quantrs2_sim/quantum_machine_learning_layers/
layers.rs

1//! QML Layers Implementation
2//!
3//! This module provides quantum machine learning layer implementations.
4
5use super::config::{AnsatzType, EntanglementPattern, QMLLayerConfig, RotationGate};
6use super::types::{
7    AttentionHead, ConvolutionalFilter, DenseConnection, LSTMGate, LSTMGateType, PQCGate,
8    PQCGateType, TwoQubitGate,
9};
10use crate::error::Result;
11use crate::statevector::StateVectorSimulator;
12use crate::SimulatorError;
13use scirs2_core::ndarray::Array1;
14use scirs2_core::random::prelude::*;
15use scirs2_core::Complex64;
16use std::f64::consts::PI;
17
18/// Trait for QML layers
19pub trait QMLLayer: std::fmt::Debug + Send + Sync {
20    /// Forward pass through the layer
21    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>>;
22
23    /// Backward pass through the layer
24    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>>;
25
26    /// Get layer parameters
27    fn get_parameters(&self) -> Array1<f64>;
28
29    /// Set layer parameters
30    fn set_parameters(&mut self, parameters: &Array1<f64>);
31
32    /// Get circuit depth
33    fn get_depth(&self) -> usize;
34
35    /// Get gate count
36    fn get_gate_count(&self) -> usize;
37
38    /// Get number of parameters
39    fn get_num_parameters(&self) -> usize;
40}
41
42/// Parameterized Quantum Circuit Layer
43#[derive(Debug)]
44pub struct ParameterizedQuantumCircuitLayer {
45    /// Number of qubits
46    num_qubits: usize,
47    /// Layer configuration
48    config: QMLLayerConfig,
49    /// Parameters (rotation angles)
50    parameters: Array1<f64>,
51    /// Circuit structure
52    circuit_structure: Vec<PQCGate>,
53    /// Internal state vector simulator
54    simulator: StateVectorSimulator,
55}
56
57impl ParameterizedQuantumCircuitLayer {
58    /// Create new PQC layer
59    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
60        let mut layer = Self {
61            num_qubits,
62            config: config.clone(),
63            parameters: Array1::zeros(config.num_parameters),
64            circuit_structure: Vec::new(),
65            simulator: StateVectorSimulator::new(),
66        };
67
68        // Initialize parameters randomly
69        layer.initialize_parameters();
70
71        // Build circuit structure
72        layer.build_circuit_structure()?;
73
74        Ok(layer)
75    }
76
77    /// Initialize parameters randomly
78    fn initialize_parameters(&mut self) {
79        let mut rng = thread_rng();
80        for param in &mut self.parameters {
81            *param = rng.random_range(-PI..PI);
82        }
83    }
84
85    /// Build circuit structure based on ansatz
86    fn build_circuit_structure(&mut self) -> Result<()> {
87        match self.config.ansatz_type {
88            AnsatzType::Hardware => self.build_hardware_efficient_ansatz(),
89            AnsatzType::Layered => self.build_layered_ansatz(),
90            AnsatzType::BrickWall => self.build_brick_wall_ansatz(),
91            _ => Err(SimulatorError::InvalidConfiguration(
92                "Ansatz type not implemented".to_string(),
93            )),
94        }
95    }
96
97    /// Build hardware-efficient ansatz
98    fn build_hardware_efficient_ansatz(&mut self) -> Result<()> {
99        let mut param_idx = 0;
100
101        for _layer in 0..self.config.depth {
102            // Single-qubit rotations
103            for qubit in 0..self.num_qubits {
104                for &gate_type in &self.config.rotation_gates {
105                    if param_idx < self.parameters.len() {
106                        self.circuit_structure.push(PQCGate {
107                            gate_type: PQCGateType::SingleQubit(gate_type),
108                            qubits: vec![qubit],
109                            parameter_index: Some(param_idx),
110                        });
111                        param_idx += 1;
112                    }
113                }
114            }
115
116            // Entangling gates
117            self.add_entangling_gates(&param_idx);
118        }
119
120        Ok(())
121    }
122
123    /// Build layered ansatz
124    fn build_layered_ansatz(&mut self) -> Result<()> {
125        // Similar to hardware-efficient but with different structure
126        self.build_hardware_efficient_ansatz()
127    }
128
129    /// Build brick-wall ansatz
130    fn build_brick_wall_ansatz(&mut self) -> Result<()> {
131        let mut param_idx = 0;
132
133        for layer in 0..self.config.depth {
134            // Alternating CNOT pattern (brick-wall)
135            let offset = layer % 2;
136            for i in (offset..self.num_qubits - 1).step_by(2) {
137                self.circuit_structure.push(PQCGate {
138                    gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
139                    qubits: vec![i, i + 1],
140                    parameter_index: None,
141                });
142            }
143
144            // Single-qubit rotations
145            for qubit in 0..self.num_qubits {
146                if param_idx < self.parameters.len() {
147                    self.circuit_structure.push(PQCGate {
148                        gate_type: PQCGateType::SingleQubit(RotationGate::RY),
149                        qubits: vec![qubit],
150                        parameter_index: Some(param_idx),
151                    });
152                    param_idx += 1;
153                }
154            }
155        }
156
157        Ok(())
158    }
159
160    /// Add entangling gates based on entanglement pattern
161    fn add_entangling_gates(&mut self, _param_idx: &usize) {
162        match self.config.entanglement_pattern {
163            EntanglementPattern::Linear => {
164                for i in 0..(self.num_qubits - 1) {
165                    self.circuit_structure.push(PQCGate {
166                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
167                        qubits: vec![i, i + 1],
168                        parameter_index: None,
169                    });
170                }
171            }
172            EntanglementPattern::Circular => {
173                for i in 0..self.num_qubits {
174                    let next = (i + 1) % self.num_qubits;
175                    self.circuit_structure.push(PQCGate {
176                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
177                        qubits: vec![i, next],
178                        parameter_index: None,
179                    });
180                }
181            }
182            EntanglementPattern::AllToAll => {
183                for i in 0..self.num_qubits {
184                    for j in (i + 1)..self.num_qubits {
185                        self.circuit_structure.push(PQCGate {
186                            gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
187                            qubits: vec![i, j],
188                            parameter_index: None,
189                        });
190                    }
191                }
192            }
193            _ => {
194                // Default to linear
195                for i in 0..(self.num_qubits - 1) {
196                    self.circuit_structure.push(PQCGate {
197                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
198                        qubits: vec![i, i + 1],
199                        parameter_index: None,
200                    });
201                }
202            }
203        }
204    }
205}
206
207impl QMLLayer for ParameterizedQuantumCircuitLayer {
208    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
209        let mut state = input.clone();
210
211        // Apply each gate in the circuit
212        for gate in &self.circuit_structure {
213            state = self.apply_gate(&state, gate)?;
214        }
215
216        Ok(state)
217    }
218
219    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
220        // Simplified backward pass - in practice would use automatic differentiation
221        Ok(gradient.clone())
222    }
223
224    fn get_parameters(&self) -> Array1<f64> {
225        self.parameters.clone()
226    }
227
228    fn set_parameters(&mut self, parameters: &Array1<f64>) {
229        self.parameters = parameters.clone();
230    }
231
232    fn get_depth(&self) -> usize {
233        self.config.depth
234    }
235
236    fn get_gate_count(&self) -> usize {
237        self.circuit_structure.len()
238    }
239
240    fn get_num_parameters(&self) -> usize {
241        self.parameters.len()
242    }
243}
244
245impl ParameterizedQuantumCircuitLayer {
246    /// Apply a single gate to the quantum state
247    fn apply_gate(&self, state: &Array1<Complex64>, gate: &PQCGate) -> Result<Array1<Complex64>> {
248        match &gate.gate_type {
249            PQCGateType::SingleQubit(rotation_gate) => {
250                let angle = if let Some(param_idx) = gate.parameter_index {
251                    self.parameters[param_idx]
252                } else {
253                    0.0
254                };
255                Self::apply_single_qubit_gate(state, gate.qubits[0], *rotation_gate, angle)
256            }
257            PQCGateType::TwoQubit(two_qubit_gate) => {
258                Self::apply_two_qubit_gate(state, gate.qubits[0], gate.qubits[1], *two_qubit_gate)
259            }
260        }
261    }
262
263    /// Apply single-qubit rotation gate
264    fn apply_single_qubit_gate(
265        state: &Array1<Complex64>,
266        qubit: usize,
267        gate_type: RotationGate,
268        angle: f64,
269    ) -> Result<Array1<Complex64>> {
270        let state_size = state.len();
271        let mut new_state = Array1::zeros(state_size);
272
273        match gate_type {
274            RotationGate::RX => {
275                let cos_half = (angle / 2.0).cos();
276                let sin_half = (angle / 2.0).sin();
277
278                for i in 0..state_size {
279                    if i & (1 << qubit) == 0 {
280                        let j = i | (1 << qubit);
281                        if j < state_size {
282                            new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
283                                + Complex64::new(0.0, -sin_half) * state[j];
284                            new_state[j] = Complex64::new(0.0, -sin_half) * state[i]
285                                + Complex64::new(cos_half, 0.0) * state[j];
286                        }
287                    }
288                }
289            }
290            RotationGate::RY => {
291                let cos_half = (angle / 2.0).cos();
292                let sin_half = (angle / 2.0).sin();
293
294                for i in 0..state_size {
295                    if i & (1 << qubit) == 0 {
296                        let j = i | (1 << qubit);
297                        if j < state_size {
298                            new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
299                                - Complex64::new(sin_half, 0.0) * state[j];
300                            new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
301                                + Complex64::new(cos_half, 0.0) * state[j];
302                        }
303                    }
304                }
305            }
306            RotationGate::RZ => {
307                let phase_0 = Complex64::from_polar(1.0, -angle / 2.0);
308                let phase_1 = Complex64::from_polar(1.0, angle / 2.0);
309
310                for i in 0..state_size {
311                    if i & (1 << qubit) == 0 {
312                        new_state[i] = phase_0 * state[i];
313                    } else {
314                        new_state[i] = phase_1 * state[i];
315                    }
316                }
317            }
318            _ => {
319                return Err(SimulatorError::InvalidGate(
320                    "Gate type not implemented".to_string(),
321                ))
322            }
323        }
324
325        Ok(new_state)
326    }
327
328    /// Apply two-qubit gate
329    fn apply_two_qubit_gate(
330        state: &Array1<Complex64>,
331        control: usize,
332        target: usize,
333        gate_type: TwoQubitGate,
334    ) -> Result<Array1<Complex64>> {
335        let state_size = state.len();
336        let mut new_state = state.clone();
337
338        match gate_type {
339            TwoQubitGate::CNOT => {
340                for i in 0..state_size {
341                    if (i & (1 << control)) != 0 {
342                        // Control qubit is |1⟩, flip target
343                        let j = i ^ (1 << target);
344                        new_state[i] = state[j];
345                    }
346                }
347            }
348            TwoQubitGate::CZ => {
349                for i in 0..state_size {
350                    if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
351                        // Both qubits are |1⟩, apply phase
352                        new_state[i] = -state[i];
353                    }
354                }
355            }
356            TwoQubitGate::SWAP => {
357                for i in 0..state_size {
358                    let ctrl_bit = (i & (1 << control)) != 0;
359                    let targ_bit = (i & (1 << target)) != 0;
360                    if ctrl_bit != targ_bit {
361                        // Swap the qubits
362                        let j = i ^ (1 << control) ^ (1 << target);
363                        new_state[i] = state[j];
364                    }
365                }
366            }
367            TwoQubitGate::CPhase => {
368                for i in 0..state_size {
369                    if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
370                        // Both qubits are |1⟩, apply phase (similar to CZ)
371                        new_state[i] = -state[i];
372                    }
373                }
374            }
375        }
376
377        Ok(new_state)
378    }
379}
380
381/// Quantum Convolutional Layer
382#[derive(Debug)]
383pub struct QuantumConvolutionalLayer {
384    /// Number of qubits
385    num_qubits: usize,
386    /// Layer configuration
387    config: QMLLayerConfig,
388    /// Parameters
389    parameters: Array1<f64>,
390    /// Convolutional structure
391    conv_structure: Vec<ConvolutionalFilter>,
392}
393
394impl QuantumConvolutionalLayer {
395    /// Create new quantum convolutional layer
396    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
397        let mut layer = Self {
398            num_qubits,
399            config: config.clone(),
400            parameters: Array1::zeros(config.num_parameters),
401            conv_structure: Vec::new(),
402        };
403
404        layer.initialize_parameters();
405        layer.build_convolutional_structure()?;
406
407        Ok(layer)
408    }
409
410    /// Initialize parameters
411    fn initialize_parameters(&mut self) {
412        let mut rng = thread_rng();
413        for param in &mut self.parameters {
414            *param = rng.random_range(-PI..PI);
415        }
416    }
417
418    /// Build convolutional structure
419    fn build_convolutional_structure(&mut self) -> Result<()> {
420        // Create sliding window filters
421        let filter_size = 2; // 2-qubit filters
422        let stride = 1;
423
424        let mut param_idx = 0;
425        for start in (0..=(self.num_qubits - filter_size)).step_by(stride) {
426            if param_idx + 2 <= self.parameters.len() {
427                self.conv_structure.push(ConvolutionalFilter {
428                    qubits: vec![start, start + 1],
429                    parameter_indices: vec![param_idx, param_idx + 1],
430                });
431                param_idx += 2;
432            }
433        }
434
435        Ok(())
436    }
437}
438
439impl QMLLayer for QuantumConvolutionalLayer {
440    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
441        let mut state = input.clone();
442
443        // Apply convolutional filters
444        for filter in &self.conv_structure {
445            state = self.apply_convolutional_filter(&state, filter)?;
446        }
447
448        Ok(state)
449    }
450
451    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
452        Ok(gradient.clone())
453    }
454
455    fn get_parameters(&self) -> Array1<f64> {
456        self.parameters.clone()
457    }
458
459    fn set_parameters(&mut self, parameters: &Array1<f64>) {
460        self.parameters = parameters.clone();
461    }
462
463    fn get_depth(&self) -> usize {
464        self.conv_structure.len()
465    }
466
467    fn get_gate_count(&self) -> usize {
468        self.conv_structure.len() * 4 // Approximate gates per filter
469    }
470
471    fn get_num_parameters(&self) -> usize {
472        self.parameters.len()
473    }
474}
475
476impl QuantumConvolutionalLayer {
477    /// Apply convolutional filter
478    fn apply_convolutional_filter(
479        &self,
480        state: &Array1<Complex64>,
481        filter: &ConvolutionalFilter,
482    ) -> Result<Array1<Complex64>> {
483        let mut new_state = state.clone();
484
485        // Apply parameterized two-qubit unitaries
486        let param1 = self.parameters[filter.parameter_indices[0]];
487        let param2 = self.parameters[filter.parameter_indices[1]];
488
489        // Apply RY rotations followed by CNOT
490        new_state = Self::apply_ry_to_state(&new_state, filter.qubits[0], param1)?;
491        new_state = Self::apply_ry_to_state(&new_state, filter.qubits[1], param2)?;
492        new_state = Self::apply_cnot_to_state(&new_state, filter.qubits[0], filter.qubits[1])?;
493
494        Ok(new_state)
495    }
496
497    /// Apply RY rotation to state
498    fn apply_ry_to_state(
499        state: &Array1<Complex64>,
500        qubit: usize,
501        angle: f64,
502    ) -> Result<Array1<Complex64>> {
503        let state_size = state.len();
504        let mut new_state = Array1::zeros(state_size);
505
506        let cos_half = (angle / 2.0).cos();
507        let sin_half = (angle / 2.0).sin();
508
509        for i in 0..state_size {
510            if i & (1 << qubit) == 0 {
511                let j = i | (1 << qubit);
512                if j < state_size {
513                    new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
514                        - Complex64::new(sin_half, 0.0) * state[j];
515                    new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
516                        + Complex64::new(cos_half, 0.0) * state[j];
517                }
518            }
519        }
520
521        Ok(new_state)
522    }
523
524    /// Apply CNOT to state
525    fn apply_cnot_to_state(
526        state: &Array1<Complex64>,
527        control: usize,
528        target: usize,
529    ) -> Result<Array1<Complex64>> {
530        let state_size = state.len();
531        let mut new_state = state.clone();
532
533        for i in 0..state_size {
534            if (i & (1 << control)) != 0 {
535                let j = i ^ (1 << target);
536                new_state[i] = state[j];
537            }
538        }
539
540        Ok(new_state)
541    }
542}
543
544/// Quantum Dense Layer (fully connected)
545#[derive(Debug)]
546pub struct QuantumDenseLayer {
547    /// Number of qubits
548    num_qubits: usize,
549    /// Layer configuration
550    config: QMLLayerConfig,
551    /// Parameters
552    parameters: Array1<f64>,
553    /// Dense layer structure
554    dense_structure: Vec<DenseConnection>,
555}
556
557impl QuantumDenseLayer {
558    /// Create new quantum dense layer
559    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
560        let mut layer = Self {
561            num_qubits,
562            config: config.clone(),
563            parameters: Array1::zeros(config.num_parameters),
564            dense_structure: Vec::new(),
565        };
566
567        layer.initialize_parameters();
568        layer.build_dense_structure()?;
569
570        Ok(layer)
571    }
572
573    /// Initialize parameters
574    fn initialize_parameters(&mut self) {
575        let mut rng = thread_rng();
576        for param in &mut self.parameters {
577            *param = rng.random_range(-PI..PI);
578        }
579    }
580
581    /// Build dense layer structure (all-to-all connectivity)
582    fn build_dense_structure(&mut self) -> Result<()> {
583        let mut param_idx = 0;
584
585        // Create all-to-all connections
586        for i in 0..self.num_qubits {
587            for j in (i + 1)..self.num_qubits {
588                if param_idx < self.parameters.len() {
589                    self.dense_structure.push(DenseConnection {
590                        qubit1: i,
591                        qubit2: j,
592                        parameter_index: param_idx,
593                    });
594                    param_idx += 1;
595                }
596            }
597        }
598
599        Ok(())
600    }
601}
602
603impl QMLLayer for QuantumDenseLayer {
604    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
605        let mut state = input.clone();
606
607        // Apply dense connections
608        for connection in &self.dense_structure {
609            state = self.apply_dense_connection(&state, connection)?;
610        }
611
612        Ok(state)
613    }
614
615    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
616        Ok(gradient.clone())
617    }
618
619    fn get_parameters(&self) -> Array1<f64> {
620        self.parameters.clone()
621    }
622
623    fn set_parameters(&mut self, parameters: &Array1<f64>) {
624        self.parameters = parameters.clone();
625    }
626
627    fn get_depth(&self) -> usize {
628        1 // Dense layer is typically single depth
629    }
630
631    fn get_gate_count(&self) -> usize {
632        self.dense_structure.len() * 2 // Approximate gates per connection
633    }
634
635    fn get_num_parameters(&self) -> usize {
636        self.parameters.len()
637    }
638}
639
640impl QuantumDenseLayer {
641    /// Apply dense connection (parameterized two-qubit gate)
642    fn apply_dense_connection(
643        &self,
644        state: &Array1<Complex64>,
645        connection: &DenseConnection,
646    ) -> Result<Array1<Complex64>> {
647        let angle = self.parameters[connection.parameter_index];
648
649        // Apply parameterized two-qubit rotation
650        Self::apply_parameterized_two_qubit_gate(state, connection.qubit1, connection.qubit2, angle)
651    }
652
653    /// Apply parameterized two-qubit gate
654    fn apply_parameterized_two_qubit_gate(
655        state: &Array1<Complex64>,
656        qubit1: usize,
657        qubit2: usize,
658        angle: f64,
659    ) -> Result<Array1<Complex64>> {
660        let state_size = state.len();
661        let mut new_state = state.clone();
662
663        // Apply controlled rotation
664        let cos_val = angle.cos();
665        let sin_val = angle.sin();
666
667        for i in 0..state_size {
668            if (i & (1 << qubit1)) != 0 && (i & (1 << qubit2)) != 0 {
669                // Both qubits are |1⟩
670                let phase = Complex64::new(cos_val, sin_val);
671                new_state[i] *= phase;
672            }
673        }
674
675        Ok(new_state)
676    }
677}
678
679/// Quantum LSTM Layer
680#[derive(Debug)]
681pub struct QuantumLSTMLayer {
682    /// Number of qubits
683    num_qubits: usize,
684    /// Layer configuration
685    config: QMLLayerConfig,
686    /// Parameters
687    parameters: Array1<f64>,
688    /// LSTM gates
689    lstm_gates: Vec<LSTMGate>,
690    /// Hidden state
691    hidden_state: Option<Array1<Complex64>>,
692    /// Cell state
693    cell_state: Option<Array1<Complex64>>,
694}
695
696impl QuantumLSTMLayer {
697    /// Create new quantum LSTM layer
698    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
699        let mut layer = Self {
700            num_qubits,
701            config: config.clone(),
702            parameters: Array1::zeros(config.num_parameters),
703            lstm_gates: Vec::new(),
704            hidden_state: None,
705            cell_state: None,
706        };
707
708        layer.initialize_parameters();
709        layer.build_lstm_structure()?;
710
711        Ok(layer)
712    }
713
714    /// Initialize parameters
715    fn initialize_parameters(&mut self) {
716        let mut rng = thread_rng();
717        for param in &mut self.parameters {
718            *param = rng.random_range(-PI..PI);
719        }
720    }
721
722    /// Build LSTM structure
723    fn build_lstm_structure(&mut self) -> Result<()> {
724        let params_per_gate = self.parameters.len() / 4; // Forget, input, output, candidate gates
725
726        self.lstm_gates = vec![
727            LSTMGate {
728                gate_type: LSTMGateType::Forget,
729                parameter_start: 0,
730                parameter_count: params_per_gate,
731            },
732            LSTMGate {
733                gate_type: LSTMGateType::Input,
734                parameter_start: params_per_gate,
735                parameter_count: params_per_gate,
736            },
737            LSTMGate {
738                gate_type: LSTMGateType::Output,
739                parameter_start: 2 * params_per_gate,
740                parameter_count: params_per_gate,
741            },
742            LSTMGate {
743                gate_type: LSTMGateType::Candidate,
744                parameter_start: 3 * params_per_gate,
745                parameter_count: params_per_gate,
746            },
747        ];
748
749        Ok(())
750    }
751}
752
753impl QMLLayer for QuantumLSTMLayer {
754    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
755        // Initialize states if first time
756        if self.hidden_state.is_none() {
757            let state_size = 1 << self.num_qubits;
758            let mut hidden = Array1::zeros(state_size);
759            let mut cell = Array1::zeros(state_size);
760            // Initialize with |0...0⟩ state
761            hidden[0] = Complex64::new(1.0, 0.0);
762            cell[0] = Complex64::new(1.0, 0.0);
763            self.hidden_state = Some(hidden);
764            self.cell_state = Some(cell);
765        }
766
767        let mut current_state = input.clone();
768
769        // Apply LSTM gates
770        for gate in &self.lstm_gates {
771            current_state = self.apply_lstm_gate(&current_state, gate)?;
772        }
773
774        // Update internal states
775        self.hidden_state = Some(current_state.clone());
776
777        Ok(current_state)
778    }
779
780    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
781        Ok(gradient.clone())
782    }
783
784    fn get_parameters(&self) -> Array1<f64> {
785        self.parameters.clone()
786    }
787
788    fn set_parameters(&mut self, parameters: &Array1<f64>) {
789        self.parameters = parameters.clone();
790    }
791
792    fn get_depth(&self) -> usize {
793        self.lstm_gates.len()
794    }
795
796    fn get_gate_count(&self) -> usize {
797        self.parameters.len() // Each parameter corresponds roughly to one gate
798    }
799
800    fn get_num_parameters(&self) -> usize {
801        self.parameters.len()
802    }
803}
804
805impl QuantumLSTMLayer {
806    /// Apply LSTM gate
807    fn apply_lstm_gate(
808        &self,
809        state: &Array1<Complex64>,
810        gate: &LSTMGate,
811    ) -> Result<Array1<Complex64>> {
812        let mut new_state = state.clone();
813
814        // Apply parameterized unitaries based on gate parameters
815        for i in 0..gate.parameter_count {
816            let param_idx = gate.parameter_start + i;
817            if param_idx < self.parameters.len() {
818                let angle = self.parameters[param_idx];
819                let qubit = i % self.num_qubits;
820
821                // Apply rotation gate
822                new_state = Self::apply_rotation(&new_state, qubit, angle)?;
823            }
824        }
825
826        Ok(new_state)
827    }
828
829    /// Apply rotation gate
830    fn apply_rotation(
831        state: &Array1<Complex64>,
832        qubit: usize,
833        angle: f64,
834    ) -> Result<Array1<Complex64>> {
835        let state_size = state.len();
836        let mut new_state = Array1::zeros(state_size);
837
838        let cos_half = (angle / 2.0).cos();
839        let sin_half = (angle / 2.0).sin();
840
841        for i in 0..state_size {
842            if i & (1 << qubit) == 0 {
843                let j = i | (1 << qubit);
844                if j < state_size {
845                    new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
846                        - Complex64::new(sin_half, 0.0) * state[j];
847                    new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
848                        + Complex64::new(cos_half, 0.0) * state[j];
849                }
850            }
851        }
852
853        Ok(new_state)
854    }
855
856    /// Get LSTM gates reference
857    #[must_use]
858    pub fn get_lstm_gates(&self) -> &[LSTMGate] {
859        &self.lstm_gates
860    }
861}
862
863/// Quantum Attention Layer
864#[derive(Debug)]
865pub struct QuantumAttentionLayer {
866    /// Number of qubits
867    num_qubits: usize,
868    /// Layer configuration
869    config: QMLLayerConfig,
870    /// Parameters
871    parameters: Array1<f64>,
872    /// Attention structure
873    attention_structure: Vec<AttentionHead>,
874}
875
876impl QuantumAttentionLayer {
877    /// Create new quantum attention layer
878    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
879        let mut layer = Self {
880            num_qubits,
881            config: config.clone(),
882            parameters: Array1::zeros(config.num_parameters),
883            attention_structure: Vec::new(),
884        };
885
886        layer.initialize_parameters();
887        layer.build_attention_structure()?;
888
889        Ok(layer)
890    }
891
892    /// Initialize parameters
893    fn initialize_parameters(&mut self) {
894        let mut rng = thread_rng();
895        for param in &mut self.parameters {
896            *param = rng.random_range(-PI..PI);
897        }
898    }
899
900    /// Build attention structure
901    fn build_attention_structure(&mut self) -> Result<()> {
902        let num_heads = 2; // Multi-head attention
903        let params_per_head = self.parameters.len() / num_heads;
904
905        for head in 0..num_heads {
906            self.attention_structure.push(AttentionHead {
907                head_id: head,
908                parameter_start: head * params_per_head,
909                parameter_count: params_per_head,
910                query_qubits: (0..self.num_qubits / 2).collect(),
911                key_qubits: (self.num_qubits / 2..self.num_qubits).collect(),
912            });
913        }
914
915        Ok(())
916    }
917}
918
919impl QMLLayer for QuantumAttentionLayer {
920    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
921        let mut state = input.clone();
922
923        // Apply attention heads
924        for head in &self.attention_structure {
925            state = self.apply_attention_head(&state, head)?;
926        }
927
928        Ok(state)
929    }
930
931    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
932        Ok(gradient.clone())
933    }
934
935    fn get_parameters(&self) -> Array1<f64> {
936        self.parameters.clone()
937    }
938
939    fn set_parameters(&mut self, parameters: &Array1<f64>) {
940        self.parameters = parameters.clone();
941    }
942
943    fn get_depth(&self) -> usize {
944        self.attention_structure.len()
945    }
946
947    fn get_gate_count(&self) -> usize {
948        self.parameters.len()
949    }
950
951    fn get_num_parameters(&self) -> usize {
952        self.parameters.len()
953    }
954}
955
956impl QuantumAttentionLayer {
957    /// Apply attention head
958    fn apply_attention_head(
959        &self,
960        state: &Array1<Complex64>,
961        head: &AttentionHead,
962    ) -> Result<Array1<Complex64>> {
963        let mut new_state = state.clone();
964
965        // Simplified quantum attention mechanism
966        for i in 0..head.parameter_count {
967            let param_idx = head.parameter_start + i;
968            if param_idx < self.parameters.len() {
969                let angle = self.parameters[param_idx];
970
971                // Apply cross-attention between query and key qubits
972                if i < head.query_qubits.len() && i < head.key_qubits.len() {
973                    let query_qubit = head.query_qubits[i];
974                    let key_qubit = head.key_qubits[i];
975
976                    new_state =
977                        Self::apply_attention_gate(&new_state, query_qubit, key_qubit, angle)?;
978                }
979            }
980        }
981
982        Ok(new_state)
983    }
984
985    /// Apply attention gate (parameterized two-qubit interaction)
986    fn apply_attention_gate(
987        state: &Array1<Complex64>,
988        query_qubit: usize,
989        key_qubit: usize,
990        angle: f64,
991    ) -> Result<Array1<Complex64>> {
992        let state_size = state.len();
993        let mut new_state = state.clone();
994
995        // Apply controlled rotation based on attention score
996        let cos_val = angle.cos();
997        let sin_val = angle.sin();
998
999        for i in 0..state_size {
1000            if (i & (1 << query_qubit)) != 0 {
1001                // Query qubit is |1⟩, apply attention
1002                let key_state = (i & (1 << key_qubit)) != 0;
1003                let attention_phase = if key_state {
1004                    Complex64::new(cos_val, sin_val)
1005                } else {
1006                    Complex64::new(cos_val, -sin_val)
1007                };
1008                new_state[i] *= attention_phase;
1009            }
1010        }
1011
1012        Ok(new_state)
1013    }
1014
1015    /// Get attention structure reference
1016    #[must_use]
1017    pub fn get_attention_structure(&self) -> &[AttentionHead] {
1018        &self.attention_structure
1019    }
1020}