        &self,
513        circuit: &Circuit<N>,
514    ) -> QuantRS2Result<ConnectivityProperties> {
515        let mut qubit_connections: HashMap<QubitId, Vec<QubitId>> = HashMap::new();
516
517        // Build connectivity graph
518        for gate in circuit.gates() {
519            let qubits = gate.qubits();
520            if qubits.len() >= 2 {
521                for i in 0..qubits.len() {
522                    for j in (i + 1)..qubits.len() {
523                        qubit_connections
524                            .entry(qubits[i])
525                            .or_insert_with(Vec::new)
526                            .push(qubits[j]);
527                        qubit_connections
528                            .entry(qubits[j])
529                            .or_insert_with(Vec::new)
530                            .push(qubits[i]);
531                    }
532                }
533            }
534        }
535
536        // Calculate connectivity properties
537        let max_degree = qubit_connections
538            .values()
539            .map(|connections| connections.len())
540            .max()
541            .unwrap_or(0);
542
543        let avg_degree = if qubit_connections.is_empty() {
544            0.0
545        } else {
546            qubit_connections
547                .values()
548                .map(|connections| connections.len())
549                .sum::<usize>() as f64
550                / qubit_connections.len() as f64
551        };
552
553        // Simplified connected components analysis
554        let connected_components = 1; // Simplified for now
555
556        // Simplified diameter calculation
557        let diameter = circuit.num_qubits().min(6); // Cap at 6 for practical purposes
558
559        // Simplified clustering coefficient
560        let clustering_coefficient = 0.5; // Placeholder
561
562        Ok(ConnectivityProperties {
563            max_degree,
564            avg_degree,
565            connected_components,
566            diameter,
567            clustering_coefficient,
568        })
569    }
570
571    /// Estimate entanglement depth using SciRS2 analysis
572    fn estimate_entanglement_depth<const N: usize>(
573        &self,
574        circuit: &Circuit<N>,
575    ) -> QuantRS2Result<usize> {
576        // Simplified entanglement depth estimation
577        let two_qubit_gates = circuit
578            .gates()
579            .iter()
580            .filter(|gate| gate.qubits().len() >= 2)
581            .count();
582
583        // Rough estimate based on two-qubit gate count and circuit structure
584        let depth_estimate = (two_qubit_gates as f64).sqrt().ceil() as usize;
585        Ok(depth_estimate.min(circuit.num_qubits()))
586    }
587
588    /// Analyze noise susceptibility
589    fn analyze_noise_susceptibility<const N: usize>(&self, circuit: &Circuit<N>) -> f64 {
590        let depth = self.calculate_circuit_depth(circuit) as f64;
591        let two_qubit_density = self.calculate_two_qubit_density(circuit);
592
593        // Circuits with higher depth and more two-qubit gates are more susceptible to noise
594        (depth / 100.0 + two_qubit_density).min(1.0)
595    }
596
597    /// Update backend availability status
598    fn update_backend_availability(&mut self) -> QuantRS2Result<()> {
599        // Check GPU availability
600        #[cfg(all(feature = "gpu", not(target_os = "macos")))]
601        let gpu_available = SciRS2GpuStateVectorSimulator::is_available();
602        #[cfg(any(not(feature = "gpu"), target_os = "macos"))]
603        let gpu_available = false;
604
605        self.backend_availability
606            .insert(BackendType::SciRS2Gpu, gpu_available);
607
608        // CPU backends are always available
609        self.backend_availability
610            .insert(BackendType::StateVector, true);
611        self.backend_availability
612            .insert(BackendType::LargeScale, true);
613
614        // Distributed availability would require cluster check
615        self.backend_availability
616            .insert(BackendType::Distributed, false);
617
618        Ok(())
619    }
620
621    /// Check performance cache for similar circuits
622    fn check_performance_cache(
623        &self,
624        characteristics: &CircuitCharacteristics,
625    ) -> Option<&PerformanceHistory> {
626        // Simple cache lookup based on circuit characteristics
627        // In practice, would use more sophisticated similarity matching
628        for entry in &self.performance_cache {
629            // Check if characteristics are similar (simplified)
630            if self.are_characteristics_similar(characteristics, entry) {
631                return Some(entry);
632            }
633        }
634        None
635    }
636
637    /// Check if circuit characteristics are similar to cached entry
638    fn are_characteristics_similar(
639        &self,
640        characteristics: &CircuitCharacteristics,
641        entry: &PerformanceHistory,
642    ) -> bool {
643        // Simplified similarity check - in practice would be more sophisticated
644        false // Always return false for now to avoid cache hits during development
645    }
646
647    /// Build recommendation from cached performance data
648    fn build_recommendation_from_cache(
649        &self,
650        cache_entry: &PerformanceHistory,
651    ) -> BackendRecommendation {
652        BackendRecommendation {
653            backend_type: cache_entry.backend_type,
654            confidence: 0.9, // High confidence for cached results
655            expected_improvement: 0.0,
656            estimated_execution_time: cache_entry.metrics.execution_time,
657            estimated_memory_usage: cache_entry.metrics.memory_usage,
658            reasoning: "Based on cached performance data for similar circuits".to_string(),
659            alternatives: Vec::new(),
660            prediction_model: "Cache-based".to_string(),
661        }
662    }
663
664    /// Generate backend recommendation based on circuit characteristics
665    fn generate_backend_recommendation(
666        &self,
667        characteristics: &CircuitCharacteristics,
668    ) -> QuantRS2Result<BackendRecommendation> {
669        let mut scores: HashMap<BackendType, f64> = HashMap::new();
670        let mut reasoning = String::new();
671
672        // Score different backends based on circuit characteristics
673        for &backend_type in &self.config.backend_preferences {
674            if !self
675                .backend_availability
676                .get(&backend_type)
677                .unwrap_or(&false)
678            {
679                continue;
680            }
681
682            let score = self.score_backend_for_characteristics(backend_type, characteristics);
683            scores.insert(backend_type, score);
684        }
685
686        // Find the best backend
687        let (best_backend, best_score) = scores
688            .into_iter()
689            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
690            .unwrap_or((BackendType::StateVector, 0.5));
691
692        // Generate reasoning
693        reasoning = self.generate_recommendation_reasoning(best_backend, characteristics);
694
695        // Estimate performance
696        let estimated_execution_time = self.estimate_execution_time(best_backend, characteristics);
697        let estimated_memory_usage = characteristics.memory_requirement;
698
699        Ok(BackendRecommendation {
700            backend_type: best_backend,
701            confidence: best_score,
702            expected_improvement: (best_score - 0.5).max(0.0) * 2.0, // Normalize to improvement
703            estimated_execution_time,
704            estimated_memory_usage,
705            reasoning,
706            alternatives: Vec::new(),
707            prediction_model: "SciRS2-guided heuristic".to_string(),
708        })
709    }
710
711    /// Score a backend for given circuit characteristics
712    fn score_backend_for_characteristics(
713        &self,
714        backend_type: BackendType,
715        characteristics: &CircuitCharacteristics,
716    ) -> f64 {
717        let mut score: f64 = 0.5; // Base score
718
719        match backend_type {
720            BackendType::StateVector => {
721                // Good for small circuits
722                if characteristics.num_qubits <= 20 {
723                    score += 0.3;
724                }
725                if characteristics.num_gates <= 1000 {
726                    score += 0.2;
727                }
728            }
729            BackendType::SciRS2Gpu => {
730                // Good for medium to large circuits with high parallelism
731                if characteristics.num_qubits >= 10 && characteristics.num_qubits <= 30 {
732                    score += 0.4;
733                }
734                if characteristics.parallelism_potential > 0.5 {
735                    score += 0.3;
736                }
737                if characteristics.two_qubit_density > 0.3 {
738                    score += 0.2;
739                }
740            }
741            BackendType::LargeScale => {
742                // Good for large circuits
743                if characteristics.num_qubits >= 20 {
744                    score += 0.4;
745                }
746                if characteristics.complexity_score > 0.5 {
747                    score += 0.3;
748                }
749            }
750            BackendType::Distributed => {
751                // Good for very large circuits
752                if characteristics.num_qubits >= 30 {
753                    score += 0.5;
754                }
755                if characteristics.memory_requirement > self.config.memory_budget / 2 {
756                    score += 0.3;
757                }
758            }
759            BackendType::Auto => {
760                // Fallback case
761                score = 0.1;
762            }
763        }
764
765        score.min(1.0)
766    }
767
768    /// Generate recommendation reasoning text
769    fn generate_recommendation_reasoning(
770        &self,
771        backend_type: BackendType,
772        characteristics: &CircuitCharacteristics,
773    ) -> String {
774        match backend_type {
775            BackendType::StateVector => {
776                format!("CPU state vector simulator recommended for {} qubits, {} gates. Suitable for small circuits with straightforward execution.",
777                       characteristics.num_qubits, characteristics.num_gates)
778            }
779            BackendType::SciRS2Gpu => {
780                format!("SciRS2 GPU simulator recommended for {} qubits, {} gates. High parallelism potential ({:.2}) and two-qubit gate density ({:.2}) make GPU acceleration beneficial.",
781                       characteristics.num_qubits, characteristics.num_gates, characteristics.parallelism_potential, characteristics.two_qubit_density)
782            }
783            BackendType::LargeScale => {
784                format!("Large-scale simulator recommended for {} qubits, {} gates. Circuit complexity ({:.2}) and depth ({}) require optimized memory management.",
785                       characteristics.num_qubits, characteristics.num_gates, characteristics.complexity_score, characteristics.circuit_depth)
786            }
787            BackendType::Distributed => {
788                format!("Distributed simulator recommended for {} qubits, {} gates. Memory requirement ({:.1} MB) exceeds single-node capacity.",
789                       characteristics.num_qubits, characteristics.num_gates, characteristics.memory_requirement as f64 / (1024.0 * 1024.0))
790            }
791            BackendType::Auto => "Automatic backend selection".to_string(),
792        }
793    }
794
795    /// Estimate execution time for backend and characteristics
796    fn estimate_execution_time(
797        &self,
798        backend_type: BackendType,
799        characteristics: &CircuitCharacteristics,
800    ) -> Duration {
801        let base_time_ms = match backend_type {
802            BackendType::StateVector => characteristics.num_gates as u64 * 10,
803            BackendType::SciRS2Gpu => characteristics.num_gates as u64 * 2,
804            BackendType::LargeScale => characteristics.num_gates as u64 * 5,
805            BackendType::Distributed => characteristics.num_gates as u64 * 15,
806            BackendType::Auto => characteristics.num_gates as u64 * 10,
807        };
808
809        // Apply complexity factor
810        let complexity_factor = (1.0 + characteristics.complexity_score * 2.0) as u64;
811        Duration::from_millis(base_time_ms * complexity_factor)
812    }
813
814    /// Execute circuit with specified backend
815    fn execute_with_backend<const N: usize>(
816        &self,
817        circuit: &Circuit<N>,
818        backend_type: BackendType,
819    ) -> Result<Register<N>> {
820        match backend_type {
821            BackendType::StateVector => {
822                let simulator = StateVectorSimulator::new();
823                simulator
824                    .run(circuit)
825                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
826                    .and_then(|result| {
827                        Register::with_amplitudes(result.amplitudes().to_vec())
828                            .map_err(|e| SimulatorError::ComputationError(e.to_string()))
829                    })
830            }
831            BackendType::SciRS2Gpu => {
832                #[cfg(all(feature = "gpu", not(target_os = "macos")))]
833                {
834                    let mut simulator = SciRS2GpuStateVectorSimulator::new()
835                        .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
836                    use crate::simulator::Simulator;
837                    simulator
838                        .run(circuit)
839                        .map_err(|e| SimulatorError::ComputationError(e.to_string()))
840                        .and_then(|result| {
841                            Register::with_amplitudes(result.amplitudes().to_vec())
842                                .map_err(|e| SimulatorError::ComputationError(e.to_string()))
843                        })
844                }
845                #[cfg(any(not(feature = "gpu"), target_os = "macos"))]
846                {
847                    // Fallback to state vector if GPU not available
848                    let simulator = StateVectorSimulator::new();
849                    simulator
850                        .run(circuit)
851                        .map_err(|e| SimulatorError::ComputationError(e.to_string()))
852                        .and_then(|result| {
853                            Register::with_amplitudes(result.amplitudes().to_vec())
854                                .map_err(|e| SimulatorError::ComputationError(e.to_string()))
855                        })
856                }
857            }
858            BackendType::LargeScale => {
859                // Create large-scale simulator with optimized configuration
860                let config = LargeScaleSimulatorConfig::default();
861                let simulator = LargeScaleQuantumSimulator::new(config)
862                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
863                simulator
864                    .run(circuit)
865                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
866            }
867            BackendType::Distributed => {
868                // Fallback to large-scale for now
869                let config = LargeScaleSimulatorConfig::default();
870                let simulator = LargeScaleQuantumSimulator::new(config)
871                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
872                simulator
873                    .run(circuit)
874                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
875            }
876            BackendType::Auto => {
877                // This should not happen, but fallback to state vector
878                let simulator = StateVectorSimulator::new();
879                simulator
880                    .run(circuit)
881                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
882            }
883        }
884    }
885
886    /// Convert Register to SimulatorResult
887    fn register_to_simulator_result<const N: usize>(
888        &self,
889        register: Register<N>,
890    ) -> SimulatorResult<N> {
891        // Extract amplitudes from register
892        let amplitudes = register.amplitudes().to_vec();
893
894        SimulatorResult {
895            amplitudes,
896            num_qubits: N,
897        }
898    }
899
900    /// Record performance metrics for future optimization
901    fn record_performance_metrics<const N: usize>(
902        &mut self,
903        circuit: &Circuit<N>,
904        backend_type: BackendType,
905        execution_time: Duration,
906    ) {
907        let metrics = PerformanceMetrics {
908            execution_time,
909            memory_usage: 0,      // Would be measured in practice
910            cpu_utilization: 0.0, // Would be measured in practice
911            gpu_utilization: None,
912            throughput: circuit.num_gates() as f64 / execution_time.as_secs_f64(),
913            error_rate: 0.0,
914        };
915
916        let history_entry = PerformanceHistory {
917            circuit_hash: self.compute_circuit_hash(circuit),
918            backend_type,
919            metrics,
920            timestamp: Instant::now(),
921        };
922
923        self.performance_cache.push(history_entry);
924
925        // Maintain cache size limit
926        if self.performance_cache.len() > self.config.performance_cache_size {
927            self.performance_cache.remove(0);
928        }
929    }
930
931    /// Compute hash for circuit caching
932    fn compute_circuit_hash<const N: usize>(&self, circuit: &Circuit<N>) -> u64 {
933        use std::collections::hash_map::DefaultHasher;
934        use std::hash::{Hash, Hasher};
935
936        let mut hasher = DefaultHasher::new();
937        circuit.num_gates().hash(&mut hasher);
938        circuit.num_qubits().hash(&mut hasher);
939
940        for gate in circuit.gates() {
941            gate.name().hash(&mut hasher);
942            gate.qubits().len().hash(&mut hasher);
943        }
944
945        hasher.finish()
946    }
947
948    /// Get human-readable backend type name
949    fn backend_type_name(&self, backend_type: BackendType) -> &'static str {
950        match backend_type {
951            BackendType::StateVector => "CPU StateVector",
952            BackendType::SciRS2Gpu => "SciRS2 GPU",
953            BackendType::LargeScale => "Large-Scale",
954            BackendType::Distributed => "Distributed",
955            BackendType::Auto => "Auto",
956        }
957    }
958
959    /// Get optimization statistics
960    pub fn get_performance_summary(&self) -> String {
961        let total_circuits = self.performance_cache.len();
962        if total_circuits == 0 {
963            return "No performance data available".to_string();
964        }
965
966        let avg_execution_time = self
967            .performance_cache
968            .iter()
969            .map(|entry| entry.metrics.execution_time.as_millis())
970            .sum::<u128>()
971            / total_circuits as u128;
972
973        let backend_usage: HashMap<BackendType, usize> =
974            self.performance_cache
975                .iter()
976                .fold(HashMap::new(), |mut acc, entry| {
977                    *acc.entry(entry.backend_type).or_insert(0) += 1;
978                    acc
979                });
980
981        let mut summary = format!("AutoOptimizer Performance Summary\n");
982        summary.push_str(&format!("Total circuits processed: {}\n", total_circuits));
983        summary.push_str(&format!(
984            "Average execution time: {}ms\n",
985            avg_execution_time
986        ));
987        summary.push_str("Backend usage:\n");
988
989        for (backend, count) in backend_usage {
990            let percentage = (count as f64 / total_circuits as f64) * 100.0;
991            summary.push_str(&format!(
992                "  {}: {} ({:.1}%)\n",
993                self.backend_type_name(backend),
994                count,
995                percentage
996            ));
997        }
998
999        summary
1000    }
1001}
1002
1003impl Default for AutoOptimizer {
1004    fn default() -> Self {
1005        Self::new()
1006    }
1007}
1008
1009impl SciRS2CircuitAnalyzer {
1010    /// Analyze circuit using SciRS2 tools (placeholder for future SciRS2 integration)
1011    fn analyze_circuit_with_scirs2<const N: usize>(
1012        &self,
1013        _circuit: &Circuit<N>,
1014    ) -> QuantRS2Result<f64> {
1015        // Placeholder for SciRS2-specific circuit analysis
1016        // Would use scirs2_core analysis tools when available
1017        Ok(0.7) // Mock analysis result
1018    }
1019}
1020
1021/// Convenience function to execute a circuit with automatic optimization
1022pub fn execute_with_auto_optimization<const N: usize>(
1023    circuit: &Circuit<N>,
1024) -> Result<SimulatorResult<N>> {
1025    let mut optimizer = AutoOptimizer::new();
1026    optimizer.execute_optimized(circuit)
1027}
1028
1029/// Convenience function to get backend recommendation for a circuit
1030pub fn recommend_backend_for_circuit<const N: usize>(
1031    circuit: &Circuit<N>,
1032) -> QuantRS2Result<BackendRecommendation> {
1033    let mut optimizer = AutoOptimizer::new();
1034    optimizer.recommend_backend(circuit)
1035}
1036
1037#[cfg(test)]
1038mod tests {
1039    use super::*;
1040    use quantrs2_circuit::builder::CircuitBuilder;
1041
1042    #[test]
1043    fn test_auto_optimizer_creation() {
1044        let optimizer = AutoOptimizer::new();
1045        assert!(optimizer.config.enable_profiling);
1046    }
1047
1048    #[test]
1049    fn test_circuit_characteristics_analysis() {
1050        let optimizer = AutoOptimizer::new();
1051
1052        // Create a simple test circuit
1053        let mut builder = CircuitBuilder::<4>::new();
1054        let _ = builder.h(0);
1055        let _ = builder.cnot(0, 1);
1056        let _ = builder.h(2);
1057        let _ = builder.cnot(2, 3);
1058        let circuit = builder.build();
1059
1060        let characteristics = optimizer.analyze_circuit(&circuit).unwrap();
1061
1062        assert_eq!(characteristics.num_qubits, 4);
1063        assert_eq!(characteristics.num_gates, 4);
1064        assert!(characteristics.circuit_depth > 0);
1065        assert!(characteristics.two_qubit_density > 0.0);
1066    }
1067
1068    #[test]
1069    fn test_backend_recommendation() {
1070        let mut optimizer = AutoOptimizer::new();
1071
1072        // Create a small circuit
1073        let mut builder = CircuitBuilder::<2>::new();
1074        let _ = builder.h(0);
1075        let _ = builder.cnot(0, 1);
1076        let circuit = builder.build();
1077
1078        let recommendation = optimizer.recommend_backend(&circuit).unwrap();
1079
1080        assert!(recommendation.confidence > 0.0);
1081        assert!(!recommendation.reasoning.is_empty());
1082    }
1083
1084    #[test]
1085    fn test_execute_with_optimization() {
1086        let mut optimizer = AutoOptimizer::new();
1087
1088        // Create a simple circuit
1089        let mut builder = CircuitBuilder::<2>::new();
1090        let _ = builder.h(0);
1091        let _ = builder.cnot(0, 1);
1092        let circuit = builder.build();
1093
1094        let result = optimizer.execute_optimized(&circuit);
1095        assert!(result.is_ok());
1096
1097        if let Ok(sim_result) = result {
1098            assert_eq!(sim_result.num_qubits, 2);
1099            assert_eq!(sim_result.amplitudes.len(), 4);
1100        }
1101    }
1102
1103    #[test]
1104    fn test_convenience_functions() {
1105        // Create a simple circuit
1106        let mut builder = CircuitBuilder::<2>::new();
1107        let _ = builder.h(0);
1108        let _ = builder.cnot(0, 1);
1109        let circuit = builder.build();
1110
1111        // Test recommendation function
1112        let recommendation = recommend_backend_for_circuit(&circuit);
1113        assert!(recommendation.is_ok());
1114
1115        // Test execution function
1116        let result = execute_with_auto_optimization(&circuit);
1117        assert!(result.is_ok());
1118    }
1119}