quantrs2_sim/quantum_machine_learning_layers/
utils.rs

1//! QML Utilities and Benchmarks
2//!
3//! This module provides utility functions and benchmarking for quantum machine learning.
4
5use super::config::{QMLArchitectureType, QMLConfig};
6use super::framework::QuantumMLFramework;
7use super::types::{QMLBenchmarkResults, QuantumAdvantageMetrics};
8use crate::error::Result;
9use scirs2_core::ndarray::Array1;
10use scirs2_core::random::prelude::*;
11use std::collections::HashMap;
12
13/// Utility functions for QML
14pub struct QMLUtils;
15
16impl QMLUtils {
17    /// Generate synthetic training data for testing
18    #[must_use]
19    pub fn generate_synthetic_data(
20        num_samples: usize,
21        input_dim: usize,
22        output_dim: usize,
23    ) -> (Vec<Array1<f64>>, Vec<Array1<f64>>) {
24        let mut rng = thread_rng();
25        let mut inputs = Vec::new();
26        let mut outputs = Vec::new();
27
28        for _ in 0..num_samples {
29            let input: Array1<f64> = Array1::from_vec(
30                (0..input_dim)
31                    .map(|_| rng.random_range(-1.0_f64..1.0_f64))
32                    .collect(),
33            );
34
35            // Generate output based on some function of input
36            let output = Array1::from_vec(
37                (0..output_dim)
38                    .map(|i| {
39                        if i < input_dim {
40                            input[i].sin() // Simple nonlinear transformation
41                        } else {
42                            rng.random_range(-1.0_f64..1.0_f64)
43                        }
44                    })
45                    .collect(),
46            );
47
48            inputs.push(input);
49            outputs.push(output);
50        }
51
52        (inputs, outputs)
53    }
54
55    /// Split data into training and validation sets
56    #[must_use]
57    pub fn train_test_split(
58        inputs: Vec<Array1<f64>>,
59        outputs: Vec<Array1<f64>>,
60        test_ratio: f64,
61    ) -> (
62        Vec<(Array1<f64>, Array1<f64>)>,
63        Vec<(Array1<f64>, Array1<f64>)>,
64    ) {
65        let total_samples = inputs.len();
66        let test_samples = ((total_samples as f64) * test_ratio) as usize;
67        let train_samples = total_samples - test_samples;
68
69        let mut combined: Vec<(Array1<f64>, Array1<f64>)> =
70            inputs.into_iter().zip(outputs).collect();
71
72        // Shuffle data
73        let mut rng = thread_rng();
74        for i in (1..combined.len()).rev() {
75            let j = rng.random_range(0..=i);
76            combined.swap(i, j);
77        }
78
79        let (train_data, test_data) = combined.split_at(train_samples);
80        (train_data.to_vec(), test_data.to_vec())
81    }
82
83    /// Evaluate model accuracy
84    #[must_use]
85    pub fn evaluate_accuracy(
86        predictions: &[Array1<f64>],
87        targets: &[Array1<f64>],
88        threshold: f64,
89    ) -> f64 {
90        let mut correct = 0;
91        let total = predictions.len();
92
93        for (pred, target) in predictions.iter().zip(targets.iter()) {
94            let diff = pred - target;
95            let mse = diff.iter().map(|x| x * x).sum::<f64>() / diff.len() as f64;
96            if mse < threshold {
97                correct += 1;
98            }
99        }
100
101        f64::from(correct) / total as f64
102    }
103
104    /// Compute quantum circuit complexity metrics
105    #[must_use]
106    pub fn compute_circuit_complexity(
107        num_qubits: usize,
108        depth: usize,
109        gate_count: usize,
110    ) -> HashMap<String, f64> {
111        let mut metrics = HashMap::new();
112
113        // State space size
114        let state_space_size = 2.0_f64.powi(num_qubits as i32);
115        metrics.insert("state_space_size".to_string(), state_space_size);
116
117        // Circuit complexity (depth * gates)
118        let circuit_complexity = (depth * gate_count) as f64;
119        metrics.insert("circuit_complexity".to_string(), circuit_complexity);
120
121        // Classical simulation cost estimate
122        let classical_cost = state_space_size * gate_count as f64;
123        metrics.insert("classical_simulation_cost".to_string(), classical_cost);
124
125        // Quantum advantage estimate (log scale)
126        let quantum_advantage = classical_cost.log(circuit_complexity);
127        metrics.insert("quantum_advantage_estimate".to_string(), quantum_advantage);
128
129        metrics
130    }
131}
132
133/// Benchmark quantum machine learning implementations
134pub fn benchmark_quantum_ml_layers(config: &QMLConfig) -> Result<QMLBenchmarkResults> {
135    let mut results = QMLBenchmarkResults {
136        training_times: HashMap::new(),
137        final_accuracies: HashMap::new(),
138        convergence_rates: HashMap::new(),
139        memory_usage: HashMap::new(),
140        quantum_advantage: HashMap::new(),
141        parameter_counts: HashMap::new(),
142        circuit_depths: HashMap::new(),
143        gate_counts: HashMap::new(),
144    };
145
146    // Generate test data
147    let (inputs, outputs) =
148        QMLUtils::generate_synthetic_data(100, config.num_qubits, config.num_qubits);
149    let (train_data, val_data) = QMLUtils::train_test_split(inputs, outputs, 0.2);
150
151    // Benchmark different QML architectures
152    let architectures = vec![
153        QMLArchitectureType::VariationalQuantumCircuit,
154        QMLArchitectureType::QuantumConvolutionalNN,
155        // Add more architectures as needed
156    ];
157
158    for architecture in architectures {
159        let arch_name = format!("{architecture:?}");
160
161        // Create configuration for this architecture
162        let mut arch_config = config.clone();
163        arch_config.architecture_type = architecture;
164
165        // Create and train model
166        let start_time = std::time::Instant::now();
167        let mut framework = QuantumMLFramework::new(arch_config)?;
168
169        let training_result = framework.train(&train_data, Some(&val_data))?;
170        let training_time = start_time.elapsed();
171
172        // Evaluate final accuracy
173        let final_accuracy = framework.evaluate(&val_data)?;
174
175        // Store results
176        results
177            .training_times
178            .insert(arch_name.clone(), training_time);
179        results
180            .final_accuracies
181            .insert(arch_name.clone(), 1.0 / (1.0 + final_accuracy)); // Convert loss to accuracy
182        results.convergence_rates.insert(
183            arch_name.clone(),
184            training_result.epochs_trained as f64 / config.training_config.epochs as f64,
185        );
186        results
187            .memory_usage
188            .insert(arch_name.clone(), framework.get_stats().peak_memory_usage);
189        results
190            .quantum_advantage
191            .insert(arch_name.clone(), training_result.quantum_advantage_metrics);
192        results.parameter_counts.insert(
193            arch_name.clone(),
194            framework
195                .layers
196                .iter()
197                .map(|l| l.get_num_parameters())
198                .sum(),
199        );
200        results.circuit_depths.insert(
201            arch_name.clone(),
202            framework.layers.iter().map(|l| l.get_depth()).sum(),
203        );
204        results.gate_counts.insert(
205            arch_name.clone(),
206            framework.layers.iter().map(|l| l.get_gate_count()).sum(),
207        );
208    }
209
210    Ok(results)
211}