quantrs2_sim/cuquantum/
types.rs

1//! Auto-generated module
2//!
3//! 🤖 Generated with [SplitRS](https://github.com/cool-japan/splitrs)
4
5use crate::error::{Result, SimulatorError};
6use quantrs2_circuit::prelude::Circuit;
7use scirs2_core::ndarray::{Array1, Array2};
8use scirs2_core::Complex64;
9use std::collections::HashMap;
10use thiserror::Error;
11
12/// cuQuantum simulation configuration
13#[derive(Debug, Clone)]
14pub struct CuQuantumConfig {
15    /// Device ID to use (-1 for auto-select)
16    pub device_id: i32,
17    /// Enable multi-GPU execution
18    pub multi_gpu: bool,
19    /// Number of GPUs to use (0 for all available)
20    pub num_gpus: usize,
21    /// Memory pool size in bytes (0 for auto)
22    pub memory_pool_size: usize,
23    /// Enable asynchronous execution
24    pub async_execution: bool,
25    /// Enable memory optimization (may reduce peak memory)
26    pub memory_optimization: bool,
27    /// Computation precision
28    pub precision: ComputePrecision,
29    /// Gate fusion level
30    pub gate_fusion_level: GateFusionLevel,
31    /// Enable profiling
32    pub enable_profiling: bool,
33    /// Maximum number of qubits for state vector simulation
34    pub max_statevec_qubits: usize,
35    /// Tensor network contraction algorithm
36    pub tensor_contraction: TensorContractionAlgorithm,
37    /// Enable TF32 tensor core mode (NVIDIA Ampere and newer)
38    /// When enabled, FP32 matrix operations use 19-bit TensorFloat-32 format
39    /// providing near-FP32 accuracy with ~8x speedup on tensor cores
40    /// Only effective when device has tensor cores (compute capability ≥ 8.0)
41    pub enable_tf32: bool,
42}
43impl CuQuantumConfig {
44    /// Create configuration optimized for large circuits
45    pub fn large_circuit() -> Self {
46        Self {
47            memory_optimization: true,
48            gate_fusion_level: GateFusionLevel::Aggressive,
49            tensor_contraction: TensorContractionAlgorithm::OptimalWithSlicing,
50            enable_tf32: true, // Enable TF32 for performance
51            ..Default::default()
52        }
53    }
54    /// Create configuration optimized for variational algorithms (VQE/QAOA)
55    pub fn variational() -> Self {
56        Self {
57            async_execution: true,
58            gate_fusion_level: GateFusionLevel::Moderate,
59            enable_profiling: false,
60            enable_tf32: true, // Enable TF32 for VQE/QAOA speedup
61            ..Default::default()
62        }
63    }
64    /// Create configuration for multi-GPU execution
65    pub fn multi_gpu(num_gpus: usize) -> Self {
66        Self {
67            multi_gpu: true,
68            num_gpus,
69            memory_optimization: true,
70            enable_tf32: true, // Enable TF32 on all GPUs
71            ..Default::default()
72        }
73    }
74
75    /// Create configuration with TF32 explicitly enabled/disabled
76    pub fn with_tf32(mut self, enable: bool) -> Self {
77        self.enable_tf32 = enable;
78        self
79    }
80
81    /// Check if TF32 should be used based on device capabilities
82    pub fn should_use_tf32(&self, device_info: &CudaDeviceInfo) -> bool {
83        self.enable_tf32
84            && device_info.has_tensor_cores
85            && device_info.compute_capability >= (8, 0) // Ampere and newer
86            && matches!(
87                self.precision,
88                ComputePrecision::Single | ComputePrecision::Mixed
89            )
90    }
91}
92/// CUDA device information
93#[derive(Debug, Clone)]
94pub struct CudaDeviceInfo {
95    /// Device ID
96    pub device_id: i32,
97    /// Device name
98    pub name: String,
99    /// Total global memory in bytes
100    pub total_memory: usize,
101    /// Free memory in bytes
102    pub free_memory: usize,
103    /// Compute capability (major, minor)
104    pub compute_capability: (i32, i32),
105    /// Number of streaming multiprocessors
106    pub sm_count: i32,
107    /// Maximum threads per block
108    pub max_threads_per_block: i32,
109    /// Warp size
110    pub warp_size: i32,
111    /// Whether tensor cores are available
112    pub has_tensor_cores: bool,
113}
114impl CudaDeviceInfo {
115    /// Get maximum qubits supportable for state vector simulation
116    pub fn max_statevec_qubits(&self) -> usize {
117        let available_memory = (self.free_memory as f64 * 0.8) as usize;
118        let bytes_per_amplitude = 16;
119        let max_amplitudes = available_memory / bytes_per_amplitude;
120        (max_amplitudes as f64).log2().floor() as usize
121    }
122}
123/// Recommended simulation backend
124#[derive(Debug, Clone, Copy, PartialEq, Eq)]
125pub enum RecommendedBackend {
126    /// Use state vector simulation (smaller circuits)
127    StateVector,
128    /// Use tensor network simulation (larger circuits)
129    TensorNetwork,
130    /// Hybrid approach
131    Hybrid,
132    /// Cannot simulate (too large)
133    NotFeasible,
134}
135/// Tensor network state representation
136#[derive(Debug, Clone)]
137pub struct TensorNetworkState {
138    /// Tensors in the network
139    tensors: Vec<Tensor>,
140    /// Connections between tensors
141    edges: Vec<TensorEdge>,
142    /// Open indices (not contracted)
143    open_indices: Vec<usize>,
144}
145impl TensorNetworkState {
146    /// Create from a quantum circuit
147    pub fn from_circuit<const N: usize>(circuit: &Circuit<N>) -> Result<Self> {
148        let mut tensors = Vec::new();
149        let mut edges = Vec::new();
150        for qubit in 0..N {
151            tensors.push(Tensor::initial_state(qubit));
152        }
153        for (gate_idx, gate) in circuit.gates().iter().enumerate() {
154            let qubits: Vec<usize> = gate.qubits().iter().map(|q| q.id() as usize).collect();
155            tensors.push(Tensor::from_gate(gate_idx, &qubits));
156            for &qubit in &qubits {
157                edges.push(TensorEdge {
158                    tensor_a: qubit,
159                    tensor_b: N + gate_idx,
160                    index: qubit,
161                });
162            }
163        }
164        Ok(Self {
165            tensors,
166            edges,
167            open_indices: (0..N).collect(),
168        })
169    }
170    /// Get number of tensors
171    pub fn num_tensors(&self) -> usize {
172        self.tensors.len()
173    }
174    /// Get number of edges
175    pub fn num_edges(&self) -> usize {
176        self.edges.len()
177    }
178}
179/// cuQuantum simulation result
180#[derive(Debug, Clone)]
181pub struct CuQuantumResult {
182    /// State vector (if computed)
183    pub state_vector: Option<Array1<Complex64>>,
184    /// Measurement counts
185    pub counts: HashMap<String, usize>,
186    /// Individual measurement outcomes
187    pub measurement_outcomes: Vec<u64>,
188    /// Additional metadata
189    pub metadata: HashMap<String, String>,
190    /// Number of qubits
191    pub num_qubits: usize,
192}
193impl CuQuantumResult {
194    /// Create a new result with state vector
195    pub fn from_state_vector(state: Array1<Complex64>, num_qubits: usize) -> Self {
196        Self {
197            state_vector: Some(state),
198            counts: HashMap::new(),
199            measurement_outcomes: Vec::new(),
200            metadata: HashMap::new(),
201            num_qubits,
202        }
203    }
204    /// Create a new result with measurement counts
205    pub fn from_counts(counts: HashMap<String, usize>, num_qubits: usize) -> Self {
206        Self {
207            state_vector: None,
208            counts,
209            measurement_outcomes: Vec::new(),
210            metadata: HashMap::new(),
211            num_qubits,
212        }
213    }
214    /// Get probabilities from state vector
215    pub fn probabilities(&self) -> Option<Vec<f64>> {
216        self.state_vector
217            .as_ref()
218            .map(|sv| sv.iter().map(|c| c.norm_sqr()).collect())
219    }
220    /// Get expectation value of computational basis measurement
221    pub fn expectation_z(&self, qubit: usize) -> Option<f64> {
222        self.probabilities().map(|probs| {
223            let mut exp = 0.0;
224            for (i, &p) in probs.iter().enumerate() {
225                let bit = (i >> qubit) & 1;
226                exp += if bit == 0 { p } else { -p };
227            }
228            exp
229        })
230    }
231}
232/// Single tensor in the network
233#[derive(Debug, Clone)]
234pub struct Tensor {
235    /// Tensor ID
236    id: usize,
237    /// Shape of the tensor
238    shape: Vec<usize>,
239    /// Data (only stored for leaf tensors)
240    data: Option<Array2<Complex64>>,
241}
242impl Tensor {
243    /// Create initial state tensor |0⟩
244    fn initial_state(qubit: usize) -> Self {
245        let mut data = Array2::zeros((2, 1));
246        data[[0, 0]] = Complex64::new(1.0, 0.0);
247        Self {
248            id: qubit,
249            shape: vec![2],
250            data: Some(data),
251        }
252    }
253    /// Create tensor from gate
254    fn from_gate(gate_idx: usize, _qubits: &[usize]) -> Self {
255        Self {
256            id: gate_idx,
257            shape: vec![2; _qubits.len() * 2],
258            data: None,
259        }
260    }
261}
262/// Edge connecting two tensors
263#[derive(Debug, Clone)]
264pub struct TensorEdge {
265    /// First tensor index
266    tensor_a: usize,
267    /// Second tensor index
268    tensor_b: usize,
269    /// Index being contracted
270    index: usize,
271}
272/// cuStateVec-based state vector simulator
273///
274/// This simulator uses NVIDIA's cuStateVec library for GPU-accelerated
275/// state vector simulation of quantum circuits.
276pub struct CuStateVecSimulator {
277    /// Configuration
278    pub config: CuQuantumConfig,
279    /// Device information
280    pub device_info: Option<CudaDeviceInfo>,
281    /// Simulation statistics
282    pub stats: SimulationStats,
283    /// Whether the simulator is initialized
284    pub initialized: bool,
285    #[cfg(feature = "cuquantum")]
286    pub handle: Option<CuStateVecHandle>,
287    #[cfg(feature = "cuquantum")]
288    pub state_buffer: Option<GpuBuffer>,
289}
290impl CuStateVecSimulator {
291    /// Create a new cuStateVec simulator
292    pub fn new(config: CuQuantumConfig) -> Result<Self> {
293        let device_info = Self::get_device_info(config.device_id)?;
294        Ok(Self {
295            config,
296            device_info: Some(device_info),
297            stats: SimulationStats::default(),
298            initialized: false,
299            #[cfg(feature = "cuquantum")]
300            handle: None,
301            #[cfg(feature = "cuquantum")]
302            state_buffer: None,
303        })
304    }
305    /// Create with default configuration
306    pub fn default_config() -> Result<Self> {
307        Self::new(CuQuantumConfig::default())
308    }
309    /// Check if cuQuantum is available
310    pub fn is_available() -> bool {
311        #[cfg(feature = "cuquantum")]
312        {
313            Self::check_cuquantum_available()
314        }
315        #[cfg(not(feature = "cuquantum"))]
316        {
317            false
318        }
319    }
320    /// Get device information
321    pub fn get_device_info(device_id: i32) -> Result<CudaDeviceInfo> {
322        #[cfg(feature = "cuquantum")]
323        {
324            Self::get_cuda_device_info(device_id)
325        }
326        #[cfg(not(feature = "cuquantum"))]
327        {
328            Ok(CudaDeviceInfo {
329                device_id: if device_id < 0 { 0 } else { device_id },
330                name: "Mock CUDA Device (cuQuantum not available)".to_string(),
331                total_memory: 16 * 1024 * 1024 * 1024,
332                free_memory: 12 * 1024 * 1024 * 1024,
333                compute_capability: (8, 6),
334                sm_count: 84,
335                max_threads_per_block: 1024,
336                warp_size: 32,
337                has_tensor_cores: true,
338            })
339        }
340    }
341    /// Initialize the simulator for a specific number of qubits
342    pub fn initialize(&mut self, num_qubits: usize) -> Result<()> {
343        if num_qubits > self.config.max_statevec_qubits {
344            return Err(SimulatorError::InvalidParameter(format!(
345                "Number of qubits ({}) exceeds maximum ({})",
346                num_qubits, self.config.max_statevec_qubits
347            )));
348        }
349        #[cfg(feature = "cuquantum")]
350        {
351            self.initialize_custatevec(num_qubits)?;
352        }
353        self.initialized = true;
354        Ok(())
355    }
356    /// Simulate a quantum circuit
357    pub fn simulate<const N: usize>(&mut self, circuit: &Circuit<N>) -> Result<CuQuantumResult> {
358        if !self.initialized {
359            self.initialize(N)?;
360        }
361        let start_time = std::time::Instant::now();
362        #[cfg(target_os = "macos")]
363        {
364            self.simulate_mock(circuit, start_time)
365        }
366        #[cfg(all(feature = "cuquantum", not(target_os = "macos")))]
367        {
368            self.simulate_with_custatevec(circuit)
369        }
370        #[cfg(all(not(feature = "cuquantum"), not(target_os = "macos")))]
371        {
372            self.simulate_mock(circuit, start_time)
373        }
374    }
375    /// Mock simulation for non-CUDA platforms
376    /// Available on macOS (always) and when cuquantum feature is disabled
377    #[cfg(any(target_os = "macos", not(feature = "cuquantum")))]
378    fn simulate_mock<const N: usize>(
379        &mut self,
380        circuit: &Circuit<N>,
381        start_time: std::time::Instant,
382    ) -> Result<CuQuantumResult> {
383        let state_size = 1 << N;
384        let mut state = Array1::zeros(state_size);
385        state[0] = Complex64::new(1.0, 0.0);
386        self.stats.total_simulations += 1;
387        self.stats.total_gates += circuit.gates().len();
388        self.stats.total_time_ms += start_time.elapsed().as_millis() as f64;
389        Ok(CuQuantumResult::from_state_vector(state, N))
390    }
391    /// Get simulation statistics
392    pub fn stats(&self) -> &SimulationStats {
393        &self.stats
394    }
395    /// Reset simulation statistics
396    pub fn reset_stats(&mut self) {
397        self.stats = SimulationStats::default();
398    }
399    /// Get device information
400    pub fn device_info(&self) -> Option<&CudaDeviceInfo> {
401        self.device_info.as_ref()
402    }
403    #[cfg(feature = "cuquantum")]
404    fn check_cuquantum_available() -> bool {
405        false
406    }
407    #[cfg(feature = "cuquantum")]
408    fn get_cuda_device_info(device_id: i32) -> Result<CudaDeviceInfo> {
409        #[cfg(target_os = "macos")]
410        {
411            Ok(CudaDeviceInfo {
412                device_id: if device_id < 0 { 0 } else { device_id },
413                name: "Mock CUDA Device (macOS - no CUDA)".to_string(),
414                total_memory: 24 * 1024 * 1024 * 1024,
415                free_memory: 20 * 1024 * 1024 * 1024,
416                compute_capability: (8, 9),
417                sm_count: 128,
418                max_threads_per_block: 1024,
419                warp_size: 32,
420                has_tensor_cores: true,
421            })
422        }
423        #[cfg(not(target_os = "macos"))]
424        {
425            Ok(CudaDeviceInfo {
426                device_id: if device_id < 0 { 0 } else { device_id },
427                name: "Mock CUDA Device (cuQuantum stub)".to_string(),
428                total_memory: 24 * 1024 * 1024 * 1024,
429                free_memory: 20 * 1024 * 1024 * 1024,
430                compute_capability: (8, 9),
431                sm_count: 128,
432                max_threads_per_block: 1024,
433                warp_size: 32,
434                has_tensor_cores: true,
435            })
436        }
437    }
438    #[cfg(feature = "cuquantum")]
439    fn initialize_custatevec(&mut self, num_qubits: usize) -> Result<()> {
440        Ok(())
441    }
442    #[cfg(feature = "cuquantum")]
443    fn simulate_with_custatevec<const N: usize>(
444        &mut self,
445        circuit: &Circuit<N>,
446    ) -> Result<CuQuantumResult> {
447        Err(SimulatorError::GpuError(
448            "cuStateVec simulation not yet implemented".to_string(),
449        ))
450    }
451}
452/// Simulation statistics
453#[derive(Debug, Clone, Default)]
454pub struct SimulationStats {
455    /// Total number of simulations run
456    pub total_simulations: usize,
457    /// Total gates applied
458    pub total_gates: usize,
459    /// Total simulation time in milliseconds
460    pub total_time_ms: f64,
461    /// Peak GPU memory usage in bytes
462    pub peak_memory_bytes: usize,
463    /// Number of tensor contractions (for cuTensorNet)
464    pub tensor_contractions: usize,
465    /// Total FLOP count
466    pub total_flops: f64,
467}
468impl SimulationStats {
469    /// Get average gates per simulation
470    pub fn avg_gates_per_sim(&self) -> f64 {
471        if self.total_simulations > 0 {
472            self.total_gates as f64 / self.total_simulations as f64
473        } else {
474            0.0
475        }
476    }
477    /// Get average time per simulation in milliseconds
478    pub fn avg_time_per_sim(&self) -> f64 {
479        if self.total_simulations > 0 {
480            self.total_time_ms / self.total_simulations as f64
481        } else {
482            0.0
483        }
484    }
485    /// Get throughput in GFLOP/s
486    pub fn throughput_gflops(&self) -> f64 {
487        if self.total_time_ms > 0.0 {
488            (self.total_flops / 1e9) / (self.total_time_ms / 1000.0)
489        } else {
490            0.0
491        }
492    }
493}
494/// Computation precision
495#[derive(Debug, Clone, Copy, PartialEq, Eq)]
496pub enum ComputePrecision {
497    /// Half precision (float16) - reduced memory, faster on tensor cores
498    /// Suitable for approximate calculations where high precision isn't critical
499    Half,
500    /// Single precision (float32) - balanced precision and performance
501    /// Recommended for most quantum simulations
502    Single,
503    /// Double precision (float64) - highest precision
504    /// Required for high-fidelity simulations and error-sensitive algorithms
505    Double,
506    /// Mixed precision (automatic FP16/FP32 switching)
507    /// Uses FP16 for matrix operations (tensor cores) and FP32 for accumulation
508    /// Provides near-FP32 accuracy with FP16 speed
509    Mixed,
510}
511
512impl ComputePrecision {
513    /// Get bytes per complex amplitude for this precision
514    pub fn bytes_per_amplitude(self) -> usize {
515        match self {
516            ComputePrecision::Half => 4,    // FP16: 2 bytes × 2 (complex)
517            ComputePrecision::Single => 8,  // FP32: 4 bytes × 2 (complex)
518            ComputePrecision::Double => 16, // FP64: 8 bytes × 2 (complex)
519            ComputePrecision::Mixed => 8,   // Mixed: FP32 for state vector storage
520        }
521    }
522
523    /// Get relative speed multiplier (approximate)
524    /// Higher values = faster computation
525    pub fn speed_factor(self) -> f64 {
526        match self {
527            ComputePrecision::Half => 2.0, // ~2x faster than FP32 on tensor cores
528            ComputePrecision::Single => 1.0, // Baseline
529            ComputePrecision::Double => 0.5, // ~2x slower than FP32
530            ComputePrecision::Mixed => 1.7, // ~1.7x faster than FP32 (with tensor cores)
531        }
532    }
533
534    /// Get relative accuracy (approximate)
535    /// Higher values = more accurate
536    pub fn accuracy_factor(self) -> f64 {
537        match self {
538            ComputePrecision::Half => 0.3,   // ~3 decimal digits precision
539            ComputePrecision::Single => 1.0, // ~7 decimal digits precision (baseline)
540            ComputePrecision::Double => 2.2, // ~15 decimal digits precision
541            ComputePrecision::Mixed => 0.95, // Near-FP32 accuracy
542        }
543    }
544
545    /// Check if precision uses tensor cores (if available)
546    pub fn uses_tensor_cores(self) -> bool {
547        matches!(self, ComputePrecision::Half | ComputePrecision::Mixed)
548    }
549
550    /// Get human-readable description
551    pub fn description(self) -> &'static str {
552        match self {
553            ComputePrecision::Half => {
554                "Half precision (FP16): Fastest, lowest memory, reduced accuracy"
555            }
556            ComputePrecision::Single => {
557                "Single precision (FP32): Balanced speed and accuracy, recommended"
558            }
559            ComputePrecision::Double => {
560                "Double precision (FP64): Highest accuracy, slower, more memory"
561            }
562            ComputePrecision::Mixed => {
563                "Mixed precision (FP16/FP32): Near-FP32 accuracy with FP16 speed on tensor cores"
564            }
565        }
566    }
567}
568/// cuQuantum-specific errors
569#[derive(Debug, Error)]
570pub enum CuQuantumError {
571    #[error("cuQuantum not available: {0}")]
572    NotAvailable(String),
573    #[error("CUDA error: {0}")]
574    CudaError(String),
575    #[error("cuStateVec error: {0}")]
576    CuStateVecError(String),
577    #[error("cuTensorNet error: {0}")]
578    CuTensorNetError(String),
579    #[error("Memory allocation error: {0}")]
580    MemoryError(String),
581    #[error("Invalid configuration: {0}")]
582    ConfigError(String),
583    #[error("Device error: {0}")]
584    DeviceError(String),
585    #[error("Simulation error: {0}")]
586    SimulationError(String),
587}
588/// cuTensorNet-based tensor network simulator
589///
590/// This simulator uses NVIDIA's cuTensorNet library for GPU-accelerated
591/// tensor network contraction, enabling simulation of circuits beyond
592/// the state vector memory limit.
593pub struct CuTensorNetSimulator {
594    /// Configuration
595    pub config: CuQuantumConfig,
596    /// Device information
597    pub device_info: Option<CudaDeviceInfo>,
598    /// Simulation statistics
599    pub stats: SimulationStats,
600    /// Tensor network representation of the circuit
601    pub tensor_network: Option<TensorNetworkState>,
602}
603impl CuTensorNetSimulator {
604    /// Create a new cuTensorNet simulator
605    pub fn new(config: CuQuantumConfig) -> Result<Self> {
606        let device_info = CuStateVecSimulator::get_device_info(config.device_id)?;
607        Ok(Self {
608            config,
609            device_info: Some(device_info),
610            stats: SimulationStats::default(),
611            tensor_network: None,
612        })
613    }
614    /// Create with default configuration
615    pub fn default_config() -> Result<Self> {
616        Self::new(CuQuantumConfig::default())
617    }
618    /// Check if cuTensorNet is available
619    pub fn is_available() -> bool {
620        #[cfg(feature = "cuquantum")]
621        {
622            Self::check_cutensornet_available()
623        }
624        #[cfg(not(feature = "cuquantum"))]
625        {
626            false
627        }
628    }
629    /// Build tensor network from circuit
630    pub fn build_network<const N: usize>(&mut self, circuit: &Circuit<N>) -> Result<()> {
631        self.tensor_network = Some(TensorNetworkState::from_circuit(circuit)?);
632        Ok(())
633    }
634    /// Contract the tensor network to compute amplitudes
635    pub fn contract(&mut self, output_indices: &[usize]) -> Result<Array1<Complex64>> {
636        let network = self
637            .tensor_network
638            .as_ref()
639            .ok_or_else(|| SimulatorError::InvalidParameter("Network not built".to_string()))?;
640        #[cfg(target_os = "macos")]
641        {
642            self.contract_mock(network, output_indices)
643        }
644        #[cfg(all(feature = "cuquantum", not(target_os = "macos")))]
645        {
646            self.contract_with_cutensornet(network, output_indices)
647        }
648        #[cfg(all(not(feature = "cuquantum"), not(target_os = "macos")))]
649        {
650            self.contract_mock(network, output_indices)
651        }
652    }
653    /// Compute expectation value of an observable
654    pub fn expectation_value(&mut self, observable: &Observable) -> Result<f64> {
655        let _network = self
656            .tensor_network
657            .as_ref()
658            .ok_or_else(|| SimulatorError::InvalidParameter("Network not built".to_string()))?;
659        #[cfg(target_os = "macos")]
660        {
661            let _ = observable;
662            Ok(0.5)
663        }
664        #[cfg(all(feature = "cuquantum", not(target_os = "macos")))]
665        {
666            self.expectation_with_cutensornet(_network, observable)
667        }
668        #[cfg(all(not(feature = "cuquantum"), not(target_os = "macos")))]
669        {
670            let _ = observable;
671            Ok(0.5)
672        }
673    }
674    /// Get optimal contraction order
675    pub fn find_contraction_order(&self) -> Result<ContractionPath> {
676        let network = self
677            .tensor_network
678            .as_ref()
679            .ok_or_else(|| SimulatorError::InvalidParameter("Network not built".to_string()))?;
680        match self.config.tensor_contraction {
681            TensorContractionAlgorithm::Auto => self.auto_contraction_order(network),
682            TensorContractionAlgorithm::Greedy => self.greedy_contraction_order(network),
683            TensorContractionAlgorithm::Optimal => self.optimal_contraction_order(network),
684            TensorContractionAlgorithm::OptimalWithSlicing => {
685                self.optimal_sliced_contraction_order(network)
686            }
687            TensorContractionAlgorithm::RandomGreedy => {
688                self.random_greedy_contraction_order(network)
689            }
690        }
691    }
692    /// Mock contraction for non-CUDA platforms
693    /// Available on macOS (always) and when cuquantum feature is disabled
694    #[cfg(any(target_os = "macos", not(feature = "cuquantum")))]
695    fn contract_mock(
696        &self,
697        _network: &TensorNetworkState,
698        output_indices: &[usize],
699    ) -> Result<Array1<Complex64>> {
700        let size = 1 << output_indices.len();
701        let mut result = Array1::zeros(size);
702        result[0] = Complex64::new(1.0, 0.0);
703        Ok(result)
704    }
705    fn auto_contraction_order(&self, network: &TensorNetworkState) -> Result<ContractionPath> {
706        if network.num_tensors() < 20 {
707            self.optimal_contraction_order(network)
708        } else {
709            self.greedy_contraction_order(network)
710        }
711    }
712    fn greedy_contraction_order(&self, network: &TensorNetworkState) -> Result<ContractionPath> {
713        let mut path = ContractionPath::new();
714        let mut remaining: Vec<usize> = (0..network.num_tensors()).collect();
715        while remaining.len() > 1 {
716            let mut best_cost = f64::MAX;
717            let mut best_pair = (0, 1);
718            for i in 0..remaining.len() {
719                for j in (i + 1)..remaining.len() {
720                    let cost = self.estimate_contraction_cost(remaining[i], remaining[j]);
721                    if cost < best_cost {
722                        best_cost = cost;
723                        best_pair = (i, j);
724                    }
725                }
726            }
727            path.add_contraction(remaining[best_pair.0], remaining[best_pair.1]);
728            remaining.remove(best_pair.1);
729        }
730        Ok(path)
731    }
732    fn optimal_contraction_order(&self, network: &TensorNetworkState) -> Result<ContractionPath> {
733        if network.num_tensors() > 15 {
734            return self.greedy_contraction_order(network);
735        }
736        self.greedy_contraction_order(network)
737    }
738    fn optimal_sliced_contraction_order(
739        &self,
740        network: &TensorNetworkState,
741    ) -> Result<ContractionPath> {
742        let mut path = self.optimal_contraction_order(network)?;
743        path.enable_slicing(self.config.memory_pool_size);
744        Ok(path)
745    }
746    fn random_greedy_contraction_order(
747        &self,
748        network: &TensorNetworkState,
749    ) -> Result<ContractionPath> {
750        use scirs2_core::random::{thread_rng, Rng};
751        let mut rng = thread_rng();
752        let mut best_path = self.greedy_contraction_order(network)?;
753        let mut best_cost = best_path.total_cost();
754        for _ in 0..10 {
755            let path = self.randomized_greedy_order(network, &mut rng)?;
756            let cost = path.total_cost();
757            if cost < best_cost {
758                best_cost = cost;
759                best_path = path;
760            }
761        }
762        Ok(best_path)
763    }
764    fn randomized_greedy_order<R: scirs2_core::random::Rng>(
765        &self,
766        network: &TensorNetworkState,
767        rng: &mut R,
768    ) -> Result<ContractionPath> {
769        let mut path = ContractionPath::new();
770        let mut remaining: Vec<usize> = (0..network.num_tensors()).collect();
771        while remaining.len() > 1 {
772            let mut candidates: Vec<((usize, usize), f64)> = Vec::new();
773            for i in 0..remaining.len() {
774                for j in (i + 1)..remaining.len() {
775                    let cost = self.estimate_contraction_cost(remaining[i], remaining[j]);
776                    candidates.push(((i, j), cost));
777                }
778            }
779            candidates.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
780            let pick_range = (candidates.len() / 3).max(1);
781            let pick_idx = rng.gen_range(0..pick_range);
782            let (best_pair, _) = candidates[pick_idx];
783            path.add_contraction(remaining[best_pair.0], remaining[best_pair.1]);
784            remaining.remove(best_pair.1);
785        }
786        Ok(path)
787    }
788    fn estimate_contraction_cost(&self, _tensor_a: usize, _tensor_b: usize) -> f64 {
789        1.0
790    }
791    #[cfg(feature = "cuquantum")]
792    fn check_cutensornet_available() -> bool {
793        false
794    }
795    #[cfg(feature = "cuquantum")]
796    fn contract_with_cutensornet(
797        &self,
798        _network: &TensorNetworkState,
799        _output_indices: &[usize],
800    ) -> Result<Array1<Complex64>> {
801        Err(SimulatorError::GpuError(
802            "cuTensorNet contraction not yet implemented".to_string(),
803        ))
804    }
805    #[cfg(feature = "cuquantum")]
806    fn expectation_with_cutensornet(
807        &self,
808        _network: &TensorNetworkState,
809        _observable: &Observable,
810    ) -> Result<f64> {
811        Err(SimulatorError::GpuError(
812            "cuTensorNet expectation not yet implemented".to_string(),
813        ))
814    }
815}
816/// Observable for expectation value computation
817#[derive(Debug, Clone)]
818pub enum Observable {
819    /// Pauli Z on specified qubits
820    PauliZ(Vec<usize>),
821    /// Pauli X on specified qubits
822    PauliX(Vec<usize>),
823    /// Pauli Y on specified qubits
824    PauliY(Vec<usize>),
825    /// General Hermitian matrix
826    Hermitian(Array2<Complex64>),
827    /// Sum of observables
828    Sum(Vec<Observable>),
829    /// Product of observables
830    Product(Vec<Observable>),
831}
832#[cfg(feature = "cuquantum")]
833pub struct GpuBuffer {
834    _ptr: *mut std::ffi::c_void,
835    _size: usize,
836}
837#[cfg(feature = "cuquantum")]
838pub struct CuStateVecHandle {
839    _handle: *mut std::ffi::c_void,
840}
841/// Performance estimation results for a quantum circuit
842#[derive(Debug, Clone)]
843pub struct PerformanceEstimate {
844    /// Estimated simulation time in milliseconds
845    pub estimated_time_ms: f64,
846    /// Estimated peak memory usage in bytes
847    pub estimated_memory_bytes: usize,
848    /// Estimated FLOPS required
849    pub estimated_flops: f64,
850    /// Recommended backend (state vector or tensor network)
851    pub recommended_backend: RecommendedBackend,
852    /// Whether the simulation will fit in GPU memory
853    pub fits_in_memory: bool,
854    /// Estimated GPU utilization (0.0 to 1.0)
855    pub estimated_gpu_utilization: f64,
856    /// Warnings or suggestions
857    pub suggestions: Vec<String>,
858}
859/// Contraction path for tensor network
860#[derive(Debug, Clone)]
861pub struct ContractionPath {
862    /// Sequence of contractions (pairs of tensor indices)
863    pub contractions: Vec<(usize, usize)>,
864    /// Estimated cost of each contraction
865    pub costs: Vec<f64>,
866    /// Slicing configuration
867    pub slicing: Option<SlicingConfig>,
868}
869impl ContractionPath {
870    /// Create empty path
871    pub fn new() -> Self {
872        Self {
873            contractions: Vec::new(),
874            costs: Vec::new(),
875            slicing: None,
876        }
877    }
878    /// Add a contraction step
879    pub fn add_contraction(&mut self, tensor_a: usize, tensor_b: usize) {
880        self.contractions.push((tensor_a, tensor_b));
881        self.costs.push(1.0);
882    }
883    /// Get total cost
884    pub fn total_cost(&self) -> f64 {
885        self.costs.iter().sum()
886    }
887    /// Enable slicing for memory reduction
888    pub fn enable_slicing(&mut self, memory_limit: usize) {
889        self.slicing = Some(SlicingConfig {
890            memory_limit,
891            slice_indices: Vec::new(),
892        });
893    }
894}
895/// GPU performance estimator for quantum circuit simulation
896#[derive(Debug)]
897pub struct PerformanceEstimator {
898    /// Device information
899    device_info: CudaDeviceInfo,
900    /// Configuration
901    config: CuQuantumConfig,
902}
903impl PerformanceEstimator {
904    /// Create a new performance estimator
905    pub fn new(device_info: CudaDeviceInfo, config: CuQuantumConfig) -> Self {
906        Self {
907            device_info,
908            config,
909        }
910    }
911    /// Create with default device (mock on macOS)
912    pub fn with_default_device(config: CuQuantumConfig) -> Result<Self> {
913        let device_info = CuStateVecSimulator::get_device_info(config.device_id)?;
914        Ok(Self::new(device_info, config))
915    }
916    /// Estimate performance for a quantum circuit
917    pub fn estimate<const N: usize>(&self, circuit: &Circuit<N>) -> PerformanceEstimate {
918        let num_qubits = N;
919        let num_gates = circuit.gates().len();
920        let state_vector_bytes = self.calculate_state_vector_memory(num_qubits);
921        let estimated_flops = self.calculate_flops(num_qubits, num_gates);
922        let fits_in_memory =
923            state_vector_bytes <= (self.device_info.free_memory as f64 * 0.8) as usize;
924        let recommended_backend = self.recommend_backend(num_qubits, num_gates, fits_in_memory);
925        let estimated_time_ms = self.estimate_time(num_qubits, num_gates, &recommended_backend);
926        let estimated_gpu_utilization =
927            self.estimate_gpu_utilization(num_qubits, num_gates, &recommended_backend);
928        let suggestions = self.generate_suggestions(num_qubits, num_gates, fits_in_memory);
929        PerformanceEstimate {
930            estimated_time_ms,
931            estimated_memory_bytes: state_vector_bytes,
932            estimated_flops,
933            recommended_backend,
934            fits_in_memory,
935            estimated_gpu_utilization,
936            suggestions,
937        }
938    }
939    /// Calculate state vector memory requirements
940    fn calculate_state_vector_memory(&self, num_qubits: usize) -> usize {
941        let num_amplitudes: usize = 1 << num_qubits;
942        num_amplitudes * self.config.precision.bytes_per_amplitude()
943    }
944    /// Calculate estimated FLOPS for simulation
945    fn calculate_flops(&self, num_qubits: usize, num_gates: usize) -> f64 {
946        let state_size = 1u64 << num_qubits;
947        let flops_per_gate = state_size as f64 * 8.0;
948        num_gates as f64 * flops_per_gate
949    }
950    /// Recommend the best backend for simulation
951    fn recommend_backend(
952        &self,
953        num_qubits: usize,
954        num_gates: usize,
955        fits_in_memory: bool,
956    ) -> RecommendedBackend {
957        if !fits_in_memory {
958            if num_qubits > 50 {
959                RecommendedBackend::NotFeasible
960            } else {
961                RecommendedBackend::TensorNetwork
962            }
963        } else if num_qubits <= self.config.max_statevec_qubits {
964            let circuit_depth = (num_gates as f64 / num_qubits as f64).ceil() as usize;
965            if circuit_depth > num_qubits * 10 {
966                RecommendedBackend::Hybrid
967            } else {
968                RecommendedBackend::StateVector
969            }
970        } else {
971            RecommendedBackend::TensorNetwork
972        }
973    }
974    /// Estimate simulation time
975    fn estimate_time(
976        &self,
977        num_qubits: usize,
978        num_gates: usize,
979        backend: &RecommendedBackend,
980    ) -> f64 {
981        let base_flops = self.calculate_flops(num_qubits, num_gates);
982        let gpu_throughput_gflops = match self.device_info.compute_capability {
983            (9, _) => 150.0,
984            (8, 9) => 83.0,
985            (8, 6) => 35.0,
986            (8, 0) => 19.5,
987            (7, _) => 16.0,
988            _ => 10.0,
989        } * 1000.0;
990        let raw_time_ms = base_flops / (gpu_throughput_gflops * 1e6);
991        let overhead = match backend {
992            RecommendedBackend::StateVector => 1.2,
993            RecommendedBackend::TensorNetwork => 2.5,
994            RecommendedBackend::Hybrid => 1.8,
995            RecommendedBackend::NotFeasible => f64::MAX,
996        };
997        raw_time_ms * overhead
998    }
999    /// Estimate GPU utilization
1000    fn estimate_gpu_utilization(
1001        &self,
1002        num_qubits: usize,
1003        num_gates: usize,
1004        backend: &RecommendedBackend,
1005    ) -> f64 {
1006        match backend {
1007            RecommendedBackend::NotFeasible => 0.0,
1008            _ => {
1009                let size_factor = (num_qubits as f64 / 30.0).min(1.0);
1010                let gate_factor = (num_gates as f64 / 1000.0).min(1.0);
1011                (size_factor * 0.6 + gate_factor * 0.4).clamp(0.1, 0.95)
1012            }
1013        }
1014    }
1015    /// Generate performance suggestions
1016    fn generate_suggestions(
1017        &self,
1018        num_qubits: usize,
1019        num_gates: usize,
1020        fits_in_memory: bool,
1021    ) -> Vec<String> {
1022        let mut suggestions = Vec::new();
1023        if !fits_in_memory {
1024            suggestions
1025                .push(
1026                    format!(
1027                        "Circuit requires {} qubits, which exceeds available GPU memory. Consider using tensor network simulation.",
1028                        num_qubits
1029                    ),
1030                );
1031        }
1032        if num_qubits > 25 && self.config.gate_fusion_level != GateFusionLevel::Aggressive {
1033            suggestions.push(
1034                "Enable aggressive gate fusion for better performance on large circuits."
1035                    .to_string(),
1036            );
1037        }
1038        if num_gates > 10000 && !self.config.async_execution {
1039            suggestions.push("Enable async execution for circuits with many gates.".to_string());
1040        }
1041        if num_qubits > 28 && self.config.precision == ComputePrecision::Double {
1042            suggestions.push(
1043                "Consider using single precision for very large circuits to reduce memory usage."
1044                    .to_string(),
1045            );
1046        }
1047        if self.config.multi_gpu && num_qubits < 26 {
1048            suggestions
1049                .push(
1050                    "Multi-GPU mode is overkill for small circuits. Consider single GPU for better efficiency."
1051                        .to_string(),
1052                );
1053        }
1054        suggestions
1055    }
1056    /// Get device information
1057    pub fn device_info(&self) -> &CudaDeviceInfo {
1058        &self.device_info
1059    }
1060}
1061/// Slicing configuration for memory-efficient contraction
1062#[derive(Debug, Clone)]
1063pub struct SlicingConfig {
1064    /// Memory limit in bytes
1065    memory_limit: usize,
1066    /// Indices to slice over
1067    slice_indices: Vec<usize>,
1068}
1069/// Unified cuQuantum simulator that automatically selects the best backend
1070pub struct CuQuantumSimulator {
1071    /// cuStateVec simulator for state vector simulation
1072    pub statevec: Option<CuStateVecSimulator>,
1073    /// cuTensorNet simulator for tensor network simulation
1074    pub tensornet: Option<CuTensorNetSimulator>,
1075    /// Configuration
1076    pub config: CuQuantumConfig,
1077    /// Threshold for switching to tensor network (number of qubits)
1078    pub tensornet_threshold: usize,
1079}
1080impl CuQuantumSimulator {
1081    /// Create a new unified cuQuantum simulator
1082    pub fn new(config: CuQuantumConfig) -> Result<Self> {
1083        let tensornet_threshold = config.max_statevec_qubits;
1084        let statevec = CuStateVecSimulator::new(config.clone()).ok();
1085        let tensornet = CuTensorNetSimulator::new(config.clone()).ok();
1086        Ok(Self {
1087            statevec,
1088            tensornet,
1089            config,
1090            tensornet_threshold,
1091        })
1092    }
1093    /// Check if any cuQuantum backend is available
1094    pub fn is_available() -> bool {
1095        CuStateVecSimulator::is_available() || CuTensorNetSimulator::is_available()
1096    }
1097    /// Simulate a circuit, automatically selecting the best backend
1098    pub fn simulate<const N: usize>(&mut self, circuit: &Circuit<N>) -> Result<CuQuantumResult> {
1099        if N <= self.tensornet_threshold {
1100            if let Some(ref mut sv) = self.statevec {
1101                return sv.simulate(circuit);
1102            }
1103        }
1104        if let Some(ref mut tn) = self.tensornet {
1105            tn.build_network(circuit)?;
1106            let amplitudes = tn.contract(&(0..N).collect::<Vec<_>>())?;
1107            return Ok(CuQuantumResult::from_state_vector(amplitudes, N));
1108        }
1109        Err(SimulatorError::GpuError(
1110            "No cuQuantum backend available".to_string(),
1111        ))
1112    }
1113    /// Get combined statistics
1114    pub fn stats(&self) -> SimulationStats {
1115        let mut stats = SimulationStats::default();
1116        if let Some(ref sv) = self.statevec {
1117            let sv_stats = sv.stats();
1118            stats.total_simulations += sv_stats.total_simulations;
1119            stats.total_gates += sv_stats.total_gates;
1120            stats.total_time_ms += sv_stats.total_time_ms;
1121            stats.peak_memory_bytes = stats.peak_memory_bytes.max(sv_stats.peak_memory_bytes);
1122        }
1123        if let Some(ref tn) = self.tensornet {
1124            stats.tensor_contractions += tn.stats.tensor_contractions;
1125        }
1126        stats
1127    }
1128}
1129/// Gate fusion optimization level
1130#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1131pub enum GateFusionLevel {
1132    /// No fusion
1133    None,
1134    /// Conservative fusion (adjacent single-qubit gates)
1135    Conservative,
1136    /// Moderate fusion (single-qubit + some two-qubit)
1137    Moderate,
1138    /// Aggressive fusion (maximize fusion opportunities)
1139    Aggressive,
1140}
1141/// GPU resource planner for multi-circuit simulation
1142#[derive(Debug)]
1143pub struct GpuResourcePlanner {
1144    /// Available devices
1145    devices: Vec<CudaDeviceInfo>,
1146    /// Configuration
1147    config: CuQuantumConfig,
1148}
1149impl GpuResourcePlanner {
1150    /// Create a new resource planner
1151    pub fn new(devices: Vec<CudaDeviceInfo>, config: CuQuantumConfig) -> Self {
1152        Self { devices, config }
1153    }
1154    /// Plan resource allocation for batch simulation
1155    pub fn plan_batch<const N: usize>(&self, circuits: &[Circuit<N>]) -> Vec<(usize, usize)> {
1156        if self.devices.is_empty() || circuits.is_empty() {
1157            return Vec::new();
1158        }
1159        let mut assignments = Vec::new();
1160        for (idx, _circuit) in circuits.iter().enumerate() {
1161            let device_idx = idx % self.devices.len();
1162            assignments.push((self.devices[device_idx].device_id as usize, idx));
1163        }
1164        assignments
1165    }
1166    /// Estimate total memory required for batch simulation
1167    pub fn estimate_batch_memory<const N: usize>(&self, circuits: &[Circuit<N>]) -> usize {
1168        let state_size: usize = 1 << N;
1169        state_size * self.config.precision.bytes_per_amplitude() * circuits.len()
1170    }
1171}
1172/// Circuit complexity analyzer
1173#[derive(Debug, Clone)]
1174pub struct CircuitComplexity {
1175    /// Number of qubits
1176    pub num_qubits: usize,
1177    /// Total number of gates
1178    pub num_gates: usize,
1179    /// Number of single-qubit gates
1180    pub single_qubit_gates: usize,
1181    /// Number of two-qubit gates
1182    pub two_qubit_gates: usize,
1183    /// Number of multi-qubit gates (3+)
1184    pub multi_qubit_gates: usize,
1185    /// Circuit depth
1186    pub depth: usize,
1187    /// Estimated entanglement degree (0.0 to 1.0)
1188    pub entanglement_degree: f64,
1189    /// Gate types used
1190    pub gate_types: Vec<String>,
1191}
1192impl CircuitComplexity {
1193    /// Analyze a quantum circuit
1194    pub fn analyze<const N: usize>(circuit: &Circuit<N>) -> Self {
1195        let mut single_qubit_gates = 0;
1196        let mut two_qubit_gates = 0;
1197        let mut multi_qubit_gates = 0;
1198        let mut gate_types = std::collections::HashSet::new();
1199        for gate in circuit.gates() {
1200            let num_qubits_affected = gate.qubits().len();
1201            match num_qubits_affected {
1202                1 => single_qubit_gates += 1,
1203                2 => two_qubit_gates += 1,
1204                _ => multi_qubit_gates += 1,
1205            }
1206            gate_types.insert(gate.name().to_string());
1207        }
1208        let depth = if N > 0 {
1209            (circuit.gates().len() as f64 / N as f64).ceil() as usize
1210        } else {
1211            0
1212        };
1213        let total_gates = circuit.gates().len();
1214        let entanglement_degree = if total_gates > 0 {
1215            (two_qubit_gates + multi_qubit_gates * 2) as f64 / total_gates as f64
1216        } else {
1217            0.0
1218        };
1219        Self {
1220            num_qubits: N,
1221            num_gates: total_gates,
1222            single_qubit_gates,
1223            two_qubit_gates,
1224            multi_qubit_gates,
1225            depth,
1226            entanglement_degree,
1227            gate_types: gate_types.into_iter().collect(),
1228        }
1229    }
1230}
1231/// Tensor network contraction algorithm
1232#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1233pub enum TensorContractionAlgorithm {
1234    /// Automatic selection based on circuit structure
1235    Auto,
1236    /// Greedy contraction order
1237    Greedy,
1238    /// Optimal contraction order (may be expensive for large circuits)
1239    Optimal,
1240    /// Optimal with index slicing for memory reduction
1241    OptimalWithSlicing,
1242    /// Random greedy trials
1243    RandomGreedy,
1244}