quantrs2_sim/quantum_reservoir_computing_enhanced/
reservoir.rs

1//! Enhanced Quantum Reservoir Computing Implementation
2//!
3//! This module provides the main QuantumReservoirComputerEnhanced struct and its implementations.
4
5use scirs2_core::ndarray::{s, Array1, Array2, Axis};
6use scirs2_core::random::thread_rng;
7use scirs2_core::Complex64;
8use std::collections::VecDeque;
9use std::f64::consts::PI;
10use std::sync::{Arc, Mutex};
11
12use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
13use crate::error::Result;
14use crate::scirs2_integration::SciRS2Backend;
15use crate::statevector::StateVectorSimulator;
16
17use super::analysis::MemoryAnalyzer;
18use super::config::QuantumReservoirConfig;
19use super::state::{
20    QuantumReservoirState, ReservoirMetrics, ReservoirTrainingData, TrainingExample, TrainingResult,
21};
22use super::time_series::TimeSeriesPredictor;
23use super::types::{
24    IPCFunction, InputEncoding, LearningAlgorithm, OutputMeasurement, QuantumReservoirArchitecture,
25    ReservoirDynamics,
26};
27
28/// Enhanced quantum reservoir computing system
29pub struct QuantumReservoirComputerEnhanced {
30    /// Configuration
31    pub(crate) config: QuantumReservoirConfig,
32    /// Current reservoir state
33    pub(crate) reservoir_state: QuantumReservoirState,
34    /// Reservoir circuit
35    reservoir_circuit: InterfaceCircuit,
36    /// Input coupling circuit
37    #[allow(dead_code)]
38    input_coupling_circuit: InterfaceCircuit,
39    /// Output weights (trainable)
40    output_weights: Array2<f64>,
41    /// Time series predictor
42    #[allow(dead_code)]
43    time_series_predictor: Option<TimeSeriesPredictor>,
44    /// Memory analyzer
45    memory_analyzer: MemoryAnalyzer,
46    /// State vector simulator
47    simulator: StateVectorSimulator,
48    /// Performance metrics
49    metrics: ReservoirMetrics,
50    /// Training history
51    #[allow(dead_code)]
52    training_history: VecDeque<TrainingExample>,
53    /// `SciRS2` backend for advanced computations
54    #[allow(dead_code)]
55    backend: Option<SciRS2Backend>,
56    /// Random number generator
57    #[allow(dead_code)]
58    rng: Arc<Mutex<scirs2_core::random::CoreRandom>>,
59}
60
61impl QuantumReservoirComputerEnhanced {
62    /// Create new enhanced quantum reservoir computer
63    pub fn new(config: QuantumReservoirConfig) -> Result<Self> {
64        let simulator = StateVectorSimulator::new();
65
66        let reservoir_state = QuantumReservoirState::new(config.num_qubits, config.memory_capacity);
67
68        // Generate reservoir circuit based on architecture
69        let reservoir_circuit = Self::generate_reservoir_circuit(&config)?;
70
71        // Generate input coupling circuit
72        let input_coupling_circuit = Self::generate_input_coupling_circuit(&config)?;
73
74        // Initialize output weights randomly
75        let output_size = Self::calculate_output_size(&config);
76        let feature_size = Self::calculate_feature_size(&config);
77        let mut output_weights = Array2::zeros((output_size, feature_size));
78
79        // Xavier initialization
80        let scale = (2.0 / (output_size + feature_size) as f64).sqrt();
81        for elem in &mut output_weights {
82            *elem = (fastrand::f64() - 0.5) * 2.0 * scale;
83        }
84
85        // Initialize time series predictor if enabled
86        let time_series_predictor =
87            if config.time_series_config.enable_arima || config.time_series_config.enable_nar {
88                Some(TimeSeriesPredictor::new(&config.time_series_config))
89            } else {
90                None
91            };
92
93        // Initialize memory analyzer
94        let memory_analyzer = MemoryAnalyzer::new(config.memory_config.clone());
95
96        Ok(Self {
97            config,
98            reservoir_state,
99            reservoir_circuit,
100            input_coupling_circuit,
101            output_weights,
102            time_series_predictor,
103            memory_analyzer,
104            simulator,
105            metrics: ReservoirMetrics::default(),
106            training_history: VecDeque::with_capacity(10_000),
107            backend: None,
108            rng: Arc::new(Mutex::new(thread_rng())),
109        })
110    }
111
112    /// Generate reservoir circuit based on architecture
113    fn generate_reservoir_circuit(config: &QuantumReservoirConfig) -> Result<InterfaceCircuit> {
114        let mut circuit = InterfaceCircuit::new(config.num_qubits, 0);
115
116        match config.architecture {
117            QuantumReservoirArchitecture::RandomCircuit => {
118                Self::generate_random_circuit(&mut circuit, config)?;
119            }
120            QuantumReservoirArchitecture::SpinChain => {
121                Self::generate_spin_chain_circuit(&mut circuit, config)?;
122            }
123            QuantumReservoirArchitecture::TransverseFieldIsing => {
124                Self::generate_tfim_circuit(&mut circuit, config)?;
125            }
126            QuantumReservoirArchitecture::SmallWorld => {
127                Self::generate_small_world_circuit(&mut circuit, config)?;
128            }
129            QuantumReservoirArchitecture::FullyConnected => {
130                Self::generate_fully_connected_circuit(&mut circuit, config)?;
131            }
132            QuantumReservoirArchitecture::ScaleFree => {
133                Self::generate_scale_free_circuit(&mut circuit, config)?;
134            }
135            QuantumReservoirArchitecture::HierarchicalModular => {
136                Self::generate_hierarchical_circuit(&mut circuit, config)?;
137            }
138            QuantumReservoirArchitecture::Ring => {
139                Self::generate_ring_circuit(&mut circuit, config)?;
140            }
141            QuantumReservoirArchitecture::Grid => {
142                Self::generate_grid_circuit(&mut circuit, config)?;
143            }
144            _ => {
145                // Default to random circuit for other architectures
146                Self::generate_random_circuit(&mut circuit, config)?;
147            }
148        }
149
150        Ok(circuit)
151    }
152
153    /// Generate random quantum circuit
154    fn generate_random_circuit(
155        circuit: &mut InterfaceCircuit,
156        config: &QuantumReservoirConfig,
157    ) -> Result<()> {
158        let depth = config.evolution_steps;
159
160        for _ in 0..depth {
161            // Add random single-qubit gates
162            for qubit in 0..config.num_qubits {
163                let angle = fastrand::f64() * 2.0 * PI;
164                let gate_type = match fastrand::usize(0..3) {
165                    0 => InterfaceGateType::RX(angle),
166                    1 => InterfaceGateType::RY(angle),
167                    _ => InterfaceGateType::RZ(angle),
168                };
169                circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
170            }
171
172            // Add random two-qubit gates
173            for _ in 0..(config.num_qubits / 2) {
174                let qubit1 = fastrand::usize(0..config.num_qubits);
175                let qubit2 = fastrand::usize(0..config.num_qubits);
176                if qubit1 != qubit2 {
177                    circuit.add_gate(InterfaceGate::new(
178                        InterfaceGateType::CNOT,
179                        vec![qubit1, qubit2],
180                    ));
181                }
182            }
183        }
184
185        Ok(())
186    }
187
188    /// Generate spin chain circuit
189    fn generate_spin_chain_circuit(
190        circuit: &mut InterfaceCircuit,
191        config: &QuantumReservoirConfig,
192    ) -> Result<()> {
193        let coupling = config.coupling_strength;
194
195        for _ in 0..config.evolution_steps {
196            // Nearest-neighbor interactions
197            for i in 0..config.num_qubits - 1 {
198                // ZZ interaction
199                circuit.add_gate(InterfaceGate::new(
200                    InterfaceGateType::RZ(coupling * config.time_step),
201                    vec![i],
202                ));
203                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
204                circuit.add_gate(InterfaceGate::new(
205                    InterfaceGateType::RZ(coupling * config.time_step),
206                    vec![i + 1],
207                ));
208                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
209            }
210        }
211
212        Ok(())
213    }
214
215    /// Generate transverse field Ising model circuit
216    fn generate_tfim_circuit(
217        circuit: &mut InterfaceCircuit,
218        config: &QuantumReservoirConfig,
219    ) -> Result<()> {
220        let coupling = config.coupling_strength;
221        let field = coupling * 0.5; // Transverse field strength
222
223        for _ in 0..config.evolution_steps {
224            // Transverse field (X rotations)
225            for qubit in 0..config.num_qubits {
226                circuit.add_gate(InterfaceGate::new(
227                    InterfaceGateType::RX(field * config.time_step),
228                    vec![qubit],
229                ));
230            }
231
232            // Nearest-neighbor ZZ interactions
233            for i in 0..config.num_qubits - 1 {
234                circuit.add_gate(InterfaceGate::new(
235                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
236                    vec![i],
237                ));
238                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
239                circuit.add_gate(InterfaceGate::new(
240                    InterfaceGateType::RZ(coupling * config.time_step),
241                    vec![i + 1],
242                ));
243                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
244                circuit.add_gate(InterfaceGate::new(
245                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
246                    vec![i],
247                ));
248            }
249        }
250
251        Ok(())
252    }
253
254    /// Generate small-world network circuit
255    fn generate_small_world_circuit(
256        circuit: &mut InterfaceCircuit,
257        config: &QuantumReservoirConfig,
258    ) -> Result<()> {
259        let coupling = config.coupling_strength;
260        let rewiring_prob = 0.1; // Small-world rewiring probability
261
262        for _ in 0..config.evolution_steps {
263            // Regular lattice connections
264            for i in 0..config.num_qubits {
265                let next = (i + 1) % config.num_qubits;
266
267                // Random rewiring
268                let target = if fastrand::f64() < rewiring_prob {
269                    fastrand::usize(0..config.num_qubits)
270                } else {
271                    next
272                };
273
274                if target != i {
275                    circuit.add_gate(InterfaceGate::new(
276                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
277                        vec![i],
278                    ));
279                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, target]));
280                    circuit.add_gate(InterfaceGate::new(
281                        InterfaceGateType::RZ(coupling * config.time_step),
282                        vec![target],
283                    ));
284                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, target]));
285                    circuit.add_gate(InterfaceGate::new(
286                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
287                        vec![i],
288                    ));
289                }
290            }
291        }
292
293        Ok(())
294    }
295
296    /// Generate fully connected circuit
297    fn generate_fully_connected_circuit(
298        circuit: &mut InterfaceCircuit,
299        config: &QuantumReservoirConfig,
300    ) -> Result<()> {
301        let coupling = config.coupling_strength / config.num_qubits as f64; // Scale by system size
302
303        for _ in 0..config.evolution_steps {
304            // All-to-all interactions
305            for i in 0..config.num_qubits {
306                for j in i + 1..config.num_qubits {
307                    circuit.add_gate(InterfaceGate::new(
308                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
309                        vec![i],
310                    ));
311                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
312                    circuit.add_gate(InterfaceGate::new(
313                        InterfaceGateType::RZ(coupling * config.time_step),
314                        vec![j],
315                    ));
316                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
317                    circuit.add_gate(InterfaceGate::new(
318                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
319                        vec![i],
320                    ));
321                }
322            }
323        }
324
325        Ok(())
326    }
327
328    /// Generate scale-free network circuit
329    fn generate_scale_free_circuit(
330        circuit: &mut InterfaceCircuit,
331        config: &QuantumReservoirConfig,
332    ) -> Result<()> {
333        // Implement scale-free topology with preferential attachment
334        let mut degree_dist = vec![1; config.num_qubits];
335        let coupling = config.coupling_strength;
336
337        for _ in 0..config.evolution_steps {
338            // Scale-free connections based on degree distribution
339            for i in 0..config.num_qubits {
340                // Probability proportional to degree
341                let total_degree: usize = degree_dist.iter().sum();
342                let prob_threshold = degree_dist[i] as f64 / total_degree as f64;
343
344                if fastrand::f64() < prob_threshold {
345                    let j = fastrand::usize(0..config.num_qubits);
346                    if i != j {
347                        // Add interaction
348                        circuit.add_gate(InterfaceGate::new(
349                            InterfaceGateType::RZ(coupling * config.time_step / 2.0),
350                            vec![i],
351                        ));
352                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
353                        circuit.add_gate(InterfaceGate::new(
354                            InterfaceGateType::RZ(coupling * config.time_step),
355                            vec![j],
356                        ));
357                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
358
359                        // Update degrees
360                        degree_dist[i] += 1;
361                        degree_dist[j] += 1;
362                    }
363                }
364            }
365        }
366
367        Ok(())
368    }
369
370    /// Generate hierarchical modular circuit
371    fn generate_hierarchical_circuit(
372        circuit: &mut InterfaceCircuit,
373        config: &QuantumReservoirConfig,
374    ) -> Result<()> {
375        let coupling = config.coupling_strength;
376        let module_size = (config.num_qubits as f64).sqrt() as usize;
377
378        for _ in 0..config.evolution_steps {
379            // Intra-module connections (stronger)
380            for module in 0..(config.num_qubits / module_size) {
381                let start = module * module_size;
382                let end = ((module + 1) * module_size).min(config.num_qubits);
383
384                for i in start..end {
385                    for j in (i + 1)..end {
386                        circuit.add_gate(InterfaceGate::new(
387                            InterfaceGateType::RZ(coupling * config.time_step),
388                            vec![i],
389                        ));
390                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
391                    }
392                }
393            }
394
395            // Inter-module connections (weaker)
396            for i in 0..config.num_qubits {
397                let j = fastrand::usize(0..config.num_qubits);
398                if i / module_size != j / module_size && i != j {
399                    circuit.add_gate(InterfaceGate::new(
400                        InterfaceGateType::RZ(coupling * config.time_step * 0.3),
401                        vec![i],
402                    ));
403                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
404                }
405            }
406        }
407
408        Ok(())
409    }
410
411    /// Generate ring topology circuit
412    fn generate_ring_circuit(
413        circuit: &mut InterfaceCircuit,
414        config: &QuantumReservoirConfig,
415    ) -> Result<()> {
416        let coupling = config.coupling_strength;
417
418        for _ in 0..config.evolution_steps {
419            // Ring connections
420            for i in 0..config.num_qubits {
421                let j = (i + 1) % config.num_qubits;
422
423                circuit.add_gate(InterfaceGate::new(
424                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
425                    vec![i],
426                ));
427                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
428                circuit.add_gate(InterfaceGate::new(
429                    InterfaceGateType::RZ(coupling * config.time_step),
430                    vec![j],
431                ));
432                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
433            }
434
435            // Long-range connections (sparse)
436            if fastrand::f64() < 0.1 {
437                let i = fastrand::usize(0..config.num_qubits);
438                let j = fastrand::usize(0..config.num_qubits);
439                if i != j && (i as i32 - j as i32).abs() > 2 {
440                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
441                }
442            }
443        }
444
445        Ok(())
446    }
447
448    /// Generate grid topology circuit
449    fn generate_grid_circuit(
450        circuit: &mut InterfaceCircuit,
451        config: &QuantumReservoirConfig,
452    ) -> Result<()> {
453        let coupling = config.coupling_strength;
454        let grid_size = (config.num_qubits as f64).sqrt() as usize;
455
456        for _ in 0..config.evolution_steps {
457            // Grid connections (nearest neighbors)
458            for i in 0..grid_size {
459                for j in 0..grid_size {
460                    let current = i * grid_size + j;
461                    if current >= config.num_qubits {
462                        break;
463                    }
464
465                    // Right neighbor
466                    if j + 1 < grid_size {
467                        let neighbor = i * grid_size + j + 1;
468                        if neighbor < config.num_qubits {
469                            circuit.add_gate(InterfaceGate::new(
470                                InterfaceGateType::RZ(coupling * config.time_step / 2.0),
471                                vec![current],
472                            ));
473                            circuit.add_gate(InterfaceGate::new(
474                                InterfaceGateType::CNOT,
475                                vec![current, neighbor],
476                            ));
477                        }
478                    }
479
480                    // Bottom neighbor
481                    if i + 1 < grid_size {
482                        let neighbor = (i + 1) * grid_size + j;
483                        if neighbor < config.num_qubits {
484                            circuit.add_gate(InterfaceGate::new(
485                                InterfaceGateType::RZ(coupling * config.time_step / 2.0),
486                                vec![current],
487                            ));
488                            circuit.add_gate(InterfaceGate::new(
489                                InterfaceGateType::CNOT,
490                                vec![current, neighbor],
491                            ));
492                        }
493                    }
494                }
495            }
496        }
497
498        Ok(())
499    }
500
501    /// Generate input coupling circuit
502    fn generate_input_coupling_circuit(
503        config: &QuantumReservoirConfig,
504    ) -> Result<InterfaceCircuit> {
505        let mut circuit = InterfaceCircuit::new(config.num_qubits, 0);
506
507        match config.input_encoding {
508            InputEncoding::Amplitude => {
509                // Amplitude encoding through controlled rotations
510                for qubit in 0..config.num_qubits {
511                    circuit.add_gate(InterfaceGate::new(
512                        InterfaceGateType::RY(0.0), // Will be set dynamically
513                        vec![qubit],
514                    ));
515                }
516            }
517            InputEncoding::Phase => {
518                // Phase encoding through Z rotations
519                for qubit in 0..config.num_qubits {
520                    circuit.add_gate(InterfaceGate::new(
521                        InterfaceGateType::RZ(0.0), // Will be set dynamically
522                        vec![qubit],
523                    ));
524                }
525            }
526            InputEncoding::BasisState => {
527                // Basis state encoding through X gates
528                for qubit in 0..config.num_qubits {
529                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::X, vec![qubit]));
530                }
531            }
532            InputEncoding::Angle => {
533                // Angle encoding with multiple rotation axes
534                for qubit in 0..config.num_qubits {
535                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RX(0.0), vec![qubit]));
536                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
537                }
538            }
539            _ => {
540                // Default to amplitude encoding
541                for qubit in 0..config.num_qubits {
542                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
543                }
544            }
545        }
546
547        Ok(circuit)
548    }
549
550    /// Calculate output size based on configuration
551    pub const fn calculate_output_size(_config: &QuantumReservoirConfig) -> usize {
552        // For time series prediction, typically 1 output
553        1
554    }
555
556    /// Calculate feature size based on configuration
557    pub fn calculate_feature_size(config: &QuantumReservoirConfig) -> usize {
558        match config.output_measurement {
559            OutputMeasurement::PauliExpectation => config.num_qubits * 3,
560            OutputMeasurement::Probability => 1 << config.num_qubits.min(10), // Limit for memory
561            OutputMeasurement::Correlations => config.num_qubits * config.num_qubits,
562            OutputMeasurement::Entanglement => config.num_qubits,
563            OutputMeasurement::Fidelity => 1,
564            OutputMeasurement::QuantumFisherInformation => config.num_qubits,
565            OutputMeasurement::Variance => config.num_qubits * 3,
566            OutputMeasurement::HigherOrderMoments => config.num_qubits * 6, // Up to 3rd moments
567            OutputMeasurement::SpectralProperties => config.num_qubits,
568            OutputMeasurement::QuantumCoherence => config.num_qubits,
569            OutputMeasurement::Purity => 1,
570            OutputMeasurement::QuantumMutualInformation => config.num_qubits * config.num_qubits,
571            OutputMeasurement::ProcessTomography => config.num_qubits * config.num_qubits * 4,
572            OutputMeasurement::TemporalCorrelations => config.memory_capacity,
573            OutputMeasurement::NonLinearReadout => config.num_qubits * 2,
574        }
575    }
576
577    /// Process input through quantum reservoir
578    pub fn process_input(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
579        let start_time = std::time::Instant::now();
580
581        // Encode input into quantum state
582        self.encode_input(input)?;
583
584        // Evolve through reservoir dynamics
585        self.evolve_reservoir()?;
586
587        // Extract features from reservoir state
588        let features = self.extract_features()?;
589
590        // Update reservoir state with timestamp
591        let timestamp = start_time.elapsed().as_secs_f64();
592        self.reservoir_state
593            .update_state(self.reservoir_state.state_vector.clone(), timestamp);
594
595        // Update metrics
596        let processing_time = start_time.elapsed().as_secs_f64() * 1000.0;
597        self.update_processing_time(processing_time);
598
599        Ok(features)
600    }
601
602    /// Encode input data into quantum state
603    pub fn encode_input(&mut self, input: &Array1<f64>) -> Result<()> {
604        match self.config.input_encoding {
605            InputEncoding::Amplitude => {
606                self.encode_amplitude(input)?;
607            }
608            InputEncoding::Phase => {
609                self.encode_phase(input)?;
610            }
611            InputEncoding::BasisState => {
612                self.encode_basis_state(input)?;
613            }
614            InputEncoding::Angle => {
615                self.encode_angle(input)?;
616            }
617            _ => {
618                self.encode_amplitude(input)?;
619            }
620        }
621        Ok(())
622    }
623
624    /// Amplitude encoding
625    fn encode_amplitude(&mut self, input: &Array1<f64>) -> Result<()> {
626        let num_inputs = input.len().min(self.config.num_qubits);
627
628        for i in 0..num_inputs {
629            let angle = input[i] * PI; // Scale to [0, π]
630            self.apply_single_qubit_rotation(i, InterfaceGateType::RY(angle))?;
631        }
632
633        Ok(())
634    }
635
636    /// Phase encoding
637    fn encode_phase(&mut self, input: &Array1<f64>) -> Result<()> {
638        let num_inputs = input.len().min(self.config.num_qubits);
639
640        for i in 0..num_inputs {
641            let angle = input[i] * 2.0 * PI; // Full phase range
642            self.apply_single_qubit_rotation(i, InterfaceGateType::RZ(angle))?;
643        }
644
645        Ok(())
646    }
647
648    /// Basis state encoding
649    fn encode_basis_state(&mut self, input: &Array1<f64>) -> Result<()> {
650        let num_inputs = input.len().min(self.config.num_qubits);
651
652        for i in 0..num_inputs {
653            if input[i] > 0.5 {
654                self.apply_single_qubit_gate(i, InterfaceGateType::X)?;
655            }
656        }
657
658        Ok(())
659    }
660
661    /// Angle encoding with multiple rotation axes
662    fn encode_angle(&mut self, input: &Array1<f64>) -> Result<()> {
663        let num_inputs = input.len().min(self.config.num_qubits);
664
665        for i in 0..num_inputs {
666            let angle_x = input[i] * PI;
667            let angle_y = if i + 1 < input.len() {
668                input[i + 1] * PI
669            } else {
670                0.0
671            };
672
673            self.apply_single_qubit_rotation(i, InterfaceGateType::RX(angle_x))?;
674            self.apply_single_qubit_rotation(i, InterfaceGateType::RY(angle_y))?;
675        }
676
677        Ok(())
678    }
679
680    /// Apply single qubit rotation
681    fn apply_single_qubit_rotation(
682        &mut self,
683        qubit: usize,
684        gate_type: InterfaceGateType,
685    ) -> Result<()> {
686        let mut temp_circuit = InterfaceCircuit::new(self.config.num_qubits, 0);
687        temp_circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
688
689        self.simulator.apply_interface_circuit(&temp_circuit)?;
690
691        Ok(())
692    }
693
694    /// Apply single qubit gate
695    fn apply_single_qubit_gate(
696        &mut self,
697        qubit: usize,
698        gate_type: InterfaceGateType,
699    ) -> Result<()> {
700        let mut temp_circuit = InterfaceCircuit::new(self.config.num_qubits, 0);
701        temp_circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
702
703        self.simulator.apply_interface_circuit(&temp_circuit)?;
704
705        Ok(())
706    }
707
708    /// Evolve quantum reservoir through dynamics
709    pub fn evolve_reservoir(&mut self) -> Result<()> {
710        match self.config.dynamics {
711            ReservoirDynamics::Unitary => {
712                self.evolve_unitary()?;
713            }
714            ReservoirDynamics::Open => {
715                self.evolve_open_system()?;
716            }
717            ReservoirDynamics::NISQ => {
718                self.evolve_nisq()?;
719            }
720            ReservoirDynamics::Adiabatic => {
721                self.evolve_adiabatic()?;
722            }
723            ReservoirDynamics::Floquet => {
724                self.evolve_floquet()?;
725            }
726            _ => {
727                // Default to unitary evolution
728                self.evolve_unitary()?;
729            }
730        }
731        Ok(())
732    }
733
734    /// Unitary evolution
735    fn evolve_unitary(&mut self) -> Result<()> {
736        self.simulator
737            .apply_interface_circuit(&self.reservoir_circuit)?;
738        Ok(())
739    }
740
741    /// Open system evolution with noise
742    fn evolve_open_system(&mut self) -> Result<()> {
743        // Apply unitary evolution first
744        self.evolve_unitary()?;
745
746        // Apply decoherence
747        self.apply_decoherence()?;
748
749        Ok(())
750    }
751
752    /// NISQ evolution with realistic noise
753    fn evolve_nisq(&mut self) -> Result<()> {
754        // Apply unitary evolution
755        self.evolve_unitary()?;
756
757        // Apply gate errors
758        self.apply_gate_errors()?;
759
760        // Apply measurement errors
761        self.apply_measurement_errors()?;
762
763        Ok(())
764    }
765
766    /// Adiabatic evolution
767    fn evolve_adiabatic(&mut self) -> Result<()> {
768        // Simplified adiabatic evolution
769        // In practice, this would implement proper adiabatic dynamics
770        self.evolve_unitary()?;
771        Ok(())
772    }
773
774    /// Floquet evolution with periodic driving
775    fn evolve_floquet(&mut self) -> Result<()> {
776        // Apply time-dependent Hamiltonian
777        let drive_frequency = 1.0;
778        let time = self.reservoir_state.time_index as f64 * self.config.time_step;
779        let drive_strength = (drive_frequency * time).sin();
780
781        // Apply driving field
782        for qubit in 0..self.config.num_qubits {
783            let angle = drive_strength * self.config.time_step;
784            self.apply_single_qubit_rotation(qubit, InterfaceGateType::RX(angle))?;
785        }
786
787        // Apply base evolution
788        self.evolve_unitary()?;
789
790        Ok(())
791    }
792
793    /// Apply decoherence to the reservoir state
794    fn apply_decoherence(&mut self) -> Result<()> {
795        let decoherence_rate = self.config.noise_level;
796
797        for amplitude in &mut self.reservoir_state.state_vector {
798            // Apply phase decoherence
799            let phase_noise = (fastrand::f64() - 0.5) * decoherence_rate * 2.0 * PI;
800            *amplitude *= Complex64::new(0.0, phase_noise).exp();
801
802            // Apply amplitude damping
803            let damping = (1.0 - decoherence_rate).sqrt();
804            *amplitude *= damping;
805        }
806
807        // Renormalize
808        let norm: f64 = self
809            .reservoir_state
810            .state_vector
811            .iter()
812            .map(scirs2_core::Complex::norm_sqr)
813            .sum::<f64>()
814            .sqrt();
815
816        if norm > 1e-15 {
817            self.reservoir_state.state_vector.mapv_inplace(|x| x / norm);
818        }
819
820        Ok(())
821    }
822
823    /// Apply gate errors
824    fn apply_gate_errors(&mut self) -> Result<()> {
825        let error_rate = self.config.noise_level;
826
827        for qubit in 0..self.config.num_qubits {
828            if fastrand::f64() < error_rate {
829                let error_type = fastrand::usize(0..3);
830                let gate_type = match error_type {
831                    0 => InterfaceGateType::X,
832                    1 => InterfaceGateType::PauliY,
833                    _ => InterfaceGateType::PauliZ,
834                };
835                self.apply_single_qubit_gate(qubit, gate_type)?;
836            }
837        }
838
839        Ok(())
840    }
841
842    /// Apply measurement errors
843    fn apply_measurement_errors(&mut self) -> Result<()> {
844        let error_rate = self.config.noise_level * 0.1; // Lower rate for measurement errors
845
846        if fastrand::f64() < error_rate {
847            let qubit = fastrand::usize(0..self.config.num_qubits);
848            self.apply_single_qubit_gate(qubit, InterfaceGateType::X)?;
849        }
850
851        Ok(())
852    }
853
854    /// Extract features from reservoir state
855    fn extract_features(&mut self) -> Result<Array1<f64>> {
856        match self.config.output_measurement {
857            OutputMeasurement::PauliExpectation => self.measure_pauli_expectations(),
858            OutputMeasurement::Probability => self.measure_probabilities(),
859            OutputMeasurement::Correlations => self.measure_correlations(),
860            OutputMeasurement::Entanglement => self.measure_entanglement(),
861            OutputMeasurement::Fidelity => self.measure_fidelity(),
862            OutputMeasurement::QuantumFisherInformation => {
863                self.measure_quantum_fisher_information()
864            }
865            OutputMeasurement::Variance => self.measure_variance(),
866            OutputMeasurement::HigherOrderMoments => self.measure_higher_order_moments(),
867            OutputMeasurement::QuantumCoherence => self.measure_quantum_coherence(),
868            OutputMeasurement::Purity => self.measure_purity(),
869            OutputMeasurement::TemporalCorrelations => self.measure_temporal_correlations(),
870            _ => {
871                // Default to Pauli expectations
872                self.measure_pauli_expectations()
873            }
874        }
875    }
876
877    /// Measure Pauli expectation values
878    fn measure_pauli_expectations(&self) -> Result<Array1<f64>> {
879        let mut expectations = Vec::new();
880
881        for qubit in 0..self.config.num_qubits {
882            // X expectation
883            let x_exp = self.calculate_single_qubit_expectation(
884                qubit,
885                &[
886                    Complex64::new(0.0, 0.0),
887                    Complex64::new(1.0, 0.0),
888                    Complex64::new(1.0, 0.0),
889                    Complex64::new(0.0, 0.0),
890                ],
891            )?;
892            expectations.push(x_exp);
893
894            // Y expectation
895            let y_exp = self.calculate_single_qubit_expectation(
896                qubit,
897                &[
898                    Complex64::new(0.0, 0.0),
899                    Complex64::new(0.0, -1.0),
900                    Complex64::new(0.0, 1.0),
901                    Complex64::new(0.0, 0.0),
902                ],
903            )?;
904            expectations.push(y_exp);
905
906            // Z expectation
907            let z_exp = self.calculate_single_qubit_expectation(
908                qubit,
909                &[
910                    Complex64::new(1.0, 0.0),
911                    Complex64::new(0.0, 0.0),
912                    Complex64::new(0.0, 0.0),
913                    Complex64::new(-1.0, 0.0),
914                ],
915            )?;
916            expectations.push(z_exp);
917        }
918
919        Ok(Array1::from_vec(expectations))
920    }
921
922    /// Calculate single qubit expectation value
923    fn calculate_single_qubit_expectation(
924        &self,
925        qubit: usize,
926        pauli_matrix: &[Complex64; 4],
927    ) -> Result<f64> {
928        let state = &self.reservoir_state.state_vector;
929        let mut expectation = 0.0;
930
931        for i in 0..state.len() {
932            for j in 0..state.len() {
933                let i_bit = (i >> qubit) & 1;
934                let j_bit = (j >> qubit) & 1;
935                let matrix_element = pauli_matrix[i_bit * 2 + j_bit];
936
937                expectation += (state[i].conj() * matrix_element * state[j]).re;
938            }
939        }
940
941        Ok(expectation)
942    }
943
944    /// Measure probability distribution
945    fn measure_probabilities(&self) -> Result<Array1<f64>> {
946        let probabilities: Vec<f64> = self
947            .reservoir_state
948            .state_vector
949            .iter()
950            .map(scirs2_core::Complex::norm_sqr)
951            .collect();
952
953        // Limit size for large systems
954        let max_size = 1 << 10; // 2^10 = 1024
955        if probabilities.len() > max_size {
956            // Sample random subset
957            let mut sampled = Vec::with_capacity(max_size);
958            for _ in 0..max_size {
959                let idx = fastrand::usize(0..probabilities.len());
960                sampled.push(probabilities[idx]);
961            }
962            Ok(Array1::from_vec(sampled))
963        } else {
964            Ok(Array1::from_vec(probabilities))
965        }
966    }
967
968    /// Measure two-qubit correlations
969    fn measure_correlations(&mut self) -> Result<Array1<f64>> {
970        let mut correlations = Vec::new();
971
972        for i in 0..self.config.num_qubits {
973            for j in 0..self.config.num_qubits {
974                if i == j {
975                    correlations.push(1.0); // Self-correlation
976                    self.reservoir_state.correlations[[i, j]] = 1.0;
977                } else {
978                    // ZZ correlation
979                    let corr = self.calculate_two_qubit_correlation(i, j)?;
980                    correlations.push(corr);
981                    self.reservoir_state.correlations[[i, j]] = corr;
982                }
983            }
984        }
985
986        Ok(Array1::from_vec(correlations))
987    }
988
989    /// Calculate two-qubit correlation
990    fn calculate_two_qubit_correlation(&self, qubit1: usize, qubit2: usize) -> Result<f64> {
991        let state = &self.reservoir_state.state_vector;
992        let mut correlation = 0.0;
993
994        for i in 0..state.len() {
995            let bit1 = (i >> qubit1) & 1;
996            let bit2 = (i >> qubit2) & 1;
997            let sign = if bit1 == bit2 { 1.0 } else { -1.0 };
998            correlation += sign * state[i].norm_sqr();
999        }
1000
1001        Ok(correlation)
1002    }
1003
1004    /// Measure entanglement metrics
1005    fn measure_entanglement(&self) -> Result<Array1<f64>> {
1006        let mut entanglement_measures = Vec::new();
1007
1008        // Simplified entanglement measures
1009        for qubit in 0..self.config.num_qubits {
1010            // Von Neumann entropy of reduced state (approximation)
1011            let entropy = self.calculate_von_neumann_entropy(qubit)?;
1012            entanglement_measures.push(entropy);
1013        }
1014
1015        Ok(Array1::from_vec(entanglement_measures))
1016    }
1017
1018    /// Calculate von Neumann entropy (simplified)
1019    fn calculate_von_neumann_entropy(&self, _qubit: usize) -> Result<f64> {
1020        let state = &self.reservoir_state.state_vector;
1021        let mut entropy = 0.0;
1022
1023        for amplitude in state {
1024            let prob = amplitude.norm_sqr();
1025            if prob > 1e-15 {
1026                entropy -= prob * prob.ln();
1027            }
1028        }
1029
1030        Ok(entropy / (state.len() as f64).ln()) // Normalized entropy
1031    }
1032
1033    /// Measure fidelity with reference state
1034    fn measure_fidelity(&self) -> Result<Array1<f64>> {
1035        // Fidelity with initial state |0...0⟩
1036        let fidelity = self.reservoir_state.state_vector[0].norm_sqr();
1037        Ok(Array1::from_vec(vec![fidelity]))
1038    }
1039
1040    /// Measure quantum Fisher information
1041    fn measure_quantum_fisher_information(&self) -> Result<Array1<f64>> {
1042        let mut qfi_values = Vec::new();
1043
1044        for qubit in 0..self.config.num_qubits {
1045            // Simplified QFI calculation for single qubit observables
1046            let z_exp = self.calculate_single_qubit_expectation(
1047                qubit,
1048                &[
1049                    Complex64::new(1.0, 0.0),
1050                    Complex64::new(0.0, 0.0),
1051                    Complex64::new(0.0, 0.0),
1052                    Complex64::new(-1.0, 0.0),
1053                ],
1054            )?;
1055
1056            // QFI ≈ 4 * Var(Z) for single qubit
1057            let qfi = 4.0 * (1.0 - z_exp * z_exp);
1058            qfi_values.push(qfi);
1059        }
1060
1061        Ok(Array1::from_vec(qfi_values))
1062    }
1063
1064    /// Measure variance of observables
1065    fn measure_variance(&self) -> Result<Array1<f64>> {
1066        let mut variances = Vec::new();
1067
1068        for qubit in 0..self.config.num_qubits {
1069            // X, Y, Z variances
1070            for pauli_idx in 0..3 {
1071                let pauli_matrix = match pauli_idx {
1072                    0 => [
1073                        Complex64::new(0.0, 0.0),
1074                        Complex64::new(1.0, 0.0),
1075                        Complex64::new(1.0, 0.0),
1076                        Complex64::new(0.0, 0.0),
1077                    ],
1078                    1 => [
1079                        Complex64::new(0.0, 0.0),
1080                        Complex64::new(0.0, -1.0),
1081                        Complex64::new(0.0, 1.0),
1082                        Complex64::new(0.0, 0.0),
1083                    ],
1084                    _ => [
1085                        Complex64::new(1.0, 0.0),
1086                        Complex64::new(0.0, 0.0),
1087                        Complex64::new(0.0, 0.0),
1088                        Complex64::new(-1.0, 0.0),
1089                    ],
1090                };
1091
1092                let expectation = self.calculate_single_qubit_expectation(qubit, &pauli_matrix)?;
1093                let variance = 1.0 - expectation * expectation; // For Pauli operators
1094                variances.push(variance);
1095            }
1096        }
1097
1098        Ok(Array1::from_vec(variances))
1099    }
1100
1101    /// Measure higher-order moments
1102    fn measure_higher_order_moments(&self) -> Result<Array1<f64>> {
1103        let mut moments = Vec::new();
1104
1105        for qubit in 0..self.config.num_qubits {
1106            // Calculate moments up to 3rd order for Z observable
1107            let z_exp = self.calculate_single_qubit_expectation(
1108                qubit,
1109                &[
1110                    Complex64::new(1.0, 0.0),
1111                    Complex64::new(0.0, 0.0),
1112                    Complex64::new(0.0, 0.0),
1113                    Complex64::new(-1.0, 0.0),
1114                ],
1115            )?;
1116
1117            // First moment (mean)
1118            moments.push(z_exp);
1119
1120            // Second central moment (variance)
1121            let variance = 1.0 - z_exp * z_exp;
1122            moments.push(variance);
1123
1124            // Third central moment (skewness measure)
1125            // For Pauli-Z, this is typically zero due to symmetry
1126            moments.push(0.0);
1127
1128            // Kurtosis measure
1129            moments.push(variance * variance);
1130
1131            // Fifth moment (for more complex characterization)
1132            moments.push(z_exp * variance);
1133
1134            // Sixth moment
1135            moments.push(variance * variance * variance);
1136        }
1137
1138        Ok(Array1::from_vec(moments))
1139    }
1140
1141    /// Measure quantum coherence
1142    fn measure_quantum_coherence(&self) -> Result<Array1<f64>> {
1143        let mut coherence_measures = Vec::new();
1144
1145        for qubit in 0..self.config.num_qubits {
1146            // L1 norm of coherence (off-diagonal elements in computational basis)
1147            let mut coherence = 0.0;
1148            let state = &self.reservoir_state.state_vector;
1149
1150            for i in 0..state.len() {
1151                for j in 0..state.len() {
1152                    if i != j {
1153                        let i_bit = (i >> qubit) & 1;
1154                        let j_bit = (j >> qubit) & 1;
1155                        if i_bit != j_bit {
1156                            coherence += (state[i].conj() * state[j]).norm();
1157                        }
1158                    }
1159                }
1160            }
1161
1162            coherence_measures.push(coherence);
1163        }
1164
1165        Ok(Array1::from_vec(coherence_measures))
1166    }
1167
1168    /// Measure purity
1169    fn measure_purity(&self) -> Result<Array1<f64>> {
1170        // Purity = Tr(ρ²) for the full state
1171        let state = &self.reservoir_state.state_vector;
1172        let purity = state.iter().map(|x| x.norm_sqr().powi(2)).sum::<f64>();
1173
1174        Ok(Array1::from_vec(vec![purity]))
1175    }
1176
1177    /// Measure temporal correlations
1178    fn measure_temporal_correlations(&self) -> Result<Array1<f64>> {
1179        let mut correlations = Vec::new();
1180
1181        // Calculate autocorrelation with past states
1182        let current_state = &self.reservoir_state.state_vector;
1183
1184        for past_state in &self.reservoir_state.state_history {
1185            let correlation = current_state
1186                .iter()
1187                .zip(past_state.iter())
1188                .map(|(a, b)| (a.conj() * b).re)
1189                .sum::<f64>();
1190            correlations.push(correlation);
1191        }
1192
1193        // Pad with zeros if not enough history
1194        while correlations.len() < self.config.memory_capacity {
1195            correlations.push(0.0);
1196        }
1197
1198        Ok(Array1::from_vec(correlations))
1199    }
1200
1201    /// Train the enhanced reservoir computer
1202    pub fn train(&mut self, training_data: &ReservoirTrainingData) -> Result<TrainingResult> {
1203        let start_time = std::time::Instant::now();
1204
1205        let mut all_features = Vec::new();
1206        let mut all_targets = Vec::new();
1207
1208        // Washout period
1209        for i in 0..self.config.washout_period.min(training_data.inputs.len()) {
1210            let _ = self.process_input(&training_data.inputs[i])?;
1211        }
1212
1213        // Collect training data after washout
1214        for i in self.config.washout_period..training_data.inputs.len() {
1215            let features = self.process_input(&training_data.inputs[i])?;
1216            all_features.push(features);
1217
1218            if i < training_data.targets.len() {
1219                all_targets.push(training_data.targets[i].clone());
1220            }
1221        }
1222
1223        // Train output weights using the specified learning algorithm
1224        self.train_with_learning_algorithm(&all_features, &all_targets)?;
1225
1226        // Analyze memory capacity if enabled
1227        if self.config.memory_config.enable_capacity_estimation {
1228            self.analyze_memory_capacity(&all_features)?;
1229        }
1230
1231        // Evaluate performance
1232        let (training_error, test_error) =
1233            self.evaluate_performance(&all_features, &all_targets)?;
1234
1235        let training_time = start_time.elapsed().as_secs_f64() * 1000.0;
1236
1237        // Update metrics
1238        self.metrics.training_examples += all_features.len();
1239        self.metrics.generalization_error = test_error;
1240        self.metrics.memory_capacity = self.reservoir_state.memory_metrics.total_capacity;
1241
1242        Ok(TrainingResult {
1243            training_error,
1244            test_error,
1245            training_time_ms: training_time,
1246            num_examples: all_features.len(),
1247            echo_state_property: self.estimate_echo_state_property()?,
1248            memory_capacity: self.reservoir_state.memory_metrics.total_capacity,
1249            nonlinear_capacity: self.reservoir_state.memory_metrics.nonlinear_capacity,
1250            processing_capacity: self.reservoir_state.memory_metrics.processing_capacity,
1251        })
1252    }
1253
1254    /// Train using advanced learning algorithms
1255    fn train_with_learning_algorithm(
1256        &mut self,
1257        features: &[Array1<f64>],
1258        targets: &[Array1<f64>],
1259    ) -> Result<()> {
1260        match self.config.learning_config.algorithm {
1261            LearningAlgorithm::Ridge => {
1262                self.train_ridge_regression(features, targets)?;
1263            }
1264            LearningAlgorithm::LASSO => {
1265                self.train_lasso_regression(features, targets)?;
1266            }
1267            LearningAlgorithm::ElasticNet => {
1268                self.train_elastic_net(features, targets)?;
1269            }
1270            LearningAlgorithm::RecursiveLeastSquares => {
1271                self.train_recursive_least_squares(features, targets)?;
1272            }
1273            LearningAlgorithm::KalmanFilter => {
1274                self.train_kalman_filter(features, targets)?;
1275            }
1276            _ => {
1277                // Default to ridge regression
1278                self.train_ridge_regression(features, targets)?;
1279            }
1280        }
1281
1282        Ok(())
1283    }
1284
1285    /// Train ridge regression
1286    fn train_ridge_regression(
1287        &mut self,
1288        features: &[Array1<f64>],
1289        targets: &[Array1<f64>],
1290    ) -> Result<()> {
1291        if features.is_empty() || targets.is_empty() {
1292            return Ok(());
1293        }
1294
1295        let n_samples = features.len().min(targets.len());
1296        let n_features = features[0].len();
1297        let n_outputs = targets[0].len().min(self.output_weights.nrows());
1298
1299        // Create feature matrix
1300        let mut feature_matrix = Array2::zeros((n_samples, n_features));
1301        for (i, feature_vec) in features.iter().enumerate().take(n_samples) {
1302            for (j, &val) in feature_vec.iter().enumerate().take(n_features) {
1303                feature_matrix[[i, j]] = val;
1304            }
1305        }
1306
1307        // Create target matrix
1308        let mut target_matrix = Array2::zeros((n_samples, n_outputs));
1309        for (i, target_vec) in targets.iter().enumerate().take(n_samples) {
1310            for (j, &val) in target_vec.iter().enumerate().take(n_outputs) {
1311                target_matrix[[i, j]] = val;
1312            }
1313        }
1314
1315        // Ridge regression: W = (X^T X + λI)^(-1) X^T Y
1316        let lambda = self.config.learning_config.regularization;
1317
1318        // X^T X
1319        let xtx = feature_matrix.t().dot(&feature_matrix);
1320
1321        // Add regularization
1322        let mut xtx_reg = xtx;
1323        for i in 0..xtx_reg.nrows().min(xtx_reg.ncols()) {
1324            xtx_reg[[i, i]] += lambda;
1325        }
1326
1327        // X^T Y
1328        let xty = feature_matrix.t().dot(&target_matrix);
1329
1330        // Solve using simplified approach (in practice would use proper linear solver)
1331        self.solve_linear_system(&xtx_reg, &xty)?;
1332
1333        Ok(())
1334    }
1335
1336    /// Train LASSO regression (simplified)
1337    fn train_lasso_regression(
1338        &mut self,
1339        features: &[Array1<f64>],
1340        targets: &[Array1<f64>],
1341    ) -> Result<()> {
1342        // Simplified LASSO using coordinate descent
1343        let lambda = self.config.learning_config.regularization;
1344        let max_iter = 100;
1345
1346        for _ in 0..max_iter {
1347            // Coordinate descent updates
1348            for j in 0..self.output_weights.ncols().min(features[0].len()) {
1349                for i in 0..self.output_weights.nrows().min(targets[0].len()) {
1350                    // Soft thresholding update
1351                    let old_weight = self.output_weights[[i, j]];
1352                    let gradient = self.compute_lasso_gradient(features, targets, i, j)?;
1353                    let update = 0.01f64.mul_add(-gradient, old_weight);
1354
1355                    // Soft thresholding
1356                    self.output_weights[[i, j]] = if update > lambda {
1357                        update - lambda
1358                    } else if update < -lambda {
1359                        update + lambda
1360                    } else {
1361                        0.0
1362                    };
1363                }
1364            }
1365        }
1366
1367        Ok(())
1368    }
1369
1370    /// Compute LASSO gradient (simplified)
1371    fn compute_lasso_gradient(
1372        &self,
1373        features: &[Array1<f64>],
1374        targets: &[Array1<f64>],
1375        output_idx: usize,
1376        feature_idx: usize,
1377    ) -> Result<f64> {
1378        let mut gradient = 0.0;
1379
1380        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
1381            if feature_idx < feature_vec.len() && output_idx < target_vec.len() {
1382                let prediction = self.predict_single_output(feature_vec, output_idx)?;
1383                let error = prediction - target_vec[output_idx];
1384                gradient += error * feature_vec[feature_idx];
1385            }
1386        }
1387
1388        gradient /= features.len() as f64;
1389        Ok(gradient)
1390    }
1391
1392    /// Train Elastic Net regression
1393    fn train_elastic_net(
1394        &mut self,
1395        features: &[Array1<f64>],
1396        targets: &[Array1<f64>],
1397    ) -> Result<()> {
1398        let l1_ratio = self.config.learning_config.l1_ratio;
1399
1400        // Combine Ridge and LASSO with L1 ratio
1401        if l1_ratio > 0.5 {
1402            // More L1 regularization
1403            self.train_lasso_regression(features, targets)?;
1404        } else {
1405            // More L2 regularization
1406            self.train_ridge_regression(features, targets)?;
1407        }
1408
1409        Ok(())
1410    }
1411
1412    /// Train Recursive Least Squares
1413    fn train_recursive_least_squares(
1414        &mut self,
1415        features: &[Array1<f64>],
1416        targets: &[Array1<f64>],
1417    ) -> Result<()> {
1418        let forgetting_factor = self.config.learning_config.forgetting_factor;
1419        let n_features = features[0].len().min(self.output_weights.ncols());
1420        let n_outputs = targets[0].len().min(self.output_weights.nrows());
1421
1422        // Initialize covariance matrix
1423        let mut p_matrix = Array2::eye(n_features) * 1000.0; // Large initial covariance
1424
1425        // Online RLS updates
1426        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
1427            let x = feature_vec.slice(s![..n_features]).to_owned();
1428            let y = target_vec.slice(s![..n_outputs]).to_owned();
1429
1430            // Update covariance matrix
1431            let px = p_matrix.dot(&x);
1432            let denominator = forgetting_factor + x.dot(&px);
1433
1434            if denominator > 1e-15 {
1435                let k = &px / denominator;
1436
1437                // Update weights for each output
1438                for output_idx in 0..n_outputs {
1439                    let prediction = self.predict_single_output(feature_vec, output_idx)?;
1440                    let error = y[output_idx] - prediction;
1441
1442                    // RLS weight update
1443                    for feature_idx in 0..n_features {
1444                        self.output_weights[[output_idx, feature_idx]] += k[feature_idx] * error;
1445                    }
1446                }
1447
1448                // Update covariance matrix
1449                let outer_product = k
1450                    .view()
1451                    .insert_axis(Axis(1))
1452                    .dot(&x.view().insert_axis(Axis(0)));
1453                p_matrix = (p_matrix - outer_product) / forgetting_factor;
1454            }
1455        }
1456
1457        Ok(())
1458    }
1459
1460    /// Train Kalman filter
1461    fn train_kalman_filter(
1462        &mut self,
1463        features: &[Array1<f64>],
1464        targets: &[Array1<f64>],
1465    ) -> Result<()> {
1466        let process_noise = self.config.learning_config.process_noise;
1467        let measurement_noise = self.config.learning_config.measurement_noise;
1468
1469        let n_features = features[0].len().min(self.output_weights.ncols());
1470        let n_outputs = targets[0].len().min(self.output_weights.nrows());
1471
1472        // Initialize Kalman filter matrices
1473        let mut state_covariance = Array2::eye(n_features) * 1.0;
1474        let process_noise_matrix: Array2<f64> = Array2::eye(n_features) * process_noise;
1475        let measurement_noise_scalar = measurement_noise;
1476
1477        // Kalman filter updates
1478        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
1479            let x = feature_vec.slice(s![..n_features]).to_owned();
1480            let y = target_vec.slice(s![..n_outputs]).to_owned();
1481
1482            // Prediction step
1483            let predicted_covariance = &state_covariance + &process_noise_matrix;
1484
1485            // Update step for each output
1486            for output_idx in 0..n_outputs {
1487                let measurement = y[output_idx];
1488                let prediction = self.predict_single_output(feature_vec, output_idx)?;
1489
1490                // Kalman gain
1491                let s = x.dot(&predicted_covariance.dot(&x)) + measurement_noise_scalar;
1492                if s > 1e-15 {
1493                    let k = predicted_covariance.dot(&x) / s;
1494
1495                    // Update weights
1496                    let innovation = measurement - prediction;
1497                    for feature_idx in 0..n_features {
1498                        self.output_weights[[output_idx, feature_idx]] +=
1499                            k[feature_idx] * innovation;
1500                    }
1501
1502                    // Update covariance
1503                    let kh = k
1504                        .view()
1505                        .insert_axis(Axis(1))
1506                        .dot(&x.view().insert_axis(Axis(0)));
1507                    state_covariance = &predicted_covariance - &kh.dot(&predicted_covariance);
1508                }
1509            }
1510        }
1511
1512        Ok(())
1513    }
1514
1515    /// Predict single output value
1516    fn predict_single_output(&self, features: &Array1<f64>, output_idx: usize) -> Result<f64> {
1517        let feature_size = features.len().min(self.output_weights.ncols());
1518        let mut output = 0.0;
1519
1520        for j in 0..feature_size {
1521            output += self.output_weights[[output_idx, j]] * features[j];
1522        }
1523
1524        Ok(output)
1525    }
1526
1527    /// Analyze memory capacity
1528    fn analyze_memory_capacity(&mut self, features: &[Array1<f64>]) -> Result<()> {
1529        // Linear memory capacity
1530        let linear_capacity = self.estimate_linear_memory_capacity(features)?;
1531        self.reservoir_state.memory_metrics.linear_capacity = linear_capacity;
1532
1533        // Nonlinear memory capacity
1534        if self.config.memory_config.enable_nonlinear {
1535            let nonlinear_capacity = self.estimate_nonlinear_memory_capacity(features)?;
1536            self.reservoir_state.memory_metrics.nonlinear_capacity = nonlinear_capacity;
1537        }
1538
1539        // Total capacity
1540        self.reservoir_state.memory_metrics.total_capacity =
1541            self.reservoir_state.memory_metrics.linear_capacity
1542                + self.reservoir_state.memory_metrics.nonlinear_capacity;
1543
1544        // Information processing capacity
1545        if self.config.memory_config.enable_ipc {
1546            let ipc = self.estimate_information_processing_capacity(features)?;
1547            self.reservoir_state.memory_metrics.processing_capacity = ipc;
1548        }
1549
1550        // Update memory analyzer
1551        self.memory_analyzer.capacity_estimates.insert(
1552            "linear".to_string(),
1553            self.reservoir_state.memory_metrics.linear_capacity,
1554        );
1555        self.memory_analyzer.capacity_estimates.insert(
1556            "nonlinear".to_string(),
1557            self.reservoir_state.memory_metrics.nonlinear_capacity,
1558        );
1559        self.memory_analyzer.capacity_estimates.insert(
1560            "total".to_string(),
1561            self.reservoir_state.memory_metrics.total_capacity,
1562        );
1563
1564        Ok(())
1565    }
1566
1567    /// Estimate linear memory capacity
1568    fn estimate_linear_memory_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
1569        // Use correlation analysis to estimate linear memory
1570        let mut capacity = 0.0;
1571
1572        for lag in 1..=20 {
1573            if lag < features.len() {
1574                let mut correlation = 0.0;
1575                let mut count = 0;
1576
1577                for i in lag..features.len() {
1578                    for j in 0..features[i].len().min(features[i - lag].len()) {
1579                        correlation += features[i][j] * features[i - lag][j];
1580                        count += 1;
1581                    }
1582                }
1583
1584                if count > 0 {
1585                    correlation /= f64::from(count);
1586                    capacity += correlation.abs();
1587                }
1588            }
1589        }
1590
1591        Ok(capacity)
1592    }
1593
1594    /// Estimate nonlinear memory capacity
1595    fn estimate_nonlinear_memory_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
1596        let mut nonlinear_capacity = 0.0;
1597
1598        // Test various nonlinear functions
1599        for order in &self.config.memory_config.nonlinearity_orders {
1600            let capacity_order = self.test_nonlinear_order(*order, features)?;
1601            nonlinear_capacity += capacity_order;
1602        }
1603
1604        Ok(nonlinear_capacity)
1605    }
1606
1607    /// Test specific nonlinear order
1608    fn test_nonlinear_order(&self, order: usize, features: &[Array1<f64>]) -> Result<f64> {
1609        let mut capacity = 0.0;
1610
1611        // Generate nonlinear target function
1612        for lag in 1..=10 {
1613            if lag < features.len() {
1614                let mut correlation = 0.0;
1615                let mut count = 0;
1616
1617                for i in lag..features.len() {
1618                    for j in 0..features[i].len().min(features[i - lag].len()) {
1619                        // Nonlinear transformation
1620                        let current = features[i][j];
1621                        let past = features[i - lag][j];
1622                        let nonlinear_target = past.powi(order as i32);
1623
1624                        correlation += current * nonlinear_target;
1625                        count += 1;
1626                    }
1627                }
1628
1629                if count > 0 {
1630                    correlation /= f64::from(count);
1631                    capacity += correlation.abs() / order as f64; // Normalize by order
1632                }
1633            }
1634        }
1635
1636        Ok(capacity)
1637    }
1638
1639    /// Estimate information processing capacity
1640    fn estimate_information_processing_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
1641        let mut ipc = 0.0;
1642
1643        for ipc_function in &self.config.memory_config.ipc_functions {
1644            let capacity_func = self.test_ipc_function(*ipc_function, features)?;
1645            ipc += capacity_func;
1646        }
1647
1648        Ok(ipc)
1649    }
1650
1651    /// Test specific IPC function
1652    fn test_ipc_function(&self, function: IPCFunction, features: &[Array1<f64>]) -> Result<f64> {
1653        let mut capacity = 0.0;
1654
1655        for lag in 1..=10 {
1656            if lag < features.len() {
1657                let mut correlation = 0.0;
1658                let mut count = 0;
1659
1660                for i in lag..features.len() {
1661                    for j in 0..features[i].len().min(features[i - lag].len()) {
1662                        let current = features[i][j];
1663                        let past = features[i - lag][j];
1664
1665                        let target = match function {
1666                            IPCFunction::Linear => past,
1667                            IPCFunction::Quadratic => past * past,
1668                            IPCFunction::Cubic => past * past * past,
1669                            IPCFunction::Sine => past.sin(),
1670                            IPCFunction::Product => {
1671                                if j > 0 && j - 1 < features[i - lag].len() {
1672                                    past * features[i - lag][j - 1]
1673                                } else {
1674                                    past
1675                                }
1676                            }
1677                            IPCFunction::XOR => {
1678                                if past > 0.0 {
1679                                    1.0
1680                                } else {
1681                                    -1.0
1682                                }
1683                            }
1684                        };
1685
1686                        correlation += current * target;
1687                        count += 1;
1688                    }
1689                }
1690
1691                if count > 0 {
1692                    correlation /= f64::from(count);
1693                    capacity += correlation.abs();
1694                }
1695            }
1696        }
1697
1698        Ok(capacity)
1699    }
1700
1701    /// Solve linear system (simplified implementation)
1702    fn solve_linear_system(&mut self, a: &Array2<f64>, b: &Array2<f64>) -> Result<()> {
1703        let min_dim = a.nrows().min(a.ncols()).min(b.nrows());
1704
1705        for i in 0..min_dim.min(self.output_weights.nrows()) {
1706            for j in 0..b.ncols().min(self.output_weights.ncols()) {
1707                if a[[i, i]].abs() > 1e-15 {
1708                    self.output_weights[[i, j]] = b[[i, j]] / a[[i, i]];
1709                }
1710            }
1711        }
1712
1713        Ok(())
1714    }
1715
1716    /// Evaluate performance on training data
1717    fn evaluate_performance(
1718        &self,
1719        features: &[Array1<f64>],
1720        targets: &[Array1<f64>],
1721    ) -> Result<(f64, f64)> {
1722        if features.is_empty() || targets.is_empty() {
1723            return Ok((0.0, 0.0));
1724        }
1725
1726        let mut total_error = 0.0;
1727        let n_samples = features.len().min(targets.len());
1728
1729        for i in 0..n_samples {
1730            let prediction = self.predict_output(&features[i])?;
1731            let error = self.calculate_prediction_error(&prediction, &targets[i]);
1732            total_error += error;
1733        }
1734
1735        let training_error = total_error / n_samples as f64;
1736
1737        // Use same error for test (in practice, would use separate test set)
1738        let test_error = training_error;
1739
1740        Ok((training_error, test_error))
1741    }
1742
1743    /// Predict output for given features
1744    fn predict_output(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
1745        let feature_size = features.len().min(self.output_weights.ncols());
1746        let output_size = self.output_weights.nrows();
1747
1748        let mut output = Array1::zeros(output_size);
1749
1750        for i in 0..output_size {
1751            for j in 0..feature_size {
1752                output[i] += self.output_weights[[i, j]] * features[j];
1753            }
1754        }
1755
1756        Ok(output)
1757    }
1758
1759    /// Calculate prediction error
1760    fn calculate_prediction_error(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> f64 {
1761        let min_len = prediction.len().min(target.len());
1762        let mut error = 0.0;
1763
1764        for i in 0..min_len {
1765            let diff = prediction[i] - target[i];
1766            error += diff * diff;
1767        }
1768
1769        (error / min_len as f64).sqrt() // RMSE
1770    }
1771
1772    /// Estimate echo state property
1773    fn estimate_echo_state_property(&self) -> Result<f64> {
1774        let coupling = self.config.coupling_strength;
1775        let estimated_spectral_radius = coupling.tanh(); // Heuristic estimate
1776
1777        // Echo state property requires spectral radius < 1
1778        Ok(if estimated_spectral_radius < 1.0 {
1779            1.0
1780        } else {
1781            1.0 / estimated_spectral_radius
1782        })
1783    }
1784
1785    /// Update processing time metrics
1786    fn update_processing_time(&mut self, time_ms: f64) {
1787        let count = self.metrics.training_examples as f64;
1788        self.metrics.avg_processing_time_ms =
1789            self.metrics.avg_processing_time_ms.mul_add(count, time_ms) / (count + 1.0);
1790    }
1791
1792    /// Get current metrics
1793    pub const fn get_metrics(&self) -> &ReservoirMetrics {
1794        &self.metrics
1795    }
1796
1797    /// Get memory analysis results
1798    pub const fn get_memory_analysis(&self) -> &MemoryAnalyzer {
1799        &self.memory_analyzer
1800    }
1801
1802    /// Reset reservoir computer
1803    pub fn reset(&mut self) -> Result<()> {
1804        self.reservoir_state =
1805            QuantumReservoirState::new(self.config.num_qubits, self.config.memory_capacity);
1806        self.metrics = ReservoirMetrics::default();
1807        self.training_history.clear();
1808        Ok(())
1809    }
1810}