Expand description
Quantum Machine Learning (QML) module.
This module provides comprehensive quantum machine learning algorithms with hardware-aware optimization, adaptive training strategies, and support for various quantum computing architectures.
Re-exports§
pub use benchmarks::benchmark_gradient_methods;
pub use benchmarks::benchmark_optimizers;
pub use benchmarks::benchmark_quantum_ml_algorithms;
pub use benchmarks::run_comprehensive_benchmarks;
pub use circuit::HardwareOptimizations;
pub use circuit::ParameterizedQuantumCircuit;
pub use config::GradientMethod;
pub use config::HardwareArchitecture;
pub use config::OptimizerType;
pub use config::QMLAlgorithmType;
pub use config::QMLConfig;
pub use trainer::CompilationStats;
pub use trainer::HardwareAwareCompiler;
pub use trainer::HardwareMetrics;
pub use trainer::OptimizerState;
pub use trainer::QuantumMLTrainer;
pub use trainer::TrainingHistory;
pub use trainer::TrainingResult;
Modules§
- benchmarks
- Benchmarking functions for quantum machine learning algorithms.
- circuit
- Parameterized quantum circuits for machine learning applications.
- config
- Configuration structures and enums for quantum machine learning algorithms.
- trainer
- Quantum machine learning trainer implementation.
Functions§
- create_
default_ config - Create a default configuration for a specific algorithm
- create_
hardware_ config - Create a configuration optimized for specific hardware
- get_
supported_ algorithms - Get supported QML algorithms
- get_
supported_ architectures - Get supported hardware architectures
- get_
supported_ gradient_ methods - Get supported gradient methods
- get_
supported_ optimizers - Get supported optimizers
- initialize
- Initialize the QML subsystem
- is_
hardware_ optimization_ available - Check if hardware-aware optimization is available
- validate_
config - Validate QML configuration