quantrs2_sim/
adiabatic_quantum_computing.rs

1//! Adiabatic quantum computing simulation with gap tracking and optimization.
2//!
3//! This module implements adiabatic quantum computation (AQC), a model of quantum
4//! computation that uses the adiabatic theorem to solve optimization problems.
5//! The system starts in the ground state of a simple Hamiltonian and slowly
6//! evolves to a final Hamiltonian whose ground state encodes the solution.
7
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::Complex64;
10use serde::{Deserialize, Serialize};
11
12use crate::error::{Result, SimulatorError};
13use crate::scirs2_integration::SciRS2Backend;
14use crate::trotter::{Hamiltonian, HamiltonianTerm};
15
16/// Adiabatic quantum computing configuration
17#[derive(Debug, Clone)]
18pub struct AdiabaticConfig {
19    /// Total evolution time
20    pub total_time: f64,
21    /// Number of time steps
22    pub time_steps: usize,
23    /// Adiabatic schedule function type
24    pub schedule_type: ScheduleType,
25    /// Initial Hamiltonian
26    pub initial_hamiltonian: Hamiltonian,
27    /// Final Hamiltonian (problem Hamiltonian)
28    pub final_hamiltonian: Hamiltonian,
29    /// Gap tracking configuration
30    pub gap_tracking: GapTrackingConfig,
31    /// Energy convergence tolerance
32    pub energy_tolerance: f64,
33    /// Maximum iterations for eigenvalue solving
34    pub max_iterations: usize,
35    /// Enable adaptive time stepping
36    pub adaptive_stepping: bool,
37    /// Diabatic transition monitoring
38    pub monitor_diabatic_transitions: bool,
39}
40
41impl Default for AdiabaticConfig {
42    fn default() -> Self {
43        Self {
44            total_time: 100.0,
45            time_steps: 1000,
46            schedule_type: ScheduleType::Linear,
47            initial_hamiltonian: Hamiltonian::new(1), // Default to 1 qubit
48            final_hamiltonian: Hamiltonian::new(1),
49            gap_tracking: GapTrackingConfig::default(),
50            energy_tolerance: 1e-12,
51            max_iterations: 1000,
52            adaptive_stepping: true,
53            monitor_diabatic_transitions: false,
54        }
55    }
56}
57
58/// Adiabatic schedule types
59#[derive(Debug, Clone, Copy, PartialEq, Eq)]
60pub enum ScheduleType {
61    /// Linear interpolation s(t) = t/T
62    Linear,
63    /// Quadratic schedule s(t) = (t/T)²
64    Quadratic,
65    /// Cubic schedule s(t) = (t/T)³
66    Cubic,
67    /// Exponential schedule
68    Exponential,
69    /// Optimal schedule based on gap
70    Optimal,
71    /// Custom polynomial schedule
72    Polynomial(u32),
73    /// Landau-Zener schedule
74    LandauZener,
75}
76
77/// Gap tracking configuration
78#[derive(Debug, Clone)]
79pub struct GapTrackingConfig {
80    /// Enable gap tracking
81    pub enabled: bool,
82    /// Minimum gap threshold for adiabatic condition
83    pub min_gap_threshold: f64,
84    /// Number of eigenvalues to track
85    pub num_eigenvalues: usize,
86    /// Gap smoothing window size
87    pub smoothing_window: usize,
88    /// Enable diabatic transition detection
89    pub detect_diabatic_transitions: bool,
90    /// Gap prediction lookahead steps
91    pub lookahead_steps: usize,
92}
93
94impl Default for GapTrackingConfig {
95    fn default() -> Self {
96        Self {
97            enabled: true,
98            min_gap_threshold: 1e-6,
99            num_eigenvalues: 10,
100            smoothing_window: 5,
101            detect_diabatic_transitions: true,
102            lookahead_steps: 3,
103        }
104    }
105}
106
107/// Adiabatic quantum computer simulator
108pub struct AdiabaticQuantumComputer {
109    /// Configuration
110    config: AdiabaticConfig,
111    /// Current quantum state
112    state: Array1<Complex64>,
113    /// Current time parameter
114    current_time: f64,
115    /// Evolution history
116    evolution_history: Vec<AdiabaticSnapshot>,
117    /// Gap tracking data
118    gap_history: Vec<GapMeasurement>,
119    /// SciRS2 backend for optimization
120    backend: Option<SciRS2Backend>,
121    /// Statistics
122    stats: AdiabaticStats,
123}
124
125/// Snapshot of adiabatic evolution
126#[derive(Debug, Clone)]
127pub struct AdiabaticSnapshot {
128    /// Time parameter t
129    pub time: f64,
130    /// Schedule parameter s(t)
131    pub schedule_parameter: f64,
132    /// Current quantum state
133    pub state: Array1<Complex64>,
134    /// Current energy
135    pub energy: f64,
136    /// Energy gap
137    pub gap: Option<f64>,
138    /// Instantaneous ground state
139    pub instantaneous_ground_state: Option<Array1<Complex64>>,
140    /// Fidelity with instantaneous ground state
141    pub ground_state_fidelity: Option<f64>,
142    /// Adiabatic parameter (gap²T/ℏ)
143    pub adiabatic_parameter: Option<f64>,
144}
145
146/// Gap measurement data
147#[derive(Debug, Clone)]
148pub struct GapMeasurement {
149    /// Time
150    pub time: f64,
151    /// Schedule parameter
152    pub schedule_parameter: f64,
153    /// Energy gap
154    pub gap: f64,
155    /// Ground state energy
156    pub ground_energy: f64,
157    /// First excited state energy
158    pub first_excited_energy: f64,
159    /// Gap derivative (dΔ/dt)
160    pub gap_derivative: Option<f64>,
161    /// Predicted minimum gap
162    pub predicted_min_gap: Option<f64>,
163}
164
165/// Adiabatic simulation statistics
166#[derive(Debug, Clone, Default, Serialize, Deserialize)]
167pub struct AdiabaticStats {
168    /// Total evolution time
169    pub total_evolution_time_ms: f64,
170    /// Number of time steps completed
171    pub steps_completed: usize,
172    /// Number of eigenvalue computations
173    pub eigenvalue_computations: usize,
174    /// Average eigenvalue computation time
175    pub avg_eigenvalue_time_ms: f64,
176    /// Minimum gap encountered
177    pub min_gap: f64,
178    /// Maximum gap encountered
179    pub max_gap: f64,
180    /// Average gap
181    pub avg_gap: f64,
182    /// Number of diabatic transitions detected
183    pub diabatic_transitions: usize,
184    /// Final ground state fidelity
185    pub final_ground_state_fidelity: f64,
186    /// Success probability (for optimization problems)
187    pub success_probability: f64,
188}
189
190impl AdiabaticQuantumComputer {
191    /// Create new adiabatic quantum computer
192    pub fn new(config: AdiabaticConfig) -> Result<Self> {
193        // Initialize state in ground state of initial Hamiltonian
194        let num_qubits = config.initial_hamiltonian.get_num_qubits();
195        let state_size = 1 << num_qubits;
196
197        let mut state = Array1::zeros(state_size);
198        state[0] = Complex64::new(1.0, 0.0); // Start with |0...0⟩
199
200        Ok(Self {
201            config,
202            state,
203            current_time: 0.0,
204            evolution_history: Vec::new(),
205            gap_history: Vec::new(),
206            backend: None,
207            stats: AdiabaticStats::default(),
208        })
209    }
210
211    /// Initialize with SciRS2 backend
212    pub fn with_backend(mut self) -> Result<Self> {
213        self.backend = Some(SciRS2Backend::new());
214        Ok(self)
215    }
216
217    /// Set initial state to ground state of initial Hamiltonian
218    pub fn initialize_ground_state(&mut self) -> Result<()> {
219        let initial_matrix = self.build_hamiltonian_matrix(&self.config.initial_hamiltonian)?;
220        let (eigenvalues, eigenvectors) = self.compute_eigendecomposition(&initial_matrix)?;
221
222        // Find ground state (lowest eigenvalue)
223        let ground_idx = eigenvalues
224            .iter()
225            .enumerate()
226            .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
227            .map(|(idx, _)| idx)
228            .unwrap_or(0);
229
230        // Set state to ground state
231        self.state = eigenvectors.column(ground_idx).to_owned();
232
233        Ok(())
234    }
235
236    /// Run adiabatic evolution
237    pub fn evolve(&mut self) -> Result<AdiabaticResult> {
238        let start_time = std::time::Instant::now();
239
240        // Initialize in ground state
241        self.initialize_ground_state()?;
242
243        // Take initial snapshot
244        let initial_snapshot = self.take_snapshot(0.0)?;
245        self.evolution_history.push(initial_snapshot);
246
247        let dt = self.config.total_time / self.config.time_steps as f64;
248
249        for step in 1..=self.config.time_steps {
250            let step_start = std::time::Instant::now();
251
252            let t = step as f64 * dt;
253            let s = self.schedule_function(t);
254
255            // Adaptive time stepping based on gap
256            let actual_dt = if self.config.adaptive_stepping {
257                self.calculate_adaptive_timestep(t, dt)?
258            } else {
259                dt
260            };
261
262            // Build interpolated Hamiltonian
263            let hamiltonian = self.interpolate_hamiltonian(s)?;
264
265            // Evolve state
266            self.evolve_step(&hamiltonian, actual_dt)?;
267
268            // Track gap if enabled
269            if self.config.gap_tracking.enabled {
270                let gap_measurement = self.measure_gap(t, s, &hamiltonian)?;
271
272                // Check for diabatic transitions
273                if self.config.monitor_diabatic_transitions {
274                    self.check_diabatic_transition(&gap_measurement)?;
275                }
276
277                self.gap_history.push(gap_measurement);
278            }
279
280            // Take snapshot
281            if step % 10 == 0 || step == self.config.time_steps {
282                let snapshot = self.take_snapshot(t)?;
283                self.evolution_history.push(snapshot);
284            }
285
286            self.current_time = t;
287            self.stats.steps_completed += 1;
288
289            let step_time = step_start.elapsed().as_secs_f64() * 1000.0;
290            println!(
291                "Step {}/{}: t={:.3}, s={:.3}, time={:.2}ms",
292                step, self.config.time_steps, t, s, step_time
293            );
294        }
295
296        // Compute final statistics
297        self.compute_final_statistics()?;
298
299        let total_time = start_time.elapsed().as_secs_f64() * 1000.0;
300        self.stats.total_evolution_time_ms = total_time;
301
302        Ok(AdiabaticResult {
303            final_state: self.state.clone(),
304            evolution_history: self.evolution_history.clone(),
305            gap_history: self.gap_history.clone(),
306            total_time_ms: total_time,
307            success_probability: self.stats.success_probability,
308            min_gap: self.stats.min_gap,
309            final_energy: self.calculate_current_energy()?,
310        })
311    }
312
313    /// Schedule function s(t)
314    fn schedule_function(&self, t: f64) -> f64 {
315        let s = t / self.config.total_time;
316
317        match self.config.schedule_type {
318            ScheduleType::Linear => s,
319            ScheduleType::Quadratic => s * s,
320            ScheduleType::Cubic => s * s * s,
321            ScheduleType::Exponential => (s.exp() - 1.0) / (1f64.exp() - 1.0),
322            ScheduleType::Polynomial(n) => s.powi(n as i32),
323            ScheduleType::LandauZener => {
324                // Landau-Zener formula: optimized for avoiding diabatic transitions
325                if s < 0.5 {
326                    2.0 * s * s
327                } else {
328                    1.0 - 2.0 * (1.0 - s) * (1.0 - s)
329                }
330            }
331            ScheduleType::Optimal => {
332                // Would implement optimal control based on gap
333                s // Fallback to linear for now
334            }
335        }
336    }
337
338    /// Interpolate between initial and final Hamiltonians
339    fn interpolate_hamiltonian(&self, s: f64) -> Result<Hamiltonian> {
340        let num_qubits = self
341            .config
342            .initial_hamiltonian
343            .get_num_qubits()
344            .max(self.config.final_hamiltonian.get_num_qubits());
345        let mut interpolated = Hamiltonian::new(num_qubits);
346
347        // H(s) = (1-s) * H_initial + s * H_final
348        for term in &self.config.initial_hamiltonian.terms {
349            let scaled_term = match term {
350                HamiltonianTerm::SinglePauli {
351                    qubit,
352                    pauli,
353                    coefficient,
354                } => HamiltonianTerm::SinglePauli {
355                    qubit: *qubit,
356                    pauli: pauli.clone(),
357                    coefficient: coefficient * (1.0 - s),
358                },
359                HamiltonianTerm::TwoPauli {
360                    qubit1,
361                    qubit2,
362                    pauli1,
363                    pauli2,
364                    coefficient,
365                } => HamiltonianTerm::TwoPauli {
366                    qubit1: *qubit1,
367                    qubit2: *qubit2,
368                    pauli1: pauli1.clone(),
369                    pauli2: pauli2.clone(),
370                    coefficient: coefficient * (1.0 - s),
371                },
372                HamiltonianTerm::PauliString {
373                    qubits,
374                    paulis,
375                    coefficient,
376                } => HamiltonianTerm::PauliString {
377                    qubits: qubits.clone(),
378                    paulis: paulis.clone(),
379                    coefficient: coefficient * (1.0 - s),
380                },
381                HamiltonianTerm::Custom {
382                    qubits,
383                    matrix,
384                    coefficient,
385                } => HamiltonianTerm::Custom {
386                    qubits: qubits.clone(),
387                    matrix: matrix.clone(),
388                    coefficient: coefficient * (1.0 - s),
389                },
390            };
391            interpolated.add_term(scaled_term);
392        }
393
394        for term in &self.config.final_hamiltonian.terms {
395            let scaled_term = match term {
396                HamiltonianTerm::SinglePauli {
397                    qubit,
398                    pauli,
399                    coefficient,
400                } => HamiltonianTerm::SinglePauli {
401                    qubit: *qubit,
402                    pauli: pauli.clone(),
403                    coefficient: coefficient * s,
404                },
405                HamiltonianTerm::TwoPauli {
406                    qubit1,
407                    qubit2,
408                    pauli1,
409                    pauli2,
410                    coefficient,
411                } => HamiltonianTerm::TwoPauli {
412                    qubit1: *qubit1,
413                    qubit2: *qubit2,
414                    pauli1: pauli1.clone(),
415                    pauli2: pauli2.clone(),
416                    coefficient: coefficient * s,
417                },
418                HamiltonianTerm::PauliString {
419                    qubits,
420                    paulis,
421                    coefficient,
422                } => HamiltonianTerm::PauliString {
423                    qubits: qubits.clone(),
424                    paulis: paulis.clone(),
425                    coefficient: coefficient * s,
426                },
427                HamiltonianTerm::Custom {
428                    qubits,
429                    matrix,
430                    coefficient,
431                } => HamiltonianTerm::Custom {
432                    qubits: qubits.clone(),
433                    matrix: matrix.clone(),
434                    coefficient: coefficient * s,
435                },
436            };
437            interpolated.add_term(scaled_term);
438        }
439
440        Ok(interpolated)
441    }
442
443    /// Evolve system for one time step
444    fn evolve_step(&mut self, hamiltonian: &Hamiltonian, dt: f64) -> Result<()> {
445        // Build Hamiltonian matrix
446        let h_matrix = self.build_hamiltonian_matrix(hamiltonian)?;
447
448        // Compute evolution operator U = exp(-i H dt / ℏ)
449        let evolution_operator = self.compute_evolution_operator(&h_matrix, dt)?;
450
451        // Apply evolution operator to state
452        self.state = evolution_operator.dot(&self.state);
453
454        // Renormalize (to handle numerical errors)
455        let norm: f64 = self.state.iter().map(|x| x.norm_sqr()).sum::<f64>().sqrt();
456        if norm > 1e-15 {
457            self.state.mapv_inplace(|x| x / norm);
458        }
459
460        Ok(())
461    }
462
463    /// Build Hamiltonian matrix from Hamiltonian terms
464    fn build_hamiltonian_matrix(&self, hamiltonian: &Hamiltonian) -> Result<Array2<Complex64>> {
465        let num_qubits = hamiltonian.get_num_qubits();
466        let dim = 1 << num_qubits;
467        let mut matrix = Array2::zeros((dim, dim));
468
469        for term in &hamiltonian.terms {
470            let (term_matrix, coefficient) = self.build_term_matrix(term, num_qubits)?;
471            matrix = matrix + term_matrix.mapv(|x| x * coefficient);
472        }
473
474        Ok(matrix)
475    }
476
477    /// Build matrix for a single Hamiltonian term
478    fn build_term_matrix(
479        &self,
480        term: &HamiltonianTerm,
481        num_qubits: usize,
482    ) -> Result<(Array2<Complex64>, f64)> {
483        let dim = 1 << num_qubits;
484
485        match term {
486            HamiltonianTerm::SinglePauli {
487                qubit,
488                pauli,
489                coefficient,
490            } => {
491                let mut matrix = Array2::eye(dim);
492                let pauli_matrix = self.get_pauli_matrix(pauli)?;
493                matrix = self.apply_single_qubit_to_full_matrix(
494                    &matrix,
495                    &pauli_matrix,
496                    *qubit,
497                    num_qubits,
498                )?;
499                Ok((matrix, *coefficient))
500            }
501            HamiltonianTerm::TwoPauli {
502                qubit1,
503                qubit2,
504                pauli1,
505                pauli2,
506                coefficient,
507            } => {
508                let mut matrix = Array2::eye(dim);
509                let pauli1_matrix = self.get_pauli_matrix(pauli1)?;
510                let pauli2_matrix = self.get_pauli_matrix(pauli2)?;
511
512                matrix = self.apply_single_qubit_to_full_matrix(
513                    &matrix,
514                    &pauli1_matrix,
515                    *qubit1,
516                    num_qubits,
517                )?;
518                matrix = self.apply_single_qubit_to_full_matrix(
519                    &matrix,
520                    &pauli2_matrix,
521                    *qubit2,
522                    num_qubits,
523                )?;
524                Ok((matrix, *coefficient))
525            }
526            HamiltonianTerm::PauliString {
527                qubits,
528                paulis,
529                coefficient,
530            } => {
531                let mut matrix = Array2::eye(dim);
532
533                for (qubit, pauli) in qubits.iter().zip(paulis.iter()) {
534                    let pauli_matrix = self.get_pauli_matrix(pauli)?;
535                    matrix = self.apply_single_qubit_to_full_matrix(
536                        &matrix,
537                        &pauli_matrix,
538                        *qubit,
539                        num_qubits,
540                    )?;
541                }
542                Ok((matrix, *coefficient))
543            }
544            HamiltonianTerm::Custom {
545                qubits: _,
546                matrix: _,
547                coefficient,
548            } => {
549                // For now, return identity with the coefficient
550                Ok((Array2::eye(dim), *coefficient))
551            }
552        }
553    }
554
555    /// Get Pauli matrix for a given Pauli string
556    fn get_pauli_matrix(&self, pauli: &str) -> Result<Array2<Complex64>> {
557        match pauli.to_uppercase().as_str() {
558            "I" => Ok(Array2::eye(2)),
559            "X" => Ok(Array2::from_shape_vec(
560                (2, 2),
561                vec![
562                    Complex64::new(0.0, 0.0),
563                    Complex64::new(1.0, 0.0),
564                    Complex64::new(1.0, 0.0),
565                    Complex64::new(0.0, 0.0),
566                ],
567            )
568            .unwrap()),
569            "Y" => Ok(Array2::from_shape_vec(
570                (2, 2),
571                vec![
572                    Complex64::new(0.0, 0.0),
573                    Complex64::new(0.0, -1.0),
574                    Complex64::new(0.0, 1.0),
575                    Complex64::new(0.0, 0.0),
576                ],
577            )
578            .unwrap()),
579            "Z" => Ok(Array2::from_shape_vec(
580                (2, 2),
581                vec![
582                    Complex64::new(1.0, 0.0),
583                    Complex64::new(0.0, 0.0),
584                    Complex64::new(0.0, 0.0),
585                    Complex64::new(-1.0, 0.0),
586                ],
587            )
588            .unwrap()),
589            _ => Err(SimulatorError::InvalidInput(format!(
590                "Unknown Pauli operator: {}",
591                pauli
592            ))),
593        }
594    }
595
596    /// Apply single-qubit operator to full system matrix
597    fn apply_single_qubit_to_full_matrix(
598        &self,
599        full_matrix: &Array2<Complex64>,
600        single_qubit_op: &Array2<Complex64>,
601        target_qubit: usize,
602        num_qubits: usize,
603    ) -> Result<Array2<Complex64>> {
604        let dim = 1 << num_qubits;
605        let mut result = Array2::zeros((dim, dim));
606
607        for i in 0..dim {
608            for j in 0..dim {
609                let i_bit = (i >> target_qubit) & 1;
610                let j_bit = (j >> target_qubit) & 1;
611
612                result[[i, j]] = full_matrix[[i, j]] * single_qubit_op[[i_bit, j_bit]];
613            }
614        }
615
616        Ok(result)
617    }
618
619    /// Compute evolution operator exp(-i H dt / ℏ)
620    fn compute_evolution_operator(
621        &self,
622        hamiltonian: &Array2<Complex64>,
623        dt: f64,
624    ) -> Result<Array2<Complex64>> {
625        // For small systems, use matrix exponentiation
626        // For larger systems, would use Trotterization
627
628        let dim = hamiltonian.dim().0;
629        if dim <= 64 {
630            // Direct matrix exponentiation
631            self.matrix_exponential(hamiltonian, -Complex64::new(0.0, dt))
632        } else {
633            // Use Trotter decomposition for larger systems
634            self.trotter_evolution(hamiltonian, dt)
635        }
636    }
637
638    /// Direct matrix exponentiation (for small systems)
639    fn matrix_exponential(
640        &self,
641        matrix: &Array2<Complex64>,
642        factor: Complex64,
643    ) -> Result<Array2<Complex64>> {
644        let dim = matrix.dim().0;
645
646        // Scale matrix
647        let scaled_matrix = matrix.mapv(|x| x * factor);
648
649        // Use series expansion: exp(A) = I + A + A²/2! + A³/3! + ...
650        let mut result = Array2::eye(dim);
651        let mut term = Array2::eye(dim);
652
653        for n in 1..=20 {
654            // Limit iterations for convergence
655            term = term.dot(&scaled_matrix) / (n as f64);
656            let term_norm: f64 = term.iter().map(|x| x.norm_sqr()).sum::<f64>().sqrt();
657
658            result = result + &term;
659
660            // Check convergence
661            if term_norm < 1e-15 {
662                break;
663            }
664        }
665
666        Ok(result)
667    }
668
669    /// Trotter evolution for large systems
670    fn trotter_evolution(
671        &self,
672        hamiltonian: &Array2<Complex64>,
673        dt: f64,
674    ) -> Result<Array2<Complex64>> {
675        // Placeholder: would implement proper Trotter decomposition
676        self.matrix_exponential(hamiltonian, -Complex64::new(0.0, dt))
677    }
678
679    /// Measure energy gap
680    fn measure_gap(&mut self, t: f64, s: f64, hamiltonian: &Hamiltonian) -> Result<GapMeasurement> {
681        let start_time = std::time::Instant::now();
682
683        let h_matrix = self.build_hamiltonian_matrix(hamiltonian)?;
684        let (eigenvalues, _) = self.compute_eigendecomposition(&h_matrix)?;
685
686        // Sort eigenvalues
687        let mut sorted_eigenvalues = eigenvalues;
688        sorted_eigenvalues.sort_by(|a, b| a.partial_cmp(b).unwrap());
689
690        let ground_energy = sorted_eigenvalues[0];
691        let first_excited_energy = sorted_eigenvalues.get(1).copied().unwrap_or(ground_energy);
692        let gap = first_excited_energy - ground_energy;
693
694        // Update statistics
695        if self.stats.min_gap == 0.0 || gap < self.stats.min_gap {
696            self.stats.min_gap = gap;
697        }
698        if gap > self.stats.max_gap {
699            self.stats.max_gap = gap;
700        }
701
702        let gap_count = self.gap_history.len() as f64;
703        self.stats.avg_gap = (self.stats.avg_gap * gap_count + gap) / (gap_count + 1.0);
704
705        let computation_time = start_time.elapsed().as_secs_f64() * 1000.0;
706        self.stats.avg_eigenvalue_time_ms = (self.stats.avg_eigenvalue_time_ms
707            * self.stats.eigenvalue_computations as f64
708            + computation_time)
709            / (self.stats.eigenvalue_computations + 1) as f64;
710        self.stats.eigenvalue_computations += 1;
711
712        Ok(GapMeasurement {
713            time: t,
714            schedule_parameter: s,
715            gap,
716            ground_energy,
717            first_excited_energy,
718            gap_derivative: self.estimate_gap_derivative(gap),
719            predicted_min_gap: self.predict_minimum_gap(),
720        })
721    }
722
723    /// Estimate gap derivative
724    fn estimate_gap_derivative(&self, current_gap: f64) -> Option<f64> {
725        if self.gap_history.len() < 2 {
726            return None;
727        }
728
729        let prev_gap = self.gap_history.last().unwrap().gap;
730        let prev_time = self.gap_history.last().unwrap().time;
731        let dt = self.current_time - prev_time;
732
733        if dt > 1e-15 {
734            Some((current_gap - prev_gap) / dt)
735        } else {
736            None
737        }
738    }
739
740    /// Predict minimum gap using extrapolation
741    fn predict_minimum_gap(&self) -> Option<f64> {
742        if self.gap_history.len() < 3 {
743            return None;
744        }
745
746        // Simple quadratic extrapolation
747        let n = self.gap_history.len();
748        let recent_gaps: Vec<f64> = self.gap_history[n - 3..].iter().map(|g| g.gap).collect();
749        let recent_times: Vec<f64> = self.gap_history[n - 3..].iter().map(|g| g.time).collect();
750
751        // Fit quadratic and find minimum
752        // For simplicity, just return the minimum of recent measurements
753        recent_gaps.into_iter().fold(f64::INFINITY, f64::min).into()
754    }
755
756    /// Check for diabatic transitions
757    fn check_diabatic_transition(&mut self, gap_measurement: &GapMeasurement) -> Result<()> {
758        // Landau-Zener criterion: P_diabatic ≈ exp(-2π Δ²/(ℏ |dH/dt|))
759        if let Some(gap_derivative) = gap_measurement.gap_derivative {
760            let gap = gap_measurement.gap;
761            let dt = self.config.total_time / self.config.time_steps as f64;
762
763            // Estimate diabatic transition probability
764            let diabatic_prob = if gap_derivative.abs() > 1e-15 {
765                (-2.0 * std::f64::consts::PI * gap * gap / gap_derivative.abs()).exp()
766            } else {
767                0.0
768            };
769
770            // Threshold for detecting diabatic transition
771            if diabatic_prob > 0.01 {
772                // 1% threshold
773                self.stats.diabatic_transitions += 1;
774                println!(
775                    "Warning: Potential diabatic transition detected at t={:.3}, P_diabatic={:.4}",
776                    gap_measurement.time, diabatic_prob
777                );
778            }
779        }
780
781        Ok(())
782    }
783
784    /// Calculate adaptive time step based on gap
785    fn calculate_adaptive_timestep(&self, t: f64, default_dt: f64) -> Result<f64> {
786        if self.gap_history.is_empty() {
787            return Ok(default_dt);
788        }
789
790        let current_gap = self.gap_history.last().unwrap().gap;
791
792        // Smaller time steps when gap is small
793        let gap_factor = (current_gap / self.config.gap_tracking.min_gap_threshold).sqrt();
794        let adaptive_dt = default_dt * gap_factor.min(2.0).max(0.1); // Clamp between 0.1 and 2.0 times default
795
796        Ok(adaptive_dt)
797    }
798
799    /// Take snapshot of current state
800    fn take_snapshot(&mut self, t: f64) -> Result<AdiabaticSnapshot> {
801        let s = self.schedule_function(t);
802        let energy = self.calculate_current_energy()?;
803
804        // Get current gap
805        let gap = self.gap_history.last().map(|g| g.gap);
806
807        // Calculate instantaneous ground state if gap tracking is enabled
808        let (instantaneous_ground_state, ground_state_fidelity, adiabatic_parameter) =
809            if self.config.gap_tracking.enabled {
810                let hamiltonian = self.interpolate_hamiltonian(s)?;
811                let h_matrix = self.build_hamiltonian_matrix(&hamiltonian)?;
812                let (eigenvalues, eigenvectors) = self.compute_eigendecomposition(&h_matrix)?;
813
814                // Find ground state
815                let ground_idx = eigenvalues
816                    .iter()
817                    .enumerate()
818                    .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
819                    .map(|(idx, _)| idx)
820                    .unwrap_or(0);
821
822                let ground_state = eigenvectors.column(ground_idx).to_owned();
823
824                // Calculate fidelity
825                let fidelity = self.calculate_fidelity(&self.state, &ground_state);
826
827                // Calculate adiabatic parameter
828                let adiabatic_param = gap.map(|g| g * g * self.config.total_time);
829
830                (Some(ground_state), Some(fidelity), adiabatic_param)
831            } else {
832                (None, None, None)
833            };
834
835        Ok(AdiabaticSnapshot {
836            time: t,
837            schedule_parameter: s,
838            state: self.state.clone(),
839            energy,
840            gap,
841            instantaneous_ground_state,
842            ground_state_fidelity,
843            adiabatic_parameter,
844        })
845    }
846
847    /// Calculate current energy expectation value
848    fn calculate_current_energy(&self) -> Result<f64> {
849        let s = self.schedule_function(self.current_time);
850        let hamiltonian = self.interpolate_hamiltonian(s)?;
851        let h_matrix = self.build_hamiltonian_matrix(&hamiltonian)?;
852
853        // E = ⟨ψ|H|ψ⟩
854        let h_psi = h_matrix.dot(&self.state);
855        let energy: Complex64 = self
856            .state
857            .iter()
858            .zip(h_psi.iter())
859            .map(|(psi, h_psi)| psi.conj() * h_psi)
860            .sum();
861
862        Ok(energy.re)
863    }
864
865    /// Calculate fidelity between two states
866    fn calculate_fidelity(&self, state1: &Array1<Complex64>, state2: &Array1<Complex64>) -> f64 {
867        let overlap: Complex64 = state1
868            .iter()
869            .zip(state2.iter())
870            .map(|(a, b)| a.conj() * b)
871            .sum();
872
873        overlap.norm_sqr()
874    }
875
876    /// Compute eigendecomposition
877    fn compute_eigendecomposition(
878        &self,
879        matrix: &Array2<Complex64>,
880    ) -> Result<(Vec<f64>, Array2<Complex64>)> {
881        // Simplified eigenvalue computation
882        // In practice, would use LAPACK or similar high-performance library
883
884        let dim = matrix.dim().0;
885        if dim > 16 {
886            // For large matrices, use iterative methods or approximations
887            return self.compute_approximate_eigenvalues(matrix);
888        }
889
890        // For small matrices, use simple power iteration for dominant eigenvalue
891        let mut eigenvalues = Vec::new();
892        let mut eigenvectors = Array2::eye(dim);
893
894        // Simplified: just compute diagonal elements as eigenvalue approximation
895        for i in 0..dim {
896            eigenvalues.push(matrix[[i, i]].re);
897        }
898
899        // Sort eigenvalues
900        eigenvalues.sort_by(|a, b| a.partial_cmp(b).unwrap());
901
902        Ok((eigenvalues, eigenvectors))
903    }
904
905    /// Compute approximate eigenvalues for large matrices
906    fn compute_approximate_eigenvalues(
907        &self,
908        matrix: &Array2<Complex64>,
909    ) -> Result<(Vec<f64>, Array2<Complex64>)> {
910        let dim = matrix.dim().0;
911
912        // Use Lanczos algorithm or similar for large sparse matrices
913        // For now, just return diagonal approximation
914        let mut eigenvalues = Vec::new();
915        for i in 0..dim.min(self.config.gap_tracking.num_eigenvalues) {
916            eigenvalues.push(matrix[[i, i]].re);
917        }
918
919        eigenvalues.sort_by(|a, b| a.partial_cmp(b).unwrap());
920        let eigenvectors = Array2::eye(dim);
921
922        Ok((eigenvalues, eigenvectors))
923    }
924
925    /// Compute final statistics
926    fn compute_final_statistics(&mut self) -> Result<()> {
927        // Calculate final ground state fidelity
928        if let Some(final_snapshot) = self.evolution_history.last() {
929            if let Some(fidelity) = final_snapshot.ground_state_fidelity {
930                self.stats.final_ground_state_fidelity = fidelity;
931            }
932        }
933
934        // For optimization problems, estimate success probability
935        // This would depend on the specific problem encoding
936        self.stats.success_probability = self.stats.final_ground_state_fidelity;
937
938        Ok(())
939    }
940
941    /// Get current state
942    pub fn get_state(&self) -> &Array1<Complex64> {
943        &self.state
944    }
945
946    /// Get evolution history
947    pub fn get_evolution_history(&self) -> &[AdiabaticSnapshot] {
948        &self.evolution_history
949    }
950
951    /// Get gap history
952    pub fn get_gap_history(&self) -> &[GapMeasurement] {
953        &self.gap_history
954    }
955
956    /// Get statistics
957    pub fn get_stats(&self) -> &AdiabaticStats {
958        &self.stats
959    }
960
961    /// Reset the simulator
962    pub fn reset(&mut self) -> Result<()> {
963        let num_qubits = self.config.initial_hamiltonian.get_num_qubits();
964        let state_size = 1 << num_qubits;
965
966        self.state = Array1::zeros(state_size);
967        self.state[0] = Complex64::new(1.0, 0.0);
968        self.current_time = 0.0;
969        self.evolution_history.clear();
970        self.gap_history.clear();
971        self.stats = AdiabaticStats::default();
972
973        Ok(())
974    }
975}
976
977/// Adiabatic evolution result
978#[derive(Debug, Clone)]
979pub struct AdiabaticResult {
980    /// Final quantum state
981    pub final_state: Array1<Complex64>,
982    /// Complete evolution history
983    pub evolution_history: Vec<AdiabaticSnapshot>,
984    /// Gap tracking history
985    pub gap_history: Vec<GapMeasurement>,
986    /// Total evolution time in milliseconds
987    pub total_time_ms: f64,
988    /// Success probability
989    pub success_probability: f64,
990    /// Minimum gap encountered
991    pub min_gap: f64,
992    /// Final energy
993    pub final_energy: f64,
994}
995
996/// Adiabatic quantum computing utilities
997pub struct AdiabaticUtils;
998
999impl AdiabaticUtils {
1000    /// Create Max-Cut problem Hamiltonian
1001    pub fn create_max_cut_hamiltonian(
1002        graph_edges: &[(usize, usize)],
1003        weights: &[f64],
1004    ) -> Hamiltonian {
1005        let max_vertex = graph_edges
1006            .iter()
1007            .flat_map(|&(u, v)| [u, v])
1008            .max()
1009            .unwrap_or(0)
1010            + 1;
1011        let mut hamiltonian = Hamiltonian::new(max_vertex);
1012
1013        for (i, &(u, v)) in graph_edges.iter().enumerate() {
1014            let weight = weights.get(i).copied().unwrap_or(1.0);
1015
1016            // Add term: w_ij * (I - Z_i Z_j) / 2
1017            // For Max-Cut, we want to maximize the number of edges cut
1018            // This corresponds to minimizing -weight/2 * (1 - Z_i Z_j) = -weight/2 + weight/2 * Z_i Z_j
1019            // So we add the ZZ interaction term with positive coefficient
1020            hamiltonian
1021                .add_two_pauli(u, v, "Z", "Z", weight / 2.0)
1022                .unwrap();
1023        }
1024
1025        hamiltonian
1026    }
1027
1028    /// Create 3-SAT problem Hamiltonian
1029    pub fn create_3sat_hamiltonian(clauses: &[Vec<i32>]) -> Hamiltonian {
1030        let max_var = clauses
1031            .iter()
1032            .flat_map(|clause| clause.iter())
1033            .map(|&lit| lit.abs() as usize)
1034            .max()
1035            .unwrap_or(0)
1036            + 1;
1037        let mut hamiltonian = Hamiltonian::new(max_var);
1038
1039        for clause in clauses {
1040            if clause.len() != 3 {
1041                continue; // Skip non-3-SAT clauses
1042            }
1043
1044            // For clause (x_i ∨ x_j ∨ x_k), add penalty when all literals are false
1045            // This is a simplified implementation - in practice would need more sophisticated encoding
1046
1047            // Add penalty for clause being unsatisfied
1048            // For now, add pairwise interactions between variables in the clause
1049            for i in 0..clause.len() {
1050                for j in i + 1..clause.len() {
1051                    let var1 = clause[i].abs() as usize;
1052                    let var2 = clause[j].abs() as usize;
1053
1054                    // Add weak coupling between variables in the same clause
1055                    if var1 < max_var && var2 < max_var {
1056                        hamiltonian
1057                            .add_two_pauli(var1, var2, "Z", "Z", 0.1)
1058                            .unwrap();
1059                    }
1060                }
1061            }
1062        }
1063
1064        hamiltonian
1065    }
1066
1067    /// Create transverse field Ising model (TFIM) Hamiltonian
1068    pub fn create_tfim_hamiltonian(
1069        num_qubits: usize,
1070        j_coupling: f64,
1071        h_field: f64,
1072    ) -> Hamiltonian {
1073        let mut hamiltonian = Hamiltonian::new(num_qubits);
1074
1075        // ZZ coupling terms
1076        for i in 0..num_qubits - 1 {
1077            hamiltonian
1078                .add_two_pauli(i, i + 1, "Z", "Z", -j_coupling)
1079                .unwrap();
1080        }
1081
1082        // X field terms
1083        for i in 0..num_qubits {
1084            hamiltonian.add_single_pauli(i, "X", -h_field).unwrap();
1085        }
1086
1087        hamiltonian
1088    }
1089
1090    /// Create mixing Hamiltonian (typically all X)
1091    pub fn create_mixing_hamiltonian(num_qubits: usize) -> Hamiltonian {
1092        let mut hamiltonian = Hamiltonian::new(num_qubits);
1093
1094        for i in 0..num_qubits {
1095            hamiltonian.add_single_pauli(i, "X", 1.0).unwrap();
1096        }
1097
1098        hamiltonian
1099    }
1100
1101    /// Benchmark adiabatic quantum computing
1102    pub fn benchmark_adiabatic_qc() -> Result<AdiabaticBenchmarkResults> {
1103        let mut results = AdiabaticBenchmarkResults::default();
1104
1105        // Test different problem sizes and schedules
1106        let problem_sizes = vec![4, 6, 8];
1107        let schedule_types = vec![
1108            ScheduleType::Linear,
1109            ScheduleType::Quadratic,
1110            ScheduleType::LandauZener,
1111        ];
1112
1113        for &num_qubits in &problem_sizes {
1114            for &schedule_type in &schedule_types {
1115                // Create simple TFIM problem
1116                let initial_h = Self::create_mixing_hamiltonian(num_qubits);
1117                let final_h = Self::create_tfim_hamiltonian(num_qubits, 1.0, 0.1);
1118
1119                let config = AdiabaticConfig {
1120                    total_time: 10.0,
1121                    time_steps: 100,
1122                    schedule_type,
1123                    initial_hamiltonian: initial_h,
1124                    final_hamiltonian: final_h,
1125                    gap_tracking: GapTrackingConfig {
1126                        enabled: true,
1127                        min_gap_threshold: 1e-3,
1128                        ..Default::default()
1129                    },
1130                    ..Default::default()
1131                };
1132
1133                let mut adiabatic_qc = AdiabaticQuantumComputer::new(config)?;
1134
1135                let start = std::time::Instant::now();
1136                let result = adiabatic_qc.evolve()?;
1137                let execution_time = start.elapsed().as_secs_f64() * 1000.0;
1138
1139                let key = format!("{}q_{:?}", num_qubits, schedule_type);
1140                results.execution_times.push((key.clone(), execution_time));
1141                results
1142                    .success_probabilities
1143                    .push((key.clone(), result.success_probability));
1144                results.min_gaps.push((key, result.min_gap));
1145            }
1146        }
1147
1148        Ok(results)
1149    }
1150}
1151
1152/// Adiabatic benchmark results
1153#[derive(Debug, Clone, Default)]
1154pub struct AdiabaticBenchmarkResults {
1155    /// Execution times by configuration
1156    pub execution_times: Vec<(String, f64)>,
1157    /// Success probabilities by configuration
1158    pub success_probabilities: Vec<(String, f64)>,
1159    /// Minimum gaps by configuration
1160    pub min_gaps: Vec<(String, f64)>,
1161}
1162
1163#[cfg(test)]
1164mod tests {
1165    use super::*;
1166    use approx::assert_abs_diff_eq;
1167
1168    #[test]
1169    fn test_adiabatic_qc_creation() {
1170        let config = AdiabaticConfig::default();
1171        let adiabatic_qc = AdiabaticQuantumComputer::new(config);
1172        assert!(adiabatic_qc.is_ok());
1173    }
1174
1175    #[test]
1176    fn test_schedule_functions() {
1177        let config = AdiabaticConfig {
1178            total_time: 10.0,
1179            schedule_type: ScheduleType::Linear,
1180            ..Default::default()
1181        };
1182        let adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1183
1184        assert_abs_diff_eq!(adiabatic_qc.schedule_function(0.0), 0.0, epsilon = 1e-10);
1185        assert_abs_diff_eq!(adiabatic_qc.schedule_function(5.0), 0.5, epsilon = 1e-10);
1186        assert_abs_diff_eq!(adiabatic_qc.schedule_function(10.0), 1.0, epsilon = 1e-10);
1187    }
1188
1189    #[test]
1190    fn test_hamiltonian_interpolation() {
1191        let mut initial_h = Hamiltonian::new(1);
1192        initial_h.add_pauli_term(1.0, &[(0, 'X')]).unwrap();
1193
1194        let mut final_h = Hamiltonian::new(1);
1195        final_h.add_pauli_term(1.0, &[(0, 'Z')]).unwrap();
1196
1197        let config = AdiabaticConfig {
1198            initial_hamiltonian: initial_h,
1199            final_hamiltonian: final_h,
1200            ..Default::default()
1201        };
1202
1203        let adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1204
1205        let h_mid = adiabatic_qc.interpolate_hamiltonian(0.5).unwrap();
1206        assert_eq!(h_mid.terms.len(), 2); // Should have both X and Z terms
1207    }
1208
1209    #[test]
1210    fn test_tfim_hamiltonian() {
1211        let hamiltonian = AdiabaticUtils::create_tfim_hamiltonian(3, 1.0, 0.5);
1212
1213        // Should have ZZ coupling terms and X field terms
1214        let num_zz_terms = hamiltonian.terms.iter().filter(|t| {
1215            matches!(t, HamiltonianTerm::TwoPauli { pauli1, pauli2, .. } if pauli1 == "Z" && pauli2 == "Z")
1216        }).count();
1217
1218        let num_x_terms = hamiltonian
1219            .terms
1220            .iter()
1221            .filter(|t| matches!(t, HamiltonianTerm::SinglePauli { pauli, .. } if pauli == "X"))
1222            .count();
1223
1224        assert_eq!(num_zz_terms, 2); // 2 ZZ coupling terms for 3 qubits
1225        assert_eq!(num_x_terms, 3); // 3 X field terms
1226    }
1227
1228    #[test]
1229    fn test_max_cut_hamiltonian() {
1230        let edges = vec![(0, 1), (1, 2), (2, 0)]; // Triangle graph
1231        let weights = vec![1.0, 1.0, 1.0];
1232
1233        let hamiltonian = AdiabaticUtils::create_max_cut_hamiltonian(&edges, &weights);
1234        assert!(!hamiltonian.terms.is_empty());
1235    }
1236
1237    #[test]
1238    fn test_mixing_hamiltonian() {
1239        let hamiltonian = AdiabaticUtils::create_mixing_hamiltonian(2);
1240
1241        let num_x_terms = hamiltonian
1242            .terms
1243            .iter()
1244            .filter(|t| matches!(t, HamiltonianTerm::SinglePauli { pauli, .. } if pauli == "X"))
1245            .count();
1246
1247        assert_eq!(num_x_terms, 2); // Should have X on both qubits
1248    }
1249
1250    #[test]
1251    fn test_adiabatic_evolution() {
1252        let initial_h = AdiabaticUtils::create_mixing_hamiltonian(2);
1253        let final_h = AdiabaticUtils::create_tfim_hamiltonian(2, 1.0, 0.1);
1254
1255        let config = AdiabaticConfig {
1256            total_time: 1.0,
1257            time_steps: 10,
1258            initial_hamiltonian: initial_h,
1259            final_hamiltonian: final_h,
1260            gap_tracking: GapTrackingConfig {
1261                enabled: false, // Disable for simple test
1262                ..Default::default()
1263            },
1264            ..Default::default()
1265        };
1266
1267        let mut adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1268        let result = adiabatic_qc.evolve();
1269        assert!(result.is_ok());
1270
1271        let evolution_result = result.unwrap();
1272        assert_eq!(evolution_result.evolution_history.len(), 2); // Initial + final snapshots
1273    }
1274
1275    #[test]
1276    fn test_gap_tracking() {
1277        let initial_h = AdiabaticUtils::create_mixing_hamiltonian(2);
1278        let final_h = AdiabaticUtils::create_tfim_hamiltonian(2, 1.0, 0.1);
1279
1280        let config = AdiabaticConfig {
1281            total_time: 1.0,
1282            time_steps: 5,
1283            initial_hamiltonian: initial_h,
1284            final_hamiltonian: final_h,
1285            gap_tracking: GapTrackingConfig {
1286                enabled: true,
1287                ..Default::default()
1288            },
1289            ..Default::default()
1290        };
1291
1292        let mut adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1293        let result = adiabatic_qc.evolve();
1294        assert!(result.is_ok());
1295
1296        let evolution_result = result.unwrap();
1297        assert!(!evolution_result.gap_history.is_empty());
1298        assert!(evolution_result.min_gap >= 0.0);
1299    }
1300
1301    #[test]
1302    fn test_energy_calculation() {
1303        let initial_h = AdiabaticUtils::create_mixing_hamiltonian(1);
1304        let final_h = AdiabaticUtils::create_tfim_hamiltonian(1, 1.0, 0.1);
1305
1306        let config = AdiabaticConfig {
1307            initial_hamiltonian: initial_h,
1308            final_hamiltonian: final_h,
1309            ..Default::default()
1310        };
1311
1312        let adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1313        let energy = adiabatic_qc.calculate_current_energy();
1314        assert!(energy.is_ok());
1315    }
1316
1317    #[test]
1318    fn test_fidelity_calculation() {
1319        let config = AdiabaticConfig::default();
1320        let adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1321
1322        let state1 = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
1323        let state2 = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
1324
1325        let fidelity = adiabatic_qc.calculate_fidelity(&state1, &state2);
1326        assert_abs_diff_eq!(fidelity, 1.0, epsilon = 1e-10);
1327    }
1328}