1use crate::error::{Result, SimulatorError};
6use quantrs2_circuit::prelude::Circuit;
7use scirs2_core::ndarray::{Array1, Array2};
8use scirs2_core::Complex64;
9use std::collections::HashMap;
10use thiserror::Error;
11
12#[derive(Debug, Clone)]
14pub struct CuQuantumConfig {
15 pub device_id: i32,
17 pub multi_gpu: bool,
19 pub num_gpus: usize,
21 pub memory_pool_size: usize,
23 pub async_execution: bool,
25 pub memory_optimization: bool,
27 pub precision: ComputePrecision,
29 pub gate_fusion_level: GateFusionLevel,
31 pub enable_profiling: bool,
33 pub max_statevec_qubits: usize,
35 pub tensor_contraction: TensorContractionAlgorithm,
37 pub enable_tf32: bool,
42}
43impl CuQuantumConfig {
44 pub fn large_circuit() -> Self {
46 Self {
47 memory_optimization: true,
48 gate_fusion_level: GateFusionLevel::Aggressive,
49 tensor_contraction: TensorContractionAlgorithm::OptimalWithSlicing,
50 enable_tf32: true, ..Default::default()
52 }
53 }
54 pub fn variational() -> Self {
56 Self {
57 async_execution: true,
58 gate_fusion_level: GateFusionLevel::Moderate,
59 enable_profiling: false,
60 enable_tf32: true, ..Default::default()
62 }
63 }
64 pub fn multi_gpu(num_gpus: usize) -> Self {
66 Self {
67 multi_gpu: true,
68 num_gpus,
69 memory_optimization: true,
70 enable_tf32: true, ..Default::default()
72 }
73 }
74
75 pub fn with_tf32(mut self, enable: bool) -> Self {
77 self.enable_tf32 = enable;
78 self
79 }
80
81 pub fn should_use_tf32(&self, device_info: &CudaDeviceInfo) -> bool {
83 self.enable_tf32
84 && device_info.has_tensor_cores
85 && device_info.compute_capability >= (8, 0) && matches!(
87 self.precision,
88 ComputePrecision::Single | ComputePrecision::Mixed
89 )
90 }
91}
92#[derive(Debug, Clone)]
94pub struct CudaDeviceInfo {
95 pub device_id: i32,
97 pub name: String,
99 pub total_memory: usize,
101 pub free_memory: usize,
103 pub compute_capability: (i32, i32),
105 pub sm_count: i32,
107 pub max_threads_per_block: i32,
109 pub warp_size: i32,
111 pub has_tensor_cores: bool,
113}
114impl CudaDeviceInfo {
115 pub fn max_statevec_qubits(&self) -> usize {
117 let available_memory = (self.free_memory as f64 * 0.8) as usize;
118 let bytes_per_amplitude = 16;
119 let max_amplitudes = available_memory / bytes_per_amplitude;
120 (max_amplitudes as f64).log2().floor() as usize
121 }
122}
123#[derive(Debug, Clone, Copy, PartialEq, Eq)]
125pub enum RecommendedBackend {
126 StateVector,
128 TensorNetwork,
130 Hybrid,
132 NotFeasible,
134}
135#[derive(Debug, Clone)]
137pub struct TensorNetworkState {
138 tensors: Vec<Tensor>,
140 edges: Vec<TensorEdge>,
142 open_indices: Vec<usize>,
144}
145impl TensorNetworkState {
146 pub fn from_circuit<const N: usize>(circuit: &Circuit<N>) -> Result<Self> {
148 let mut tensors = Vec::new();
149 let mut edges = Vec::new();
150 for qubit in 0..N {
151 tensors.push(Tensor::initial_state(qubit));
152 }
153 for (gate_idx, gate) in circuit.gates().iter().enumerate() {
154 let qubits: Vec<usize> = gate.qubits().iter().map(|q| q.id() as usize).collect();
155 tensors.push(Tensor::from_gate(gate_idx, &qubits));
156 for &qubit in &qubits {
157 edges.push(TensorEdge {
158 tensor_a: qubit,
159 tensor_b: N + gate_idx,
160 index: qubit,
161 });
162 }
163 }
164 Ok(Self {
165 tensors,
166 edges,
167 open_indices: (0..N).collect(),
168 })
169 }
170 pub fn num_tensors(&self) -> usize {
172 self.tensors.len()
173 }
174 pub fn num_edges(&self) -> usize {
176 self.edges.len()
177 }
178}
179#[derive(Debug, Clone)]
181pub struct CuQuantumResult {
182 pub state_vector: Option<Array1<Complex64>>,
184 pub counts: HashMap<String, usize>,
186 pub measurement_outcomes: Vec<u64>,
188 pub metadata: HashMap<String, String>,
190 pub num_qubits: usize,
192}
193impl CuQuantumResult {
194 pub fn from_state_vector(state: Array1<Complex64>, num_qubits: usize) -> Self {
196 Self {
197 state_vector: Some(state),
198 counts: HashMap::new(),
199 measurement_outcomes: Vec::new(),
200 metadata: HashMap::new(),
201 num_qubits,
202 }
203 }
204 pub fn from_counts(counts: HashMap<String, usize>, num_qubits: usize) -> Self {
206 Self {
207 state_vector: None,
208 counts,
209 measurement_outcomes: Vec::new(),
210 metadata: HashMap::new(),
211 num_qubits,
212 }
213 }
214 pub fn probabilities(&self) -> Option<Vec<f64>> {
216 self.state_vector
217 .as_ref()
218 .map(|sv| sv.iter().map(|c| c.norm_sqr()).collect())
219 }
220 pub fn expectation_z(&self, qubit: usize) -> Option<f64> {
222 self.probabilities().map(|probs| {
223 let mut exp = 0.0;
224 for (i, &p) in probs.iter().enumerate() {
225 let bit = (i >> qubit) & 1;
226 exp += if bit == 0 { p } else { -p };
227 }
228 exp
229 })
230 }
231}
232#[derive(Debug, Clone)]
234pub struct Tensor {
235 id: usize,
237 shape: Vec<usize>,
239 data: Option<Array2<Complex64>>,
241}
242impl Tensor {
243 fn initial_state(qubit: usize) -> Self {
245 let mut data = Array2::zeros((2, 1));
246 data[[0, 0]] = Complex64::new(1.0, 0.0);
247 Self {
248 id: qubit,
249 shape: vec![2],
250 data: Some(data),
251 }
252 }
253 fn from_gate(gate_idx: usize, _qubits: &[usize]) -> Self {
255 Self {
256 id: gate_idx,
257 shape: vec![2; _qubits.len() * 2],
258 data: None,
259 }
260 }
261}
262#[derive(Debug, Clone)]
264pub struct TensorEdge {
265 tensor_a: usize,
267 tensor_b: usize,
269 index: usize,
271}
272pub struct CuStateVecSimulator {
277 pub config: CuQuantumConfig,
279 pub device_info: Option<CudaDeviceInfo>,
281 pub stats: SimulationStats,
283 pub initialized: bool,
285 #[cfg(feature = "cuquantum")]
286 pub handle: Option<CuStateVecHandle>,
287 #[cfg(feature = "cuquantum")]
288 pub state_buffer: Option<GpuBuffer>,
289}
290impl CuStateVecSimulator {
291 pub fn new(config: CuQuantumConfig) -> Result<Self> {
293 let device_info = Self::get_device_info(config.device_id)?;
294 Ok(Self {
295 config,
296 device_info: Some(device_info),
297 stats: SimulationStats::default(),
298 initialized: false,
299 #[cfg(feature = "cuquantum")]
300 handle: None,
301 #[cfg(feature = "cuquantum")]
302 state_buffer: None,
303 })
304 }
305 pub fn default_config() -> Result<Self> {
307 Self::new(CuQuantumConfig::default())
308 }
309 pub fn is_available() -> bool {
311 #[cfg(feature = "cuquantum")]
312 {
313 Self::check_cuquantum_available()
314 }
315 #[cfg(not(feature = "cuquantum"))]
316 {
317 false
318 }
319 }
320 pub fn get_device_info(device_id: i32) -> Result<CudaDeviceInfo> {
322 #[cfg(feature = "cuquantum")]
323 {
324 Self::get_cuda_device_info(device_id)
325 }
326 #[cfg(not(feature = "cuquantum"))]
327 {
328 Ok(CudaDeviceInfo {
329 device_id: if device_id < 0 { 0 } else { device_id },
330 name: "Mock CUDA Device (cuQuantum not available)".to_string(),
331 total_memory: 16 * 1024 * 1024 * 1024,
332 free_memory: 12 * 1024 * 1024 * 1024,
333 compute_capability: (8, 6),
334 sm_count: 84,
335 max_threads_per_block: 1024,
336 warp_size: 32,
337 has_tensor_cores: true,
338 })
339 }
340 }
341 pub fn initialize(&mut self, num_qubits: usize) -> Result<()> {
343 if num_qubits > self.config.max_statevec_qubits {
344 return Err(SimulatorError::InvalidParameter(format!(
345 "Number of qubits ({}) exceeds maximum ({})",
346 num_qubits, self.config.max_statevec_qubits
347 )));
348 }
349 #[cfg(feature = "cuquantum")]
350 {
351 self.initialize_custatevec(num_qubits)?;
352 }
353 self.initialized = true;
354 Ok(())
355 }
356 pub fn simulate<const N: usize>(&mut self, circuit: &Circuit<N>) -> Result<CuQuantumResult> {
358 if !self.initialized {
359 self.initialize(N)?;
360 }
361 let start_time = std::time::Instant::now();
362 #[cfg(target_os = "macos")]
363 {
364 self.simulate_mock(circuit, start_time)
365 }
366 #[cfg(all(feature = "cuquantum", not(target_os = "macos")))]
367 {
368 self.simulate_with_custatevec(circuit)
369 }
370 #[cfg(all(not(feature = "cuquantum"), not(target_os = "macos")))]
371 {
372 self.simulate_mock(circuit, start_time)
373 }
374 }
375 #[cfg(any(target_os = "macos", not(feature = "cuquantum")))]
378 fn simulate_mock<const N: usize>(
379 &mut self,
380 circuit: &Circuit<N>,
381 start_time: std::time::Instant,
382 ) -> Result<CuQuantumResult> {
383 let state_size = 1 << N;
384 let mut state = Array1::zeros(state_size);
385 state[0] = Complex64::new(1.0, 0.0);
386 self.stats.total_simulations += 1;
387 self.stats.total_gates += circuit.gates().len();
388 self.stats.total_time_ms += start_time.elapsed().as_millis() as f64;
389 Ok(CuQuantumResult::from_state_vector(state, N))
390 }
391 pub fn stats(&self) -> &SimulationStats {
393 &self.stats
394 }
395 pub fn reset_stats(&mut self) {
397 self.stats = SimulationStats::default();
398 }
399 pub fn device_info(&self) -> Option<&CudaDeviceInfo> {
401 self.device_info.as_ref()
402 }
403 #[cfg(feature = "cuquantum")]
404 fn check_cuquantum_available() -> bool {
405 false
406 }
407 #[cfg(feature = "cuquantum")]
408 fn get_cuda_device_info(device_id: i32) -> Result<CudaDeviceInfo> {
409 #[cfg(target_os = "macos")]
410 {
411 Ok(CudaDeviceInfo {
412 device_id: if device_id < 0 { 0 } else { device_id },
413 name: "Mock CUDA Device (macOS - no CUDA)".to_string(),
414 total_memory: 24 * 1024 * 1024 * 1024,
415 free_memory: 20 * 1024 * 1024 * 1024,
416 compute_capability: (8, 9),
417 sm_count: 128,
418 max_threads_per_block: 1024,
419 warp_size: 32,
420 has_tensor_cores: true,
421 })
422 }
423 #[cfg(not(target_os = "macos"))]
424 {
425 Ok(CudaDeviceInfo {
426 device_id: if device_id < 0 { 0 } else { device_id },
427 name: "Mock CUDA Device (cuQuantum stub)".to_string(),
428 total_memory: 24 * 1024 * 1024 * 1024,
429 free_memory: 20 * 1024 * 1024 * 1024,
430 compute_capability: (8, 9),
431 sm_count: 128,
432 max_threads_per_block: 1024,
433 warp_size: 32,
434 has_tensor_cores: true,
435 })
436 }
437 }
438 #[cfg(feature = "cuquantum")]
439 fn initialize_custatevec(&mut self, num_qubits: usize) -> Result<()> {
440 Ok(())
441 }
442 #[cfg(feature = "cuquantum")]
443 fn simulate_with_custatevec<const N: usize>(
444 &mut self,
445 circuit: &Circuit<N>,
446 ) -> Result<CuQuantumResult> {
447 Err(SimulatorError::GpuError(
448 "cuStateVec simulation not yet implemented".to_string(),
449 ))
450 }
451}
452#[derive(Debug, Clone, Default)]
454pub struct SimulationStats {
455 pub total_simulations: usize,
457 pub total_gates: usize,
459 pub total_time_ms: f64,
461 pub peak_memory_bytes: usize,
463 pub tensor_contractions: usize,
465 pub total_flops: f64,
467}
468impl SimulationStats {
469 pub fn avg_gates_per_sim(&self) -> f64 {
471 if self.total_simulations > 0 {
472 self.total_gates as f64 / self.total_simulations as f64
473 } else {
474 0.0
475 }
476 }
477 pub fn avg_time_per_sim(&self) -> f64 {
479 if self.total_simulations > 0 {
480 self.total_time_ms / self.total_simulations as f64
481 } else {
482 0.0
483 }
484 }
485 pub fn throughput_gflops(&self) -> f64 {
487 if self.total_time_ms > 0.0 {
488 (self.total_flops / 1e9) / (self.total_time_ms / 1000.0)
489 } else {
490 0.0
491 }
492 }
493}
494#[derive(Debug, Clone, Copy, PartialEq, Eq)]
496pub enum ComputePrecision {
497 Half,
500 Single,
503 Double,
506 Mixed,
510}
511
512impl ComputePrecision {
513 pub fn bytes_per_amplitude(self) -> usize {
515 match self {
516 ComputePrecision::Half => 4, ComputePrecision::Single => 8, ComputePrecision::Double => 16, ComputePrecision::Mixed => 8, }
521 }
522
523 pub fn speed_factor(self) -> f64 {
526 match self {
527 ComputePrecision::Half => 2.0, ComputePrecision::Single => 1.0, ComputePrecision::Double => 0.5, ComputePrecision::Mixed => 1.7, }
532 }
533
534 pub fn accuracy_factor(self) -> f64 {
537 match self {
538 ComputePrecision::Half => 0.3, ComputePrecision::Single => 1.0, ComputePrecision::Double => 2.2, ComputePrecision::Mixed => 0.95, }
543 }
544
545 pub fn uses_tensor_cores(self) -> bool {
547 matches!(self, ComputePrecision::Half | ComputePrecision::Mixed)
548 }
549
550 pub fn description(self) -> &'static str {
552 match self {
553 ComputePrecision::Half => {
554 "Half precision (FP16): Fastest, lowest memory, reduced accuracy"
555 }
556 ComputePrecision::Single => {
557 "Single precision (FP32): Balanced speed and accuracy, recommended"
558 }
559 ComputePrecision::Double => {
560 "Double precision (FP64): Highest accuracy, slower, more memory"
561 }
562 ComputePrecision::Mixed => {
563 "Mixed precision (FP16/FP32): Near-FP32 accuracy with FP16 speed on tensor cores"
564 }
565 }
566 }
567}
568#[derive(Debug, Error)]
570pub enum CuQuantumError {
571 #[error("cuQuantum not available: {0}")]
572 NotAvailable(String),
573 #[error("CUDA error: {0}")]
574 CudaError(String),
575 #[error("cuStateVec error: {0}")]
576 CuStateVecError(String),
577 #[error("cuTensorNet error: {0}")]
578 CuTensorNetError(String),
579 #[error("Memory allocation error: {0}")]
580 MemoryError(String),
581 #[error("Invalid configuration: {0}")]
582 ConfigError(String),
583 #[error("Device error: {0}")]
584 DeviceError(String),
585 #[error("Simulation error: {0}")]
586 SimulationError(String),
587}
588pub struct CuTensorNetSimulator {
594 pub config: CuQuantumConfig,
596 pub device_info: Option<CudaDeviceInfo>,
598 pub stats: SimulationStats,
600 pub tensor_network: Option<TensorNetworkState>,
602}
603impl CuTensorNetSimulator {
604 pub fn new(config: CuQuantumConfig) -> Result<Self> {
606 let device_info = CuStateVecSimulator::get_device_info(config.device_id)?;
607 Ok(Self {
608 config,
609 device_info: Some(device_info),
610 stats: SimulationStats::default(),
611 tensor_network: None,
612 })
613 }
614 pub fn default_config() -> Result<Self> {
616 Self::new(CuQuantumConfig::default())
617 }
618 pub fn is_available() -> bool {
620 #[cfg(feature = "cuquantum")]
621 {
622 Self::check_cutensornet_available()
623 }
624 #[cfg(not(feature = "cuquantum"))]
625 {
626 false
627 }
628 }
629 pub fn build_network<const N: usize>(&mut self, circuit: &Circuit<N>) -> Result<()> {
631 self.tensor_network = Some(TensorNetworkState::from_circuit(circuit)?);
632 Ok(())
633 }
634 pub fn contract(&mut self, output_indices: &[usize]) -> Result<Array1<Complex64>> {
636 let network = self
637 .tensor_network
638 .as_ref()
639 .ok_or_else(|| SimulatorError::InvalidParameter("Network not built".to_string()))?;
640 #[cfg(target_os = "macos")]
641 {
642 self.contract_mock(network, output_indices)
643 }
644 #[cfg(all(feature = "cuquantum", not(target_os = "macos")))]
645 {
646 self.contract_with_cutensornet(network, output_indices)
647 }
648 #[cfg(all(not(feature = "cuquantum"), not(target_os = "macos")))]
649 {
650 self.contract_mock(network, output_indices)
651 }
652 }
653 pub fn expectation_value(&mut self, observable: &Observable) -> Result<f64> {
655 let _network = self
656 .tensor_network
657 .as_ref()
658 .ok_or_else(|| SimulatorError::InvalidParameter("Network not built".to_string()))?;
659 #[cfg(target_os = "macos")]
660 {
661 let _ = observable;
662 Ok(0.5)
663 }
664 #[cfg(all(feature = "cuquantum", not(target_os = "macos")))]
665 {
666 self.expectation_with_cutensornet(_network, observable)
667 }
668 #[cfg(all(not(feature = "cuquantum"), not(target_os = "macos")))]
669 {
670 let _ = observable;
671 Ok(0.5)
672 }
673 }
674 pub fn find_contraction_order(&self) -> Result<ContractionPath> {
676 let network = self
677 .tensor_network
678 .as_ref()
679 .ok_or_else(|| SimulatorError::InvalidParameter("Network not built".to_string()))?;
680 match self.config.tensor_contraction {
681 TensorContractionAlgorithm::Auto => self.auto_contraction_order(network),
682 TensorContractionAlgorithm::Greedy => self.greedy_contraction_order(network),
683 TensorContractionAlgorithm::Optimal => self.optimal_contraction_order(network),
684 TensorContractionAlgorithm::OptimalWithSlicing => {
685 self.optimal_sliced_contraction_order(network)
686 }
687 TensorContractionAlgorithm::RandomGreedy => {
688 self.random_greedy_contraction_order(network)
689 }
690 }
691 }
692 #[cfg(any(target_os = "macos", not(feature = "cuquantum")))]
695 fn contract_mock(
696 &self,
697 _network: &TensorNetworkState,
698 output_indices: &[usize],
699 ) -> Result<Array1<Complex64>> {
700 let size = 1 << output_indices.len();
701 let mut result = Array1::zeros(size);
702 result[0] = Complex64::new(1.0, 0.0);
703 Ok(result)
704 }
705 fn auto_contraction_order(&self, network: &TensorNetworkState) -> Result<ContractionPath> {
706 if network.num_tensors() < 20 {
707 self.optimal_contraction_order(network)
708 } else {
709 self.greedy_contraction_order(network)
710 }
711 }
712 fn greedy_contraction_order(&self, network: &TensorNetworkState) -> Result<ContractionPath> {
713 let mut path = ContractionPath::new();
714 let mut remaining: Vec<usize> = (0..network.num_tensors()).collect();
715 while remaining.len() > 1 {
716 let mut best_cost = f64::MAX;
717 let mut best_pair = (0, 1);
718 for i in 0..remaining.len() {
719 for j in (i + 1)..remaining.len() {
720 let cost = self.estimate_contraction_cost(remaining[i], remaining[j]);
721 if cost < best_cost {
722 best_cost = cost;
723 best_pair = (i, j);
724 }
725 }
726 }
727 path.add_contraction(remaining[best_pair.0], remaining[best_pair.1]);
728 remaining.remove(best_pair.1);
729 }
730 Ok(path)
731 }
732 fn optimal_contraction_order(&self, network: &TensorNetworkState) -> Result<ContractionPath> {
733 if network.num_tensors() > 15 {
734 return self.greedy_contraction_order(network);
735 }
736 self.greedy_contraction_order(network)
737 }
738 fn optimal_sliced_contraction_order(
739 &self,
740 network: &TensorNetworkState,
741 ) -> Result<ContractionPath> {
742 let mut path = self.optimal_contraction_order(network)?;
743 path.enable_slicing(self.config.memory_pool_size);
744 Ok(path)
745 }
746 fn random_greedy_contraction_order(
747 &self,
748 network: &TensorNetworkState,
749 ) -> Result<ContractionPath> {
750 use scirs2_core::random::{thread_rng, Rng};
751 let mut rng = thread_rng();
752 let mut best_path = self.greedy_contraction_order(network)?;
753 let mut best_cost = best_path.total_cost();
754 for _ in 0..10 {
755 let path = self.randomized_greedy_order(network, &mut rng)?;
756 let cost = path.total_cost();
757 if cost < best_cost {
758 best_cost = cost;
759 best_path = path;
760 }
761 }
762 Ok(best_path)
763 }
764 fn randomized_greedy_order<R: scirs2_core::random::Rng>(
765 &self,
766 network: &TensorNetworkState,
767 rng: &mut R,
768 ) -> Result<ContractionPath> {
769 let mut path = ContractionPath::new();
770 let mut remaining: Vec<usize> = (0..network.num_tensors()).collect();
771 while remaining.len() > 1 {
772 let mut candidates: Vec<((usize, usize), f64)> = Vec::new();
773 for i in 0..remaining.len() {
774 for j in (i + 1)..remaining.len() {
775 let cost = self.estimate_contraction_cost(remaining[i], remaining[j]);
776 candidates.push(((i, j), cost));
777 }
778 }
779 candidates.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
780 let pick_range = (candidates.len() / 3).max(1);
781 let pick_idx = rng.gen_range(0..pick_range);
782 let (best_pair, _) = candidates[pick_idx];
783 path.add_contraction(remaining[best_pair.0], remaining[best_pair.1]);
784 remaining.remove(best_pair.1);
785 }
786 Ok(path)
787 }
788 fn estimate_contraction_cost(&self, _tensor_a: usize, _tensor_b: usize) -> f64 {
789 1.0
790 }
791 #[cfg(feature = "cuquantum")]
792 fn check_cutensornet_available() -> bool {
793 false
794 }
795 #[cfg(feature = "cuquantum")]
796 fn contract_with_cutensornet(
797 &self,
798 _network: &TensorNetworkState,
799 _output_indices: &[usize],
800 ) -> Result<Array1<Complex64>> {
801 Err(SimulatorError::GpuError(
802 "cuTensorNet contraction not yet implemented".to_string(),
803 ))
804 }
805 #[cfg(feature = "cuquantum")]
806 fn expectation_with_cutensornet(
807 &self,
808 _network: &TensorNetworkState,
809 _observable: &Observable,
810 ) -> Result<f64> {
811 Err(SimulatorError::GpuError(
812 "cuTensorNet expectation not yet implemented".to_string(),
813 ))
814 }
815}
816#[derive(Debug, Clone)]
818pub enum Observable {
819 PauliZ(Vec<usize>),
821 PauliX(Vec<usize>),
823 PauliY(Vec<usize>),
825 Hermitian(Array2<Complex64>),
827 Sum(Vec<Observable>),
829 Product(Vec<Observable>),
831}
832#[cfg(feature = "cuquantum")]
833pub struct GpuBuffer {
834 _ptr: *mut std::ffi::c_void,
835 _size: usize,
836}
837#[cfg(feature = "cuquantum")]
838pub struct CuStateVecHandle {
839 _handle: *mut std::ffi::c_void,
840}
841#[derive(Debug, Clone)]
843pub struct PerformanceEstimate {
844 pub estimated_time_ms: f64,
846 pub estimated_memory_bytes: usize,
848 pub estimated_flops: f64,
850 pub recommended_backend: RecommendedBackend,
852 pub fits_in_memory: bool,
854 pub estimated_gpu_utilization: f64,
856 pub suggestions: Vec<String>,
858}
859#[derive(Debug, Clone)]
861pub struct ContractionPath {
862 pub contractions: Vec<(usize, usize)>,
864 pub costs: Vec<f64>,
866 pub slicing: Option<SlicingConfig>,
868}
869impl ContractionPath {
870 pub fn new() -> Self {
872 Self {
873 contractions: Vec::new(),
874 costs: Vec::new(),
875 slicing: None,
876 }
877 }
878 pub fn add_contraction(&mut self, tensor_a: usize, tensor_b: usize) {
880 self.contractions.push((tensor_a, tensor_b));
881 self.costs.push(1.0);
882 }
883 pub fn total_cost(&self) -> f64 {
885 self.costs.iter().sum()
886 }
887 pub fn enable_slicing(&mut self, memory_limit: usize) {
889 self.slicing = Some(SlicingConfig {
890 memory_limit,
891 slice_indices: Vec::new(),
892 });
893 }
894}
895#[derive(Debug)]
897pub struct PerformanceEstimator {
898 device_info: CudaDeviceInfo,
900 config: CuQuantumConfig,
902}
903impl PerformanceEstimator {
904 pub fn new(device_info: CudaDeviceInfo, config: CuQuantumConfig) -> Self {
906 Self {
907 device_info,
908 config,
909 }
910 }
911 pub fn with_default_device(config: CuQuantumConfig) -> Result<Self> {
913 let device_info = CuStateVecSimulator::get_device_info(config.device_id)?;
914 Ok(Self::new(device_info, config))
915 }
916 pub fn estimate<const N: usize>(&self, circuit: &Circuit<N>) -> PerformanceEstimate {
918 let num_qubits = N;
919 let num_gates = circuit.gates().len();
920 let state_vector_bytes = self.calculate_state_vector_memory(num_qubits);
921 let estimated_flops = self.calculate_flops(num_qubits, num_gates);
922 let fits_in_memory =
923 state_vector_bytes <= (self.device_info.free_memory as f64 * 0.8) as usize;
924 let recommended_backend = self.recommend_backend(num_qubits, num_gates, fits_in_memory);
925 let estimated_time_ms = self.estimate_time(num_qubits, num_gates, &recommended_backend);
926 let estimated_gpu_utilization =
927 self.estimate_gpu_utilization(num_qubits, num_gates, &recommended_backend);
928 let suggestions = self.generate_suggestions(num_qubits, num_gates, fits_in_memory);
929 PerformanceEstimate {
930 estimated_time_ms,
931 estimated_memory_bytes: state_vector_bytes,
932 estimated_flops,
933 recommended_backend,
934 fits_in_memory,
935 estimated_gpu_utilization,
936 suggestions,
937 }
938 }
939 fn calculate_state_vector_memory(&self, num_qubits: usize) -> usize {
941 let num_amplitudes: usize = 1 << num_qubits;
942 num_amplitudes * self.config.precision.bytes_per_amplitude()
943 }
944 fn calculate_flops(&self, num_qubits: usize, num_gates: usize) -> f64 {
946 let state_size = 1u64 << num_qubits;
947 let flops_per_gate = state_size as f64 * 8.0;
948 num_gates as f64 * flops_per_gate
949 }
950 fn recommend_backend(
952 &self,
953 num_qubits: usize,
954 num_gates: usize,
955 fits_in_memory: bool,
956 ) -> RecommendedBackend {
957 if !fits_in_memory {
958 if num_qubits > 50 {
959 RecommendedBackend::NotFeasible
960 } else {
961 RecommendedBackend::TensorNetwork
962 }
963 } else if num_qubits <= self.config.max_statevec_qubits {
964 let circuit_depth = (num_gates as f64 / num_qubits as f64).ceil() as usize;
965 if circuit_depth > num_qubits * 10 {
966 RecommendedBackend::Hybrid
967 } else {
968 RecommendedBackend::StateVector
969 }
970 } else {
971 RecommendedBackend::TensorNetwork
972 }
973 }
974 fn estimate_time(
976 &self,
977 num_qubits: usize,
978 num_gates: usize,
979 backend: &RecommendedBackend,
980 ) -> f64 {
981 let base_flops = self.calculate_flops(num_qubits, num_gates);
982 let gpu_throughput_gflops = match self.device_info.compute_capability {
983 (9, _) => 150.0,
984 (8, 9) => 83.0,
985 (8, 6) => 35.0,
986 (8, 0) => 19.5,
987 (7, _) => 16.0,
988 _ => 10.0,
989 } * 1000.0;
990 let raw_time_ms = base_flops / (gpu_throughput_gflops * 1e6);
991 let overhead = match backend {
992 RecommendedBackend::StateVector => 1.2,
993 RecommendedBackend::TensorNetwork => 2.5,
994 RecommendedBackend::Hybrid => 1.8,
995 RecommendedBackend::NotFeasible => f64::MAX,
996 };
997 raw_time_ms * overhead
998 }
999 fn estimate_gpu_utilization(
1001 &self,
1002 num_qubits: usize,
1003 num_gates: usize,
1004 backend: &RecommendedBackend,
1005 ) -> f64 {
1006 match backend {
1007 RecommendedBackend::NotFeasible => 0.0,
1008 _ => {
1009 let size_factor = (num_qubits as f64 / 30.0).min(1.0);
1010 let gate_factor = (num_gates as f64 / 1000.0).min(1.0);
1011 (size_factor * 0.6 + gate_factor * 0.4).clamp(0.1, 0.95)
1012 }
1013 }
1014 }
1015 fn generate_suggestions(
1017 &self,
1018 num_qubits: usize,
1019 num_gates: usize,
1020 fits_in_memory: bool,
1021 ) -> Vec<String> {
1022 let mut suggestions = Vec::new();
1023 if !fits_in_memory {
1024 suggestions
1025 .push(
1026 format!(
1027 "Circuit requires {} qubits, which exceeds available GPU memory. Consider using tensor network simulation.",
1028 num_qubits
1029 ),
1030 );
1031 }
1032 if num_qubits > 25 && self.config.gate_fusion_level != GateFusionLevel::Aggressive {
1033 suggestions.push(
1034 "Enable aggressive gate fusion for better performance on large circuits."
1035 .to_string(),
1036 );
1037 }
1038 if num_gates > 10000 && !self.config.async_execution {
1039 suggestions.push("Enable async execution for circuits with many gates.".to_string());
1040 }
1041 if num_qubits > 28 && self.config.precision == ComputePrecision::Double {
1042 suggestions.push(
1043 "Consider using single precision for very large circuits to reduce memory usage."
1044 .to_string(),
1045 );
1046 }
1047 if self.config.multi_gpu && num_qubits < 26 {
1048 suggestions
1049 .push(
1050 "Multi-GPU mode is overkill for small circuits. Consider single GPU for better efficiency."
1051 .to_string(),
1052 );
1053 }
1054 suggestions
1055 }
1056 pub fn device_info(&self) -> &CudaDeviceInfo {
1058 &self.device_info
1059 }
1060}
1061#[derive(Debug, Clone)]
1063pub struct SlicingConfig {
1064 memory_limit: usize,
1066 slice_indices: Vec<usize>,
1068}
1069pub struct CuQuantumSimulator {
1071 pub statevec: Option<CuStateVecSimulator>,
1073 pub tensornet: Option<CuTensorNetSimulator>,
1075 pub config: CuQuantumConfig,
1077 pub tensornet_threshold: usize,
1079}
1080impl CuQuantumSimulator {
1081 pub fn new(config: CuQuantumConfig) -> Result<Self> {
1083 let tensornet_threshold = config.max_statevec_qubits;
1084 let statevec = CuStateVecSimulator::new(config.clone()).ok();
1085 let tensornet = CuTensorNetSimulator::new(config.clone()).ok();
1086 Ok(Self {
1087 statevec,
1088 tensornet,
1089 config,
1090 tensornet_threshold,
1091 })
1092 }
1093 pub fn is_available() -> bool {
1095 CuStateVecSimulator::is_available() || CuTensorNetSimulator::is_available()
1096 }
1097 pub fn simulate<const N: usize>(&mut self, circuit: &Circuit<N>) -> Result<CuQuantumResult> {
1099 if N <= self.tensornet_threshold {
1100 if let Some(ref mut sv) = self.statevec {
1101 return sv.simulate(circuit);
1102 }
1103 }
1104 if let Some(ref mut tn) = self.tensornet {
1105 tn.build_network(circuit)?;
1106 let amplitudes = tn.contract(&(0..N).collect::<Vec<_>>())?;
1107 return Ok(CuQuantumResult::from_state_vector(amplitudes, N));
1108 }
1109 Err(SimulatorError::GpuError(
1110 "No cuQuantum backend available".to_string(),
1111 ))
1112 }
1113 pub fn stats(&self) -> SimulationStats {
1115 let mut stats = SimulationStats::default();
1116 if let Some(ref sv) = self.statevec {
1117 let sv_stats = sv.stats();
1118 stats.total_simulations += sv_stats.total_simulations;
1119 stats.total_gates += sv_stats.total_gates;
1120 stats.total_time_ms += sv_stats.total_time_ms;
1121 stats.peak_memory_bytes = stats.peak_memory_bytes.max(sv_stats.peak_memory_bytes);
1122 }
1123 if let Some(ref tn) = self.tensornet {
1124 stats.tensor_contractions += tn.stats.tensor_contractions;
1125 }
1126 stats
1127 }
1128}
1129#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1131pub enum GateFusionLevel {
1132 None,
1134 Conservative,
1136 Moderate,
1138 Aggressive,
1140}
1141#[derive(Debug)]
1143pub struct GpuResourcePlanner {
1144 devices: Vec<CudaDeviceInfo>,
1146 config: CuQuantumConfig,
1148}
1149impl GpuResourcePlanner {
1150 pub fn new(devices: Vec<CudaDeviceInfo>, config: CuQuantumConfig) -> Self {
1152 Self { devices, config }
1153 }
1154 pub fn plan_batch<const N: usize>(&self, circuits: &[Circuit<N>]) -> Vec<(usize, usize)> {
1156 if self.devices.is_empty() || circuits.is_empty() {
1157 return Vec::new();
1158 }
1159 let mut assignments = Vec::new();
1160 for (idx, _circuit) in circuits.iter().enumerate() {
1161 let device_idx = idx % self.devices.len();
1162 assignments.push((self.devices[device_idx].device_id as usize, idx));
1163 }
1164 assignments
1165 }
1166 pub fn estimate_batch_memory<const N: usize>(&self, circuits: &[Circuit<N>]) -> usize {
1168 let state_size: usize = 1 << N;
1169 state_size * self.config.precision.bytes_per_amplitude() * circuits.len()
1170 }
1171}
1172#[derive(Debug, Clone)]
1174pub struct CircuitComplexity {
1175 pub num_qubits: usize,
1177 pub num_gates: usize,
1179 pub single_qubit_gates: usize,
1181 pub two_qubit_gates: usize,
1183 pub multi_qubit_gates: usize,
1185 pub depth: usize,
1187 pub entanglement_degree: f64,
1189 pub gate_types: Vec<String>,
1191}
1192impl CircuitComplexity {
1193 pub fn analyze<const N: usize>(circuit: &Circuit<N>) -> Self {
1195 let mut single_qubit_gates = 0;
1196 let mut two_qubit_gates = 0;
1197 let mut multi_qubit_gates = 0;
1198 let mut gate_types = std::collections::HashSet::new();
1199 for gate in circuit.gates() {
1200 let num_qubits_affected = gate.qubits().len();
1201 match num_qubits_affected {
1202 1 => single_qubit_gates += 1,
1203 2 => two_qubit_gates += 1,
1204 _ => multi_qubit_gates += 1,
1205 }
1206 gate_types.insert(gate.name().to_string());
1207 }
1208 let depth = if N > 0 {
1209 (circuit.gates().len() as f64 / N as f64).ceil() as usize
1210 } else {
1211 0
1212 };
1213 let total_gates = circuit.gates().len();
1214 let entanglement_degree = if total_gates > 0 {
1215 (two_qubit_gates + multi_qubit_gates * 2) as f64 / total_gates as f64
1216 } else {
1217 0.0
1218 };
1219 Self {
1220 num_qubits: N,
1221 num_gates: total_gates,
1222 single_qubit_gates,
1223 two_qubit_gates,
1224 multi_qubit_gates,
1225 depth,
1226 entanglement_degree,
1227 gate_types: gate_types.into_iter().collect(),
1228 }
1229 }
1230}
1231#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1233pub enum TensorContractionAlgorithm {
1234 Auto,
1236 Greedy,
1238 Optimal,
1240 OptimalWithSlicing,
1242 RandomGreedy,
1244}