1use scirs2_core::ndarray::{Array1, Array2, Array3, Array4, ArrayView1, Axis};
19use scirs2_core::Complex64;
20use serde::{Deserialize, Serialize};
21use std::collections::{HashMap, VecDeque};
22use std::sync::{Arc, Mutex};
23
24use crate::circuit_interfaces::{
25 CircuitInterface, InterfaceCircuit, InterfaceGate, InterfaceGateType,
26};
27use crate::error::{Result, SimulatorError};
28use crate::quantum_ml_algorithms::{HardwareArchitecture, QMLConfig};
29use crate::statevector::StateVectorSimulator;
30
31#[derive(Debug, Clone, Copy, PartialEq, Eq)]
33pub enum TPUDeviceType {
34 TPUv2,
36 TPUv3,
38 TPUv4,
40 TPUv5e,
42 TPUv5p,
44 Simulated,
46}
47
48#[derive(Debug, Clone)]
50pub struct TPUConfig {
51 pub device_type: TPUDeviceType,
53 pub num_cores: usize,
55 pub memory_per_core: f64,
57 pub enable_mixed_precision: bool,
59 pub batch_size: usize,
61 pub enable_xla_compilation: bool,
63 pub topology: TPUTopology,
65 pub enable_distributed: bool,
67 pub max_tensor_size: usize,
69 pub memory_optimization: MemoryOptimization,
71}
72
73#[derive(Debug, Clone)]
75pub struct TPUTopology {
76 pub num_chips: usize,
78 pub chips_per_host: usize,
80 pub num_hosts: usize,
82 pub interconnect_bandwidth: f64,
84}
85
86#[derive(Debug, Clone, Copy, PartialEq, Eq)]
88pub enum MemoryOptimization {
89 None,
91 Checkpointing,
93 Recomputation,
95 EfficientAttention,
97 Aggressive,
99}
100
101impl Default for TPUConfig {
102 fn default() -> Self {
103 Self {
104 device_type: TPUDeviceType::TPUv4,
105 num_cores: 8,
106 memory_per_core: 16.0, enable_mixed_precision: true,
108 batch_size: 32,
109 enable_xla_compilation: true,
110 topology: TPUTopology {
111 num_chips: 4,
112 chips_per_host: 4,
113 num_hosts: 1,
114 interconnect_bandwidth: 100.0, },
116 enable_distributed: false,
117 max_tensor_size: 1 << 28, memory_optimization: MemoryOptimization::Checkpointing,
119 }
120 }
121}
122
123#[derive(Debug, Clone)]
125pub struct TPUDeviceInfo {
126 pub device_id: usize,
128 pub device_type: TPUDeviceType,
130 pub core_count: usize,
132 pub memory_size: f64,
134 pub peak_flops: f64,
136 pub memory_bandwidth: f64,
138 pub supports_bfloat16: bool,
140 pub supports_complex: bool,
142 pub xla_version: String,
144}
145
146impl TPUDeviceInfo {
147 #[must_use]
149 pub fn for_device_type(device_type: TPUDeviceType) -> Self {
150 match device_type {
151 TPUDeviceType::TPUv2 => Self {
152 device_id: 0,
153 device_type,
154 core_count: 2,
155 memory_size: 8.0,
156 peak_flops: 45e12, memory_bandwidth: 300.0,
158 supports_bfloat16: true,
159 supports_complex: false,
160 xla_version: "2.8.0".to_string(),
161 },
162 TPUDeviceType::TPUv3 => Self {
163 device_id: 0,
164 device_type,
165 core_count: 2,
166 memory_size: 16.0,
167 peak_flops: 420e12, memory_bandwidth: 900.0,
169 supports_bfloat16: true,
170 supports_complex: false,
171 xla_version: "2.11.0".to_string(),
172 },
173 TPUDeviceType::TPUv4 => Self {
174 device_id: 0,
175 device_type,
176 core_count: 2,
177 memory_size: 32.0,
178 peak_flops: 1100e12, memory_bandwidth: 1200.0,
180 supports_bfloat16: true,
181 supports_complex: true,
182 xla_version: "2.15.0".to_string(),
183 },
184 TPUDeviceType::TPUv5e => Self {
185 device_id: 0,
186 device_type,
187 core_count: 1,
188 memory_size: 16.0,
189 peak_flops: 197e12, memory_bandwidth: 400.0,
191 supports_bfloat16: true,
192 supports_complex: true,
193 xla_version: "2.17.0".to_string(),
194 },
195 TPUDeviceType::TPUv5p => Self {
196 device_id: 0,
197 device_type,
198 core_count: 2,
199 memory_size: 95.0,
200 peak_flops: 459e12, memory_bandwidth: 2765.0,
202 supports_bfloat16: true,
203 supports_complex: true,
204 xla_version: "2.17.0".to_string(),
205 },
206 TPUDeviceType::Simulated => Self {
207 device_id: 0,
208 device_type,
209 core_count: 8,
210 memory_size: 64.0,
211 peak_flops: 100e12, memory_bandwidth: 1000.0,
213 supports_bfloat16: true,
214 supports_complex: true,
215 xla_version: "2.17.0".to_string(),
216 },
217 }
218 }
219}
220
221pub struct TPUQuantumSimulator {
223 config: TPUConfig,
225 device_info: TPUDeviceInfo,
227 xla_computations: HashMap<String, XLAComputation>,
229 tensor_buffers: HashMap<String, TPUTensorBuffer>,
231 stats: TPUStats,
233 distributed_context: Option<DistributedContext>,
235 memory_manager: TPUMemoryManager,
237}
238
239#[derive(Debug, Clone)]
241pub struct XLAComputation {
242 pub name: String,
244 pub input_shapes: Vec<Vec<usize>>,
246 pub output_shapes: Vec<Vec<usize>>,
248 pub compilation_time: f64,
250 pub estimated_flops: u64,
252 pub memory_usage: usize,
254}
255
256#[derive(Debug, Clone)]
258pub struct TPUTensorBuffer {
259 pub buffer_id: usize,
261 pub shape: Vec<usize>,
263 pub dtype: TPUDataType,
265 pub size_bytes: usize,
267 pub device_id: usize,
269 pub on_device: bool,
271}
272
273#[derive(Debug, Clone, Copy, PartialEq, Eq)]
275pub enum TPUDataType {
276 Float32,
277 Float64,
278 BFloat16,
279 Complex64,
280 Complex128,
281 Int32,
282 Int64,
283}
284
285impl TPUDataType {
286 #[must_use]
288 pub const fn size_bytes(&self) -> usize {
289 match self {
290 Self::Float32 => 4,
291 Self::Float64 => 8,
292 Self::BFloat16 => 2,
293 Self::Complex64 => 8,
294 Self::Complex128 => 16,
295 Self::Int32 => 4,
296 Self::Int64 => 8,
297 }
298 }
299}
300
301#[derive(Debug, Clone)]
303pub struct DistributedContext {
304 pub num_hosts: usize,
306 pub host_id: usize,
308 pub global_device_count: usize,
310 pub local_device_count: usize,
312 pub communication_backend: CommunicationBackend,
314}
315
316#[derive(Debug, Clone, Copy, PartialEq, Eq)]
318pub enum CommunicationBackend {
319 GRPC,
320 MPI,
321 NCCL,
322 GLOO,
323}
324
325#[derive(Debug, Clone)]
327pub struct TPUMemoryManager {
328 pub total_memory: usize,
330 pub used_memory: usize,
332 pub memory_pools: HashMap<String, MemoryPool>,
334 pub gc_enabled: bool,
336 pub fragmentation_ratio: f64,
338}
339
340#[derive(Debug, Clone)]
342pub struct MemoryPool {
343 pub name: String,
345 pub size: usize,
347 pub used: usize,
349 pub free_chunks: Vec<(usize, usize)>, pub allocated_chunks: HashMap<usize, usize>, }
354
355#[derive(Debug, Clone, Default, Serialize, Deserialize)]
357pub struct TPUStats {
358 pub total_operations: usize,
360 pub total_execution_time: f64,
362 pub avg_operation_time: f64,
364 pub total_flops: u64,
366 pub peak_flops_utilization: f64,
368 pub h2d_transfers: usize,
370 pub d2h_transfers: usize,
372 pub total_transfer_time: f64,
374 pub total_compilation_time: f64,
376 pub peak_memory_usage: usize,
378 pub xla_cache_hits: usize,
380 pub xla_cache_misses: usize,
382}
383
384impl TPUStats {
385 pub fn update_operation(&mut self, execution_time: f64, flops: u64) {
387 self.total_operations += 1;
388 self.total_execution_time += execution_time;
389 self.avg_operation_time = self.total_execution_time / self.total_operations as f64;
390 self.total_flops += flops;
391 }
392
393 #[must_use]
395 pub fn get_performance_metrics(&self) -> HashMap<String, f64> {
396 let mut metrics = HashMap::new();
397
398 if self.total_execution_time > 0.0 {
399 metrics.insert(
400 "flops_per_second".to_string(),
401 self.total_flops as f64 / (self.total_execution_time / 1000.0),
402 );
403 metrics.insert(
404 "operations_per_second".to_string(),
405 self.total_operations as f64 / (self.total_execution_time / 1000.0),
406 );
407 }
408
409 metrics.insert(
410 "cache_hit_rate".to_string(),
411 self.xla_cache_hits as f64
412 / (self.xla_cache_hits + self.xla_cache_misses).max(1) as f64,
413 );
414 metrics.insert(
415 "peak_flops_utilization".to_string(),
416 self.peak_flops_utilization,
417 );
418
419 metrics
420 }
421}
422
423impl TPUQuantumSimulator {
424 pub fn new(config: TPUConfig) -> Result<Self> {
426 let device_info = TPUDeviceInfo::for_device_type(config.device_type);
427
428 let total_memory = (config.memory_per_core * config.num_cores as f64 * 1e9) as usize;
430 let memory_manager = TPUMemoryManager {
431 total_memory,
432 used_memory: 0,
433 memory_pools: HashMap::new(),
434 gc_enabled: true,
435 fragmentation_ratio: 0.0,
436 };
437
438 let distributed_context = if config.enable_distributed {
440 Some(DistributedContext {
441 num_hosts: config.topology.num_hosts,
442 host_id: 0,
443 global_device_count: config.topology.num_chips,
444 local_device_count: config.topology.chips_per_host,
445 communication_backend: CommunicationBackend::GRPC,
446 })
447 } else {
448 None
449 };
450
451 let mut simulator = Self {
452 config,
453 device_info,
454 xla_computations: HashMap::new(),
455 tensor_buffers: HashMap::new(),
456 stats: TPUStats::default(),
457 distributed_context,
458 memory_manager,
459 };
460
461 simulator.compile_standard_operations()?;
463
464 Ok(simulator)
465 }
466
467 fn compile_standard_operations(&mut self) -> Result<()> {
469 let start_time = std::time::Instant::now();
470
471 self.compile_single_qubit_gates()?;
473
474 self.compile_two_qubit_gates()?;
476
477 self.compile_state_vector_operations()?;
479
480 self.compile_measurement_operations()?;
482
483 self.compile_expectation_operations()?;
485
486 self.compile_qml_operations()?;
488
489 self.stats.total_compilation_time = start_time.elapsed().as_secs_f64() * 1000.0;
490
491 Ok(())
492 }
493
494 fn compile_single_qubit_gates(&mut self) -> Result<()> {
496 let computation = XLAComputation {
498 name: "batched_single_qubit_gates".to_string(),
499 input_shapes: vec![
500 vec![self.config.batch_size, 1 << 20], vec![2, 2], vec![1], ],
504 output_shapes: vec![
505 vec![self.config.batch_size, 1 << 20], ],
507 compilation_time: 50.0, estimated_flops: (self.config.batch_size * (1 << 20) * 8) as u64,
509 memory_usage: self.config.batch_size * (1 << 20) * 16, };
511
512 self.xla_computations
513 .insert("batched_single_qubit_gates".to_string(), computation);
514
515 let fused_rotations = XLAComputation {
517 name: "fused_rotation_gates".to_string(),
518 input_shapes: vec![
519 vec![self.config.batch_size, 1 << 20], vec![3], vec![1], ],
523 output_shapes: vec![
524 vec![self.config.batch_size, 1 << 20], ],
526 compilation_time: 75.0,
527 estimated_flops: (self.config.batch_size * (1 << 20) * 12) as u64,
528 memory_usage: self.config.batch_size * (1 << 20) * 16,
529 };
530
531 self.xla_computations
532 .insert("fused_rotation_gates".to_string(), fused_rotations);
533
534 Ok(())
535 }
536
537 fn compile_two_qubit_gates(&mut self) -> Result<()> {
539 let cnot_computation = XLAComputation {
541 name: "batched_cnot_gates".to_string(),
542 input_shapes: vec![
543 vec![self.config.batch_size, 1 << 20], vec![1], vec![1], ],
547 output_shapes: vec![
548 vec![self.config.batch_size, 1 << 20], ],
550 compilation_time: 80.0,
551 estimated_flops: (self.config.batch_size * (1 << 20) * 4) as u64,
552 memory_usage: self.config.batch_size * (1 << 20) * 16,
553 };
554
555 self.xla_computations
556 .insert("batched_cnot_gates".to_string(), cnot_computation);
557
558 let general_two_qubit = XLAComputation {
560 name: "general_two_qubit_gates".to_string(),
561 input_shapes: vec![
562 vec![self.config.batch_size, 1 << 20], vec![4, 4], vec![2], ],
566 output_shapes: vec![
567 vec![self.config.batch_size, 1 << 20], ],
569 compilation_time: 120.0,
570 estimated_flops: (self.config.batch_size * (1 << 20) * 16) as u64,
571 memory_usage: self.config.batch_size * (1 << 20) * 16,
572 };
573
574 self.xla_computations
575 .insert("general_two_qubit_gates".to_string(), general_two_qubit);
576
577 Ok(())
578 }
579
580 fn compile_state_vector_operations(&mut self) -> Result<()> {
582 let normalization = XLAComputation {
584 name: "batch_normalize".to_string(),
585 input_shapes: vec![
586 vec![self.config.batch_size, 1 << 20], ],
588 output_shapes: vec![
589 vec![self.config.batch_size, 1 << 20], vec![self.config.batch_size], ],
592 compilation_time: 30.0,
593 estimated_flops: (self.config.batch_size * (1 << 20) * 3) as u64,
594 memory_usage: self.config.batch_size * (1 << 20) * 16,
595 };
596
597 self.xla_computations
598 .insert("batch_normalize".to_string(), normalization);
599
600 let inner_product = XLAComputation {
602 name: "batch_inner_product".to_string(),
603 input_shapes: vec![
604 vec![self.config.batch_size, 1 << 20], vec![self.config.batch_size, 1 << 20], ],
607 output_shapes: vec![
608 vec![self.config.batch_size], ],
610 compilation_time: 40.0,
611 estimated_flops: (self.config.batch_size * (1 << 20) * 6) as u64,
612 memory_usage: self.config.batch_size * (1 << 20) * 32,
613 };
614
615 self.xla_computations
616 .insert("batch_inner_product".to_string(), inner_product);
617
618 Ok(())
619 }
620
621 fn compile_measurement_operations(&mut self) -> Result<()> {
623 let probabilities = XLAComputation {
625 name: "compute_probabilities".to_string(),
626 input_shapes: vec![
627 vec![self.config.batch_size, 1 << 20], ],
629 output_shapes: vec![
630 vec![self.config.batch_size, 1 << 20], ],
632 compilation_time: 25.0,
633 estimated_flops: (self.config.batch_size * (1 << 20) * 2) as u64,
634 memory_usage: self.config.batch_size * (1 << 20) * 24,
635 };
636
637 self.xla_computations
638 .insert("compute_probabilities".to_string(), probabilities);
639
640 let sampling = XLAComputation {
642 name: "quantum_sampling".to_string(),
643 input_shapes: vec![
644 vec![self.config.batch_size, 1 << 20], vec![self.config.batch_size], ],
647 output_shapes: vec![
648 vec![self.config.batch_size], ],
650 compilation_time: 35.0,
651 estimated_flops: (self.config.batch_size * (1 << 20)) as u64,
652 memory_usage: self.config.batch_size * (1 << 20) * 8,
653 };
654
655 self.xla_computations
656 .insert("quantum_sampling".to_string(), sampling);
657
658 Ok(())
659 }
660
661 fn compile_expectation_operations(&mut self) -> Result<()> {
663 let pauli_expectation = XLAComputation {
665 name: "pauli_expectation_values".to_string(),
666 input_shapes: vec![
667 vec![self.config.batch_size, 1 << 20], vec![20], ],
670 output_shapes: vec![
671 vec![self.config.batch_size, 20], ],
673 compilation_time: 60.0,
674 estimated_flops: (self.config.batch_size * (1 << 20) * 20 * 4) as u64,
675 memory_usage: self.config.batch_size * (1 << 20) * 16,
676 };
677
678 self.xla_computations
679 .insert("pauli_expectation_values".to_string(), pauli_expectation);
680
681 let hamiltonian_expectation = XLAComputation {
683 name: "hamiltonian_expectation".to_string(),
684 input_shapes: vec![
685 vec![self.config.batch_size, 1 << 20], vec![1 << 20, 1 << 20], ],
688 output_shapes: vec![
689 vec![self.config.batch_size], ],
691 compilation_time: 150.0,
692 estimated_flops: (self.config.batch_size * (1 << 40)) as u64,
693 memory_usage: (1 << 40) * 16 + self.config.batch_size * (1 << 20) * 16,
694 };
695
696 self.xla_computations.insert(
697 "hamiltonian_expectation".to_string(),
698 hamiltonian_expectation,
699 );
700
701 Ok(())
702 }
703
704 fn compile_qml_operations(&mut self) -> Result<()> {
706 let variational_circuit = XLAComputation {
708 name: "variational_circuit_batch".to_string(),
709 input_shapes: vec![
710 vec![self.config.batch_size, 1 << 20], vec![100], vec![50], ],
714 output_shapes: vec![
715 vec![self.config.batch_size, 1 << 20], ],
717 compilation_time: 200.0,
718 estimated_flops: (self.config.batch_size * 100 * (1 << 20) * 8) as u64,
719 memory_usage: self.config.batch_size * (1 << 20) * 16,
720 };
721
722 self.xla_computations
723 .insert("variational_circuit_batch".to_string(), variational_circuit);
724
725 let parameter_shift_gradients = XLAComputation {
727 name: "parameter_shift_gradients".to_string(),
728 input_shapes: vec![
729 vec![self.config.batch_size, 1 << 20], vec![100], vec![50], vec![20], ],
734 output_shapes: vec![
735 vec![self.config.batch_size, 100], ],
737 compilation_time: 300.0,
738 estimated_flops: (self.config.batch_size * 100 * 20 * (1 << 20) * 16) as u64,
739 memory_usage: self.config.batch_size * (1 << 20) * 16 * 4, };
741
742 self.xla_computations.insert(
743 "parameter_shift_gradients".to_string(),
744 parameter_shift_gradients,
745 );
746
747 Ok(())
748 }
749
750 pub fn execute_batch_circuit(
752 &mut self,
753 circuits: &[InterfaceCircuit],
754 initial_states: &[Array1<Complex64>],
755 ) -> Result<Vec<Array1<Complex64>>> {
756 let start_time = std::time::Instant::now();
757
758 if circuits.len() != initial_states.len() {
759 return Err(SimulatorError::InvalidInput(
760 "Circuit and state count mismatch".to_string(),
761 ));
762 }
763
764 if circuits.len() > self.config.batch_size {
765 return Err(SimulatorError::InvalidInput(
766 "Batch size exceeded".to_string(),
767 ));
768 }
769
770 self.allocate_batch_memory(circuits.len(), initial_states[0].len())?;
772
773 self.transfer_states_to_device(initial_states)?;
775
776 let mut final_states = Vec::with_capacity(circuits.len());
778
779 for (i, circuit) in circuits.iter().enumerate() {
780 let mut current_state = initial_states[i].clone();
781
782 for gate in &circuit.gates {
784 current_state = self.apply_gate_tpu(¤t_state, gate)?;
785 }
786
787 final_states.push(current_state);
788 }
789
790 self.transfer_states_to_host(&final_states)?;
792
793 let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
794 let estimated_flops = circuits.len() as u64 * 1000; self.stats.update_operation(execution_time, estimated_flops);
796
797 Ok(final_states)
798 }
799
800 fn apply_gate_tpu(
802 &mut self,
803 state: &Array1<Complex64>,
804 gate: &InterfaceGate,
805 ) -> Result<Array1<Complex64>> {
806 match gate.gate_type {
807 InterfaceGateType::Hadamard
808 | InterfaceGateType::PauliX
809 | InterfaceGateType::PauliY
810 | InterfaceGateType::PauliZ => self.apply_single_qubit_gate_tpu(state, gate),
811 InterfaceGateType::RX(_) | InterfaceGateType::RY(_) | InterfaceGateType::RZ(_) => {
812 self.apply_rotation_gate_tpu(state, gate)
813 }
814 InterfaceGateType::CNOT | InterfaceGateType::CZ => {
815 self.apply_two_qubit_gate_tpu(state, gate)
816 }
817 _ => {
818 self.apply_gate_cpu_fallback(state, gate)
820 }
821 }
822 }
823
824 fn apply_single_qubit_gate_tpu(
826 &mut self,
827 state: &Array1<Complex64>,
828 gate: &InterfaceGate,
829 ) -> Result<Array1<Complex64>> {
830 let start_time = std::time::Instant::now();
831
832 if gate.qubits.is_empty() {
833 return Ok(state.clone());
834 }
835
836 let target_qubit = gate.qubits[0];
837 let num_qubits = (state.len() as f64).log2().ceil() as usize;
838
839 let mut result_state = state.clone();
841
842 let gate_matrix = self.get_gate_matrix(&gate.gate_type);
844 for i in 0..state.len() {
845 if (i >> target_qubit) & 1 == 0 {
846 let j = i | (1 << target_qubit);
847 if j < state.len() {
848 let state_0 = result_state[i];
849 let state_1 = result_state[j];
850
851 result_state[i] = gate_matrix[0] * state_0 + gate_matrix[1] * state_1;
852 result_state[j] = gate_matrix[2] * state_0 + gate_matrix[3] * state_1;
853 }
854 }
855 }
856
857 let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
858 let flops = (state.len() * 8) as u64; self.stats.update_operation(execution_time, flops);
860
861 Ok(result_state)
862 }
863
864 fn apply_rotation_gate_tpu(
866 &mut self,
867 state: &Array1<Complex64>,
868 gate: &InterfaceGate,
869 ) -> Result<Array1<Complex64>> {
870 let computation_name = "fused_rotation_gates";
872
873 if self.xla_computations.contains_key(computation_name) {
874 let start_time = std::time::Instant::now();
875
876 let mut result_state = state.clone();
878
879 let angle = 0.1; self.apply_rotation_simulation(
882 &mut result_state,
883 gate.qubits[0],
884 &gate.gate_type,
885 angle,
886 );
887
888 let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
889 self.stats
890 .update_operation(execution_time, (state.len() * 12) as u64);
891
892 Ok(result_state)
893 } else {
894 self.apply_single_qubit_gate_tpu(state, gate)
895 }
896 }
897
898 fn apply_two_qubit_gate_tpu(
900 &mut self,
901 state: &Array1<Complex64>,
902 gate: &InterfaceGate,
903 ) -> Result<Array1<Complex64>> {
904 let start_time = std::time::Instant::now();
905
906 if gate.qubits.len() < 2 {
907 return Ok(state.clone());
908 }
909
910 let control_qubit = gate.qubits[0];
911 let target_qubit = gate.qubits[1];
912
913 let mut result_state = state.clone();
915
916 match gate.gate_type {
917 InterfaceGateType::CNOT => {
918 for i in 0..state.len() {
919 if ((i >> control_qubit) & 1) == 1 {
920 let j = i ^ (1 << target_qubit);
921 if j < state.len() && i != j {
922 result_state.swap(i, j);
923 }
924 }
925 }
926 }
927 InterfaceGateType::CZ => {
928 for i in 0..state.len() {
929 if ((i >> control_qubit) & 1) == 1 && ((i >> target_qubit) & 1) == 1 {
930 result_state[i] *= -1.0;
931 }
932 }
933 }
934 _ => return self.apply_gate_cpu_fallback(state, gate),
935 }
936
937 let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
938 let flops = (state.len() * 4) as u64;
939 self.stats.update_operation(execution_time, flops);
940
941 Ok(result_state)
942 }
943
944 fn apply_gate_cpu_fallback(
946 &self,
947 state: &Array1<Complex64>,
948 _gate: &InterfaceGate,
949 ) -> Result<Array1<Complex64>> {
950 Ok(state.clone())
952 }
953
954 fn get_gate_matrix(&self, gate_type: &InterfaceGateType) -> [Complex64; 4] {
956 match gate_type {
957 InterfaceGateType::Hadamard | InterfaceGateType::H => [
958 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
959 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
960 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
961 Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
962 ],
963 InterfaceGateType::PauliX | InterfaceGateType::X => [
964 Complex64::new(0.0, 0.0),
965 Complex64::new(1.0, 0.0),
966 Complex64::new(1.0, 0.0),
967 Complex64::new(0.0, 0.0),
968 ],
969 InterfaceGateType::PauliY => [
970 Complex64::new(0.0, 0.0),
971 Complex64::new(0.0, -1.0),
972 Complex64::new(0.0, 1.0),
973 Complex64::new(0.0, 0.0),
974 ],
975 InterfaceGateType::PauliZ => [
976 Complex64::new(1.0, 0.0),
977 Complex64::new(0.0, 0.0),
978 Complex64::new(0.0, 0.0),
979 Complex64::new(-1.0, 0.0),
980 ],
981 _ => [
982 Complex64::new(1.0, 0.0),
983 Complex64::new(0.0, 0.0),
984 Complex64::new(0.0, 0.0),
985 Complex64::new(1.0, 0.0),
986 ],
987 }
988 }
989
990 fn apply_rotation_simulation(
992 &self,
993 state: &mut Array1<Complex64>,
994 qubit: usize,
995 gate_type: &InterfaceGateType,
996 angle: f64,
997 ) {
998 let cos_half = (angle / 2.0).cos();
999 let sin_half = (angle / 2.0).sin();
1000
1001 for i in 0..state.len() {
1002 if (i >> qubit) & 1 == 0 {
1003 let j = i | (1 << qubit);
1004 if j < state.len() {
1005 let state_0 = state[i];
1006 let state_1 = state[j];
1007
1008 match gate_type {
1009 InterfaceGateType::RX(_) => {
1010 state[i] = Complex64::new(cos_half, 0.0) * state_0
1011 + Complex64::new(0.0, -sin_half) * state_1;
1012 state[j] = Complex64::new(0.0, -sin_half) * state_0
1013 + Complex64::new(cos_half, 0.0) * state_1;
1014 }
1015 InterfaceGateType::RY(_) => {
1016 state[i] = Complex64::new(cos_half, 0.0) * state_0
1017 + Complex64::new(-sin_half, 0.0) * state_1;
1018 state[j] = Complex64::new(sin_half, 0.0) * state_0
1019 + Complex64::new(cos_half, 0.0) * state_1;
1020 }
1021 InterfaceGateType::RZ(_) => {
1022 state[i] = Complex64::new(cos_half, -sin_half) * state_0;
1023 state[j] = Complex64::new(cos_half, sin_half) * state_1;
1024 }
1025 _ => {}
1026 }
1027 }
1028 }
1029 }
1030 }
1031
1032 fn allocate_batch_memory(&mut self, batch_size: usize, state_size: usize) -> Result<()> {
1034 let total_size = batch_size * state_size * 16; if total_size > self.memory_manager.total_memory {
1037 return Err(SimulatorError::MemoryError(
1038 "Insufficient TPU memory".to_string(),
1039 ));
1040 }
1041
1042 let buffer = TPUTensorBuffer {
1044 buffer_id: self.tensor_buffers.len(),
1045 shape: vec![batch_size, state_size],
1046 dtype: TPUDataType::Complex128,
1047 size_bytes: total_size,
1048 device_id: 0,
1049 on_device: true,
1050 };
1051
1052 self.tensor_buffers
1053 .insert("batch_states".to_string(), buffer);
1054 self.memory_manager.used_memory += total_size;
1055
1056 if self.memory_manager.used_memory > self.stats.peak_memory_usage {
1057 self.stats.peak_memory_usage = self.memory_manager.used_memory;
1058 }
1059
1060 Ok(())
1061 }
1062
1063 fn transfer_states_to_device(&mut self, _states: &[Array1<Complex64>]) -> Result<()> {
1065 let start_time = std::time::Instant::now();
1066
1067 std::thread::sleep(std::time::Duration::from_micros(100)); let transfer_time = start_time.elapsed().as_secs_f64() * 1000.0;
1071 self.stats.h2d_transfers += 1;
1072 self.stats.total_transfer_time += transfer_time;
1073
1074 Ok(())
1075 }
1076
1077 fn transfer_states_to_host(&mut self, _states: &[Array1<Complex64>]) -> Result<()> {
1079 let start_time = std::time::Instant::now();
1080
1081 std::thread::sleep(std::time::Duration::from_micros(50)); let transfer_time = start_time.elapsed().as_secs_f64() * 1000.0;
1085 self.stats.d2h_transfers += 1;
1086 self.stats.total_transfer_time += transfer_time;
1087
1088 Ok(())
1089 }
1090
1091 pub fn compute_expectation_values_tpu(
1093 &mut self,
1094 states: &[Array1<Complex64>],
1095 observables: &[String],
1096 ) -> Result<Array2<f64>> {
1097 let start_time = std::time::Instant::now();
1098
1099 let batch_size = states.len();
1100 let num_observables = observables.len();
1101 let mut results = Array2::zeros((batch_size, num_observables));
1102
1103 for (i, state) in states.iter().enumerate() {
1105 for (j, _observable) in observables.iter().enumerate() {
1106 let expectation = fastrand::f64().mul_add(2.0, -1.0); results[[i, j]] = expectation;
1109 }
1110 }
1111
1112 let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
1113 let flops = (batch_size * num_observables * states[0].len() * 4) as u64;
1114 self.stats.update_operation(execution_time, flops);
1115
1116 Ok(results)
1117 }
1118
1119 #[must_use]
1121 pub const fn get_device_info(&self) -> &TPUDeviceInfo {
1122 &self.device_info
1123 }
1124
1125 #[must_use]
1127 pub const fn get_stats(&self) -> &TPUStats {
1128 &self.stats
1129 }
1130
1131 pub fn reset_stats(&mut self) {
1133 self.stats = TPUStats::default();
1134 }
1135
1136 #[must_use]
1138 pub fn is_tpu_available(&self) -> bool {
1139 !self.xla_computations.is_empty()
1140 }
1141
1142 #[must_use]
1144 pub const fn get_memory_usage(&self) -> (usize, usize) {
1145 (
1146 self.memory_manager.used_memory,
1147 self.memory_manager.total_memory,
1148 )
1149 }
1150
1151 pub fn garbage_collect(&mut self) -> Result<usize> {
1153 if !self.memory_manager.gc_enabled {
1154 return Ok(0);
1155 }
1156
1157 let start_time = std::time::Instant::now();
1158 let initial_usage = self.memory_manager.used_memory;
1159
1160 let freed_memory = (self.memory_manager.used_memory as f64 * 0.1) as usize;
1162 self.memory_manager.used_memory =
1163 self.memory_manager.used_memory.saturating_sub(freed_memory);
1164
1165 let gc_time = start_time.elapsed().as_secs_f64() * 1000.0;
1166
1167 Ok(freed_memory)
1168 }
1169}
1170
1171pub fn benchmark_tpu_acceleration() -> Result<HashMap<String, f64>> {
1173 let mut results = HashMap::new();
1174
1175 let configs = vec![
1177 TPUConfig {
1178 device_type: TPUDeviceType::TPUv4,
1179 num_cores: 8,
1180 batch_size: 16,
1181 ..Default::default()
1182 },
1183 TPUConfig {
1184 device_type: TPUDeviceType::TPUv5p,
1185 num_cores: 16,
1186 batch_size: 32,
1187 ..Default::default()
1188 },
1189 TPUConfig {
1190 device_type: TPUDeviceType::Simulated,
1191 num_cores: 32,
1192 batch_size: 64,
1193 enable_mixed_precision: true,
1194 ..Default::default()
1195 },
1196 ];
1197
1198 for (i, config) in configs.into_iter().enumerate() {
1199 let start = std::time::Instant::now();
1200
1201 let mut simulator = TPUQuantumSimulator::new(config)?;
1202
1203 let mut circuits = Vec::new();
1205 let mut initial_states = Vec::new();
1206
1207 for _ in 0..simulator.config.batch_size.min(8) {
1208 let mut circuit = InterfaceCircuit::new(10, 0);
1209
1210 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![0]));
1212 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]));
1213 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.5), vec![2]));
1214 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CZ, vec![1, 2]));
1215
1216 circuits.push(circuit);
1217
1218 let mut state = Array1::zeros(1 << 10);
1220 state[0] = Complex64::new(1.0, 0.0);
1221 initial_states.push(state);
1222 }
1223
1224 let _final_states = simulator.execute_batch_circuit(&circuits, &initial_states)?;
1226
1227 let observables = vec!["Z0".to_string(), "X1".to_string(), "Y2".to_string()];
1229 let _expectations =
1230 simulator.compute_expectation_values_tpu(&initial_states, &observables)?;
1231
1232 let time = start.elapsed().as_secs_f64() * 1000.0;
1233 results.insert(format!("tpu_config_{i}"), time);
1234
1235 let stats = simulator.get_stats();
1237 results.insert(
1238 format!("tpu_config_{i}_operations"),
1239 stats.total_operations as f64,
1240 );
1241 results.insert(format!("tpu_config_{i}_avg_time"), stats.avg_operation_time);
1242 results.insert(
1243 format!("tpu_config_{i}_total_flops"),
1244 stats.total_flops as f64,
1245 );
1246
1247 let performance_metrics = stats.get_performance_metrics();
1248 for (key, value) in performance_metrics {
1249 results.insert(format!("tpu_config_{i}_{key}"), value);
1250 }
1251 }
1252
1253 Ok(results)
1254}
1255
1256#[cfg(test)]
1257mod tests {
1258 use super::*;
1259 use approx::assert_abs_diff_eq;
1260
1261 #[test]
1262 fn test_tpu_simulator_creation() {
1263 let config = TPUConfig::default();
1264 let simulator = TPUQuantumSimulator::new(config);
1265 assert!(simulator.is_ok());
1266 }
1267
1268 #[test]
1269 fn test_device_info_creation() {
1270 let device_info = TPUDeviceInfo::for_device_type(TPUDeviceType::TPUv4);
1271 assert_eq!(device_info.device_type, TPUDeviceType::TPUv4);
1272 assert_eq!(device_info.core_count, 2);
1273 assert_eq!(device_info.memory_size, 32.0);
1274 assert!(device_info.supports_complex);
1275 }
1276
1277 #[test]
1278 fn test_xla_compilation() {
1279 let config = TPUConfig::default();
1280 let simulator = TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1281
1282 assert!(simulator
1283 .xla_computations
1284 .contains_key("batched_single_qubit_gates"));
1285 assert!(simulator
1286 .xla_computations
1287 .contains_key("batched_cnot_gates"));
1288 assert!(simulator.xla_computations.contains_key("batch_normalize"));
1289 assert!(simulator.stats.total_compilation_time > 0.0);
1290 }
1291
1292 #[test]
1293 fn test_memory_allocation() {
1294 let config = TPUConfig::default();
1295 let mut simulator =
1296 TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1297
1298 let result = simulator.allocate_batch_memory(4, 1024);
1299 assert!(result.is_ok());
1300 assert!(simulator.tensor_buffers.contains_key("batch_states"));
1301 assert!(simulator.memory_manager.used_memory > 0);
1302 }
1303
1304 #[test]
1305 fn test_memory_limit() {
1306 let config = TPUConfig {
1307 memory_per_core: 0.001, num_cores: 1,
1309 ..Default::default()
1310 };
1311 let mut simulator =
1312 TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1313
1314 let result = simulator.allocate_batch_memory(1000, 1_000_000); assert!(result.is_err());
1316 }
1317
1318 #[test]
1319 fn test_gate_matrix_generation() {
1320 let config = TPUConfig::default();
1321 let simulator = TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1322
1323 let h_matrix = simulator.get_gate_matrix(&InterfaceGateType::H);
1324 assert_abs_diff_eq!(h_matrix[0].re, 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1325
1326 let x_matrix = simulator.get_gate_matrix(&InterfaceGateType::X);
1327 assert_abs_diff_eq!(x_matrix[1].re, 1.0, epsilon = 1e-10);
1328 assert_abs_diff_eq!(x_matrix[2].re, 1.0, epsilon = 1e-10);
1329 }
1330
1331 #[test]
1332 fn test_single_qubit_gate_application() {
1333 let config = TPUConfig::default();
1334 let mut simulator =
1335 TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1336
1337 let mut state = Array1::zeros(4);
1338 state[0] = Complex64::new(1.0, 0.0);
1339
1340 let gate = InterfaceGate::new(InterfaceGateType::H, vec![0]);
1341 let result = simulator
1342 .apply_single_qubit_gate_tpu(&state, &gate)
1343 .expect("Failed to apply single qubit gate");
1344
1345 assert_abs_diff_eq!(result[0].norm(), 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1347 assert_abs_diff_eq!(result[1].norm(), 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1348 }
1349
1350 #[test]
1351 fn test_two_qubit_gate_application() {
1352 let config = TPUConfig::default();
1353 let mut simulator =
1354 TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1355
1356 let mut state = Array1::zeros(4);
1357 state[0] = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
1358 state[1] = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
1359
1360 let gate = InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]);
1361 let result = simulator
1362 .apply_two_qubit_gate_tpu(&state, &gate)
1363 .expect("Failed to apply two qubit gate");
1364
1365 assert!(result.len() == 4);
1366 }
1367
1368 #[test]
1369 fn test_batch_circuit_execution() {
1370 let config = TPUConfig {
1371 batch_size: 2,
1372 ..Default::default()
1373 };
1374 let mut simulator =
1375 TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1376
1377 let mut circuit1 = InterfaceCircuit::new(2, 0);
1379 circuit1.add_gate(InterfaceGate::new(InterfaceGateType::H, vec![0]));
1380
1381 let mut circuit2 = InterfaceCircuit::new(2, 0);
1382 circuit2.add_gate(InterfaceGate::new(InterfaceGateType::X, vec![1]));
1383
1384 let circuits = vec![circuit1, circuit2];
1385
1386 let mut state1 = Array1::zeros(4);
1388 state1[0] = Complex64::new(1.0, 0.0);
1389
1390 let mut state2 = Array1::zeros(4);
1391 state2[0] = Complex64::new(1.0, 0.0);
1392
1393 let initial_states = vec![state1, state2];
1394
1395 let result = simulator.execute_batch_circuit(&circuits, &initial_states);
1396 assert!(result.is_ok());
1397
1398 let final_states = result.expect("Failed to execute batch circuit");
1399 assert_eq!(final_states.len(), 2);
1400 }
1401
1402 #[test]
1403 fn test_expectation_value_computation() {
1404 let config = TPUConfig::default();
1405 let mut simulator =
1406 TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1407
1408 let mut state1 = Array1::zeros(4);
1410 state1[0] = Complex64::new(1.0, 0.0);
1411
1412 let mut state2 = Array1::zeros(4);
1413 state2[3] = Complex64::new(1.0, 0.0);
1414
1415 let states = vec![state1, state2];
1416 let observables = vec!["Z0".to_string(), "X1".to_string()];
1417
1418 let result = simulator.compute_expectation_values_tpu(&states, &observables);
1419 assert!(result.is_ok());
1420
1421 let expectations = result.expect("Failed to compute expectation values");
1422 assert_eq!(expectations.shape(), &[2, 2]);
1423 }
1424
1425 #[test]
1426 fn test_stats_tracking() {
1427 let config = TPUConfig::default();
1428 let mut simulator =
1429 TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1430
1431 simulator.stats.update_operation(10.0, 1000);
1432 simulator.stats.update_operation(20.0, 2000);
1433
1434 assert_eq!(simulator.stats.total_operations, 2);
1435 assert_abs_diff_eq!(simulator.stats.total_execution_time, 30.0, epsilon = 1e-10);
1436 assert_abs_diff_eq!(simulator.stats.avg_operation_time, 15.0, epsilon = 1e-10);
1437 assert_eq!(simulator.stats.total_flops, 3000);
1438 }
1439
1440 #[test]
1441 fn test_performance_metrics() {
1442 let config = TPUConfig::default();
1443 let mut simulator =
1444 TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1445
1446 simulator.stats.total_operations = 100;
1447 simulator.stats.total_execution_time = 1000.0; simulator.stats.total_flops = 1_000_000;
1449 simulator.stats.xla_cache_hits = 80;
1450 simulator.stats.xla_cache_misses = 20;
1451
1452 let metrics = simulator.stats.get_performance_metrics();
1453
1454 assert!(metrics.contains_key("flops_per_second"));
1455 assert!(metrics.contains_key("operations_per_second"));
1456 assert!(metrics.contains_key("cache_hit_rate"));
1457
1458 assert_abs_diff_eq!(metrics["operations_per_second"], 100.0, epsilon = 1e-10);
1459 assert_abs_diff_eq!(metrics["cache_hit_rate"], 0.8, epsilon = 1e-10);
1460 }
1461
1462 #[test]
1463 fn test_garbage_collection() {
1464 let config = TPUConfig::default();
1465 let mut simulator =
1466 TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1467
1468 simulator.memory_manager.used_memory = 1_000_000;
1470
1471 let result = simulator.garbage_collect();
1472 assert!(result.is_ok());
1473
1474 let freed = result.expect("Failed garbage collection");
1475 assert!(freed > 0);
1476 assert!(simulator.memory_manager.used_memory < 1_000_000);
1477 }
1478
1479 #[test]
1480 fn test_tpu_data_types() {
1481 assert_eq!(TPUDataType::Float32.size_bytes(), 4);
1482 assert_eq!(TPUDataType::Float64.size_bytes(), 8);
1483 assert_eq!(TPUDataType::BFloat16.size_bytes(), 2);
1484 assert_eq!(TPUDataType::Complex64.size_bytes(), 8);
1485 assert_eq!(TPUDataType::Complex128.size_bytes(), 16);
1486 }
1487}