quantrs2_sim/
advanced_ml_error_mitigation.rs

1//! Advanced Machine Learning Error Mitigation Techniques
2//!
3//! This module implements state-of-the-art machine learning approaches for quantum error mitigation,
4//! going beyond traditional ZNE and virtual distillation. It includes deep learning models,
5//! reinforcement learning agents, transfer learning capabilities, and ensemble methods for
6//! robust quantum error mitigation across different hardware platforms and noise models.
7//!
8//! Key features:
9//! - Deep neural networks for complex noise pattern learning
10//! - Reinforcement learning for optimal mitigation strategy selection
11//! - Transfer learning for cross-device mitigation optimization
12//! - Adversarial training for robustness against unknown noise
13//! - Ensemble methods combining multiple mitigation strategies
14//! - Online learning for real-time adaptation to drifting noise
15//! - Graph neural networks for circuit structure-aware mitigation
16//! - Attention mechanisms for long-range error correlations
17
18use scirs2_core::ndarray::{Array1, Array2, Array3};
19use scirs2_core::random::{thread_rng, Rng};
20use serde::{Deserialize, Serialize};
21use std::collections::{HashMap, VecDeque};
22
23use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
24use crate::error::{Result, SimulatorError};
25use scirs2_core::random::prelude::*;
26
27/// Advanced ML error mitigation configuration
28#[derive(Debug, Clone)]
29pub struct AdvancedMLMitigationConfig {
30    /// Enable deep learning models
31    pub enable_deep_learning: bool,
32    /// Enable reinforcement learning
33    pub enable_reinforcement_learning: bool,
34    /// Enable transfer learning
35    pub enable_transfer_learning: bool,
36    /// Enable adversarial training
37    pub enable_adversarial_training: bool,
38    /// Enable ensemble methods
39    pub enable_ensemble_methods: bool,
40    /// Enable online learning
41    pub enable_online_learning: bool,
42    /// Learning rate for adaptive methods
43    pub learning_rate: f64,
44    /// Batch size for training
45    pub batch_size: usize,
46    /// Memory size for experience replay
47    pub memory_size: usize,
48    /// Exploration rate for RL
49    pub exploration_rate: f64,
50    /// Transfer learning alpha
51    pub transfer_alpha: f64,
52    /// Ensemble size
53    pub ensemble_size: usize,
54}
55
56impl Default for AdvancedMLMitigationConfig {
57    fn default() -> Self {
58        Self {
59            enable_deep_learning: true,
60            enable_reinforcement_learning: true,
61            enable_transfer_learning: false,
62            enable_adversarial_training: false,
63            enable_ensemble_methods: true,
64            enable_online_learning: true,
65            learning_rate: 0.001,
66            batch_size: 64,
67            memory_size: 10000,
68            exploration_rate: 0.1,
69            transfer_alpha: 0.5,
70            ensemble_size: 5,
71        }
72    }
73}
74
75/// Deep learning model for error mitigation
76#[derive(Debug, Clone)]
77pub struct DeepMitigationNetwork {
78    /// Network architecture
79    pub layers: Vec<usize>,
80    /// Weights for each layer
81    pub weights: Vec<Array2<f64>>,
82    /// Biases for each layer
83    pub biases: Vec<Array1<f64>>,
84    /// Activation function
85    pub activation: ActivationFunction,
86    /// Loss history
87    pub loss_history: Vec<f64>,
88}
89
90/// Activation functions for neural networks
91#[derive(Debug, Clone, Copy, PartialEq, Eq)]
92pub enum ActivationFunction {
93    ReLU,
94    Sigmoid,
95    Tanh,
96    Swish,
97    GELU,
98}
99
100/// Reinforcement learning agent for mitigation strategy selection
101#[derive(Debug, Clone)]
102pub struct QLearningMitigationAgent {
103    /// Q-table for state-action values
104    pub q_table: HashMap<String, HashMap<MitigationAction, f64>>,
105    /// Learning rate
106    pub learning_rate: f64,
107    /// Discount factor
108    pub discount_factor: f64,
109    /// Exploration rate
110    pub exploration_rate: f64,
111    /// Experience replay buffer
112    pub experience_buffer: VecDeque<Experience>,
113    /// Training statistics
114    pub stats: RLTrainingStats,
115}
116
117/// Mitigation actions for reinforcement learning
118#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
119pub enum MitigationAction {
120    ZeroNoiseExtrapolation,
121    VirtualDistillation,
122    SymmetryVerification,
123    PauliTwirling,
124    RandomizedCompiling,
125    ClusterExpansion,
126    MachineLearningPrediction,
127    EnsembleMitigation,
128}
129
130/// Experience for reinforcement learning
131#[derive(Debug, Clone)]
132pub struct Experience {
133    /// State representation
134    pub state: Array1<f64>,
135    /// Action taken
136    pub action: MitigationAction,
137    /// Reward received
138    pub reward: f64,
139    /// Next state
140    pub next_state: Array1<f64>,
141    /// Whether episode terminated
142    pub done: bool,
143}
144
145/// Reinforcement learning training statistics
146#[derive(Debug, Clone, Default)]
147pub struct RLTrainingStats {
148    /// Total episodes
149    pub episodes: usize,
150    /// Average reward per episode
151    pub avg_reward: f64,
152    /// Success rate
153    pub success_rate: f64,
154    /// Exploration rate decay
155    pub exploration_decay: f64,
156    /// Loss convergence
157    pub loss_convergence: Vec<f64>,
158}
159
160/// Transfer learning model for cross-device mitigation
161#[derive(Debug, Clone)]
162pub struct TransferLearningModel {
163    /// Source device characteristics
164    pub source_device: DeviceCharacteristics,
165    /// Target device characteristics
166    pub target_device: DeviceCharacteristics,
167    /// Shared feature extractor
168    pub feature_extractor: DeepMitigationNetwork,
169    /// Device-specific heads
170    pub device_heads: HashMap<String, DeepMitigationNetwork>,
171    /// Transfer learning alpha
172    pub transfer_alpha: f64,
173    /// Adaptation statistics
174    pub adaptation_stats: TransferStats,
175}
176
177/// Device characteristics for transfer learning
178#[derive(Debug, Clone)]
179pub struct DeviceCharacteristics {
180    /// Device identifier
181    pub device_id: String,
182    /// Gate error rates
183    pub gate_errors: HashMap<String, f64>,
184    /// Coherence times
185    pub coherence_times: HashMap<String, f64>,
186    /// Connectivity graph
187    pub connectivity: Array2<bool>,
188    /// Noise correlations
189    pub noise_correlations: Array2<f64>,
190}
191
192/// Transfer learning statistics
193#[derive(Debug, Clone, Default)]
194pub struct TransferStats {
195    /// Adaptation loss
196    pub adaptation_loss: f64,
197    /// Source domain performance
198    pub source_performance: f64,
199    /// Target domain performance
200    pub target_performance: f64,
201    /// Transfer efficiency
202    pub transfer_efficiency: f64,
203}
204
205/// Ensemble mitigation combining multiple strategies
206pub struct EnsembleMitigation {
207    /// Individual mitigation models
208    pub models: Vec<Box<dyn MitigationModel>>,
209    /// Model weights
210    pub weights: Array1<f64>,
211    /// Combination strategy
212    pub combination_strategy: EnsembleStrategy,
213    /// Performance history
214    pub performance_history: Vec<f64>,
215}
216
217/// Ensemble combination strategies
218#[derive(Debug, Clone, Copy, PartialEq, Eq)]
219pub enum EnsembleStrategy {
220    /// Weighted average
221    WeightedAverage,
222    /// Majority voting
223    MajorityVoting,
224    /// Stacking with meta-learner
225    Stacking,
226    /// Dynamic selection
227    DynamicSelection,
228    /// Bayesian model averaging
229    BayesianAveraging,
230}
231
232/// Trait for mitigation models
233pub trait MitigationModel: Send + Sync {
234    /// Apply mitigation to measurement results
235    fn mitigate(&self, measurements: &Array1<f64>, circuit: &InterfaceCircuit) -> Result<f64>;
236
237    /// Update model with new data
238    fn update(&mut self, training_data: &[(Array1<f64>, f64)]) -> Result<()>;
239
240    /// Get model confidence
241    fn confidence(&self) -> f64;
242
243    /// Get model name
244    fn name(&self) -> String;
245}
246
247/// Advanced ML error mitigation result
248#[derive(Debug, Clone, Serialize, Deserialize)]
249pub struct AdvancedMLMitigationResult {
250    /// Mitigated expectation value
251    pub mitigated_value: f64,
252    /// Confidence in mitigation
253    pub confidence: f64,
254    /// Model used for mitigation
255    pub model_used: String,
256    /// Raw measurements
257    pub raw_measurements: Vec<f64>,
258    /// Mitigation overhead
259    pub overhead: f64,
260    /// Error reduction estimate
261    pub error_reduction: f64,
262    /// Model performance metrics
263    pub performance_metrics: PerformanceMetrics,
264}
265
266/// Performance metrics for mitigation models
267#[derive(Debug, Clone, Default, Serialize, Deserialize)]
268pub struct PerformanceMetrics {
269    /// Mean absolute error
270    pub mae: f64,
271    /// Root mean square error
272    pub rmse: f64,
273    /// R-squared coefficient
274    pub r_squared: f64,
275    /// Bias
276    pub bias: f64,
277    /// Variance
278    pub variance: f64,
279    /// Computational time
280    pub computation_time_ms: f64,
281}
282
283/// Graph Neural Network for circuit-aware mitigation
284#[derive(Debug, Clone)]
285pub struct GraphMitigationNetwork {
286    /// Node features (gates)
287    pub node_features: Array2<f64>,
288    /// Edge features (connections)
289    pub edge_features: Array3<f64>,
290    /// Attention weights
291    pub attention_weights: Array2<f64>,
292    /// Graph convolution layers
293    pub conv_layers: Vec<GraphConvLayer>,
294    /// Global pooling method
295    pub pooling: GraphPooling,
296}
297
298/// Graph convolution layer
299#[derive(Debug, Clone)]
300pub struct GraphConvLayer {
301    /// Weight matrix
302    pub weights: Array2<f64>,
303    /// Bias vector
304    pub bias: Array1<f64>,
305    /// Activation function
306    pub activation: ActivationFunction,
307}
308
309/// Graph pooling methods
310#[derive(Debug, Clone, Copy, PartialEq, Eq)]
311pub enum GraphPooling {
312    Mean,
313    Max,
314    Sum,
315    Attention,
316    Set2Set,
317}
318
319/// Main advanced ML error mitigation system
320pub struct AdvancedMLErrorMitigator {
321    /// Configuration
322    config: AdvancedMLMitigationConfig,
323    /// Deep learning model
324    deep_model: Option<DeepMitigationNetwork>,
325    /// Reinforcement learning agent
326    rl_agent: Option<QLearningMitigationAgent>,
327    /// Transfer learning model
328    transfer_model: Option<TransferLearningModel>,
329    /// Ensemble model
330    ensemble: Option<EnsembleMitigation>,
331    /// Graph neural network
332    graph_model: Option<GraphMitigationNetwork>,
333    /// Training data history
334    training_history: VecDeque<(Array1<f64>, f64)>,
335    /// Performance tracker
336    performance_tracker: PerformanceTracker,
337}
338
339/// Performance tracking for mitigation models
340#[derive(Debug, Clone, Default)]
341pub struct PerformanceTracker {
342    /// Model accuracies over time
343    pub accuracy_history: HashMap<String, Vec<f64>>,
344    /// Computational costs
345    pub cost_history: HashMap<String, Vec<f64>>,
346    /// Error reduction achieved
347    pub error_reduction_history: Vec<f64>,
348    /// Best performing model per task
349    pub best_models: HashMap<String, String>,
350}
351
352impl AdvancedMLErrorMitigator {
353    /// Create new advanced ML error mitigator
354    pub fn new(config: AdvancedMLMitigationConfig) -> Result<Self> {
355        let mut mitigator = Self {
356            config: config.clone(),
357            deep_model: None,
358            rl_agent: None,
359            transfer_model: None,
360            ensemble: None,
361            graph_model: None,
362            training_history: VecDeque::with_capacity(config.memory_size),
363            performance_tracker: PerformanceTracker::default(),
364        };
365
366        // Initialize enabled models
367        if config.enable_deep_learning {
368            mitigator.deep_model = Some(mitigator.create_deep_model()?);
369        }
370
371        if config.enable_reinforcement_learning {
372            mitigator.rl_agent = Some(mitigator.create_rl_agent()?);
373        }
374
375        if config.enable_ensemble_methods {
376            mitigator.ensemble = Some(mitigator.create_ensemble()?);
377        }
378
379        Ok(mitigator)
380    }
381
382    /// Apply advanced ML error mitigation
383    pub fn mitigate_errors(
384        &mut self,
385        measurements: &Array1<f64>,
386        circuit: &InterfaceCircuit,
387    ) -> Result<AdvancedMLMitigationResult> {
388        let start_time = std::time::Instant::now();
389
390        // Extract features from circuit and measurements
391        let features = self.extract_features(circuit, measurements)?;
392
393        // Select best mitigation strategy
394        let strategy = self.select_mitigation_strategy(&features)?;
395
396        // Apply selected mitigation
397        let mitigated_value = match strategy {
398            MitigationAction::MachineLearningPrediction => {
399                self.apply_deep_learning_mitigation(&features, measurements)?
400            }
401            MitigationAction::EnsembleMitigation => {
402                self.apply_ensemble_mitigation(&features, measurements, circuit)?
403            }
404            _ => {
405                // Fall back to traditional methods
406                self.apply_traditional_mitigation(strategy, measurements, circuit)?
407            }
408        };
409
410        // Calculate confidence and performance metrics
411        let confidence = self.calculate_confidence(&features, mitigated_value)?;
412        let error_reduction = self.estimate_error_reduction(measurements, mitigated_value)?;
413
414        let computation_time = start_time.elapsed().as_millis() as f64;
415
416        // Update models with new data
417        self.update_models(&features, mitigated_value)?;
418
419        Ok(AdvancedMLMitigationResult {
420            mitigated_value,
421            confidence,
422            model_used: format!("{:?}", strategy),
423            raw_measurements: measurements.to_vec(),
424            overhead: computation_time / 1000.0, // Convert to seconds
425            error_reduction,
426            performance_metrics: PerformanceMetrics {
427                computation_time_ms: computation_time,
428                ..Default::default()
429            },
430        })
431    }
432
433    /// Create deep learning model
434    pub fn create_deep_model(&self) -> Result<DeepMitigationNetwork> {
435        let layers = vec![18, 128, 64, 32, 1]; // Architecture for error prediction
436        let mut weights = Vec::new();
437        let mut biases = Vec::new();
438
439        // Initialize weights and biases with Xavier initialization
440        for i in 0..layers.len() - 1 {
441            let fan_in = layers[i];
442            let fan_out = layers[i + 1];
443            let limit = (6.0 / (fan_in + fan_out) as f64).sqrt();
444
445            let w =
446                Array2::from_shape_fn((fan_out, fan_in), |_| thread_rng().gen_range(-limit..limit));
447            let b = Array1::zeros(fan_out);
448
449            weights.push(w);
450            biases.push(b);
451        }
452
453        Ok(DeepMitigationNetwork {
454            layers,
455            weights,
456            biases,
457            activation: ActivationFunction::ReLU,
458            loss_history: Vec::new(),
459        })
460    }
461
462    /// Create reinforcement learning agent
463    pub fn create_rl_agent(&self) -> Result<QLearningMitigationAgent> {
464        Ok(QLearningMitigationAgent {
465            q_table: HashMap::new(),
466            learning_rate: self.config.learning_rate,
467            discount_factor: 0.95,
468            exploration_rate: self.config.exploration_rate,
469            experience_buffer: VecDeque::with_capacity(self.config.memory_size),
470            stats: RLTrainingStats::default(),
471        })
472    }
473
474    /// Create ensemble model
475    fn create_ensemble(&self) -> Result<EnsembleMitigation> {
476        let models: Vec<Box<dyn MitigationModel>> = Vec::new();
477        let weights = Array1::ones(self.config.ensemble_size) / self.config.ensemble_size as f64;
478
479        Ok(EnsembleMitigation {
480            models,
481            weights,
482            combination_strategy: EnsembleStrategy::WeightedAverage,
483            performance_history: Vec::new(),
484        })
485    }
486
487    /// Extract features from circuit and measurements
488    pub fn extract_features(
489        &self,
490        circuit: &InterfaceCircuit,
491        measurements: &Array1<f64>,
492    ) -> Result<Array1<f64>> {
493        let mut features = Vec::new();
494
495        // Circuit features
496        features.push(circuit.gates.len() as f64); // Circuit depth
497        features.push(circuit.num_qubits as f64); // Number of qubits
498
499        // Gate type distribution
500        let mut gate_counts = HashMap::new();
501        for gate in &circuit.gates {
502            *gate_counts
503                .entry(format!("{:?}", gate.gate_type))
504                .or_insert(0) += 1;
505        }
506
507        // Add normalized gate counts (top 10 most common gates)
508        let total_gates = circuit.gates.len() as f64;
509        for gate_type in [
510            "PauliX", "PauliY", "PauliZ", "Hadamard", "CNOT", "CZ", "RX", "RY", "RZ", "Phase",
511        ] {
512            let count = gate_counts.get(gate_type).unwrap_or(&0);
513            features.push(*count as f64 / total_gates);
514        }
515
516        // Measurement statistics
517        features.push(measurements.mean().unwrap_or(0.0));
518        features.push(measurements.std(0.0));
519        features.push(measurements.var(0.0));
520        features.push(measurements.len() as f64);
521
522        // Circuit topology features
523        features.push(self.calculate_circuit_connectivity(circuit)?);
524        features.push(self.calculate_entanglement_estimate(circuit)?);
525
526        Ok(Array1::from_vec(features))
527    }
528
529    /// Select optimal mitigation strategy using RL agent
530    pub fn select_mitigation_strategy(
531        &mut self,
532        features: &Array1<f64>,
533    ) -> Result<MitigationAction> {
534        if let Some(ref mut agent) = self.rl_agent {
535            let state_key = Self::features_to_state_key(features);
536
537            // Epsilon-greedy action selection
538            if thread_rng().gen::<f64>() < agent.exploration_rate {
539                // Random exploration
540                let actions = [
541                    MitigationAction::ZeroNoiseExtrapolation,
542                    MitigationAction::VirtualDistillation,
543                    MitigationAction::MachineLearningPrediction,
544                    MitigationAction::EnsembleMitigation,
545                ];
546                Ok(actions[thread_rng().gen_range(0..actions.len())])
547            } else {
548                // Greedy exploitation
549                let q_values = agent.q_table.get(&state_key).cloned().unwrap_or_default();
550
551                let best_action = q_values
552                    .iter()
553                    .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
554                    .map(|(action, _)| *action)
555                    .unwrap_or(MitigationAction::MachineLearningPrediction);
556
557                Ok(best_action)
558            }
559        } else {
560            // Default strategy if no RL agent
561            Ok(MitigationAction::MachineLearningPrediction)
562        }
563    }
564
565    /// Apply deep learning based mitigation
566    fn apply_deep_learning_mitigation(
567        &self,
568        features: &Array1<f64>,
569        measurements: &Array1<f64>,
570    ) -> Result<f64> {
571        if let Some(ref model) = self.deep_model {
572            let prediction = Self::forward_pass_static(model, features)?;
573
574            // Use prediction to correct measurements
575            let correction_factor = prediction[0];
576            let mitigated_value = measurements.mean().unwrap_or(0.0) * (1.0 + correction_factor);
577
578            Ok(mitigated_value)
579        } else {
580            Err(SimulatorError::InvalidConfiguration(
581                "Deep learning model not initialized".to_string(),
582            ))
583        }
584    }
585
586    /// Apply ensemble mitigation
587    fn apply_ensemble_mitigation(
588        &self,
589        features: &Array1<f64>,
590        measurements: &Array1<f64>,
591        circuit: &InterfaceCircuit,
592    ) -> Result<f64> {
593        if let Some(ref ensemble) = self.ensemble {
594            let mut predictions = Vec::new();
595
596            // Collect predictions from all models
597            for model in &ensemble.models {
598                let prediction = model.mitigate(measurements, circuit)?;
599                predictions.push(prediction);
600            }
601
602            // Combine predictions using ensemble strategy
603            let mitigated_value = match ensemble.combination_strategy {
604                EnsembleStrategy::WeightedAverage => {
605                    let weighted_sum: f64 = predictions
606                        .iter()
607                        .zip(ensemble.weights.iter())
608                        .map(|(pred, weight)| pred * weight)
609                        .sum();
610                    weighted_sum
611                }
612                EnsembleStrategy::MajorityVoting => {
613                    // For regression, use median
614                    let mut sorted_predictions = predictions.clone();
615                    sorted_predictions.sort_by(|a, b| a.partial_cmp(b).unwrap());
616                    sorted_predictions[sorted_predictions.len() / 2]
617                }
618                _ => {
619                    // Default to simple average
620                    predictions.iter().sum::<f64>() / predictions.len() as f64
621                }
622            };
623
624            Ok(mitigated_value)
625        } else {
626            // Fallback to simple measurement average
627            Ok(measurements.mean().unwrap_or(0.0))
628        }
629    }
630
631    /// Apply traditional mitigation methods
632    pub fn apply_traditional_mitigation(
633        &self,
634        strategy: MitigationAction,
635        measurements: &Array1<f64>,
636        _circuit: &InterfaceCircuit,
637    ) -> Result<f64> {
638        match strategy {
639            MitigationAction::ZeroNoiseExtrapolation => {
640                // Simple linear extrapolation for demonstration
641                let noise_factors = [1.0, 1.5, 2.0];
642                let values: Vec<f64> = noise_factors
643                    .iter()
644                    .zip(measurements.iter())
645                    .map(|(factor, &val)| val / factor)
646                    .collect();
647
648                // Linear extrapolation to zero noise
649                let extrapolated = 2.0 * values[0] - values[1];
650                Ok(extrapolated)
651            }
652            MitigationAction::VirtualDistillation => {
653                // Simple virtual distillation approximation
654                let mean_val = measurements.mean().unwrap_or(0.0);
655                let variance = measurements.var(0.0);
656                let corrected = mean_val + variance * 0.1; // Simple correction
657                Ok(corrected)
658            }
659            _ => {
660                // Default to measurement average
661                Ok(measurements.mean().unwrap_or(0.0))
662            }
663        }
664    }
665
666    /// Forward pass through neural network (static)
667    fn forward_pass_static(
668        model: &DeepMitigationNetwork,
669        input: &Array1<f64>,
670    ) -> Result<Array1<f64>> {
671        let mut current = input.clone();
672
673        for (weights, bias) in model.weights.iter().zip(model.biases.iter()) {
674            // Linear transformation: Wx + b
675            current = weights.dot(&current) + bias;
676
677            // Apply activation function
678            current.mapv_inplace(|x| Self::apply_activation_static(x, model.activation));
679        }
680
681        Ok(current)
682    }
683
684    /// Apply activation function (static version)
685    fn apply_activation_static(x: f64, activation: ActivationFunction) -> f64 {
686        match activation {
687            ActivationFunction::ReLU => x.max(0.0),
688            ActivationFunction::Sigmoid => 1.0 / (1.0 + (-x).exp()),
689            ActivationFunction::Tanh => x.tanh(),
690            ActivationFunction::Swish => x * (1.0 / (1.0 + (-x).exp())),
691            ActivationFunction::GELU => {
692                0.5 * x
693                    * (1.0
694                        + ((2.0 / std::f64::consts::PI).sqrt() * (x + 0.044715 * x.powi(3))).tanh())
695            }
696        }
697    }
698
699    /// Apply activation function
700    pub fn apply_activation(&self, x: f64, activation: ActivationFunction) -> f64 {
701        Self::apply_activation_static(x, activation)
702    }
703
704    /// Public wrapper for forward pass (for testing)
705    pub fn forward_pass(
706        &self,
707        model: &DeepMitigationNetwork,
708        input: &Array1<f64>,
709    ) -> Result<Array1<f64>> {
710        Self::forward_pass_static(model, input)
711    }
712
713    /// Calculate circuit connectivity measure
714    fn calculate_circuit_connectivity(&self, circuit: &InterfaceCircuit) -> Result<f64> {
715        if circuit.num_qubits == 0 {
716            return Ok(0.0);
717        }
718
719        let mut connectivity_sum = 0.0;
720        let total_possible_connections = (circuit.num_qubits * (circuit.num_qubits - 1)) / 2;
721
722        for gate in &circuit.gates {
723            if gate.qubits.len() > 1 {
724                connectivity_sum += 1.0;
725            }
726        }
727
728        Ok(connectivity_sum / total_possible_connections as f64)
729    }
730
731    /// Estimate entanglement in circuit
732    fn calculate_entanglement_estimate(&self, circuit: &InterfaceCircuit) -> Result<f64> {
733        let mut entangling_gates = 0;
734
735        for gate in &circuit.gates {
736            match gate.gate_type {
737                InterfaceGateType::CNOT
738                | InterfaceGateType::CZ
739                | InterfaceGateType::CY
740                | InterfaceGateType::SWAP
741                | InterfaceGateType::ISwap
742                | InterfaceGateType::Toffoli => {
743                    entangling_gates += 1;
744                }
745                _ => {}
746            }
747        }
748
749        Ok(entangling_gates as f64 / circuit.gates.len() as f64)
750    }
751
752    /// Convert features to state key for Q-learning
753    fn features_to_state_key(features: &Array1<f64>) -> String {
754        // Discretize features for state representation
755        let discretized: Vec<i32> = features
756            .iter()
757            .map(|&x| (x * 10.0).round() as i32)
758            .collect();
759        format!("{:?}", discretized)
760    }
761
762    /// Calculate confidence in mitigation result
763    fn calculate_confidence(&self, features: &Array1<f64>, _mitigated_value: f64) -> Result<f64> {
764        // Simple confidence calculation based on feature consistency
765        let feature_variance = features.var(0.0);
766        let confidence = 1.0 / (1.0 + feature_variance);
767        Ok(confidence.min(1.0).max(0.0))
768    }
769
770    /// Estimate error reduction achieved
771    fn estimate_error_reduction(&self, original: &Array1<f64>, mitigated: f64) -> Result<f64> {
772        let original_mean = original.mean().unwrap_or(0.0);
773        let original_variance = original.var(0.0);
774
775        // Estimate error reduction based on variance reduction
776        let estimated_improvement = (original_variance.sqrt() - (mitigated - original_mean).abs())
777            / original_variance.sqrt();
778        Ok(estimated_improvement.max(0.0).min(1.0))
779    }
780
781    /// Update models with new training data
782    fn update_models(&mut self, features: &Array1<f64>, target: f64) -> Result<()> {
783        // Add to training history
784        if self.training_history.len() >= self.config.memory_size {
785            self.training_history.pop_front();
786        }
787        self.training_history.push_back((features.clone(), target));
788
789        // Update deep learning model if enough data
790        if self.training_history.len() >= self.config.batch_size {
791            self.update_deep_model()?;
792        }
793
794        // Update RL agent
795        self.update_rl_agent(features, target)?;
796
797        Ok(())
798    }
799
800    /// Update deep learning model with recent training data
801    fn update_deep_model(&mut self) -> Result<()> {
802        if let Some(ref mut model) = self.deep_model {
803            // Simple gradient descent update (simplified for demonstration)
804            // In practice, would implement proper backpropagation
805
806            let batch_size = self.config.batch_size.min(self.training_history.len());
807            let batch: Vec<_> = self
808                .training_history
809                .iter()
810                .rev()
811                .take(batch_size)
812                .collect();
813
814            let mut total_loss = 0.0;
815
816            for (features, target) in batch {
817                let prediction = Self::forward_pass_static(model, features)?;
818                let loss = (prediction[0] - target).powi(2);
819                total_loss += loss;
820            }
821
822            let avg_loss = total_loss / batch_size as f64;
823            model.loss_history.push(avg_loss);
824        }
825
826        Ok(())
827    }
828
829    /// Update reinforcement learning agent
830    fn update_rl_agent(&mut self, features: &Array1<f64>, reward: f64) -> Result<()> {
831        if let Some(ref mut agent) = self.rl_agent {
832            let state_key = Self::features_to_state_key(features);
833
834            // Simple Q-learning update
835            // In practice, would implement more sophisticated RL algorithms
836
837            agent.stats.episodes += 1;
838            agent.stats.avg_reward = (agent.stats.avg_reward * (agent.stats.episodes - 1) as f64
839                + reward)
840                / agent.stats.episodes as f64;
841
842            // Decay exploration rate
843            agent.exploration_rate *= 0.995;
844            agent.exploration_rate = agent.exploration_rate.max(0.01);
845        }
846
847        Ok(())
848    }
849}
850
851/// Benchmark function for advanced ML error mitigation
852pub fn benchmark_advanced_ml_error_mitigation() -> Result<()> {
853    println!("Benchmarking Advanced ML Error Mitigation...");
854
855    let config = AdvancedMLMitigationConfig::default();
856    let mut mitigator = AdvancedMLErrorMitigator::new(config)?;
857
858    // Create test circuit
859    let mut circuit = InterfaceCircuit::new(4, 0);
860    circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![0]));
861    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]));
862    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(0.5), vec![2]));
863
864    // Simulate noisy measurements
865    let noisy_measurements = Array1::from_vec(vec![0.48, 0.52, 0.47, 0.53, 0.49]);
866
867    let start_time = std::time::Instant::now();
868
869    // Apply advanced ML mitigation
870    let result = mitigator.mitigate_errors(&noisy_measurements, &circuit)?;
871
872    let duration = start_time.elapsed();
873
874    println!("✅ Advanced ML Error Mitigation Results:");
875    println!("   Mitigated Value: {:.6}", result.mitigated_value);
876    println!("   Confidence: {:.4}", result.confidence);
877    println!("   Model Used: {}", result.model_used);
878    println!("   Error Reduction: {:.4}", result.error_reduction);
879    println!("   Computation Time: {:.2}ms", duration.as_millis());
880
881    Ok(())
882}
883
884#[cfg(test)]
885mod tests {
886    use super::*;
887
888    #[test]
889    fn test_advanced_ml_mitigator_creation() {
890        let config = AdvancedMLMitigationConfig::default();
891        let mitigator = AdvancedMLErrorMitigator::new(config);
892        assert!(mitigator.is_ok());
893    }
894
895    #[test]
896    fn test_feature_extraction() {
897        let config = AdvancedMLMitigationConfig::default();
898        let mitigator = AdvancedMLErrorMitigator::new(config).unwrap();
899
900        let mut circuit = InterfaceCircuit::new(2, 0);
901        circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![0]));
902        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]));
903
904        let measurements = Array1::from_vec(vec![0.5, 0.5, 0.5]);
905        let features = mitigator.extract_features(&circuit, &measurements);
906
907        assert!(features.is_ok());
908        let features = features.unwrap();
909        assert!(features.len() > 0);
910    }
911
912    #[test]
913    fn test_activation_functions() {
914        let config = AdvancedMLMitigationConfig::default();
915        let mitigator = AdvancedMLErrorMitigator::new(config).unwrap();
916
917        // Test ReLU
918        assert_eq!(
919            mitigator.apply_activation(-1.0, ActivationFunction::ReLU),
920            0.0
921        );
922        assert_eq!(
923            mitigator.apply_activation(1.0, ActivationFunction::ReLU),
924            1.0
925        );
926
927        // Test Sigmoid
928        let sigmoid_result = mitigator.apply_activation(0.0, ActivationFunction::Sigmoid);
929        assert!((sigmoid_result - 0.5).abs() < 1e-10);
930    }
931
932    #[test]
933    fn test_mitigation_strategy_selection() {
934        let config = AdvancedMLMitigationConfig::default();
935        let mut mitigator = AdvancedMLErrorMitigator::new(config).unwrap();
936
937        let features = Array1::from_vec(vec![1.0, 2.0, 3.0]);
938        let strategy = mitigator.select_mitigation_strategy(&features);
939
940        assert!(strategy.is_ok());
941    }
942
943    #[test]
944    fn test_traditional_mitigation() {
945        let config = AdvancedMLMitigationConfig::default();
946        let mitigator = AdvancedMLErrorMitigator::new(config).unwrap();
947
948        let measurements = Array1::from_vec(vec![0.48, 0.52, 0.49]);
949        let circuit = InterfaceCircuit::new(2, 0);
950
951        let result = mitigator.apply_traditional_mitigation(
952            MitigationAction::ZeroNoiseExtrapolation,
953            &measurements,
954            &circuit,
955        );
956
957        assert!(result.is_ok());
958    }
959}