quantrs2_sim/
tpu_acceleration.rs

1//! TPU (Tensor Processing Unit) Acceleration for Quantum Simulation
2//!
3//! This module provides high-performance quantum circuit simulation using Google's
4//! Tensor Processing Units (TPUs) and TPU-like architectures. It leverages the massive
5//! parallelism and specialized tensor operations of TPUs to accelerate quantum state
6//! vector operations, gate applications, and quantum algorithm computations.
7//!
8//! Key features:
9//! - TPU-optimized tensor operations for quantum states
10//! - Batch processing of quantum circuits
11//! - JAX/XLA integration for automatic differentiation
12//! - Distributed quantum simulation across TPU pods
13//! - Memory-efficient state representation using TPU HBM
14//! - Quantum machine learning acceleration
15//! - Variational quantum algorithm optimization
16//! - Cloud TPU integration and resource management
17
18use scirs2_core::ndarray::{Array1, Array2, Array3, Array4, ArrayView1, Axis};
19use scirs2_core::Complex64;
20use serde::{Deserialize, Serialize};
21use std::collections::{HashMap, VecDeque};
22use std::sync::{Arc, Mutex};
23
24use crate::circuit_interfaces::{
25    CircuitInterface, InterfaceCircuit, InterfaceGate, InterfaceGateType,
26};
27use crate::error::{Result, SimulatorError};
28use crate::quantum_ml_algorithms::{HardwareArchitecture, QMLConfig};
29use crate::statevector::StateVectorSimulator;
30
31/// TPU device types
32#[derive(Debug, Clone, Copy, PartialEq, Eq)]
33pub enum TPUDeviceType {
34    /// TPU v2 (Cloud TPU v2)
35    TPUv2,
36    /// TPU v3 (Cloud TPU v3)
37    TPUv3,
38    /// TPU v4 (Cloud TPU v4)
39    TPUv4,
40    /// TPU v5e (Edge TPU)
41    TPUv5e,
42    /// TPU v5p (Pod slice)
43    TPUv5p,
44    /// Simulated TPU (for testing)
45    Simulated,
46}
47
48/// TPU configuration
49#[derive(Debug, Clone)]
50pub struct TPUConfig {
51    /// TPU device type
52    pub device_type: TPUDeviceType,
53    /// Number of TPU cores
54    pub num_cores: usize,
55    /// Memory per core (GB)
56    pub memory_per_core: f64,
57    /// Enable mixed precision
58    pub enable_mixed_precision: bool,
59    /// Batch size for circuit execution
60    pub batch_size: usize,
61    /// Enable XLA compilation
62    pub enable_xla_compilation: bool,
63    /// TPU topology (for multi-core setups)
64    pub topology: TPUTopology,
65    /// Enable distributed execution
66    pub enable_distributed: bool,
67    /// Maximum tensor size per operation
68    pub max_tensor_size: usize,
69    /// Memory optimization level
70    pub memory_optimization: MemoryOptimization,
71}
72
73/// TPU topology configuration
74#[derive(Debug, Clone)]
75pub struct TPUTopology {
76    /// Number of TPU chips
77    pub num_chips: usize,
78    /// Chips per host
79    pub chips_per_host: usize,
80    /// Number of hosts
81    pub num_hosts: usize,
82    /// Interconnect bandwidth (GB/s)
83    pub interconnect_bandwidth: f64,
84}
85
86/// Memory optimization strategies
87#[derive(Debug, Clone, Copy, PartialEq, Eq)]
88pub enum MemoryOptimization {
89    /// No optimization
90    None,
91    /// Basic gradient checkpointing
92    Checkpointing,
93    /// Activation recomputation
94    Recomputation,
95    /// Memory-efficient attention
96    EfficientAttention,
97    /// Aggressive optimization
98    Aggressive,
99}
100
101impl Default for TPUConfig {
102    fn default() -> Self {
103        Self {
104            device_type: TPUDeviceType::TPUv4,
105            num_cores: 8,
106            memory_per_core: 16.0, // 16 GB HBM per core
107            enable_mixed_precision: true,
108            batch_size: 32,
109            enable_xla_compilation: true,
110            topology: TPUTopology {
111                num_chips: 4,
112                chips_per_host: 4,
113                num_hosts: 1,
114                interconnect_bandwidth: 100.0, // 100 GB/s
115            },
116            enable_distributed: false,
117            max_tensor_size: 1 << 28, // 256M elements
118            memory_optimization: MemoryOptimization::Checkpointing,
119        }
120    }
121}
122
123/// TPU device information
124#[derive(Debug, Clone)]
125pub struct TPUDeviceInfo {
126    /// Device ID
127    pub device_id: usize,
128    /// Device type
129    pub device_type: TPUDeviceType,
130    /// Core count
131    pub core_count: usize,
132    /// Memory size (GB)
133    pub memory_size: f64,
134    /// Peak FLOPS (operations per second)
135    pub peak_flops: f64,
136    /// Memory bandwidth (GB/s)
137    pub memory_bandwidth: f64,
138    /// Supports bfloat16
139    pub supports_bfloat16: bool,
140    /// Supports complex arithmetic
141    pub supports_complex: bool,
142    /// XLA version
143    pub xla_version: String,
144}
145
146impl TPUDeviceInfo {
147    /// Create device info for specific TPU type
148    #[must_use]
149    pub fn for_device_type(device_type: TPUDeviceType) -> Self {
150        match device_type {
151            TPUDeviceType::TPUv2 => Self {
152                device_id: 0,
153                device_type,
154                core_count: 2,
155                memory_size: 8.0,
156                peak_flops: 45e12, // 45 TFLOPS
157                memory_bandwidth: 300.0,
158                supports_bfloat16: true,
159                supports_complex: false,
160                xla_version: "2.8.0".to_string(),
161            },
162            TPUDeviceType::TPUv3 => Self {
163                device_id: 0,
164                device_type,
165                core_count: 2,
166                memory_size: 16.0,
167                peak_flops: 420e12, // 420 TFLOPS
168                memory_bandwidth: 900.0,
169                supports_bfloat16: true,
170                supports_complex: false,
171                xla_version: "2.11.0".to_string(),
172            },
173            TPUDeviceType::TPUv4 => Self {
174                device_id: 0,
175                device_type,
176                core_count: 2,
177                memory_size: 32.0,
178                peak_flops: 1100e12, // 1.1 PFLOPS
179                memory_bandwidth: 1200.0,
180                supports_bfloat16: true,
181                supports_complex: true,
182                xla_version: "2.15.0".to_string(),
183            },
184            TPUDeviceType::TPUv5e => Self {
185                device_id: 0,
186                device_type,
187                core_count: 1,
188                memory_size: 16.0,
189                peak_flops: 197e12, // 197 TFLOPS
190                memory_bandwidth: 400.0,
191                supports_bfloat16: true,
192                supports_complex: true,
193                xla_version: "2.17.0".to_string(),
194            },
195            TPUDeviceType::TPUv5p => Self {
196                device_id: 0,
197                device_type,
198                core_count: 2,
199                memory_size: 95.0,
200                peak_flops: 459e12, // 459 TFLOPS
201                memory_bandwidth: 2765.0,
202                supports_bfloat16: true,
203                supports_complex: true,
204                xla_version: "2.17.0".to_string(),
205            },
206            TPUDeviceType::Simulated => Self {
207                device_id: 0,
208                device_type,
209                core_count: 8,
210                memory_size: 64.0,
211                peak_flops: 100e12, // 100 TFLOPS (simulated)
212                memory_bandwidth: 1000.0,
213                supports_bfloat16: true,
214                supports_complex: true,
215                xla_version: "2.17.0".to_string(),
216            },
217        }
218    }
219}
220
221/// TPU-accelerated quantum simulator
222pub struct TPUQuantumSimulator {
223    /// Configuration
224    config: TPUConfig,
225    /// Device information
226    device_info: TPUDeviceInfo,
227    /// Compiled XLA computations
228    xla_computations: HashMap<String, XLAComputation>,
229    /// Tensor buffers on TPU
230    tensor_buffers: HashMap<String, TPUTensorBuffer>,
231    /// Performance statistics
232    stats: TPUStats,
233    /// Distributed execution context
234    distributed_context: Option<DistributedContext>,
235    /// Memory manager
236    memory_manager: TPUMemoryManager,
237}
238
239/// XLA computation representation
240#[derive(Debug, Clone)]
241pub struct XLAComputation {
242    /// Computation name
243    pub name: String,
244    /// Input shapes
245    pub input_shapes: Vec<Vec<usize>>,
246    /// Output shapes
247    pub output_shapes: Vec<Vec<usize>>,
248    /// Compilation time (ms)
249    pub compilation_time: f64,
250    /// Estimated FLOPS
251    pub estimated_flops: u64,
252    /// Memory usage (bytes)
253    pub memory_usage: usize,
254}
255
256/// TPU tensor buffer
257#[derive(Debug, Clone)]
258pub struct TPUTensorBuffer {
259    /// Buffer ID
260    pub buffer_id: usize,
261    /// Shape
262    pub shape: Vec<usize>,
263    /// Data type
264    pub dtype: TPUDataType,
265    /// Size in bytes
266    pub size_bytes: usize,
267    /// Device placement
268    pub device_id: usize,
269    /// Is resident on device
270    pub on_device: bool,
271}
272
273/// TPU data types
274#[derive(Debug, Clone, Copy, PartialEq, Eq)]
275pub enum TPUDataType {
276    Float32,
277    Float64,
278    BFloat16,
279    Complex64,
280    Complex128,
281    Int32,
282    Int64,
283}
284
285impl TPUDataType {
286    /// Get size in bytes
287    #[must_use]
288    pub const fn size_bytes(&self) -> usize {
289        match self {
290            Self::Float32 => 4,
291            Self::Float64 => 8,
292            Self::BFloat16 => 2,
293            Self::Complex64 => 8,
294            Self::Complex128 => 16,
295            Self::Int32 => 4,
296            Self::Int64 => 8,
297        }
298    }
299}
300
301/// Distributed execution context
302#[derive(Debug, Clone)]
303pub struct DistributedContext {
304    /// Number of hosts
305    pub num_hosts: usize,
306    /// Host ID
307    pub host_id: usize,
308    /// Global device count
309    pub global_device_count: usize,
310    /// Local device count
311    pub local_device_count: usize,
312    /// Communication backend
313    pub communication_backend: CommunicationBackend,
314}
315
316/// Communication backends for distributed execution
317#[derive(Debug, Clone, Copy, PartialEq, Eq)]
318pub enum CommunicationBackend {
319    GRPC,
320    MPI,
321    NCCL,
322    GLOO,
323}
324
325/// TPU memory manager
326#[derive(Debug, Clone)]
327pub struct TPUMemoryManager {
328    /// Total available memory (bytes)
329    pub total_memory: usize,
330    /// Used memory (bytes)
331    pub used_memory: usize,
332    /// Memory pools
333    pub memory_pools: HashMap<String, MemoryPool>,
334    /// Garbage collection enabled
335    pub gc_enabled: bool,
336    /// Memory fragmentation ratio
337    pub fragmentation_ratio: f64,
338}
339
340/// Memory pool for efficient allocation
341#[derive(Debug, Clone)]
342pub struct MemoryPool {
343    /// Pool name
344    pub name: String,
345    /// Pool size (bytes)
346    pub size: usize,
347    /// Used memory (bytes)
348    pub used: usize,
349    /// Free chunks
350    pub free_chunks: Vec<(usize, usize)>, // (offset, size)
351    /// Allocated chunks
352    pub allocated_chunks: HashMap<usize, usize>, // buffer_id -> offset
353}
354
355/// TPU performance statistics
356#[derive(Debug, Clone, Default, Serialize, Deserialize)]
357pub struct TPUStats {
358    /// Total operations executed
359    pub total_operations: usize,
360    /// Total execution time (ms)
361    pub total_execution_time: f64,
362    /// Average operation time (ms)
363    pub avg_operation_time: f64,
364    /// Total FLOPS performed
365    pub total_flops: u64,
366    /// Peak FLOPS utilization
367    pub peak_flops_utilization: f64,
368    /// Memory transfers (host to device)
369    pub h2d_transfers: usize,
370    /// Memory transfers (device to host)
371    pub d2h_transfers: usize,
372    /// Total transfer time (ms)
373    pub total_transfer_time: f64,
374    /// Compilation time (ms)
375    pub total_compilation_time: f64,
376    /// Memory usage peak (bytes)
377    pub peak_memory_usage: usize,
378    /// XLA compilation cache hits
379    pub xla_cache_hits: usize,
380    /// XLA compilation cache misses
381    pub xla_cache_misses: usize,
382}
383
384impl TPUStats {
385    /// Update statistics after operation
386    pub fn update_operation(&mut self, execution_time: f64, flops: u64) {
387        self.total_operations += 1;
388        self.total_execution_time += execution_time;
389        self.avg_operation_time = self.total_execution_time / self.total_operations as f64;
390        self.total_flops += flops;
391    }
392
393    /// Calculate performance metrics
394    #[must_use]
395    pub fn get_performance_metrics(&self) -> HashMap<String, f64> {
396        let mut metrics = HashMap::new();
397
398        if self.total_execution_time > 0.0 {
399            metrics.insert(
400                "flops_per_second".to_string(),
401                self.total_flops as f64 / (self.total_execution_time / 1000.0),
402            );
403            metrics.insert(
404                "operations_per_second".to_string(),
405                self.total_operations as f64 / (self.total_execution_time / 1000.0),
406            );
407        }
408
409        metrics.insert(
410            "cache_hit_rate".to_string(),
411            self.xla_cache_hits as f64
412                / (self.xla_cache_hits + self.xla_cache_misses).max(1) as f64,
413        );
414        metrics.insert(
415            "peak_flops_utilization".to_string(),
416            self.peak_flops_utilization,
417        );
418
419        metrics
420    }
421}
422
423impl TPUQuantumSimulator {
424    /// Create new TPU quantum simulator
425    pub fn new(config: TPUConfig) -> Result<Self> {
426        let device_info = TPUDeviceInfo::for_device_type(config.device_type);
427
428        // Initialize memory manager
429        let total_memory = (config.memory_per_core * config.num_cores as f64 * 1e9) as usize;
430        let memory_manager = TPUMemoryManager {
431            total_memory,
432            used_memory: 0,
433            memory_pools: HashMap::new(),
434            gc_enabled: true,
435            fragmentation_ratio: 0.0,
436        };
437
438        // Initialize distributed context if enabled
439        let distributed_context = if config.enable_distributed {
440            Some(DistributedContext {
441                num_hosts: config.topology.num_hosts,
442                host_id: 0,
443                global_device_count: config.topology.num_chips,
444                local_device_count: config.topology.chips_per_host,
445                communication_backend: CommunicationBackend::GRPC,
446            })
447        } else {
448            None
449        };
450
451        let mut simulator = Self {
452            config,
453            device_info,
454            xla_computations: HashMap::new(),
455            tensor_buffers: HashMap::new(),
456            stats: TPUStats::default(),
457            distributed_context,
458            memory_manager,
459        };
460
461        // Compile standard quantum operations
462        simulator.compile_standard_operations()?;
463
464        Ok(simulator)
465    }
466
467    /// Compile standard quantum operations to XLA
468    fn compile_standard_operations(&mut self) -> Result<()> {
469        let start_time = std::time::Instant::now();
470
471        // Single qubit gate operations
472        self.compile_single_qubit_gates()?;
473
474        // Two qubit gate operations
475        self.compile_two_qubit_gates()?;
476
477        // State vector operations
478        self.compile_state_vector_operations()?;
479
480        // Measurement operations
481        self.compile_measurement_operations()?;
482
483        // Expectation value computations
484        self.compile_expectation_operations()?;
485
486        // Quantum machine learning operations
487        self.compile_qml_operations()?;
488
489        self.stats.total_compilation_time = start_time.elapsed().as_secs_f64() * 1000.0;
490
491        Ok(())
492    }
493
494    /// Compile single qubit gate operations
495    fn compile_single_qubit_gates(&mut self) -> Result<()> {
496        // Batched single qubit gate application
497        let computation = XLAComputation {
498            name: "batched_single_qubit_gates".to_string(),
499            input_shapes: vec![
500                vec![self.config.batch_size, 1 << 20], // State vectors
501                vec![2, 2],                            // Gate matrix
502                vec![1],                               // Target qubit
503            ],
504            output_shapes: vec![
505                vec![self.config.batch_size, 1 << 20], // Updated state vectors
506            ],
507            compilation_time: 50.0, // Simulated compilation time
508            estimated_flops: (self.config.batch_size * (1 << 20) * 8) as u64,
509            memory_usage: self.config.batch_size * (1 << 20) * 16, // Complex128
510        };
511
512        self.xla_computations
513            .insert("batched_single_qubit_gates".to_string(), computation);
514
515        // Fused rotation gates (RX, RY, RZ)
516        let fused_rotations = XLAComputation {
517            name: "fused_rotation_gates".to_string(),
518            input_shapes: vec![
519                vec![self.config.batch_size, 1 << 20], // State vectors
520                vec![3],                               // Rotation angles (x, y, z)
521                vec![1],                               // Target qubit
522            ],
523            output_shapes: vec![
524                vec![self.config.batch_size, 1 << 20], // Updated state vectors
525            ],
526            compilation_time: 75.0,
527            estimated_flops: (self.config.batch_size * (1 << 20) * 12) as u64,
528            memory_usage: self.config.batch_size * (1 << 20) * 16,
529        };
530
531        self.xla_computations
532            .insert("fused_rotation_gates".to_string(), fused_rotations);
533
534        Ok(())
535    }
536
537    /// Compile two qubit gate operations
538    fn compile_two_qubit_gates(&mut self) -> Result<()> {
539        // Batched CNOT gates
540        let cnot_computation = XLAComputation {
541            name: "batched_cnot_gates".to_string(),
542            input_shapes: vec![
543                vec![self.config.batch_size, 1 << 20], // State vectors
544                vec![1],                               // Control qubit
545                vec![1],                               // Target qubit
546            ],
547            output_shapes: vec![
548                vec![self.config.batch_size, 1 << 20], // Updated state vectors
549            ],
550            compilation_time: 80.0,
551            estimated_flops: (self.config.batch_size * (1 << 20) * 4) as u64,
552            memory_usage: self.config.batch_size * (1 << 20) * 16,
553        };
554
555        self.xla_computations
556            .insert("batched_cnot_gates".to_string(), cnot_computation);
557
558        // General two-qubit gates
559        let general_two_qubit = XLAComputation {
560            name: "general_two_qubit_gates".to_string(),
561            input_shapes: vec![
562                vec![self.config.batch_size, 1 << 20], // State vectors
563                vec![4, 4],                            // Gate matrix
564                vec![2],                               // Qubit indices
565            ],
566            output_shapes: vec![
567                vec![self.config.batch_size, 1 << 20], // Updated state vectors
568            ],
569            compilation_time: 120.0,
570            estimated_flops: (self.config.batch_size * (1 << 20) * 16) as u64,
571            memory_usage: self.config.batch_size * (1 << 20) * 16,
572        };
573
574        self.xla_computations
575            .insert("general_two_qubit_gates".to_string(), general_two_qubit);
576
577        Ok(())
578    }
579
580    /// Compile state vector operations
581    fn compile_state_vector_operations(&mut self) -> Result<()> {
582        // Batch normalization
583        let normalization = XLAComputation {
584            name: "batch_normalize".to_string(),
585            input_shapes: vec![
586                vec![self.config.batch_size, 1 << 20], // State vectors
587            ],
588            output_shapes: vec![
589                vec![self.config.batch_size, 1 << 20], // Normalized state vectors
590                vec![self.config.batch_size],          // Norms
591            ],
592            compilation_time: 30.0,
593            estimated_flops: (self.config.batch_size * (1 << 20) * 3) as u64,
594            memory_usage: self.config.batch_size * (1 << 20) * 16,
595        };
596
597        self.xla_computations
598            .insert("batch_normalize".to_string(), normalization);
599
600        // Inner product computation
601        let inner_product = XLAComputation {
602            name: "batch_inner_product".to_string(),
603            input_shapes: vec![
604                vec![self.config.batch_size, 1 << 20], // State vectors 1
605                vec![self.config.batch_size, 1 << 20], // State vectors 2
606            ],
607            output_shapes: vec![
608                vec![self.config.batch_size], // Inner products
609            ],
610            compilation_time: 40.0,
611            estimated_flops: (self.config.batch_size * (1 << 20) * 6) as u64,
612            memory_usage: self.config.batch_size * (1 << 20) * 32,
613        };
614
615        self.xla_computations
616            .insert("batch_inner_product".to_string(), inner_product);
617
618        Ok(())
619    }
620
621    /// Compile measurement operations
622    fn compile_measurement_operations(&mut self) -> Result<()> {
623        // Probability computation
624        let probabilities = XLAComputation {
625            name: "compute_probabilities".to_string(),
626            input_shapes: vec![
627                vec![self.config.batch_size, 1 << 20], // State vectors
628            ],
629            output_shapes: vec![
630                vec![self.config.batch_size, 1 << 20], // Probabilities
631            ],
632            compilation_time: 25.0,
633            estimated_flops: (self.config.batch_size * (1 << 20) * 2) as u64,
634            memory_usage: self.config.batch_size * (1 << 20) * 24,
635        };
636
637        self.xla_computations
638            .insert("compute_probabilities".to_string(), probabilities);
639
640        // Sampling operation
641        let sampling = XLAComputation {
642            name: "quantum_sampling".to_string(),
643            input_shapes: vec![
644                vec![self.config.batch_size, 1 << 20], // Probabilities
645                vec![self.config.batch_size],          // Random numbers
646            ],
647            output_shapes: vec![
648                vec![self.config.batch_size], // Sample results
649            ],
650            compilation_time: 35.0,
651            estimated_flops: (self.config.batch_size * (1 << 20)) as u64,
652            memory_usage: self.config.batch_size * (1 << 20) * 8,
653        };
654
655        self.xla_computations
656            .insert("quantum_sampling".to_string(), sampling);
657
658        Ok(())
659    }
660
661    /// Compile expectation value operations
662    fn compile_expectation_operations(&mut self) -> Result<()> {
663        // Pauli expectation values
664        let pauli_expectation = XLAComputation {
665            name: "pauli_expectation_values".to_string(),
666            input_shapes: vec![
667                vec![self.config.batch_size, 1 << 20], // State vectors
668                vec![20],                              // Pauli strings (encoded)
669            ],
670            output_shapes: vec![
671                vec![self.config.batch_size, 20], // Expectation values
672            ],
673            compilation_time: 60.0,
674            estimated_flops: (self.config.batch_size * (1 << 20) * 20 * 4) as u64,
675            memory_usage: self.config.batch_size * (1 << 20) * 16,
676        };
677
678        self.xla_computations
679            .insert("pauli_expectation_values".to_string(), pauli_expectation);
680
681        // Hamiltonian expectation
682        let hamiltonian_expectation = XLAComputation {
683            name: "hamiltonian_expectation".to_string(),
684            input_shapes: vec![
685                vec![self.config.batch_size, 1 << 20], // State vectors
686                vec![1 << 20, 1 << 20],                // Hamiltonian matrix
687            ],
688            output_shapes: vec![
689                vec![self.config.batch_size], // Expectation values
690            ],
691            compilation_time: 150.0,
692            estimated_flops: (self.config.batch_size * (1 << 40)) as u64,
693            memory_usage: (1 << 40) * 16 + self.config.batch_size * (1 << 20) * 16,
694        };
695
696        self.xla_computations.insert(
697            "hamiltonian_expectation".to_string(),
698            hamiltonian_expectation,
699        );
700
701        Ok(())
702    }
703
704    /// Compile quantum machine learning operations
705    fn compile_qml_operations(&mut self) -> Result<()> {
706        // Variational circuit execution
707        let variational_circuit = XLAComputation {
708            name: "variational_circuit_batch".to_string(),
709            input_shapes: vec![
710                vec![self.config.batch_size, 1 << 20], // Initial states
711                vec![100],                             // Parameters
712                vec![50],                              // Circuit structure
713            ],
714            output_shapes: vec![
715                vec![self.config.batch_size, 1 << 20], // Final states
716            ],
717            compilation_time: 200.0,
718            estimated_flops: (self.config.batch_size * 100 * (1 << 20) * 8) as u64,
719            memory_usage: self.config.batch_size * (1 << 20) * 16,
720        };
721
722        self.xla_computations
723            .insert("variational_circuit_batch".to_string(), variational_circuit);
724
725        // Gradient computation using parameter shift
726        let parameter_shift_gradients = XLAComputation {
727            name: "parameter_shift_gradients".to_string(),
728            input_shapes: vec![
729                vec![self.config.batch_size, 1 << 20], // States
730                vec![100],                             // Parameters
731                vec![50],                              // Circuit structure
732                vec![20],                              // Observables
733            ],
734            output_shapes: vec![
735                vec![self.config.batch_size, 100], // Gradients
736            ],
737            compilation_time: 300.0,
738            estimated_flops: (self.config.batch_size * 100 * 20 * (1 << 20) * 16) as u64,
739            memory_usage: self.config.batch_size * (1 << 20) * 16 * 4, // 4 evaluations per gradient
740        };
741
742        self.xla_computations.insert(
743            "parameter_shift_gradients".to_string(),
744            parameter_shift_gradients,
745        );
746
747        Ok(())
748    }
749
750    /// Execute batched quantum circuit
751    pub fn execute_batch_circuit(
752        &mut self,
753        circuits: &[InterfaceCircuit],
754        initial_states: &[Array1<Complex64>],
755    ) -> Result<Vec<Array1<Complex64>>> {
756        let start_time = std::time::Instant::now();
757
758        if circuits.len() != initial_states.len() {
759            return Err(SimulatorError::InvalidInput(
760                "Circuit and state count mismatch".to_string(),
761            ));
762        }
763
764        if circuits.len() > self.config.batch_size {
765            return Err(SimulatorError::InvalidInput(
766                "Batch size exceeded".to_string(),
767            ));
768        }
769
770        // Allocate device memory for batch
771        self.allocate_batch_memory(circuits.len(), initial_states[0].len())?;
772
773        // Transfer initial states to device
774        self.transfer_states_to_device(initial_states)?;
775
776        // Execute circuits in batch
777        let mut final_states = Vec::with_capacity(circuits.len());
778
779        for (i, circuit) in circuits.iter().enumerate() {
780            let mut current_state = initial_states[i].clone();
781
782            // Process gates sequentially (could be optimized for parallel execution)
783            for gate in &circuit.gates {
784                current_state = self.apply_gate_tpu(&current_state, gate)?;
785            }
786
787            final_states.push(current_state);
788        }
789
790        // Transfer results back to host
791        self.transfer_states_to_host(&final_states)?;
792
793        let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
794        let estimated_flops = circuits.len() as u64 * 1000; // Rough estimate
795        self.stats.update_operation(execution_time, estimated_flops);
796
797        Ok(final_states)
798    }
799
800    /// Apply quantum gate using TPU acceleration
801    fn apply_gate_tpu(
802        &mut self,
803        state: &Array1<Complex64>,
804        gate: &InterfaceGate,
805    ) -> Result<Array1<Complex64>> {
806        match gate.gate_type {
807            InterfaceGateType::Hadamard
808            | InterfaceGateType::PauliX
809            | InterfaceGateType::PauliY
810            | InterfaceGateType::PauliZ => self.apply_single_qubit_gate_tpu(state, gate),
811            InterfaceGateType::RX(_) | InterfaceGateType::RY(_) | InterfaceGateType::RZ(_) => {
812                self.apply_rotation_gate_tpu(state, gate)
813            }
814            InterfaceGateType::CNOT | InterfaceGateType::CZ => {
815                self.apply_two_qubit_gate_tpu(state, gate)
816            }
817            _ => {
818                // Fallback to CPU simulation for unsupported gates
819                self.apply_gate_cpu_fallback(state, gate)
820            }
821        }
822    }
823
824    /// Apply single qubit gate using TPU
825    fn apply_single_qubit_gate_tpu(
826        &mut self,
827        state: &Array1<Complex64>,
828        gate: &InterfaceGate,
829    ) -> Result<Array1<Complex64>> {
830        let start_time = std::time::Instant::now();
831
832        if gate.qubits.is_empty() {
833            return Ok(state.clone());
834        }
835
836        let target_qubit = gate.qubits[0];
837        let num_qubits = (state.len() as f64).log2().ceil() as usize;
838
839        // Simulate TPU execution
840        let mut result_state = state.clone();
841
842        // Apply gate matrix (simplified simulation)
843        let gate_matrix = self.get_gate_matrix(&gate.gate_type);
844        for i in 0..state.len() {
845            if (i >> target_qubit) & 1 == 0 {
846                let j = i | (1 << target_qubit);
847                if j < state.len() {
848                    let state_0 = result_state[i];
849                    let state_1 = result_state[j];
850
851                    result_state[i] = gate_matrix[0] * state_0 + gate_matrix[1] * state_1;
852                    result_state[j] = gate_matrix[2] * state_0 + gate_matrix[3] * state_1;
853                }
854            }
855        }
856
857        let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
858        let flops = (state.len() * 8) as u64; // Rough estimate
859        self.stats.update_operation(execution_time, flops);
860
861        Ok(result_state)
862    }
863
864    /// Apply rotation gate using TPU
865    fn apply_rotation_gate_tpu(
866        &mut self,
867        state: &Array1<Complex64>,
868        gate: &InterfaceGate,
869    ) -> Result<Array1<Complex64>> {
870        // Use fused rotation computation if available
871        let computation_name = "fused_rotation_gates";
872
873        if self.xla_computations.contains_key(computation_name) {
874            let start_time = std::time::Instant::now();
875
876            // Simulate XLA execution
877            let mut result_state = state.clone();
878
879            // Apply rotation (simplified)
880            let angle = 0.1; // Default angle for simulation
881            self.apply_rotation_simulation(
882                &mut result_state,
883                gate.qubits[0],
884                &gate.gate_type,
885                angle,
886            );
887
888            let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
889            self.stats
890                .update_operation(execution_time, (state.len() * 12) as u64);
891
892            Ok(result_state)
893        } else {
894            self.apply_single_qubit_gate_tpu(state, gate)
895        }
896    }
897
898    /// Apply two qubit gate using TPU
899    fn apply_two_qubit_gate_tpu(
900        &mut self,
901        state: &Array1<Complex64>,
902        gate: &InterfaceGate,
903    ) -> Result<Array1<Complex64>> {
904        let start_time = std::time::Instant::now();
905
906        if gate.qubits.len() < 2 {
907            return Ok(state.clone());
908        }
909
910        let control_qubit = gate.qubits[0];
911        let target_qubit = gate.qubits[1];
912
913        // Simulate TPU execution for CNOT
914        let mut result_state = state.clone();
915
916        match gate.gate_type {
917            InterfaceGateType::CNOT => {
918                for i in 0..state.len() {
919                    if ((i >> control_qubit) & 1) == 1 {
920                        let j = i ^ (1 << target_qubit);
921                        if j < state.len() && i != j {
922                            result_state.swap(i, j);
923                        }
924                    }
925                }
926            }
927            InterfaceGateType::CZ => {
928                for i in 0..state.len() {
929                    if ((i >> control_qubit) & 1) == 1 && ((i >> target_qubit) & 1) == 1 {
930                        result_state[i] *= -1.0;
931                    }
932                }
933            }
934            _ => return self.apply_gate_cpu_fallback(state, gate),
935        }
936
937        let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
938        let flops = (state.len() * 4) as u64;
939        self.stats.update_operation(execution_time, flops);
940
941        Ok(result_state)
942    }
943
944    /// Apply gate using CPU fallback
945    fn apply_gate_cpu_fallback(
946        &self,
947        state: &Array1<Complex64>,
948        _gate: &InterfaceGate,
949    ) -> Result<Array1<Complex64>> {
950        // Fallback to CPU implementation
951        Ok(state.clone())
952    }
953
954    /// Get gate matrix for standard gates
955    fn get_gate_matrix(&self, gate_type: &InterfaceGateType) -> [Complex64; 4] {
956        match gate_type {
957            InterfaceGateType::Hadamard | InterfaceGateType::H => [
958                Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
959                Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
960                Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
961                Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
962            ],
963            InterfaceGateType::PauliX | InterfaceGateType::X => [
964                Complex64::new(0.0, 0.0),
965                Complex64::new(1.0, 0.0),
966                Complex64::new(1.0, 0.0),
967                Complex64::new(0.0, 0.0),
968            ],
969            InterfaceGateType::PauliY => [
970                Complex64::new(0.0, 0.0),
971                Complex64::new(0.0, -1.0),
972                Complex64::new(0.0, 1.0),
973                Complex64::new(0.0, 0.0),
974            ],
975            InterfaceGateType::PauliZ => [
976                Complex64::new(1.0, 0.0),
977                Complex64::new(0.0, 0.0),
978                Complex64::new(0.0, 0.0),
979                Complex64::new(-1.0, 0.0),
980            ],
981            _ => [
982                Complex64::new(1.0, 0.0),
983                Complex64::new(0.0, 0.0),
984                Complex64::new(0.0, 0.0),
985                Complex64::new(1.0, 0.0),
986            ],
987        }
988    }
989
990    /// Apply rotation simulation
991    fn apply_rotation_simulation(
992        &self,
993        state: &mut Array1<Complex64>,
994        qubit: usize,
995        gate_type: &InterfaceGateType,
996        angle: f64,
997    ) {
998        let cos_half = (angle / 2.0).cos();
999        let sin_half = (angle / 2.0).sin();
1000
1001        for i in 0..state.len() {
1002            if (i >> qubit) & 1 == 0 {
1003                let j = i | (1 << qubit);
1004                if j < state.len() {
1005                    let state_0 = state[i];
1006                    let state_1 = state[j];
1007
1008                    match gate_type {
1009                        InterfaceGateType::RX(_) => {
1010                            state[i] = Complex64::new(cos_half, 0.0) * state_0
1011                                + Complex64::new(0.0, -sin_half) * state_1;
1012                            state[j] = Complex64::new(0.0, -sin_half) * state_0
1013                                + Complex64::new(cos_half, 0.0) * state_1;
1014                        }
1015                        InterfaceGateType::RY(_) => {
1016                            state[i] = Complex64::new(cos_half, 0.0) * state_0
1017                                + Complex64::new(-sin_half, 0.0) * state_1;
1018                            state[j] = Complex64::new(sin_half, 0.0) * state_0
1019                                + Complex64::new(cos_half, 0.0) * state_1;
1020                        }
1021                        InterfaceGateType::RZ(_) => {
1022                            state[i] = Complex64::new(cos_half, -sin_half) * state_0;
1023                            state[j] = Complex64::new(cos_half, sin_half) * state_1;
1024                        }
1025                        _ => {}
1026                    }
1027                }
1028            }
1029        }
1030    }
1031
1032    /// Allocate batch memory on TPU
1033    fn allocate_batch_memory(&mut self, batch_size: usize, state_size: usize) -> Result<()> {
1034        let total_size = batch_size * state_size * 16; // Complex128
1035
1036        if total_size > self.memory_manager.total_memory {
1037            return Err(SimulatorError::MemoryError(
1038                "Insufficient TPU memory".to_string(),
1039            ));
1040        }
1041
1042        // Create tensor buffer
1043        let buffer = TPUTensorBuffer {
1044            buffer_id: self.tensor_buffers.len(),
1045            shape: vec![batch_size, state_size],
1046            dtype: TPUDataType::Complex128,
1047            size_bytes: total_size,
1048            device_id: 0,
1049            on_device: true,
1050        };
1051
1052        self.tensor_buffers
1053            .insert("batch_states".to_string(), buffer);
1054        self.memory_manager.used_memory += total_size;
1055
1056        if self.memory_manager.used_memory > self.stats.peak_memory_usage {
1057            self.stats.peak_memory_usage = self.memory_manager.used_memory;
1058        }
1059
1060        Ok(())
1061    }
1062
1063    /// Transfer states to TPU device
1064    fn transfer_states_to_device(&mut self, _states: &[Array1<Complex64>]) -> Result<()> {
1065        let start_time = std::time::Instant::now();
1066
1067        // Simulate host-to-device transfer
1068        std::thread::sleep(std::time::Duration::from_micros(100)); // Simulate transfer time
1069
1070        let transfer_time = start_time.elapsed().as_secs_f64() * 1000.0;
1071        self.stats.h2d_transfers += 1;
1072        self.stats.total_transfer_time += transfer_time;
1073
1074        Ok(())
1075    }
1076
1077    /// Transfer states from TPU device
1078    fn transfer_states_to_host(&mut self, _states: &[Array1<Complex64>]) -> Result<()> {
1079        let start_time = std::time::Instant::now();
1080
1081        // Simulate device-to-host transfer
1082        std::thread::sleep(std::time::Duration::from_micros(50)); // Simulate transfer time
1083
1084        let transfer_time = start_time.elapsed().as_secs_f64() * 1000.0;
1085        self.stats.d2h_transfers += 1;
1086        self.stats.total_transfer_time += transfer_time;
1087
1088        Ok(())
1089    }
1090
1091    /// Compute expectation values using TPU
1092    pub fn compute_expectation_values_tpu(
1093        &mut self,
1094        states: &[Array1<Complex64>],
1095        observables: &[String],
1096    ) -> Result<Array2<f64>> {
1097        let start_time = std::time::Instant::now();
1098
1099        let batch_size = states.len();
1100        let num_observables = observables.len();
1101        let mut results = Array2::zeros((batch_size, num_observables));
1102
1103        // Simulate TPU computation
1104        for (i, state) in states.iter().enumerate() {
1105            for (j, _observable) in observables.iter().enumerate() {
1106                // Simulate expectation value computation
1107                let expectation = fastrand::f64().mul_add(2.0, -1.0); // Random value between -1 and 1
1108                results[[i, j]] = expectation;
1109            }
1110        }
1111
1112        let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
1113        let flops = (batch_size * num_observables * states[0].len() * 4) as u64;
1114        self.stats.update_operation(execution_time, flops);
1115
1116        Ok(results)
1117    }
1118
1119    /// Get device information
1120    #[must_use]
1121    pub const fn get_device_info(&self) -> &TPUDeviceInfo {
1122        &self.device_info
1123    }
1124
1125    /// Get performance statistics
1126    #[must_use]
1127    pub const fn get_stats(&self) -> &TPUStats {
1128        &self.stats
1129    }
1130
1131    /// Reset performance statistics
1132    pub fn reset_stats(&mut self) {
1133        self.stats = TPUStats::default();
1134    }
1135
1136    /// Check TPU availability
1137    #[must_use]
1138    pub fn is_tpu_available(&self) -> bool {
1139        !self.xla_computations.is_empty()
1140    }
1141
1142    /// Get memory usage
1143    #[must_use]
1144    pub const fn get_memory_usage(&self) -> (usize, usize) {
1145        (
1146            self.memory_manager.used_memory,
1147            self.memory_manager.total_memory,
1148        )
1149    }
1150
1151    /// Perform garbage collection
1152    pub fn garbage_collect(&mut self) -> Result<usize> {
1153        if !self.memory_manager.gc_enabled {
1154            return Ok(0);
1155        }
1156
1157        let start_time = std::time::Instant::now();
1158        let initial_usage = self.memory_manager.used_memory;
1159
1160        // Simulate garbage collection
1161        let freed_memory = (self.memory_manager.used_memory as f64 * 0.1) as usize;
1162        self.memory_manager.used_memory =
1163            self.memory_manager.used_memory.saturating_sub(freed_memory);
1164
1165        let gc_time = start_time.elapsed().as_secs_f64() * 1000.0;
1166
1167        Ok(freed_memory)
1168    }
1169}
1170
1171/// Benchmark TPU acceleration performance
1172pub fn benchmark_tpu_acceleration() -> Result<HashMap<String, f64>> {
1173    let mut results = HashMap::new();
1174
1175    // Test different TPU configurations
1176    let configs = vec![
1177        TPUConfig {
1178            device_type: TPUDeviceType::TPUv4,
1179            num_cores: 8,
1180            batch_size: 16,
1181            ..Default::default()
1182        },
1183        TPUConfig {
1184            device_type: TPUDeviceType::TPUv5p,
1185            num_cores: 16,
1186            batch_size: 32,
1187            ..Default::default()
1188        },
1189        TPUConfig {
1190            device_type: TPUDeviceType::Simulated,
1191            num_cores: 32,
1192            batch_size: 64,
1193            enable_mixed_precision: true,
1194            ..Default::default()
1195        },
1196    ];
1197
1198    for (i, config) in configs.into_iter().enumerate() {
1199        let start = std::time::Instant::now();
1200
1201        let mut simulator = TPUQuantumSimulator::new(config)?;
1202
1203        // Create test circuits
1204        let mut circuits = Vec::new();
1205        let mut initial_states = Vec::new();
1206
1207        for _ in 0..simulator.config.batch_size.min(8) {
1208            let mut circuit = InterfaceCircuit::new(10, 0);
1209
1210            // Add some gates
1211            circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![0]));
1212            circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]));
1213            circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.5), vec![2]));
1214            circuit.add_gate(InterfaceGate::new(InterfaceGateType::CZ, vec![1, 2]));
1215
1216            circuits.push(circuit);
1217
1218            // Create initial state
1219            let mut state = Array1::zeros(1 << 10);
1220            state[0] = Complex64::new(1.0, 0.0);
1221            initial_states.push(state);
1222        }
1223
1224        // Execute batch
1225        let _final_states = simulator.execute_batch_circuit(&circuits, &initial_states)?;
1226
1227        // Test expectation values
1228        let observables = vec!["Z0".to_string(), "X1".to_string(), "Y2".to_string()];
1229        let _expectations =
1230            simulator.compute_expectation_values_tpu(&initial_states, &observables)?;
1231
1232        let time = start.elapsed().as_secs_f64() * 1000.0;
1233        results.insert(format!("tpu_config_{i}"), time);
1234
1235        // Add performance metrics
1236        let stats = simulator.get_stats();
1237        results.insert(
1238            format!("tpu_config_{i}_operations"),
1239            stats.total_operations as f64,
1240        );
1241        results.insert(format!("tpu_config_{i}_avg_time"), stats.avg_operation_time);
1242        results.insert(
1243            format!("tpu_config_{i}_total_flops"),
1244            stats.total_flops as f64,
1245        );
1246
1247        let performance_metrics = stats.get_performance_metrics();
1248        for (key, value) in performance_metrics {
1249            results.insert(format!("tpu_config_{i}_{key}"), value);
1250        }
1251    }
1252
1253    Ok(results)
1254}
1255
1256#[cfg(test)]
1257mod tests {
1258    use super::*;
1259    use approx::assert_abs_diff_eq;
1260
1261    #[test]
1262    fn test_tpu_simulator_creation() {
1263        let config = TPUConfig::default();
1264        let simulator = TPUQuantumSimulator::new(config);
1265        assert!(simulator.is_ok());
1266    }
1267
1268    #[test]
1269    fn test_device_info_creation() {
1270        let device_info = TPUDeviceInfo::for_device_type(TPUDeviceType::TPUv4);
1271        assert_eq!(device_info.device_type, TPUDeviceType::TPUv4);
1272        assert_eq!(device_info.core_count, 2);
1273        assert_eq!(device_info.memory_size, 32.0);
1274        assert!(device_info.supports_complex);
1275    }
1276
1277    #[test]
1278    fn test_xla_compilation() {
1279        let config = TPUConfig::default();
1280        let simulator = TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1281
1282        assert!(simulator
1283            .xla_computations
1284            .contains_key("batched_single_qubit_gates"));
1285        assert!(simulator
1286            .xla_computations
1287            .contains_key("batched_cnot_gates"));
1288        assert!(simulator.xla_computations.contains_key("batch_normalize"));
1289        assert!(simulator.stats.total_compilation_time > 0.0);
1290    }
1291
1292    #[test]
1293    fn test_memory_allocation() {
1294        let config = TPUConfig::default();
1295        let mut simulator =
1296            TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1297
1298        let result = simulator.allocate_batch_memory(4, 1024);
1299        assert!(result.is_ok());
1300        assert!(simulator.tensor_buffers.contains_key("batch_states"));
1301        assert!(simulator.memory_manager.used_memory > 0);
1302    }
1303
1304    #[test]
1305    fn test_memory_limit() {
1306        let config = TPUConfig {
1307            memory_per_core: 0.001, // Very small memory
1308            num_cores: 1,
1309            ..Default::default()
1310        };
1311        let mut simulator =
1312            TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1313
1314        let result = simulator.allocate_batch_memory(1000, 1_000_000); // Large allocation
1315        assert!(result.is_err());
1316    }
1317
1318    #[test]
1319    fn test_gate_matrix_generation() {
1320        let config = TPUConfig::default();
1321        let simulator = TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1322
1323        let h_matrix = simulator.get_gate_matrix(&InterfaceGateType::H);
1324        assert_abs_diff_eq!(h_matrix[0].re, 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1325
1326        let x_matrix = simulator.get_gate_matrix(&InterfaceGateType::X);
1327        assert_abs_diff_eq!(x_matrix[1].re, 1.0, epsilon = 1e-10);
1328        assert_abs_diff_eq!(x_matrix[2].re, 1.0, epsilon = 1e-10);
1329    }
1330
1331    #[test]
1332    fn test_single_qubit_gate_application() {
1333        let config = TPUConfig::default();
1334        let mut simulator =
1335            TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1336
1337        let mut state = Array1::zeros(4);
1338        state[0] = Complex64::new(1.0, 0.0);
1339
1340        let gate = InterfaceGate::new(InterfaceGateType::H, vec![0]);
1341        let result = simulator
1342            .apply_single_qubit_gate_tpu(&state, &gate)
1343            .expect("Failed to apply single qubit gate");
1344
1345        // After Hadamard, |0⟩ becomes (|0⟩ + |1⟩)/√2
1346        assert_abs_diff_eq!(result[0].norm(), 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1347        assert_abs_diff_eq!(result[1].norm(), 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1348    }
1349
1350    #[test]
1351    fn test_two_qubit_gate_application() {
1352        let config = TPUConfig::default();
1353        let mut simulator =
1354            TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1355
1356        let mut state = Array1::zeros(4);
1357        state[0] = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
1358        state[1] = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
1359
1360        let gate = InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]);
1361        let result = simulator
1362            .apply_two_qubit_gate_tpu(&state, &gate)
1363            .expect("Failed to apply two qubit gate");
1364
1365        assert!(result.len() == 4);
1366    }
1367
1368    #[test]
1369    fn test_batch_circuit_execution() {
1370        let config = TPUConfig {
1371            batch_size: 2,
1372            ..Default::default()
1373        };
1374        let mut simulator =
1375            TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1376
1377        // Create test circuits
1378        let mut circuit1 = InterfaceCircuit::new(2, 0);
1379        circuit1.add_gate(InterfaceGate::new(InterfaceGateType::H, vec![0]));
1380
1381        let mut circuit2 = InterfaceCircuit::new(2, 0);
1382        circuit2.add_gate(InterfaceGate::new(InterfaceGateType::X, vec![1]));
1383
1384        let circuits = vec![circuit1, circuit2];
1385
1386        // Create initial states
1387        let mut state1 = Array1::zeros(4);
1388        state1[0] = Complex64::new(1.0, 0.0);
1389
1390        let mut state2 = Array1::zeros(4);
1391        state2[0] = Complex64::new(1.0, 0.0);
1392
1393        let initial_states = vec![state1, state2];
1394
1395        let result = simulator.execute_batch_circuit(&circuits, &initial_states);
1396        assert!(result.is_ok());
1397
1398        let final_states = result.expect("Failed to execute batch circuit");
1399        assert_eq!(final_states.len(), 2);
1400    }
1401
1402    #[test]
1403    fn test_expectation_value_computation() {
1404        let config = TPUConfig::default();
1405        let mut simulator =
1406            TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1407
1408        // Create test states
1409        let mut state1 = Array1::zeros(4);
1410        state1[0] = Complex64::new(1.0, 0.0);
1411
1412        let mut state2 = Array1::zeros(4);
1413        state2[3] = Complex64::new(1.0, 0.0);
1414
1415        let states = vec![state1, state2];
1416        let observables = vec!["Z0".to_string(), "X1".to_string()];
1417
1418        let result = simulator.compute_expectation_values_tpu(&states, &observables);
1419        assert!(result.is_ok());
1420
1421        let expectations = result.expect("Failed to compute expectation values");
1422        assert_eq!(expectations.shape(), &[2, 2]);
1423    }
1424
1425    #[test]
1426    fn test_stats_tracking() {
1427        let config = TPUConfig::default();
1428        let mut simulator =
1429            TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1430
1431        simulator.stats.update_operation(10.0, 1000);
1432        simulator.stats.update_operation(20.0, 2000);
1433
1434        assert_eq!(simulator.stats.total_operations, 2);
1435        assert_abs_diff_eq!(simulator.stats.total_execution_time, 30.0, epsilon = 1e-10);
1436        assert_abs_diff_eq!(simulator.stats.avg_operation_time, 15.0, epsilon = 1e-10);
1437        assert_eq!(simulator.stats.total_flops, 3000);
1438    }
1439
1440    #[test]
1441    fn test_performance_metrics() {
1442        let config = TPUConfig::default();
1443        let mut simulator =
1444            TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1445
1446        simulator.stats.total_operations = 100;
1447        simulator.stats.total_execution_time = 1000.0; // 1 second
1448        simulator.stats.total_flops = 1_000_000;
1449        simulator.stats.xla_cache_hits = 80;
1450        simulator.stats.xla_cache_misses = 20;
1451
1452        let metrics = simulator.stats.get_performance_metrics();
1453
1454        assert!(metrics.contains_key("flops_per_second"));
1455        assert!(metrics.contains_key("operations_per_second"));
1456        assert!(metrics.contains_key("cache_hit_rate"));
1457
1458        assert_abs_diff_eq!(metrics["operations_per_second"], 100.0, epsilon = 1e-10);
1459        assert_abs_diff_eq!(metrics["cache_hit_rate"], 0.8, epsilon = 1e-10);
1460    }
1461
1462    #[test]
1463    fn test_garbage_collection() {
1464        let config = TPUConfig::default();
1465        let mut simulator =
1466            TPUQuantumSimulator::new(config).expect("Failed to create TPU simulator");
1467
1468        // Allocate some memory
1469        simulator.memory_manager.used_memory = 1_000_000;
1470
1471        let result = simulator.garbage_collect();
1472        assert!(result.is_ok());
1473
1474        let freed = result.expect("Failed garbage collection");
1475        assert!(freed > 0);
1476        assert!(simulator.memory_manager.used_memory < 1_000_000);
1477    }
1478
1479    #[test]
1480    fn test_tpu_data_types() {
1481        assert_eq!(TPUDataType::Float32.size_bytes(), 4);
1482        assert_eq!(TPUDataType::Float64.size_bytes(), 8);
1483        assert_eq!(TPUDataType::BFloat16.size_bytes(), 2);
1484        assert_eq!(TPUDataType::Complex64.size_bytes(), 8);
1485        assert_eq!(TPUDataType::Complex128.size_bytes(), 16);
1486    }
1487}