quantrs2_sim/quantum_machine_learning_layers/
framework.rs

1//! Quantum Machine Learning Framework
2//!
3//! Main framework implementation for QML training and inference.
4
5use super::config::*;
6use super::layers::*;
7use super::types::*;
8use crate::error::{Result, SimulatorError};
9use crate::scirs2_integration::SciRS2Backend;
10use scirs2_core::ndarray::Array1;
11use scirs2_core::Complex64;
12use std::f64::consts::PI;
13
14/// Main quantum machine learning layers framework
15#[derive(Debug)]
16pub struct QuantumMLFramework {
17    /// Configuration
18    config: QMLConfig,
19    /// QML layers
20    pub layers: Vec<Box<dyn QMLLayer>>,
21    /// Current training state
22    training_state: QMLTrainingState,
23    /// `SciRS2` backend for numerical operations
24    backend: Option<SciRS2Backend>,
25    /// Performance statistics
26    stats: QMLStats,
27    /// Training history
28    training_history: Vec<QMLTrainingResult>,
29}
30
31impl QuantumMLFramework {
32    /// Create new quantum ML framework
33    pub fn new(config: QMLConfig) -> Result<Self> {
34        let mut framework = Self {
35            config,
36            layers: Vec::new(),
37            training_state: QMLTrainingState::new(),
38            backend: None,
39            stats: QMLStats::new(),
40            training_history: Vec::new(),
41        };
42
43        framework.initialize_layers()?;
44
45        let backend = SciRS2Backend::new();
46        if backend.is_available() {
47            framework.backend = Some(backend);
48        }
49
50        Ok(framework)
51    }
52
53    fn initialize_layers(&mut self) -> Result<()> {
54        for layer_config in &self.config.layer_configs {
55            let layer = self.create_layer(layer_config)?;
56            self.layers.push(layer);
57        }
58        Ok(())
59    }
60
61    fn create_layer(&self, config: &QMLLayerConfig) -> Result<Box<dyn QMLLayer>> {
62        match config.layer_type {
63            QMLLayerType::ParameterizedQuantumCircuit => Ok(Box::new(
64                ParameterizedQuantumCircuitLayer::new(self.config.num_qubits, config.clone())?,
65            )),
66            QMLLayerType::QuantumConvolutional => Ok(Box::new(QuantumConvolutionalLayer::new(
67                self.config.num_qubits,
68                config.clone(),
69            )?)),
70            QMLLayerType::QuantumDense => Ok(Box::new(QuantumDenseLayer::new(
71                self.config.num_qubits,
72                config.clone(),
73            )?)),
74            QMLLayerType::QuantumLSTM => Ok(Box::new(QuantumLSTMLayer::new(
75                self.config.num_qubits,
76                config.clone(),
77            )?)),
78            QMLLayerType::QuantumAttention => Ok(Box::new(QuantumAttentionLayer::new(
79                self.config.num_qubits,
80                config.clone(),
81            )?)),
82            _ => Err(SimulatorError::InvalidConfiguration(format!(
83                "Layer type {:?} not yet implemented",
84                config.layer_type
85            ))),
86        }
87    }
88
89    /// Forward pass through the quantum ML model
90    pub fn forward(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
91        let mut current_state = self.encode_input(input)?;
92
93        for layer in &mut self.layers {
94            current_state = layer.forward(&current_state)?;
95        }
96
97        let output = self.decode_output(&current_state)?;
98        self.stats.forward_passes += 1;
99
100        Ok(output)
101    }
102
103    /// Backward pass for gradient computation
104    pub fn backward(&mut self, loss_gradient: &Array1<f64>) -> Result<Array1<f64>> {
105        let mut grad = loss_gradient.clone();
106
107        for layer in self.layers.iter_mut().rev() {
108            grad = layer.backward(&grad)?;
109        }
110
111        self.stats.backward_passes += 1;
112        Ok(grad)
113    }
114
115    /// Train the quantum ML model
116    pub fn train(
117        &mut self,
118        training_data: &[(Array1<f64>, Array1<f64>)],
119        validation_data: Option<&[(Array1<f64>, Array1<f64>)]>,
120    ) -> Result<QMLTrainingResult> {
121        let mut best_validation_loss = f64::INFINITY;
122        let mut patience_counter = 0;
123        let mut training_metrics = Vec::new();
124
125        let training_start = std::time::Instant::now();
126
127        for epoch in 0..self.config.training_config.epochs {
128            let epoch_start = std::time::Instant::now();
129            let mut epoch_loss = 0.0;
130            let mut num_batches = 0;
131
132            for batch in training_data.chunks(self.config.training_config.batch_size) {
133                let batch_loss = self.train_batch(batch)?;
134                epoch_loss += batch_loss;
135                num_batches += 1;
136            }
137
138            epoch_loss /= f64::from(num_batches);
139
140            let validation_loss = if let Some(val_data) = validation_data {
141                self.evaluate(val_data)?
142            } else {
143                epoch_loss
144            };
145
146            let epoch_time = epoch_start.elapsed();
147
148            let metrics = QMLEpochMetrics {
149                epoch,
150                training_loss: epoch_loss,
151                validation_loss,
152                epoch_time,
153                learning_rate: self.get_current_learning_rate(epoch),
154            };
155
156            training_metrics.push(metrics.clone());
157
158            if self.config.training_config.early_stopping.enabled {
159                if validation_loss
160                    < best_validation_loss - self.config.training_config.early_stopping.min_delta
161                {
162                    best_validation_loss = validation_loss;
163                    patience_counter = 0;
164                } else {
165                    patience_counter += 1;
166                    if patience_counter >= self.config.training_config.early_stopping.patience {
167                        break;
168                    }
169                }
170            }
171
172            self.update_learning_rate(epoch, validation_loss);
173        }
174
175        let total_training_time = training_start.elapsed();
176
177        let result = QMLTrainingResult {
178            final_training_loss: training_metrics.last().map_or(0.0, |m| m.training_loss),
179            final_validation_loss: training_metrics.last().map_or(0.0, |m| m.validation_loss),
180            best_validation_loss,
181            epochs_trained: training_metrics.len(),
182            total_training_time,
183            training_metrics,
184            quantum_advantage_metrics: self.compute_quantum_advantage_metrics()?,
185        };
186
187        self.training_history.push(result.clone());
188        Ok(result)
189    }
190
191    fn train_batch(&mut self, batch: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
192        let mut total_loss = 0.0;
193        let mut total_gradients: Vec<Array1<f64>> =
194            (0..self.layers.len()).map(|_| Array1::zeros(0)).collect();
195
196        for (input, target) in batch {
197            let prediction = self.forward(input)?;
198            let loss = Self::compute_loss(&prediction, target)?;
199            total_loss += loss;
200
201            let loss_gradient = Self::compute_loss_gradient(&prediction, target)?;
202            let gradients = self.compute_gradients(&loss_gradient)?;
203
204            for (i, grad) in gradients.iter().enumerate() {
205                if total_gradients[i].is_empty() {
206                    total_gradients[i] = grad.clone();
207                } else {
208                    total_gradients[i] += grad;
209                }
210            }
211        }
212
213        let batch_size = batch.len() as f64;
214        for grad in &mut total_gradients {
215            *grad /= batch_size;
216        }
217
218        self.apply_gradients(&total_gradients)?;
219        Ok(total_loss / batch_size)
220    }
221
222    /// Evaluate the model on validation data
223    pub fn evaluate(&mut self, data: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
224        let mut total_loss = 0.0;
225
226        for (input, target) in data {
227            let prediction = self.forward(input)?;
228            let loss = Self::compute_loss(&prediction, target)?;
229            total_loss += loss;
230        }
231
232        Ok(total_loss / data.len() as f64)
233    }
234
235    fn encode_input(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
236        match self.config.classical_preprocessing.encoding_method {
237            DataEncodingMethod::Amplitude => self.encode_amplitude(input),
238            DataEncodingMethod::Angle => self.encode_angle(input),
239            DataEncodingMethod::Basis => self.encode_basis(input),
240            DataEncodingMethod::QuantumFeatureMap => self.encode_quantum_feature_map(input),
241            _ => Err(SimulatorError::InvalidConfiguration(
242                "Encoding method not implemented".to_string(),
243            )),
244        }
245    }
246
247    fn encode_amplitude(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
248        let n_qubits = self.config.num_qubits;
249        let state_size = 1 << n_qubits;
250        let mut state = Array1::zeros(state_size);
251
252        let norm = input.iter().map(|x| x * x).sum::<f64>().sqrt();
253        if norm == 0.0 {
254            return Err(SimulatorError::InvalidState("Zero input norm".to_string()));
255        }
256
257        for (i, &val) in input.iter().enumerate() {
258            if i < state_size {
259                state[i] = Complex64::new(val / norm, 0.0);
260            }
261        }
262
263        Ok(state)
264    }
265
266    fn encode_angle(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
267        let n_qubits = self.config.num_qubits;
268        let state_size = 1 << n_qubits;
269        let mut state = Array1::zeros(state_size);
270
271        state[0] = Complex64::new(1.0, 0.0);
272
273        for (i, &angle) in input.iter().enumerate() {
274            if i < n_qubits {
275                state = self.apply_ry_rotation(&state, i, angle)?;
276            }
277        }
278
279        Ok(state)
280    }
281
282    fn encode_basis(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
283        let n_qubits = self.config.num_qubits;
284        let state_size = 1 << n_qubits;
285        let mut state = Array1::zeros(state_size);
286
287        let mut binary_index = 0;
288        for (i, &val) in input.iter().enumerate() {
289            if i < n_qubits && val > 0.5 {
290                binary_index |= 1 << i;
291            }
292        }
293
294        state[binary_index] = Complex64::new(1.0, 0.0);
295        Ok(state)
296    }
297
298    fn encode_quantum_feature_map(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
299        let n_qubits = self.config.num_qubits;
300        let state_size = 1 << n_qubits;
301        let mut state = Array1::zeros(state_size);
302
303        let hadamard_coeff = 1.0 / (n_qubits as f64 / 2.0).exp2();
304        for i in 0..state_size {
305            state[i] = Complex64::new(hadamard_coeff, 0.0);
306        }
307
308        for (i, &feature) in input.iter().enumerate() {
309            if i < n_qubits {
310                state = self.apply_rz_rotation(&state, i, feature * PI)?;
311            }
312        }
313
314        for i in 0..(n_qubits - 1) {
315            if i + 1 < input.len() {
316                let interaction = input[i] * input[i + 1];
317                state = self.apply_cnot_interaction(&state, i, i + 1, interaction * PI)?;
318            }
319        }
320
321        Ok(state)
322    }
323
324    fn apply_ry_rotation(
325        &self,
326        state: &Array1<Complex64>,
327        qubit: usize,
328        angle: f64,
329    ) -> Result<Array1<Complex64>> {
330        let n_qubits = self.config.num_qubits;
331        let state_size = 1 << n_qubits;
332        let mut new_state = state.clone();
333
334        let cos_half = (angle / 2.0).cos();
335        let sin_half = (angle / 2.0).sin();
336
337        for i in 0..state_size {
338            if i & (1 << qubit) == 0 {
339                let j = i | (1 << qubit);
340                if j < state_size {
341                    let state_0 = state[i];
342                    let state_1 = state[j];
343
344                    new_state[i] = Complex64::new(cos_half, 0.0) * state_0
345                        - Complex64::new(sin_half, 0.0) * state_1;
346                    new_state[j] = Complex64::new(sin_half, 0.0) * state_0
347                        + Complex64::new(cos_half, 0.0) * state_1;
348                }
349            }
350        }
351
352        Ok(new_state)
353    }
354
355    fn apply_rz_rotation(
356        &self,
357        state: &Array1<Complex64>,
358        qubit: usize,
359        angle: f64,
360    ) -> Result<Array1<Complex64>> {
361        let n_qubits = self.config.num_qubits;
362        let state_size = 1 << n_qubits;
363        let mut new_state = state.clone();
364
365        let phase_0 = Complex64::from_polar(1.0, -angle / 2.0);
366        let phase_1 = Complex64::from_polar(1.0, angle / 2.0);
367
368        for i in 0..state_size {
369            if i & (1 << qubit) == 0 {
370                new_state[i] *= phase_0;
371            } else {
372                new_state[i] *= phase_1;
373            }
374        }
375
376        Ok(new_state)
377    }
378
379    fn apply_cnot_interaction(
380        &self,
381        state: &Array1<Complex64>,
382        control: usize,
383        target: usize,
384        interaction: f64,
385    ) -> Result<Array1<Complex64>> {
386        let n_qubits = self.config.num_qubits;
387        let state_size = 1 << n_qubits;
388        let mut new_state = state.clone();
389
390        let phase = Complex64::from_polar(1.0, interaction);
391
392        for i in 0..state_size {
393            if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
394                new_state[i] *= phase;
395            }
396        }
397
398        Ok(new_state)
399    }
400
401    fn decode_output(&self, state: &Array1<Complex64>) -> Result<Array1<f64>> {
402        let n_qubits = self.config.num_qubits;
403        let mut output = Array1::zeros(n_qubits);
404
405        for qubit in 0..n_qubits {
406            let expectation = Self::measure_pauli_z_expectation(state, qubit)?;
407            output[qubit] = expectation;
408        }
409
410        Ok(output)
411    }
412
413    fn measure_pauli_z_expectation(state: &Array1<Complex64>, qubit: usize) -> Result<f64> {
414        let state_size = state.len();
415        let mut expectation = 0.0;
416
417        for i in 0..state_size {
418            let probability = state[i].norm_sqr();
419            if i & (1 << qubit) == 0 {
420                expectation += probability;
421            } else {
422                expectation -= probability;
423            }
424        }
425
426        Ok(expectation)
427    }
428
429    fn compute_loss(prediction: &Array1<f64>, target: &Array1<f64>) -> Result<f64> {
430        if prediction.shape() != target.shape() {
431            return Err(SimulatorError::InvalidInput(format!(
432                "Shape mismatch: prediction {:?} != target {:?}",
433                prediction.shape(),
434                target.shape()
435            )));
436        }
437
438        let diff = prediction - target;
439        let mse = diff.iter().map(|x| x * x).sum::<f64>() / diff.len() as f64;
440        Ok(mse)
441    }
442
443    fn compute_loss_gradient(
444        prediction: &Array1<f64>,
445        target: &Array1<f64>,
446    ) -> Result<Array1<f64>> {
447        let diff = prediction - target;
448        let grad = 2.0 * &diff / diff.len() as f64;
449        Ok(grad)
450    }
451
452    fn compute_gradients(&mut self, loss_gradient: &Array1<f64>) -> Result<Vec<Array1<f64>>> {
453        let mut gradients = Vec::new();
454
455        for layer_idx in 0..self.layers.len() {
456            let layer_gradient = match self.config.training_config.gradient_method {
457                GradientMethod::ParameterShift => {
458                    self.compute_parameter_shift_gradient(layer_idx, loss_gradient)?
459                }
460                GradientMethod::FiniteDifference => {
461                    self.compute_finite_difference_gradient(layer_idx, loss_gradient)?
462                }
463                _ => {
464                    return Err(SimulatorError::InvalidConfiguration(
465                        "Gradient method not implemented".to_string(),
466                    ))
467                }
468            };
469            gradients.push(layer_gradient);
470        }
471
472        Ok(gradients)
473    }
474
475    fn compute_parameter_shift_gradient(
476        &mut self,
477        layer_idx: usize,
478        loss_gradient: &Array1<f64>,
479    ) -> Result<Array1<f64>> {
480        let layer = &self.layers[layer_idx];
481        let parameters = layer.get_parameters();
482        let mut gradient = Array1::zeros(parameters.len());
483
484        let shift = PI / 2.0;
485
486        for (param_idx, &param_val) in parameters.iter().enumerate() {
487            let mut params_plus = parameters.clone();
488            params_plus[param_idx] = param_val + shift;
489            self.layers[layer_idx].set_parameters(&params_plus);
490            let output_plus = self.forward_layer(layer_idx, loss_gradient)?;
491
492            let mut params_minus = parameters.clone();
493            params_minus[param_idx] = param_val - shift;
494            self.layers[layer_idx].set_parameters(&params_minus);
495            let output_minus = self.forward_layer(layer_idx, loss_gradient)?;
496
497            gradient[param_idx] = (output_plus.sum() - output_minus.sum()) / 2.0;
498
499            self.layers[layer_idx].set_parameters(&parameters);
500        }
501
502        Ok(gradient)
503    }
504
505    fn compute_finite_difference_gradient(
506        &mut self,
507        layer_idx: usize,
508        loss_gradient: &Array1<f64>,
509    ) -> Result<Array1<f64>> {
510        let layer = &self.layers[layer_idx];
511        let parameters = layer.get_parameters();
512        let mut gradient = Array1::zeros(parameters.len());
513
514        let eps = 1e-6;
515
516        for (param_idx, &param_val) in parameters.iter().enumerate() {
517            let mut params_plus = parameters.clone();
518            params_plus[param_idx] = param_val + eps;
519            self.layers[layer_idx].set_parameters(&params_plus);
520            let output_plus = self.forward_layer(layer_idx, loss_gradient)?;
521
522            let mut params_minus = parameters.clone();
523            params_minus[param_idx] = param_val - eps;
524            self.layers[layer_idx].set_parameters(&params_minus);
525            let output_minus = self.forward_layer(layer_idx, loss_gradient)?;
526
527            gradient[param_idx] = (output_plus.sum() - output_minus.sum()) / (2.0 * eps);
528
529            self.layers[layer_idx].set_parameters(&parameters);
530        }
531
532        Ok(gradient)
533    }
534
535    fn forward_layer(&mut self, _layer_idx: usize, input: &Array1<f64>) -> Result<Array1<f64>> {
536        self.forward(input)
537    }
538
539    fn apply_gradients(&mut self, gradients: &[Array1<f64>]) -> Result<()> {
540        for (layer_idx, gradient) in gradients.iter().enumerate() {
541            let layer = &mut self.layers[layer_idx];
542            let mut parameters = layer.get_parameters();
543
544            match self.config.training_config.optimizer {
545                OptimizerType::SGD => {
546                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
547                        *param -= self.config.training_config.learning_rate * grad;
548                    }
549                }
550                OptimizerType::Adam => {
551                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
552                        *param -= self.config.training_config.learning_rate * grad;
553                    }
554                }
555                _ => {
556                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
557                        *param -= self.config.training_config.learning_rate * grad;
558                    }
559                }
560            }
561
562            if let Some((min_val, max_val)) =
563                self.config.training_config.regularization.parameter_bounds
564            {
565                for param in &mut parameters {
566                    *param = param.clamp(min_val, max_val);
567                }
568            }
569
570            layer.set_parameters(&parameters);
571        }
572
573        Ok(())
574    }
575
576    fn get_current_learning_rate(&self, epoch: usize) -> f64 {
577        let base_lr = self.config.training_config.learning_rate;
578
579        match self.config.training_config.lr_schedule {
580            LearningRateSchedule::Constant => base_lr,
581            LearningRateSchedule::ExponentialDecay => base_lr * 0.95_f64.powi(epoch as i32),
582            LearningRateSchedule::StepDecay => {
583                if epoch % 50 == 0 && epoch > 0 {
584                    base_lr * 0.5_f64.powi((epoch / 50) as i32)
585                } else {
586                    base_lr
587                }
588            }
589            LearningRateSchedule::CosineAnnealing => {
590                let progress = epoch as f64 / self.config.training_config.epochs as f64;
591                base_lr * 0.5 * (1.0 + (PI * progress).cos())
592            }
593            _ => base_lr,
594        }
595    }
596
597    fn update_learning_rate(&mut self, epoch: usize, _validation_loss: f64) {
598        let current_lr = self.get_current_learning_rate(epoch);
599        self.training_state.current_learning_rate = current_lr;
600    }
601
602    fn compute_quantum_advantage_metrics(&self) -> Result<QuantumAdvantageMetrics> {
603        Ok(QuantumAdvantageMetrics {
604            quantum_volume: 0.0,
605            classical_simulation_cost: 0.0,
606            quantum_speedup_factor: 1.0,
607            circuit_depth: self.layers.iter().map(|l| l.get_depth()).sum(),
608            gate_count: self.layers.iter().map(|l| l.get_gate_count()).sum(),
609            entanglement_measure: 0.0,
610        })
611    }
612
613    #[must_use]
614    pub const fn get_stats(&self) -> &QMLStats {
615        &self.stats
616    }
617
618    #[must_use]
619    pub fn get_training_history(&self) -> &[QMLTrainingResult] {
620        &self.training_history
621    }
622
623    #[must_use]
624    pub fn get_layers(&self) -> &[Box<dyn QMLLayer>] {
625        &self.layers
626    }
627
628    #[must_use]
629    pub const fn get_config(&self) -> &QMLConfig {
630        &self.config
631    }
632
633    pub fn encode_amplitude_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
634        self.encode_amplitude(input)
635    }
636
637    pub fn encode_angle_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
638        self.encode_angle(input)
639    }
640
641    pub fn encode_basis_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
642        self.encode_basis(input)
643    }
644
645    pub fn encode_quantum_feature_map_public(
646        &self,
647        input: &Array1<f64>,
648    ) -> Result<Array1<Complex64>> {
649        self.encode_quantum_feature_map(input)
650    }
651
652    pub fn measure_pauli_z_expectation_public(
653        &self,
654        state: &Array1<Complex64>,
655        qubit: usize,
656    ) -> Result<f64> {
657        Self::measure_pauli_z_expectation(state, qubit)
658    }
659
660    #[must_use]
661    pub fn get_current_learning_rate_public(&self, epoch: usize) -> f64 {
662        self.get_current_learning_rate(epoch)
663    }
664
665    pub fn compute_loss_public(
666        &self,
667        prediction: &Array1<f64>,
668        target: &Array1<f64>,
669    ) -> Result<f64> {
670        Self::compute_loss(prediction, target)
671    }
672
673    pub fn compute_loss_gradient_public(
674        &self,
675        prediction: &Array1<f64>,
676        target: &Array1<f64>,
677    ) -> Result<Array1<f64>> {
678        Self::compute_loss_gradient(prediction, target)
679    }
680}