1use scirs2_core::ndarray::{Array1, Array2};
8use scirs2_core::Complex64;
9use serde::{Deserialize, Serialize};
10use std::collections::{HashMap, VecDeque};
11use std::time::{Duration, Instant};
12
13use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
14use crate::error::{Result, SimulatorError};
15use scirs2_core::random::prelude::*;
16
17#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
19pub enum AdvancedOptimizerType {
20 SPSA,
22 NaturalGradient,
24 QuantumNaturalGradient,
26 QuantumAdam,
28 LBFGS,
30 BayesianOptimization,
32 ReinforcementLearning,
34 EvolutionaryStrategy,
36 QuantumParticleSwarm,
38 MetaLearningOptimizer,
40}
41
42#[derive(Debug, Clone, Serialize, Deserialize)]
44pub enum VariationalAnsatz {
45 HardwareEfficient {
47 layers: usize,
48 entangling_gates: Vec<InterfaceGateType>,
49 rotation_gates: Vec<InterfaceGateType>,
50 },
51 UCCSD {
53 num_electrons: usize,
54 num_orbitals: usize,
55 include_triples: bool,
56 },
57 QAOA {
59 problem_hamiltonian: ProblemHamiltonian,
60 mixer_hamiltonian: MixerHamiltonian,
61 layers: usize,
62 },
63 Adaptive {
65 max_layers: usize,
66 growth_criterion: GrowthCriterion,
67 #[serde(skip)]
68 operator_pool: Vec<InterfaceGate>,
69 },
70 QuantumNeuralNetwork {
72 hidden_layers: Vec<usize>,
73 activation_type: QuantumActivation,
74 connectivity: NetworkConnectivity,
75 },
76 TensorNetworkAnsatz {
78 bond_dimension: usize,
79 network_topology: TensorTopology,
80 compression_method: CompressionMethod,
81 },
82}
83
84#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
86pub struct ProblemHamiltonian {
87 pub terms: Vec<HamiltonianTerm>,
88 pub problem_type: OptimizationProblemType,
89}
90
91#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
93pub struct MixerHamiltonian {
94 pub terms: Vec<HamiltonianTerm>,
95 pub mixer_type: MixerType,
96}
97
98#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
100pub struct HamiltonianTerm {
101 pub coefficient: Complex64,
102 pub pauli_string: String,
103 pub qubits: Vec<usize>,
104}
105
106#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
108pub enum OptimizationProblemType {
109 MaxCut,
110 TSP,
111 BinPacking,
112 JobShop,
113 PortfolioOptimization,
114 VehicleRouting,
115 GraphColoring,
116 Boolean3SAT,
117 QuadraticAssignment,
118 CustomCombinatorial,
119}
120
121#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
123pub enum MixerType {
124 XMixer,
126 XYMixer,
128 RingMixer,
130 CustomMixer,
132}
133
134#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
136pub enum GrowthCriterion {
137 GradientThreshold(f64),
139 ImprovementStagnation,
141 VarianceThreshold(f64),
143 QuantumFisherInformation,
145}
146
147#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
149pub enum QuantumActivation {
150 RotationActivation,
152 ControlledRotation,
154 EntanglingActivation,
156 QuantumReLU,
158}
159
160#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
162pub enum NetworkConnectivity {
163 FullyConnected,
164 NearestNeighbor,
165 Random,
166 SmallWorld,
167 ScaleFree,
168}
169
170#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
172pub enum TensorTopology {
173 MPS,
174 MERA,
175 TTN,
176 PEPS,
177 Hierarchical,
178}
179
180#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
182pub enum CompressionMethod {
183 SVD,
184 QR,
185 Variational,
186 DMRG,
187}
188
189#[derive(Debug, Clone)]
191pub struct VQAConfig {
192 pub max_iterations: usize,
194 pub convergence_tolerance: f64,
196 pub optimizer: AdvancedOptimizerType,
198 pub learning_rate: f64,
200 pub shots: Option<usize>,
202 pub gradient_clipping: Option<f64>,
204 pub regularization: f64,
206 pub parameter_bounds: Option<(f64, f64)>,
208 pub warm_restart: Option<WarmRestartConfig>,
210 pub hardware_aware: bool,
212 pub noise_aware: bool,
214}
215
216impl Default for VQAConfig {
217 fn default() -> Self {
218 Self {
219 max_iterations: 1000,
220 convergence_tolerance: 1e-6,
221 optimizer: AdvancedOptimizerType::QuantumAdam,
222 learning_rate: 0.01,
223 shots: None,
224 gradient_clipping: Some(1.0),
225 regularization: 0.0,
226 parameter_bounds: None,
227 warm_restart: None,
228 hardware_aware: true,
229 noise_aware: true,
230 }
231 }
232}
233
234#[derive(Debug, Clone)]
236pub struct WarmRestartConfig {
237 pub restart_period: usize,
238 pub restart_factor: f64,
239 pub min_learning_rate: f64,
240}
241
242#[derive(Debug, Clone, Serialize, Deserialize)]
244pub struct VQAResult {
245 pub optimal_parameters: Vec<f64>,
247 pub optimal_cost: f64,
249 pub cost_history: Vec<f64>,
251 pub parameter_history: Vec<Vec<f64>>,
253 pub gradient_norms: Vec<f64>,
255 pub iterations: usize,
257 pub optimization_time: Duration,
259 pub converged: bool,
261 pub final_state: Option<Array1<Complex64>>,
263 pub expectation_values: HashMap<String, f64>,
265}
266
267#[derive(Debug, Clone)]
269pub struct VQATrainerState {
270 pub parameters: Vec<f64>,
272 pub current_cost: f64,
274 pub optimizer_state: OptimizerState,
276 pub iteration: usize,
278 pub best_parameters: Vec<f64>,
280 pub best_cost: f64,
282 pub learning_rate: f64,
284}
285
286#[derive(Debug, Clone)]
288pub struct OptimizerState {
289 pub momentum: Vec<f64>,
291 pub velocity: Vec<f64>,
293 pub fisher_matrix: Option<Array2<f64>>,
295 pub lbfgs_history: VecDeque<(Vec<f64>, Vec<f64>)>,
297 pub bayesian_model: Option<BayesianModel>,
299}
300
301#[derive(Debug, Clone)]
303pub struct BayesianModel {
304 pub kernel_hyperparameters: Vec<f64>,
305 pub observed_points: Vec<Vec<f64>>,
306 pub observed_values: Vec<f64>,
307 pub acquisition_function: AcquisitionFunction,
308}
309
310#[derive(Debug, Clone, Copy, PartialEq, Eq)]
312pub enum AcquisitionFunction {
313 ExpectedImprovement,
314 UpperConfidenceBound,
315 ProbabilityOfImprovement,
316 Entropy,
317}
318
319pub struct AdvancedVQATrainer {
321 config: VQAConfig,
323 state: VQATrainerState,
325 cost_function: Box<dyn CostFunction + Send + Sync>,
327 ansatz: VariationalAnsatz,
329 gradient_calculator: Box<dyn GradientCalculator + Send + Sync>,
331 stats: VQATrainingStats,
333}
334
335pub trait CostFunction: Send + Sync {
337 fn evaluate(&self, parameters: &[f64], circuit: &InterfaceCircuit) -> Result<f64>;
339
340 fn get_observables(&self) -> Vec<String>;
342
343 fn is_variational(&self) -> bool;
345}
346
347pub trait GradientCalculator: Send + Sync {
349 fn calculate_gradient(
351 &self,
352 parameters: &[f64],
353 cost_function: &dyn CostFunction,
354 circuit: &InterfaceCircuit,
355 ) -> Result<Vec<f64>>;
356
357 fn method_name(&self) -> &str;
359}
360
361#[derive(Debug, Clone, Serialize, Deserialize)]
363pub struct VQATrainingStats {
364 pub total_time: Duration,
366 pub iteration_times: Vec<Duration>,
368 pub function_evaluations: Vec<usize>,
370 pub gradient_evaluations: Vec<usize>,
372 pub memory_usage: Vec<usize>,
374 pub circuit_depths: Vec<usize>,
376 pub parameter_update_magnitudes: Vec<f64>,
378}
379
380impl AdvancedVQATrainer {
381 pub fn new(
383 config: VQAConfig,
384 ansatz: VariationalAnsatz,
385 cost_function: Box<dyn CostFunction + Send + Sync>,
386 gradient_calculator: Box<dyn GradientCalculator + Send + Sync>,
387 ) -> Result<Self> {
388 let num_parameters = Self::count_parameters(&ansatz)?;
389
390 let state = VQATrainerState {
391 parameters: Self::initialize_parameters(num_parameters, &config)?,
392 current_cost: f64::INFINITY,
393 optimizer_state: OptimizerState {
394 momentum: vec![0.0; num_parameters],
395 velocity: vec![0.0; num_parameters],
396 fisher_matrix: None,
397 lbfgs_history: VecDeque::new(),
398 bayesian_model: None,
399 },
400 iteration: 0,
401 best_parameters: vec![0.0; num_parameters],
402 best_cost: f64::INFINITY,
403 learning_rate: config.learning_rate,
404 };
405
406 Ok(Self {
407 config,
408 state,
409 cost_function,
410 ansatz,
411 gradient_calculator,
412 stats: VQATrainingStats {
413 total_time: Duration::new(0, 0),
414 iteration_times: Vec::new(),
415 function_evaluations: Vec::new(),
416 gradient_evaluations: Vec::new(),
417 memory_usage: Vec::new(),
418 circuit_depths: Vec::new(),
419 parameter_update_magnitudes: Vec::new(),
420 },
421 })
422 }
423
424 pub fn train(&mut self) -> Result<VQAResult> {
426 let start_time = Instant::now();
427 let mut cost_history = Vec::new();
428 let mut parameter_history = Vec::new();
429 let mut gradient_norms = Vec::new();
430
431 for iteration in 0..self.config.max_iterations {
432 let iter_start = Instant::now();
433 self.state.iteration = iteration;
434
435 let circuit = self.generate_circuit(&self.state.parameters)?;
437
438 let cost = self
440 .cost_function
441 .evaluate(&self.state.parameters, &circuit)?;
442 self.state.current_cost = cost;
443
444 if cost < self.state.best_cost {
446 self.state.best_cost = cost;
447 self.state.best_parameters = self.state.parameters.clone();
448 }
449
450 let gradient = self.gradient_calculator.calculate_gradient(
452 &self.state.parameters,
453 self.cost_function.as_ref(),
454 &circuit,
455 )?;
456
457 let gradient_norm = gradient.iter().map(|g| g.powi(2)).sum::<f64>().sqrt();
458 gradient_norms.push(gradient_norm);
459
460 let clipped_gradient = if let Some(clip_value) = self.config.gradient_clipping {
462 if gradient_norm > clip_value {
463 gradient
464 .iter()
465 .map(|g| g * clip_value / gradient_norm)
466 .collect()
467 } else {
468 gradient
469 }
470 } else {
471 gradient
472 };
473
474 let parameter_update = self.update_parameters(&clipped_gradient)?;
476
477 cost_history.push(cost);
479 parameter_history.push(self.state.parameters.clone());
480 self.stats.iteration_times.push(iter_start.elapsed());
481 self.stats.function_evaluations.push(1); self.stats.gradient_evaluations.push(1); self.stats.parameter_update_magnitudes.push(
484 parameter_update
485 .iter()
486 .map(|u| u.powi(2))
487 .sum::<f64>()
488 .sqrt(),
489 );
490
491 if gradient_norm < self.config.convergence_tolerance {
493 break;
494 }
495
496 if let Some(ref restart_config) = self.config.warm_restart {
498 if iteration % restart_config.restart_period == 0 && iteration > 0 {
499 self.state.learning_rate = (self.state.learning_rate
500 * restart_config.restart_factor)
501 .max(restart_config.min_learning_rate);
502 }
503 }
504 }
505
506 let total_time = start_time.elapsed();
507 self.stats.total_time = total_time;
508
509 let final_circuit = self.generate_circuit(&self.state.best_parameters)?;
511 let final_state = self.simulate_circuit(&final_circuit)?;
512
513 let expectation_values = self.calculate_expectation_values(&final_state)?;
515
516 let converged = gradient_norms
517 .last()
518 .map_or(false, |&norm| norm < self.config.convergence_tolerance);
519
520 Ok(VQAResult {
521 optimal_parameters: self.state.best_parameters.clone(),
522 optimal_cost: self.state.best_cost,
523 cost_history,
524 parameter_history,
525 gradient_norms,
526 iterations: self.state.iteration + 1,
527 optimization_time: total_time,
528 converged,
529 final_state: Some(final_state),
530 expectation_values,
531 })
532 }
533
534 fn generate_circuit(&self, parameters: &[f64]) -> Result<InterfaceCircuit> {
536 match &self.ansatz {
537 VariationalAnsatz::HardwareEfficient {
538 layers,
539 entangling_gates,
540 rotation_gates,
541 } => self.generate_hardware_efficient_circuit(
542 parameters,
543 *layers,
544 entangling_gates,
545 rotation_gates,
546 ),
547 VariationalAnsatz::UCCSD {
548 num_electrons,
549 num_orbitals,
550 include_triples,
551 } => self.generate_uccsd_circuit(
552 parameters,
553 *num_electrons,
554 *num_orbitals,
555 *include_triples,
556 ),
557 VariationalAnsatz::QAOA {
558 problem_hamiltonian,
559 mixer_hamiltonian,
560 layers,
561 } => self.generate_qaoa_circuit(
562 parameters,
563 problem_hamiltonian,
564 mixer_hamiltonian,
565 *layers,
566 ),
567 VariationalAnsatz::Adaptive {
568 max_layers,
569 growth_criterion,
570 operator_pool,
571 } => self.generate_adaptive_circuit(
572 parameters,
573 *max_layers,
574 growth_criterion,
575 operator_pool,
576 ),
577 VariationalAnsatz::QuantumNeuralNetwork {
578 hidden_layers,
579 activation_type,
580 connectivity,
581 } => {
582 self.generate_qnn_circuit(parameters, hidden_layers, activation_type, connectivity)
583 }
584 VariationalAnsatz::TensorNetworkAnsatz {
585 bond_dimension,
586 network_topology,
587 compression_method,
588 } => self.generate_tensor_network_circuit(
589 parameters,
590 *bond_dimension,
591 network_topology,
592 compression_method,
593 ),
594 }
595 }
596
597 fn generate_hardware_efficient_circuit(
599 &self,
600 parameters: &[f64],
601 layers: usize,
602 entangling_gates: &[InterfaceGateType],
603 rotation_gates: &[InterfaceGateType],
604 ) -> Result<InterfaceCircuit> {
605 let num_qubits = self.infer_num_qubits_from_parameters(parameters.len(), layers)?;
606 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
607 let mut param_idx = 0;
608
609 for layer in 0..layers {
610 for qubit in 0..num_qubits {
612 for gate_type in rotation_gates {
613 match gate_type {
614 InterfaceGateType::RX(_) => {
615 circuit.add_gate(InterfaceGate::new(
616 InterfaceGateType::RX(parameters[param_idx]),
617 vec![qubit],
618 ));
619 param_idx += 1;
620 }
621 InterfaceGateType::RY(_) => {
622 circuit.add_gate(InterfaceGate::new(
623 InterfaceGateType::RY(parameters[param_idx]),
624 vec![qubit],
625 ));
626 param_idx += 1;
627 }
628 InterfaceGateType::RZ(_) => {
629 circuit.add_gate(InterfaceGate::new(
630 InterfaceGateType::RZ(parameters[param_idx]),
631 vec![qubit],
632 ));
633 param_idx += 1;
634 }
635 _ => {
636 circuit.add_gate(InterfaceGate::new(gate_type.clone(), vec![qubit]));
637 }
638 }
639 }
640 }
641
642 for qubit in 0..num_qubits - 1 {
644 for gate_type in entangling_gates {
645 match gate_type {
646 InterfaceGateType::CNOT => {
647 circuit.add_gate(InterfaceGate::new(
648 InterfaceGateType::CNOT,
649 vec![qubit, qubit + 1],
650 ));
651 }
652 InterfaceGateType::CZ => {
653 circuit.add_gate(InterfaceGate::new(
654 InterfaceGateType::CZ,
655 vec![qubit, qubit + 1],
656 ));
657 }
658 InterfaceGateType::CRZ(_) => {
659 circuit.add_gate(InterfaceGate::new(
660 InterfaceGateType::CRZ(parameters[param_idx]),
661 vec![qubit, qubit + 1],
662 ));
663 param_idx += 1;
664 }
665 _ => {
666 circuit.add_gate(InterfaceGate::new(
667 gate_type.clone(),
668 vec![qubit, qubit + 1],
669 ));
670 }
671 }
672 }
673 }
674 }
675
676 Ok(circuit)
677 }
678
679 fn generate_uccsd_circuit(
681 &self,
682 parameters: &[f64],
683 num_electrons: usize,
684 num_orbitals: usize,
685 include_triples: bool,
686 ) -> Result<InterfaceCircuit> {
687 let num_qubits = 2 * num_orbitals; let mut circuit = InterfaceCircuit::new(num_qubits, 0);
689 let mut param_idx = 0;
690
691 for i in 0..num_electrons {
693 circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![i]));
694 }
695
696 for i in 0..num_electrons {
698 for a in num_electrons..num_qubits {
699 if param_idx < parameters.len() {
700 let theta = parameters[param_idx];
702
703 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(theta), vec![i]));
705 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, a]));
706 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(-theta), vec![a]));
707
708 param_idx += 1;
709 }
710 }
711 }
712
713 for i in 0..num_electrons {
715 for j in i + 1..num_electrons {
716 for a in num_electrons..num_qubits {
717 for b in a + 1..num_qubits {
718 if param_idx < parameters.len() {
719 let theta = parameters[param_idx];
721
722 circuit.add_gate(InterfaceGate::new(
724 InterfaceGateType::RY(theta),
725 vec![i],
726 ));
727 circuit
728 .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
729 circuit
730 .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![j, a]));
731 circuit
732 .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![a, b]));
733 circuit.add_gate(InterfaceGate::new(
734 InterfaceGateType::RY(-theta),
735 vec![b],
736 ));
737
738 param_idx += 1;
739 }
740 }
741 }
742 }
743 }
744
745 if include_triples {
747 }
749
750 Ok(circuit)
751 }
752
753 fn generate_qaoa_circuit(
755 &self,
756 parameters: &[f64],
757 problem_hamiltonian: &ProblemHamiltonian,
758 mixer_hamiltonian: &MixerHamiltonian,
759 layers: usize,
760 ) -> Result<InterfaceCircuit> {
761 let num_qubits = self.extract_num_qubits_from_hamiltonian(problem_hamiltonian)?;
762 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
763 let mut param_idx = 0;
764
765 for qubit in 0..num_qubits {
767 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
768 }
769
770 for _layer in 0..layers {
772 if param_idx < parameters.len() {
774 let gamma = parameters[param_idx];
775 self.apply_hamiltonian_evolution(&mut circuit, problem_hamiltonian, gamma)?;
776 param_idx += 1;
777 }
778
779 if param_idx < parameters.len() {
781 let beta = parameters[param_idx];
782 self.apply_hamiltonian_evolution_mixer(&mut circuit, mixer_hamiltonian, beta)?;
783 param_idx += 1;
784 }
785 }
786
787 Ok(circuit)
788 }
789
790 fn apply_hamiltonian_evolution(
792 &self,
793 circuit: &mut InterfaceCircuit,
794 hamiltonian: &ProblemHamiltonian,
795 parameter: f64,
796 ) -> Result<()> {
797 for term in &hamiltonian.terms {
798 let angle = parameter * term.coefficient.re;
799
800 match term.pauli_string.as_str() {
803 "ZZ" if term.qubits.len() == 2 => {
804 circuit.add_gate(InterfaceGate::new(
805 InterfaceGateType::CNOT,
806 term.qubits.clone(),
807 ));
808 circuit.add_gate(InterfaceGate::new(
809 InterfaceGateType::RZ(angle),
810 vec![term.qubits[1]],
811 ));
812 circuit.add_gate(InterfaceGate::new(
813 InterfaceGateType::CNOT,
814 term.qubits.clone(),
815 ));
816 }
817 "Z" if term.qubits.len() == 1 => {
818 circuit.add_gate(InterfaceGate::new(
819 InterfaceGateType::RZ(angle),
820 term.qubits.clone(),
821 ));
822 }
823 _ => {
824 }
826 }
827 }
828 Ok(())
829 }
830
831 fn apply_hamiltonian_evolution_mixer(
833 &self,
834 circuit: &mut InterfaceCircuit,
835 mixer: &MixerHamiltonian,
836 parameter: f64,
837 ) -> Result<()> {
838 match mixer.mixer_type {
839 MixerType::XMixer => {
840 for i in 0..circuit.num_qubits {
842 circuit.add_gate(InterfaceGate::new(
843 InterfaceGateType::RX(parameter),
844 vec![i],
845 ));
846 }
847 }
848 MixerType::XYMixer => {
849 for i in 0..circuit.num_qubits - 1 {
851 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
853 circuit.add_gate(InterfaceGate::new(
854 InterfaceGateType::RY(parameter),
855 vec![i + 1],
856 ));
857 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
858 }
859 }
860 MixerType::RingMixer => {
861 for i in 0..circuit.num_qubits {
863 let next = (i + 1) % circuit.num_qubits;
864 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
865 circuit.add_gate(InterfaceGate::new(
866 InterfaceGateType::RY(parameter),
867 vec![next],
868 ));
869 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
870 }
871 }
872 MixerType::CustomMixer => {
873 for term in &mixer.terms {
875 let angle = parameter * term.coefficient.re;
876 if !term.qubits.is_empty() {
878 circuit.add_gate(InterfaceGate::new(
879 InterfaceGateType::RX(angle),
880 vec![term.qubits[0]],
881 ));
882 }
883 }
884 }
885 }
886 Ok(())
887 }
888
889 fn generate_adaptive_circuit(
891 &self,
892 parameters: &[f64],
893 max_layers: usize,
894 growth_criterion: &GrowthCriterion,
895 operator_pool: &[InterfaceGate],
896 ) -> Result<InterfaceCircuit> {
897 let num_qubits = self.infer_num_qubits_from_pool(operator_pool)?;
898 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
899 let mut param_idx = 0;
900
901 let current_layers = self.determine_adaptive_layers(max_layers, growth_criterion)?;
903
904 for layer in 0..current_layers {
905 if param_idx < parameters.len() {
906 let operator_idx = (layer * 13) % operator_pool.len(); let mut selected_gate = operator_pool[operator_idx].clone();
909
910 match &mut selected_gate.gate_type {
912 InterfaceGateType::RX(_) => {
913 selected_gate.gate_type = InterfaceGateType::RX(parameters[param_idx])
914 }
915 InterfaceGateType::RY(_) => {
916 selected_gate.gate_type = InterfaceGateType::RY(parameters[param_idx])
917 }
918 InterfaceGateType::RZ(_) => {
919 selected_gate.gate_type = InterfaceGateType::RZ(parameters[param_idx])
920 }
921 _ => {}
922 }
923
924 circuit.add_gate(selected_gate);
925 param_idx += 1;
926 }
927 }
928
929 Ok(circuit)
930 }
931
932 fn generate_qnn_circuit(
934 &self,
935 parameters: &[f64],
936 hidden_layers: &[usize],
937 activation_type: &QuantumActivation,
938 connectivity: &NetworkConnectivity,
939 ) -> Result<InterfaceCircuit> {
940 let num_qubits = *hidden_layers.iter().max().unwrap_or(&4).max(&4);
941 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
942 let mut param_idx = 0;
943
944 for qubit in 0..num_qubits {
946 if param_idx < parameters.len() {
947 circuit.add_gate(InterfaceGate::new(
948 InterfaceGateType::RY(parameters[param_idx]),
949 vec![qubit],
950 ));
951 param_idx += 1;
952 }
953 }
954
955 for (layer_idx, &layer_size) in hidden_layers.iter().enumerate() {
957 for neuron in 0..layer_size.min(num_qubits) {
958 match activation_type {
960 QuantumActivation::RotationActivation => {
961 if param_idx < parameters.len() {
962 circuit.add_gate(InterfaceGate::new(
963 InterfaceGateType::RY(parameters[param_idx]),
964 vec![neuron],
965 ));
966 param_idx += 1;
967 }
968 }
969 QuantumActivation::ControlledRotation => {
970 if neuron > 0 && param_idx < parameters.len() {
971 circuit.add_gate(InterfaceGate::new(
972 InterfaceGateType::CRY(parameters[param_idx]),
973 vec![neuron - 1, neuron],
974 ));
975 param_idx += 1;
976 }
977 }
978 QuantumActivation::EntanglingActivation => {
979 if neuron < num_qubits - 1 {
980 circuit.add_gate(InterfaceGate::new(
981 InterfaceGateType::CNOT,
982 vec![neuron, neuron + 1],
983 ));
984 }
985 }
986 QuantumActivation::QuantumReLU => {
987 if param_idx < parameters.len() {
989 circuit.add_gate(InterfaceGate::new(
990 InterfaceGateType::RY(parameters[param_idx].max(0.0)),
991 vec![neuron],
992 ));
993 param_idx += 1;
994 }
995 }
996 }
997
998 match connectivity {
1000 NetworkConnectivity::FullyConnected => {
1001 for other in 0..num_qubits {
1002 if other != neuron {
1003 circuit.add_gate(InterfaceGate::new(
1004 InterfaceGateType::CNOT,
1005 vec![neuron, other],
1006 ));
1007 }
1008 }
1009 }
1010 NetworkConnectivity::NearestNeighbor => {
1011 if neuron > 0 {
1012 circuit.add_gate(InterfaceGate::new(
1013 InterfaceGateType::CNOT,
1014 vec![neuron - 1, neuron],
1015 ));
1016 }
1017 if neuron < num_qubits - 1 {
1018 circuit.add_gate(InterfaceGate::new(
1019 InterfaceGateType::CNOT,
1020 vec![neuron, neuron + 1],
1021 ));
1022 }
1023 }
1024 _ => {
1025 }
1027 }
1028 }
1029 }
1030
1031 Ok(circuit)
1032 }
1033
1034 fn generate_tensor_network_circuit(
1036 &self,
1037 parameters: &[f64],
1038 bond_dimension: usize,
1039 network_topology: &TensorTopology,
1040 compression_method: &CompressionMethod,
1041 ) -> Result<InterfaceCircuit> {
1042 let num_qubits = (parameters.len() as f64).sqrt().ceil() as usize;
1043 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
1044 let mut param_idx = 0;
1045
1046 match network_topology {
1047 TensorTopology::MPS => {
1048 for qubit in 0..num_qubits {
1050 if param_idx < parameters.len() {
1051 circuit.add_gate(InterfaceGate::new(
1052 InterfaceGateType::RY(parameters[param_idx]),
1053 vec![qubit],
1054 ));
1055 param_idx += 1;
1056 }
1057
1058 if qubit < num_qubits - 1 {
1059 circuit.add_gate(InterfaceGate::new(
1060 InterfaceGateType::CNOT,
1061 vec![qubit, qubit + 1],
1062 ));
1063
1064 if param_idx < parameters.len() {
1065 circuit.add_gate(InterfaceGate::new(
1066 InterfaceGateType::RY(parameters[param_idx]),
1067 vec![qubit + 1],
1068 ));
1069 param_idx += 1;
1070 }
1071 }
1072 }
1073 }
1074 TensorTopology::MERA => {
1075 let mut current_level = num_qubits;
1077 while current_level > 1 {
1078 for i in (0..current_level).step_by(2) {
1079 if i + 1 < current_level && param_idx < parameters.len() {
1080 circuit.add_gate(InterfaceGate::new(
1081 InterfaceGateType::RY(parameters[param_idx]),
1082 vec![i],
1083 ));
1084 param_idx += 1;
1085 circuit.add_gate(InterfaceGate::new(
1086 InterfaceGateType::CNOT,
1087 vec![i, i + 1],
1088 ));
1089 }
1090 }
1091 current_level = (current_level + 1) / 2;
1092 }
1093 }
1094 _ => {
1095 return Err(SimulatorError::UnsupportedOperation(format!(
1097 "Tensor network topology {:?} not implemented",
1098 network_topology
1099 )));
1100 }
1101 }
1102
1103 Ok(circuit)
1104 }
1105
1106 fn update_parameters(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1108 match self.config.optimizer {
1109 AdvancedOptimizerType::SPSA => self.update_spsa(gradient),
1110 AdvancedOptimizerType::QuantumAdam => self.update_quantum_adam(gradient),
1111 AdvancedOptimizerType::NaturalGradient => self.update_natural_gradient(gradient),
1112 AdvancedOptimizerType::QuantumNaturalGradient => {
1113 self.update_quantum_natural_gradient(gradient)
1114 }
1115 AdvancedOptimizerType::LBFGS => self.update_lbfgs(gradient),
1116 AdvancedOptimizerType::BayesianOptimization => self.update_bayesian(gradient),
1117 AdvancedOptimizerType::ReinforcementLearning => {
1118 self.update_reinforcement_learning(gradient)
1119 }
1120 AdvancedOptimizerType::EvolutionaryStrategy => {
1121 self.update_evolutionary_strategy(gradient)
1122 }
1123 AdvancedOptimizerType::QuantumParticleSwarm => {
1124 self.update_quantum_particle_swarm(gradient)
1125 }
1126 AdvancedOptimizerType::MetaLearningOptimizer => self.update_meta_learning(gradient),
1127 }
1128 }
1129
1130 fn update_spsa(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1132 let learning_rate = self.state.learning_rate;
1133 let mut updates = Vec::new();
1134
1135 for i in 0..self.state.parameters.len() {
1137 let perturbation = if thread_rng().gen::<f64>() > 0.5 {
1138 1.0
1139 } else {
1140 -1.0
1141 };
1142 let update = learning_rate * perturbation;
1143 self.state.parameters[i] += update;
1144 updates.push(update);
1145 }
1146
1147 Ok(updates)
1148 }
1149
1150 fn update_quantum_adam(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1152 let beta1 = 0.9;
1153 let beta2 = 0.999;
1154 let epsilon = 1e-8;
1155 let learning_rate = self.state.learning_rate;
1156 let mut updates = Vec::new();
1157
1158 for i in 0..self.state.parameters.len() {
1159 self.state.optimizer_state.momentum[i] =
1161 beta1 * self.state.optimizer_state.momentum[i] + (1.0 - beta1) * gradient[i];
1162
1163 self.state.optimizer_state.velocity[i] = beta2 * self.state.optimizer_state.velocity[i]
1165 + (1.0 - beta2) * gradient[i].powi(2);
1166
1167 let m_hat = self.state.optimizer_state.momentum[i]
1169 / (1.0 - beta1.powi(self.state.iteration as i32 + 1));
1170
1171 let v_hat = self.state.optimizer_state.velocity[i]
1173 / (1.0 - beta2.powi(self.state.iteration as i32 + 1));
1174
1175 let quantum_factor = 1.0 / (1.0 + 0.1 * (self.state.iteration as f64).sqrt());
1177 let effective_lr = learning_rate * quantum_factor;
1178
1179 let update = effective_lr * m_hat / (v_hat.sqrt() + epsilon);
1181 self.state.parameters[i] -= update;
1182 updates.push(update);
1183 }
1184
1185 Ok(updates)
1186 }
1187
1188 fn update_natural_gradient(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1190 if self.state.optimizer_state.fisher_matrix.is_none() {
1192 self.state.optimizer_state.fisher_matrix =
1193 Some(self.compute_fisher_information_matrix()?);
1194 }
1195
1196 let fisher_matrix = self.state.optimizer_state.fisher_matrix.as_ref().unwrap();
1197
1198 let natural_gradient = self.solve_linear_system(fisher_matrix, gradient)?;
1200
1201 let mut updates = Vec::new();
1202 for i in 0..self.state.parameters.len() {
1203 let update = self.state.learning_rate * natural_gradient[i];
1204 self.state.parameters[i] -= update;
1205 updates.push(update);
1206 }
1207
1208 Ok(updates)
1209 }
1210
1211 fn update_quantum_natural_gradient(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1213 let qfi_matrix = self.compute_quantum_fisher_information_matrix()?;
1215
1216 let regularized_qfi = self.regularize_matrix(&qfi_matrix, 1e-6)?;
1218
1219 let natural_gradient = self.solve_linear_system(®ularized_qfi, gradient)?;
1220
1221 let mut updates = Vec::new();
1222 for i in 0..self.state.parameters.len() {
1223 let update = self.state.learning_rate * natural_gradient[i];
1224 self.state.parameters[i] -= update;
1225 updates.push(update);
1226 }
1227
1228 Ok(updates)
1229 }
1230
1231 fn update_lbfgs(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1233 let max_history = 10;
1234
1235 if !self.state.optimizer_state.lbfgs_history.is_empty() {
1237 let (prev_params, prev_grad) = self.state.optimizer_state.lbfgs_history.back().unwrap();
1238 let s = self
1239 .state
1240 .parameters
1241 .iter()
1242 .zip(prev_params)
1243 .map(|(x, px)| x - px)
1244 .collect::<Vec<_>>();
1245 let y = gradient
1246 .iter()
1247 .zip(prev_grad)
1248 .map(|(g, pg)| g - pg)
1249 .collect::<Vec<_>>();
1250
1251 self.state.optimizer_state.lbfgs_history.push_back((s, y));
1252
1253 if self.state.optimizer_state.lbfgs_history.len() > max_history {
1254 self.state.optimizer_state.lbfgs_history.pop_front();
1255 }
1256 }
1257
1258 let mut q = gradient.to_vec();
1260 let mut alphas = Vec::new();
1261
1262 for (s, y) in self.state.optimizer_state.lbfgs_history.iter().rev() {
1264 let sy = s.iter().zip(y).map(|(si, yi)| si * yi).sum::<f64>();
1265 if sy.abs() > 1e-10 {
1266 let alpha = s.iter().zip(&q).map(|(si, qi)| si * qi).sum::<f64>() / sy;
1267 alphas.push(alpha);
1268 for i in 0..q.len() {
1269 q[i] -= alpha * y[i];
1270 }
1271 } else {
1272 alphas.push(0.0);
1273 }
1274 }
1275
1276 alphas.reverse();
1281 for ((s, y), alpha) in self
1282 .state
1283 .optimizer_state
1284 .lbfgs_history
1285 .iter()
1286 .zip(alphas.iter())
1287 {
1288 let sy = s.iter().zip(y).map(|(si, yi)| si * yi).sum::<f64>();
1289 if sy.abs() > 1e-10 {
1290 let beta = y.iter().zip(&q).map(|(yi, qi)| yi * qi).sum::<f64>() / sy;
1291 for i in 0..q.len() {
1292 q[i] += (alpha - beta) * s[i];
1293 }
1294 }
1295 }
1296
1297 let mut updates = Vec::new();
1299 for i in 0..self.state.parameters.len() {
1300 let update = self.state.learning_rate * q[i];
1301 self.state.parameters[i] -= update;
1302 updates.push(update);
1303 }
1304
1305 self.state
1307 .optimizer_state
1308 .lbfgs_history
1309 .push_back((self.state.parameters.clone(), gradient.to_vec()));
1310
1311 Ok(updates)
1312 }
1313
1314 fn update_bayesian(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1316 if self.state.optimizer_state.bayesian_model.is_none() {
1318 self.state.optimizer_state.bayesian_model = Some(BayesianModel {
1319 kernel_hyperparameters: vec![1.0, 1.0], observed_points: Vec::new(),
1321 observed_values: Vec::new(),
1322 acquisition_function: AcquisitionFunction::ExpectedImprovement,
1323 });
1324 }
1325
1326 if let Some(ref mut model) = self.state.optimizer_state.bayesian_model {
1328 model.observed_points.push(self.state.parameters.clone());
1329 model.observed_values.push(self.state.current_cost);
1330 }
1331
1332 let next_parameters = self
1334 .state
1335 .parameters
1336 .iter()
1337 .map(|p| p + (thread_rng().gen::<f64>() - 0.5) * 0.1)
1338 .collect::<Vec<_>>();
1339
1340 let updates = next_parameters
1341 .iter()
1342 .zip(&self.state.parameters)
1343 .map(|(new, old)| new - old)
1344 .collect();
1345
1346 self.state.parameters = next_parameters;
1347
1348 Ok(updates)
1349 }
1350
1351 fn update_reinforcement_learning(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1353 let reward = -self.state.current_cost; let baseline = self.compute_baseline_reward()?;
1356 let advantage = reward - baseline;
1357
1358 let mut updates = Vec::new();
1359 for i in 0..self.state.parameters.len() {
1360 let update = self.state.learning_rate * gradient[i] * advantage;
1362 self.state.parameters[i] += update;
1363 updates.push(update);
1364 }
1365
1366 Ok(updates)
1367 }
1368
1369 fn update_evolutionary_strategy(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1371 let population_size = 20;
1372 let sigma = 0.1; let mut population = Vec::new();
1374 let mut fitness_values = Vec::new();
1375
1376 for _ in 0..population_size {
1378 let mut candidate = self.state.parameters.clone();
1379 for param in &mut candidate {
1380 *param += sigma * (thread_rng().gen::<f64>() - 0.5) * 2.0;
1381 }
1382 population.push(candidate);
1383 }
1384
1385 for candidate in &population {
1387 let circuit = self.generate_circuit(candidate)?;
1388 let fitness = -self.cost_function.evaluate(candidate, &circuit)?; fitness_values.push(fitness);
1390 }
1391
1392 let mut indices: Vec<usize> = (0..population_size).collect();
1394 indices.sort_by(|&a, &b| fitness_values[b].partial_cmp(&fitness_values[a]).unwrap());
1395
1396 let top_n = population_size / 4;
1398 let mut new_parameters = vec![0.0; self.state.parameters.len()];
1399 let mut total_weight = 0.0;
1400
1401 for &idx in indices.iter().take(top_n) {
1402 let weight = fitness_values[idx];
1403 total_weight += weight;
1404 for i in 0..new_parameters.len() {
1405 new_parameters[i] += weight * population[idx][i];
1406 }
1407 }
1408
1409 for param in &mut new_parameters {
1410 *param /= total_weight;
1411 }
1412
1413 let updates = new_parameters
1414 .iter()
1415 .zip(&self.state.parameters)
1416 .map(|(new, old)| new - old)
1417 .collect();
1418
1419 self.state.parameters = new_parameters;
1420
1421 Ok(updates)
1422 }
1423
1424 fn update_quantum_particle_swarm(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1426 let inertia = 0.9;
1428 let cognitive = 2.0;
1429 let social = 2.0;
1430
1431 for i in 0..self.state.parameters.len() {
1433 let quantum_factor = (2.0 * std::f64::consts::PI * thread_rng().gen::<f64>())
1434 .cos()
1435 .abs();
1436
1437 self.state.optimizer_state.momentum[i] = inertia
1439 * self.state.optimizer_state.momentum[i]
1440 + cognitive
1441 * thread_rng().gen::<f64>()
1442 * (self.state.best_parameters[i] - self.state.parameters[i])
1443 * quantum_factor
1444 + social
1445 * thread_rng().gen::<f64>()
1446 * (self.state.best_parameters[i] - self.state.parameters[i]);
1447 }
1448
1449 let mut updates = Vec::new();
1451 for i in 0..self.state.parameters.len() {
1452 let update = self.state.optimizer_state.momentum[i];
1453 self.state.parameters[i] += update;
1454 updates.push(update);
1455 }
1456
1457 Ok(updates)
1458 }
1459
1460 fn update_meta_learning(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1462 let gradient_norm = gradient.iter().map(|g| g.powi(2)).sum::<f64>().sqrt();
1464
1465 if self.state.iteration > 10 {
1467 let recent_gradients = &self.stats.parameter_update_magnitudes;
1468 let recent_avg = recent_gradients.iter().rev().take(5).sum::<f64>() / 5.0;
1469
1470 if gradient_norm > 2.0 * recent_avg {
1471 self.state.learning_rate *= 0.8; } else if gradient_norm < 0.5 * recent_avg {
1473 self.state.learning_rate *= 1.1; }
1475 }
1476
1477 self.update_quantum_adam(gradient)
1479 }
1480
1481 fn count_parameters(ansatz: &VariationalAnsatz) -> Result<usize> {
1483 match ansatz {
1484 VariationalAnsatz::HardwareEfficient {
1485 layers,
1486 rotation_gates,
1487 ..
1488 } => {
1489 Ok(layers * rotation_gates.len() * 4) }
1492 VariationalAnsatz::UCCSD {
1493 num_electrons,
1494 num_orbitals,
1495 include_triples,
1496 } => {
1497 let singles = num_electrons * (2 * num_orbitals - num_electrons);
1498 let doubles = num_electrons
1499 * (num_electrons - 1)
1500 * (2 * num_orbitals - num_electrons)
1501 * (2 * num_orbitals - num_electrons - 1)
1502 / 4;
1503 let triples = if *include_triples { doubles / 10 } else { 0 }; Ok(singles + doubles + triples)
1505 }
1506 VariationalAnsatz::QAOA { layers, .. } => {
1507 Ok(2 * layers) }
1509 VariationalAnsatz::Adaptive { max_layers, .. } => Ok(*max_layers),
1510 VariationalAnsatz::QuantumNeuralNetwork { hidden_layers, .. } => {
1511 Ok(hidden_layers.iter().sum::<usize>())
1512 }
1513 VariationalAnsatz::TensorNetworkAnsatz { bond_dimension, .. } => {
1514 Ok(bond_dimension * 4) }
1516 }
1517 }
1518
1519 fn initialize_parameters(num_parameters: usize, config: &VQAConfig) -> Result<Vec<f64>> {
1520 let mut parameters = Vec::with_capacity(num_parameters);
1521
1522 for _ in 0..num_parameters {
1523 let param = if let Some((min, max)) = config.parameter_bounds {
1524 min + (max - min) * thread_rng().gen::<f64>()
1525 } else {
1526 (thread_rng().gen::<f64>() - 0.5) * 2.0 * std::f64::consts::PI
1527 };
1528 parameters.push(param);
1529 }
1530
1531 Ok(parameters)
1532 }
1533
1534 fn infer_num_qubits_from_parameters(&self, num_params: usize, layers: usize) -> Result<usize> {
1535 Ok((num_params as f64 / layers as f64).sqrt().ceil() as usize)
1537 }
1538
1539 fn extract_num_qubits_from_hamiltonian(
1540 &self,
1541 hamiltonian: &ProblemHamiltonian,
1542 ) -> Result<usize> {
1543 Ok(hamiltonian
1544 .terms
1545 .iter()
1546 .flat_map(|term| &term.qubits)
1547 .max()
1548 .unwrap_or(&0)
1549 + 1)
1550 }
1551
1552 fn infer_num_qubits_from_pool(&self, operator_pool: &[InterfaceGate]) -> Result<usize> {
1553 Ok(operator_pool
1554 .iter()
1555 .flat_map(|gate| &gate.qubits)
1556 .max()
1557 .unwrap_or(&0)
1558 + 1)
1559 }
1560
1561 fn determine_adaptive_layers(
1562 &self,
1563 max_layers: usize,
1564 _growth_criterion: &GrowthCriterion,
1565 ) -> Result<usize> {
1566 let current_layers = (self.state.iteration / 10).min(max_layers);
1568 Ok(current_layers.max(1))
1569 }
1570
1571 fn simulate_circuit(&self, circuit: &InterfaceCircuit) -> Result<Array1<Complex64>> {
1572 let state_size = 1 << circuit.num_qubits;
1574 let mut state = Array1::zeros(state_size);
1575 state[0] = Complex64::new(1.0, 0.0); Ok(state)
1577 }
1578
1579 fn calculate_expectation_values(
1580 &self,
1581 _state: &Array1<Complex64>,
1582 ) -> Result<HashMap<String, f64>> {
1583 let mut expectations = HashMap::new();
1584
1585 for observable in self.cost_function.get_observables() {
1586 expectations.insert(observable, 0.0);
1588 }
1589
1590 Ok(expectations)
1591 }
1592
1593 fn compute_fisher_information_matrix(&self) -> Result<Array2<f64>> {
1594 let n = self.state.parameters.len();
1595 Ok(Array2::eye(n)) }
1597
1598 fn compute_quantum_fisher_information_matrix(&self) -> Result<Array2<f64>> {
1599 let n = self.state.parameters.len();
1600 Ok(Array2::eye(n)) }
1602
1603 fn regularize_matrix(&self, matrix: &Array2<f64>, regularization: f64) -> Result<Array2<f64>> {
1604 let mut regularized = matrix.clone();
1605 for i in 0..matrix.nrows() {
1606 regularized[[i, i]] += regularization;
1607 }
1608 Ok(regularized)
1609 }
1610
1611 fn solve_linear_system(&self, matrix: &Array2<f64>, rhs: &[f64]) -> Result<Vec<f64>> {
1612 Ok(rhs.to_vec())
1614 }
1615
1616 fn optimize_acquisition_function(&self, _model: &BayesianModel) -> Result<Vec<f64>> {
1617 Ok(self.state.parameters.clone())
1619 }
1620
1621 fn compute_baseline_reward(&self) -> Result<f64> {
1622 Ok(0.0)
1624 }
1625}
1626
1627pub struct IsingCostFunction {
1630 pub problem_hamiltonian: ProblemHamiltonian,
1631}
1632
1633impl CostFunction for IsingCostFunction {
1634 fn evaluate(&self, _parameters: &[f64], circuit: &InterfaceCircuit) -> Result<f64> {
1635 let num_qubits = circuit.num_qubits;
1637 let mut cost = 0.0;
1638
1639 for term in &self.problem_hamiltonian.terms {
1641 match term.pauli_string.as_str() {
1642 "ZZ" if term.qubits.len() == 2 => {
1643 cost += term.coefficient.re; }
1645 "Z" if term.qubits.len() == 1 => {
1646 cost += term.coefficient.re; }
1648 _ => {}
1649 }
1650 }
1651
1652 Ok(cost)
1653 }
1654
1655 fn get_observables(&self) -> Vec<String> {
1656 self.problem_hamiltonian
1657 .terms
1658 .iter()
1659 .map(|term| term.pauli_string.clone())
1660 .collect()
1661 }
1662
1663 fn is_variational(&self) -> bool {
1664 true
1665 }
1666}
1667
1668pub struct FiniteDifferenceGradient {
1671 pub epsilon: f64,
1672}
1673
1674impl GradientCalculator for FiniteDifferenceGradient {
1675 fn calculate_gradient(
1676 &self,
1677 parameters: &[f64],
1678 cost_function: &dyn CostFunction,
1679 circuit: &InterfaceCircuit,
1680 ) -> Result<Vec<f64>> {
1681 let mut gradient = Vec::with_capacity(parameters.len());
1682
1683 for i in 0..parameters.len() {
1684 let mut params_plus = parameters.to_vec();
1685 let mut params_minus = parameters.to_vec();
1686
1687 params_plus[i] += self.epsilon;
1688 params_minus[i] -= self.epsilon;
1689
1690 let cost_plus = cost_function.evaluate(¶ms_plus, circuit)?;
1692 let cost_minus = cost_function.evaluate(¶ms_minus, circuit)?;
1693
1694 let grad = (cost_plus - cost_minus) / (2.0 * self.epsilon);
1695 gradient.push(grad);
1696 }
1697
1698 Ok(gradient)
1699 }
1700
1701 fn method_name(&self) -> &str {
1702 "FiniteDifference"
1703 }
1704}
1705
1706pub struct ParameterShiftGradient;
1708
1709impl GradientCalculator for ParameterShiftGradient {
1710 fn calculate_gradient(
1711 &self,
1712 parameters: &[f64],
1713 cost_function: &dyn CostFunction,
1714 circuit: &InterfaceCircuit,
1715 ) -> Result<Vec<f64>> {
1716 let shift = std::f64::consts::PI / 2.0;
1717 let mut gradient = Vec::with_capacity(parameters.len());
1718
1719 for i in 0..parameters.len() {
1720 let mut params_plus = parameters.to_vec();
1721 let mut params_minus = parameters.to_vec();
1722
1723 params_plus[i] += shift;
1724 params_minus[i] -= shift;
1725
1726 let cost_plus = cost_function.evaluate(¶ms_plus, circuit)?;
1728 let cost_minus = cost_function.evaluate(¶ms_minus, circuit)?;
1729
1730 let grad = (cost_plus - cost_minus) / 2.0;
1731 gradient.push(grad);
1732 }
1733
1734 Ok(gradient)
1735 }
1736
1737 fn method_name(&self) -> &str {
1738 "ParameterShift"
1739 }
1740}
1741
1742pub fn benchmark_advanced_vqa() -> Result<HashMap<String, f64>> {
1744 let mut results = HashMap::new();
1745
1746 let start = Instant::now();
1748 let ansatz = VariationalAnsatz::HardwareEfficient {
1749 layers: 3,
1750 entangling_gates: vec![InterfaceGateType::CNOT],
1751 rotation_gates: vec![InterfaceGateType::RY(0.0)],
1752 };
1753
1754 let config = VQAConfig::default();
1755 let cost_function = Box::new(IsingCostFunction {
1756 problem_hamiltonian: ProblemHamiltonian {
1757 terms: vec![HamiltonianTerm {
1758 coefficient: Complex64::new(-1.0, 0.0),
1759 pauli_string: "ZZ".to_string(),
1760 qubits: vec![0, 1],
1761 }],
1762 problem_type: OptimizationProblemType::MaxCut,
1763 },
1764 });
1765 let gradient_calculator = Box::new(FiniteDifferenceGradient { epsilon: 1e-4 });
1766
1767 let mut trainer = AdvancedVQATrainer::new(config, ansatz, cost_function, gradient_calculator)?;
1768 let _result = trainer.train()?;
1769
1770 let hardware_efficient_time = start.elapsed().as_millis() as f64;
1771 results.insert(
1772 "hardware_efficient_vqa".to_string(),
1773 hardware_efficient_time,
1774 );
1775
1776 Ok(results)
1777}
1778
1779#[cfg(test)]
1780mod tests {
1781 use super::*;
1782
1783 #[test]
1784 fn test_vqa_trainer_creation() {
1785 let ansatz = VariationalAnsatz::HardwareEfficient {
1786 layers: 2,
1787 entangling_gates: vec![InterfaceGateType::CNOT],
1788 rotation_gates: vec![InterfaceGateType::RY(0.0)],
1789 };
1790
1791 let config = VQAConfig::default();
1792 let cost_function = Box::new(IsingCostFunction {
1793 problem_hamiltonian: ProblemHamiltonian {
1794 terms: vec![],
1795 problem_type: OptimizationProblemType::MaxCut,
1796 },
1797 });
1798 let gradient_calculator = Box::new(FiniteDifferenceGradient { epsilon: 1e-4 });
1799
1800 let trainer = AdvancedVQATrainer::new(config, ansatz, cost_function, gradient_calculator);
1801 assert!(trainer.is_ok());
1802 }
1803
1804 #[test]
1805 fn test_parameter_counting() {
1806 let ansatz = VariationalAnsatz::HardwareEfficient {
1807 layers: 3,
1808 entangling_gates: vec![InterfaceGateType::CNOT],
1809 rotation_gates: vec![InterfaceGateType::RY(0.0)],
1810 };
1811
1812 let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1813 assert!(count > 0);
1814 }
1815
1816 #[test]
1817 fn test_uccsd_ansatz() {
1818 let ansatz = VariationalAnsatz::UCCSD {
1819 num_electrons: 2,
1820 num_orbitals: 4,
1821 include_triples: false,
1822 };
1823
1824 let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1825 assert!(count > 0);
1826 }
1827
1828 #[test]
1829 fn test_qaoa_ansatz() {
1830 let ansatz = VariationalAnsatz::QAOA {
1831 problem_hamiltonian: ProblemHamiltonian {
1832 terms: vec![],
1833 problem_type: OptimizationProblemType::MaxCut,
1834 },
1835 mixer_hamiltonian: MixerHamiltonian {
1836 terms: vec![],
1837 mixer_type: MixerType::XMixer,
1838 },
1839 layers: 3,
1840 };
1841
1842 let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1843 assert_eq!(count, 6); }
1845
1846 #[test]
1847 fn test_finite_difference_gradient() {
1848 let gradient_calc = FiniteDifferenceGradient { epsilon: 1e-4 };
1849 assert_eq!(gradient_calc.method_name(), "FiniteDifference");
1850 }
1851
1852 #[test]
1853 fn test_parameter_shift_gradient() {
1854 let gradient_calc = ParameterShiftGradient;
1855 assert_eq!(gradient_calc.method_name(), "ParameterShift");
1856 }
1857
1858 #[test]
1859 fn test_ising_cost_function() {
1860 let cost_function = IsingCostFunction {
1861 problem_hamiltonian: ProblemHamiltonian {
1862 terms: vec![HamiltonianTerm {
1863 coefficient: Complex64::new(-1.0, 0.0),
1864 pauli_string: "ZZ".to_string(),
1865 qubits: vec![0, 1],
1866 }],
1867 problem_type: OptimizationProblemType::MaxCut,
1868 },
1869 };
1870
1871 assert!(cost_function.is_variational());
1872 assert!(!cost_function.get_observables().is_empty());
1873 }
1874
1875 #[test]
1876 fn test_optimizer_types() {
1877 let optimizers = [
1878 AdvancedOptimizerType::SPSA,
1879 AdvancedOptimizerType::QuantumAdam,
1880 AdvancedOptimizerType::NaturalGradient,
1881 AdvancedOptimizerType::BayesianOptimization,
1882 ];
1883
1884 for optimizer in &optimizers {
1885 println!("Testing optimizer: {:?}", optimizer);
1886 }
1887 }
1888}