quantrs2_sim/
quantum_supremacy.rs

1//! Quantum supremacy verification algorithms and benchmarks.
2//!
3//! This module implements various algorithms and statistical tests for verifying
4//! quantum supremacy claims, including cross-entropy benchmarking, Porter-Thomas
5//! distribution analysis, and linear cross-entropy benchmarking (Linear XEB).
6
7use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
8use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
9use scirs2_core::random::prelude::*;
10use scirs2_core::random::ChaCha8Rng;
11use scirs2_core::random::{Rng, SeedableRng};
12use scirs2_core::Complex64;
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::f64::consts::PI;
16
17use crate::error::{Result, SimulatorError};
18use crate::scirs2_integration::SciRS2Backend;
19use crate::shot_sampling::{QuantumSampler, SamplingConfig};
20use crate::statevector::StateVectorSimulator;
21
22/// Cross-entropy benchmarking result
23#[derive(Debug, Clone, Serialize, Deserialize)]
24pub struct CrossEntropyResult {
25    /// Linear cross-entropy benchmarking (XEB) fidelity
26    pub linear_xeb_fidelity: f64,
27    /// Cross-entropy difference
28    pub cross_entropy_difference: f64,
29    /// Number of samples used
30    pub num_samples: usize,
31    /// Statistical confidence (p-value)
32    pub confidence: f64,
33    /// Porter-Thomas test results
34    pub porter_thomas: PorterThomasResult,
35    /// Heavy output generation (HOG) score
36    pub hog_score: f64,
37    /// Computational cost comparison
38    pub cost_comparison: CostComparison,
39}
40
41/// Porter-Thomas distribution analysis
42#[derive(Debug, Clone, Serialize, Deserialize)]
43pub struct PorterThomasResult {
44    /// Chi-squared statistic
45    pub chi_squared: f64,
46    /// Degrees of freedom
47    pub degrees_freedom: usize,
48    /// P-value of the test
49    pub p_value: f64,
50    /// Whether distribution matches Porter-Thomas
51    pub is_porter_thomas: bool,
52    /// Kolmogorov-Smirnov test statistic
53    pub ks_statistic: f64,
54    /// Mean of the distribution
55    pub mean: f64,
56    /// Variance of the distribution
57    pub variance: f64,
58}
59
60/// Heavy Output Generation analysis
61#[derive(Debug, Clone, Serialize, Deserialize)]
62pub struct HOGAnalysis {
63    /// Fraction of heavy outputs
64    pub heavy_fraction: f64,
65    /// Expected heavy fraction for random circuit
66    pub expected_heavy_fraction: f64,
67    /// Threshold for heavy outputs
68    pub threshold: f64,
69    /// Total outputs analyzed
70    pub total_outputs: usize,
71    /// Heavy outputs count
72    pub heavy_count: usize,
73}
74
75/// Computational cost comparison
76#[derive(Debug, Clone, Serialize, Deserialize)]
77pub struct CostComparison {
78    /// Classical simulation time (seconds)
79    pub classical_time: f64,
80    /// Quantum execution time estimate (seconds)
81    pub quantum_time: f64,
82    /// Memory usage for classical simulation (bytes)
83    pub classical_memory: usize,
84    /// Speedup factor
85    pub speedup_factor: f64,
86    /// Number of operations
87    pub operation_count: usize,
88}
89
90/// Quantum supremacy verifier
91pub struct QuantumSupremacyVerifier {
92    /// Number of qubits
93    num_qubits: usize,
94    /// Random number generator
95    rng: ChaCha8Rng,
96    /// `SciRS2` backend for optimization
97    backend: Option<SciRS2Backend>,
98    /// Verification parameters
99    params: VerificationParams,
100}
101
102/// Parameters for quantum supremacy verification
103#[derive(Debug, Clone)]
104pub struct VerificationParams {
105    /// Number of random circuits to test
106    pub num_circuits: usize,
107    /// Number of samples per circuit
108    pub samples_per_circuit: usize,
109    /// Circuit depth
110    pub circuit_depth: usize,
111    /// Gate set to use
112    pub gate_set: GateSet,
113    /// Significance level for statistical tests
114    pub significance_level: f64,
115    /// Porter-Thomas test bins
116    pub pt_bins: usize,
117    /// Heavy output threshold percentile
118    pub heavy_threshold_percentile: f64,
119}
120
121/// Gate set for random circuit generation
122#[derive(Debug, Clone)]
123pub enum GateSet {
124    /// Sycamore-like gate set (√X, √Y, √W, CZ)
125    Sycamore,
126    /// Google's quantum supremacy gate set
127    GoogleSupremacy,
128    /// Universal gate set (H, T, CNOT)
129    Universal,
130    /// IBM-like gate set (RZ, SX, CNOT)
131    IBM,
132    /// Custom gate set
133    Custom(Vec<String>),
134}
135
136impl Default for VerificationParams {
137    fn default() -> Self {
138        Self {
139            num_circuits: 100,
140            samples_per_circuit: 1000,
141            circuit_depth: 20,
142            gate_set: GateSet::Sycamore,
143            significance_level: 0.05,
144            pt_bins: 100,
145            heavy_threshold_percentile: 50.0,
146        }
147    }
148}
149
150impl QuantumSupremacyVerifier {
151    /// Create new quantum supremacy verifier
152    pub fn new(num_qubits: usize, params: VerificationParams) -> Result<Self> {
153        Ok(Self {
154            num_qubits,
155            rng: ChaCha8Rng::from_rng(&mut thread_rng()),
156            backend: None,
157            params,
158        })
159    }
160
161    /// Initialize with `SciRS2` backend
162    pub fn with_scirs2_backend(mut self) -> Result<Self> {
163        self.backend = Some(SciRS2Backend::new());
164        Ok(self)
165    }
166
167    /// Set random seed for reproducibility
168    #[must_use]
169    pub fn with_seed(mut self, seed: u64) -> Self {
170        self.rng = ChaCha8Rng::seed_from_u64(seed);
171        self
172    }
173
174    /// Perform comprehensive quantum supremacy verification
175    pub fn verify_quantum_supremacy(&mut self) -> Result<CrossEntropyResult> {
176        let start_time = std::time::Instant::now();
177
178        // Generate random quantum circuits
179        let circuits = self.generate_random_circuits()?;
180
181        // Compute ideal amplitudes (classical simulation)
182        let ideal_amplitudes = self.compute_ideal_amplitudes(&circuits)?;
183
184        // Simulate quantum sampling
185        let quantum_samples = self.simulate_quantum_sampling(&circuits)?;
186
187        // Perform cross-entropy benchmarking
188        let linear_xeb = self.compute_linear_xeb(&ideal_amplitudes, &quantum_samples)?;
189
190        // Analyze Porter-Thomas distribution
191        let porter_thomas = self.analyze_porter_thomas(&ideal_amplitudes)?;
192
193        // Compute Heavy Output Generation score
194        let hog_score = self.compute_hog_score(&ideal_amplitudes, &quantum_samples)?;
195
196        // Cross-entropy difference
197        let cross_entropy_diff =
198            self.compute_cross_entropy_difference(&ideal_amplitudes, &quantum_samples)?;
199
200        // Statistical confidence
201        let confidence =
202            self.compute_statistical_confidence(&ideal_amplitudes, &quantum_samples)?;
203
204        let classical_time = start_time.elapsed().as_secs_f64();
205
206        // Cost comparison
207        let cost_comparison = CostComparison {
208            classical_time,
209            quantum_time: self.estimate_quantum_time()?,
210            classical_memory: self.estimate_classical_memory(),
211            speedup_factor: classical_time / self.estimate_quantum_time()?,
212            operation_count: circuits.len() * self.params.circuit_depth,
213        };
214
215        Ok(CrossEntropyResult {
216            linear_xeb_fidelity: linear_xeb,
217            cross_entropy_difference: cross_entropy_diff,
218            num_samples: self.params.samples_per_circuit,
219            confidence,
220            porter_thomas,
221            hog_score,
222            cost_comparison,
223        })
224    }
225
226    /// Generate random quantum circuits
227    fn generate_random_circuits(&mut self) -> Result<Vec<RandomCircuit>> {
228        let mut circuits = Vec::with_capacity(self.params.num_circuits);
229
230        for _ in 0..self.params.num_circuits {
231            let circuit = self.generate_single_random_circuit()?;
232            circuits.push(circuit);
233        }
234
235        Ok(circuits)
236    }
237
238    /// Generate a single random circuit
239    fn generate_single_random_circuit(&mut self) -> Result<RandomCircuit> {
240        let mut layers = Vec::with_capacity(self.params.circuit_depth);
241
242        for layer_idx in 0..self.params.circuit_depth {
243            let layer = match &self.params.gate_set {
244                GateSet::Sycamore => self.generate_sycamore_layer(layer_idx)?,
245                GateSet::GoogleSupremacy => self.generate_google_supremacy_layer(layer_idx)?,
246                GateSet::Universal => self.generate_universal_layer(layer_idx)?,
247                GateSet::IBM => self.generate_ibm_layer(layer_idx)?,
248                GateSet::Custom(gates) => {
249                    let gates_clone = gates.clone();
250                    self.generate_custom_layer(layer_idx, &gates_clone)?
251                }
252            };
253            layers.push(layer);
254        }
255
256        Ok(RandomCircuit {
257            num_qubits: self.num_qubits,
258            layers,
259            measurement_pattern: self.generate_measurement_pattern(),
260        })
261    }
262
263    /// Generate Sycamore-style layer
264    fn generate_sycamore_layer(&mut self, layer_idx: usize) -> Result<CircuitLayer> {
265        let mut gates = Vec::new();
266
267        // Single-qubit gates
268        for qubit in 0..self.num_qubits {
269            let gate_type = match self.rng.gen_range(0..3) {
270                0 => "SqrtX",
271                1 => "SqrtY",
272                _ => "SqrtW",
273            };
274
275            gates.push(QuantumGate {
276                gate_type: gate_type.to_string(),
277                qubits: vec![qubit],
278                parameters: vec![],
279            });
280        }
281
282        // Two-qubit gates (CZ gates with connectivity pattern)
283        let offset = layer_idx % 2;
284        for row in 0..((self.num_qubits as f64).sqrt() as usize) {
285            for col in (offset..((self.num_qubits as f64).sqrt() as usize)).step_by(2) {
286                let qubit1 = row * ((self.num_qubits as f64).sqrt() as usize) + col;
287                let qubit2 = qubit1 + 1;
288
289                if qubit2 < self.num_qubits {
290                    gates.push(QuantumGate {
291                        gate_type: "CZ".to_string(),
292                        qubits: vec![qubit1, qubit2],
293                        parameters: vec![],
294                    });
295                }
296            }
297        }
298
299        Ok(CircuitLayer { gates })
300    }
301
302    /// Generate Google quantum supremacy layer
303    fn generate_google_supremacy_layer(&mut self, layer_idx: usize) -> Result<CircuitLayer> {
304        // Similar to Sycamore but with specific gate rotations
305        self.generate_sycamore_layer(layer_idx)
306    }
307
308    /// Generate universal gate set layer
309    fn generate_universal_layer(&mut self, _layer_idx: usize) -> Result<CircuitLayer> {
310        let mut gates = Vec::new();
311
312        // Random single-qubit gates
313        for qubit in 0..self.num_qubits {
314            let gate_type = match self.rng.gen_range(0..3) {
315                0 => "H",
316                1 => "T",
317                _ => "S",
318            };
319
320            gates.push(QuantumGate {
321                gate_type: gate_type.to_string(),
322                qubits: vec![qubit],
323                parameters: vec![],
324            });
325        }
326
327        // Random CNOT gates
328        let num_cnots = self.rng.gen_range(1..=self.num_qubits / 2);
329        for _ in 0..num_cnots {
330            let control = self.rng.gen_range(0..self.num_qubits);
331            let target = self.rng.gen_range(0..self.num_qubits);
332
333            if control != target {
334                gates.push(QuantumGate {
335                    gate_type: "CNOT".to_string(),
336                    qubits: vec![control, target],
337                    parameters: vec![],
338                });
339            }
340        }
341
342        Ok(CircuitLayer { gates })
343    }
344
345    /// Generate IBM gate set layer
346    fn generate_ibm_layer(&mut self, _layer_idx: usize) -> Result<CircuitLayer> {
347        let mut gates = Vec::new();
348
349        // RZ and SX gates
350        for qubit in 0..self.num_qubits {
351            // Random RZ rotation
352            let angle = self.rng.gen::<f64>() * 2.0 * PI;
353            gates.push(QuantumGate {
354                gate_type: "RZ".to_string(),
355                qubits: vec![qubit],
356                parameters: vec![angle],
357            });
358
359            // SX gate with probability 0.5
360            if self.rng.gen::<bool>() {
361                gates.push(QuantumGate {
362                    gate_type: "SX".to_string(),
363                    qubits: vec![qubit],
364                    parameters: vec![],
365                });
366            }
367        }
368
369        Ok(CircuitLayer { gates })
370    }
371
372    /// Generate custom gate set layer
373    const fn generate_custom_layer(
374        &self,
375        _layer_idx: usize,
376        _gates: &[String],
377    ) -> Result<CircuitLayer> {
378        // Implement custom gate generation
379        Ok(CircuitLayer { gates: Vec::new() })
380    }
381
382    /// Generate measurement pattern
383    fn generate_measurement_pattern(&self) -> Vec<usize> {
384        // For now, measure all qubits in computational basis
385        (0..self.num_qubits).collect()
386    }
387
388    /// Compute ideal amplitudes using classical simulation
389    fn compute_ideal_amplitudes(
390        &self,
391        circuits: &[RandomCircuit],
392    ) -> Result<Vec<Array1<Complex64>>> {
393        let mut amplitudes = Vec::with_capacity(circuits.len());
394
395        for circuit in circuits {
396            let mut simulator = StateVectorSimulator::new();
397
398            // Apply circuit layers
399            for layer in &circuit.layers {
400                for gate in &layer.gates {
401                    self.apply_gate_to_simulator(&mut simulator, gate)?;
402                }
403            }
404
405            // Get final state (placeholder - would need proper simulator integration)
406            let dim = 1 << self.num_qubits;
407            let state = Array1::zeros(dim);
408            amplitudes.push(state);
409        }
410
411        Ok(amplitudes)
412    }
413
414    /// Apply gate to simulator
415    const fn apply_gate_to_simulator(
416        &self,
417        _simulator: &mut StateVectorSimulator,
418        _gate: &QuantumGate,
419    ) -> Result<()> {
420        // This would need proper integration with the state vector simulator
421        // For now, placeholder implementation
422        Ok(())
423    }
424
425    /// Simulate quantum sampling
426    fn simulate_quantum_sampling(
427        &mut self,
428        circuits: &[RandomCircuit],
429    ) -> Result<Vec<Vec<Vec<u8>>>> {
430        let mut all_samples = Vec::with_capacity(circuits.len());
431
432        for circuit in circuits {
433            let samples = self.sample_from_circuit(circuit)?;
434            all_samples.push(samples);
435        }
436
437        Ok(all_samples)
438    }
439
440    /// Sample from a single circuit
441    fn sample_from_circuit(&mut self, _circuit: &RandomCircuit) -> Result<Vec<Vec<u8>>> {
442        // For now, generate random samples (should use actual quantum sampling)
443        let mut samples = Vec::with_capacity(self.params.samples_per_circuit);
444
445        for _ in 0..self.params.samples_per_circuit {
446            let mut sample = Vec::with_capacity(self.num_qubits);
447            for _ in 0..self.num_qubits {
448                sample.push(u8::from(self.rng.gen::<bool>()));
449            }
450            samples.push(sample);
451        }
452
453        Ok(samples)
454    }
455
456    /// Compute Linear Cross-Entropy Benchmarking (XEB) fidelity
457    fn compute_linear_xeb(
458        &self,
459        ideal_amplitudes: &[Array1<Complex64>],
460        quantum_samples: &[Vec<Vec<u8>>],
461    ) -> Result<f64> {
462        let mut total_fidelity = 0.0;
463
464        for (amplitudes, samples) in ideal_amplitudes.iter().zip(quantum_samples.iter()) {
465            let circuit_fidelity = self.compute_circuit_linear_xeb(amplitudes, samples)?;
466            total_fidelity += circuit_fidelity;
467        }
468
469        Ok(total_fidelity / ideal_amplitudes.len() as f64)
470    }
471
472    /// Compute linear XEB for a single circuit
473    fn compute_circuit_linear_xeb(
474        &self,
475        amplitudes: &Array1<Complex64>,
476        samples: &[Vec<u8>],
477    ) -> Result<f64> {
478        let dim = amplitudes.len();
479        let uniform_prob = 1.0 / dim as f64;
480
481        let mut sum_probs = 0.0;
482
483        for sample in samples {
484            let bitstring_index = self.bitstring_to_index(sample);
485            if bitstring_index < dim {
486                let prob = amplitudes[bitstring_index].norm_sqr();
487                sum_probs += prob;
488            }
489        }
490
491        let mean_prob = sum_probs / samples.len() as f64;
492        let linear_xeb = (mean_prob - uniform_prob) / uniform_prob;
493
494        Ok(linear_xeb)
495    }
496
497    /// Convert bit string to state index
498    fn bitstring_to_index(&self, bitstring: &[u8]) -> usize {
499        let mut index = 0;
500        for (i, &bit) in bitstring.iter().enumerate() {
501            if bit == 1 {
502                index |= 1 << (self.num_qubits - 1 - i);
503            }
504        }
505        index
506    }
507
508    /// Analyze Porter-Thomas distribution
509    fn analyze_porter_thomas(
510        &self,
511        ideal_amplitudes: &[Array1<Complex64>],
512    ) -> Result<PorterThomasResult> {
513        // Collect all probability amplitudes
514        let mut all_probs = Vec::new();
515
516        for amplitudes in ideal_amplitudes {
517            for amplitude in amplitudes {
518                all_probs.push(amplitude.norm_sqr());
519            }
520        }
521
522        // Compute statistics
523        let mean = all_probs.iter().sum::<f64>() / all_probs.len() as f64;
524        let variance =
525            all_probs.iter().map(|p| (p - mean).powi(2)).sum::<f64>() / all_probs.len() as f64;
526
527        // Expected values for Porter-Thomas distribution
528        let expected_mean = 1.0 / f64::from(1 << self.num_qubits);
529        let expected_variance = expected_mean.powi(2);
530
531        // Chi-squared test
532        let bins = self.params.pt_bins;
533        let mut observed = vec![0; bins];
534        let mut expected = vec![0.0; bins];
535
536        // Create histogram
537        let max_prob = all_probs.iter().copied().fold(0.0f64, f64::max);
538        for &prob in &all_probs {
539            let bin = ((prob / max_prob) * (bins - 1) as f64) as usize;
540            observed[bin.min(bins - 1)] += 1;
541        }
542
543        // Expected counts for Porter-Thomas
544        let total_samples = all_probs.len() as f64;
545        for i in 0..bins {
546            let x = (i as f64 + 0.5) / bins as f64 * max_prob;
547            // Porter-Thomas: p(P) = N * exp(-N*P) where N = 2^n
548            let n = 1 << self.num_qubits;
549            expected[i] = total_samples * f64::from(n) * (f64::from(-n) * x).exp() / bins as f64;
550        }
551
552        // Chi-squared statistic
553        let mut chi_squared = 0.0;
554        let mut degrees_freedom: usize = 0;
555
556        for i in 0..bins {
557            if expected[i] > 5.0 {
558                // Only use bins with sufficient expected count
559                chi_squared += (f64::from(observed[i]) - expected[i]).powi(2) / expected[i];
560                degrees_freedom += 1;
561            }
562        }
563
564        degrees_freedom = degrees_freedom.saturating_sub(1);
565
566        // Approximate p-value (simplified)
567        let p_value = self.chi_squared_p_value(chi_squared, degrees_freedom);
568
569        // Kolmogorov-Smirnov test (simplified)
570        let ks_statistic = self.kolmogorov_smirnov_test(&all_probs, expected_mean);
571
572        Ok(PorterThomasResult {
573            chi_squared,
574            degrees_freedom,
575            p_value,
576            is_porter_thomas: p_value > self.params.significance_level,
577            ks_statistic,
578            mean,
579            variance,
580        })
581    }
582
583    /// Compute HOG (Heavy Output Generation) score
584    fn compute_hog_score(
585        &self,
586        ideal_amplitudes: &[Array1<Complex64>],
587        quantum_samples: &[Vec<Vec<u8>>],
588    ) -> Result<f64> {
589        let mut total_heavy_fraction = 0.0;
590
591        for (amplitudes, samples) in ideal_amplitudes.iter().zip(quantum_samples.iter()) {
592            let heavy_fraction = self.compute_circuit_hog_score(amplitudes, samples)?;
593            total_heavy_fraction += heavy_fraction;
594        }
595
596        Ok(total_heavy_fraction / ideal_amplitudes.len() as f64)
597    }
598
599    /// Compute HOG score for single circuit
600    fn compute_circuit_hog_score(
601        &self,
602        amplitudes: &Array1<Complex64>,
603        samples: &[Vec<u8>],
604    ) -> Result<f64> {
605        // Find median probability
606        let mut probs: Vec<f64> = amplitudes
607            .iter()
608            .map(scirs2_core::Complex::norm_sqr)
609            .collect();
610        probs.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
611        let median_prob = probs[probs.len() / 2];
612
613        // Count heavy outputs (above median)
614        let mut heavy_count = 0;
615
616        for sample in samples {
617            let index = self.bitstring_to_index(sample);
618            if index < amplitudes.len() {
619                let prob = amplitudes[index].norm_sqr();
620                if prob > median_prob {
621                    heavy_count += 1;
622                }
623            }
624        }
625
626        Ok(f64::from(heavy_count) / samples.len() as f64)
627    }
628
629    /// Compute cross-entropy difference
630    fn compute_cross_entropy_difference(
631        &self,
632        ideal_amplitudes: &[Array1<Complex64>],
633        quantum_samples: &[Vec<Vec<u8>>],
634    ) -> Result<f64> {
635        let mut total_difference = 0.0;
636
637        for (amplitudes, samples) in ideal_amplitudes.iter().zip(quantum_samples.iter()) {
638            let difference = self.compute_circuit_cross_entropy(amplitudes, samples)?;
639            total_difference += difference;
640        }
641
642        Ok(total_difference / ideal_amplitudes.len() as f64)
643    }
644
645    /// Compute cross-entropy for single circuit
646    fn compute_circuit_cross_entropy(
647        &self,
648        amplitudes: &Array1<Complex64>,
649        samples: &[Vec<u8>],
650    ) -> Result<f64> {
651        let dim = amplitudes.len();
652        let uniform_entropy = (dim as f64).ln();
653
654        let mut quantum_entropy = 0.0;
655        let mut sample_counts = HashMap::new();
656
657        // Count sample frequencies
658        for sample in samples {
659            *sample_counts.entry(sample.clone()).or_insert(0) += 1;
660        }
661
662        // Compute empirical entropy
663        for count in sample_counts.values() {
664            let prob = f64::from(*count) / samples.len() as f64;
665            if prob > 0.0 {
666                quantum_entropy -= prob * prob.ln();
667            }
668        }
669
670        Ok(uniform_entropy - quantum_entropy)
671    }
672
673    /// Compute statistical confidence
674    const fn compute_statistical_confidence(
675        &self,
676        _ideal_amplitudes: &[Array1<Complex64>],
677        _quantum_samples: &[Vec<Vec<u8>>],
678    ) -> Result<f64> {
679        // Placeholder implementation
680        Ok(0.95)
681    }
682
683    /// Estimate quantum execution time
684    fn estimate_quantum_time(&self) -> Result<f64> {
685        // Estimate based on gate count and typical gate times
686        let gates_per_circuit = self.params.circuit_depth * self.num_qubits;
687        let total_gates = gates_per_circuit * self.params.num_circuits;
688        let gate_time = 100e-9; // 100 ns per gate
689        let readout_time = 1e-6; // 1 μs readout
690
691        Ok((total_gates as f64).mul_add(gate_time, self.params.num_circuits as f64 * readout_time))
692    }
693
694    /// Estimate classical memory usage
695    const fn estimate_classical_memory(&self) -> usize {
696        let state_size = (1 << self.num_qubits) * std::mem::size_of::<Complex64>();
697        state_size * self.params.num_circuits
698    }
699
700    /// Simplified chi-squared p-value computation
701    fn chi_squared_p_value(&self, chi_squared: f64, degrees_freedom: usize) -> f64 {
702        // Very simplified approximation
703        if degrees_freedom == 0 {
704            return 1.0;
705        }
706
707        let expected = degrees_freedom as f64;
708        if chi_squared < expected {
709            0.95 // High p-value
710        } else if chi_squared < 2.0 * expected {
711            0.5 // Medium p-value
712        } else {
713            0.01 // Low p-value
714        }
715    }
716
717    /// Kolmogorov-Smirnov test statistic
718    fn kolmogorov_smirnov_test(&self, data: &[f64], expected_mean: f64) -> f64 {
719        // Simplified implementation
720        let n = data.len() as f64;
721        let mut sorted_data = data.to_vec();
722        sorted_data.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
723
724        let mut max_diff: f64 = 0.0;
725
726        for (i, &value) in sorted_data.iter().enumerate() {
727            let empirical_cdf = (i + 1) as f64 / n;
728            let theoretical_cdf = 1.0 - (-value / expected_mean).exp(); // Exponential CDF
729            let diff = (empirical_cdf - theoretical_cdf).abs();
730            max_diff = max_diff.max(diff);
731        }
732
733        max_diff
734    }
735}
736
737/// Random quantum circuit representation
738#[derive(Debug, Clone)]
739pub struct RandomCircuit {
740    pub num_qubits: usize,
741    pub layers: Vec<CircuitLayer>,
742    pub measurement_pattern: Vec<usize>,
743}
744
745/// Layer of gates in a circuit
746#[derive(Debug, Clone)]
747pub struct CircuitLayer {
748    pub gates: Vec<QuantumGate>,
749}
750
751/// Quantum gate representation
752#[derive(Debug, Clone)]
753pub struct QuantumGate {
754    pub gate_type: String,
755    pub qubits: Vec<usize>,
756    pub parameters: Vec<f64>,
757}
758
759/// Benchmark quantum supremacy verification
760pub fn benchmark_quantum_supremacy(num_qubits: usize) -> Result<CrossEntropyResult> {
761    let params = VerificationParams {
762        num_circuits: 10,
763        samples_per_circuit: 100,
764        circuit_depth: 10,
765        ..Default::default()
766    };
767
768    let mut verifier = QuantumSupremacyVerifier::new(num_qubits, params)?;
769    verifier.verify_quantum_supremacy()
770}
771
772/// Verify specific quantum supremacy claim
773pub fn verify_supremacy_claim(
774    num_qubits: usize,
775    circuit_depth: usize,
776    experimental_data: &[Vec<u8>],
777) -> Result<CrossEntropyResult> {
778    let params = VerificationParams {
779        num_circuits: 1,
780        samples_per_circuit: experimental_data.len(),
781        circuit_depth,
782        ..Default::default()
783    };
784
785    let mut verifier = QuantumSupremacyVerifier::new(num_qubits, params)?;
786
787    // This would require the actual circuit that produced the experimental data
788    // For now, return a placeholder result
789    Ok(CrossEntropyResult {
790        linear_xeb_fidelity: 0.0,
791        cross_entropy_difference: 0.0,
792        num_samples: experimental_data.len(),
793        confidence: 0.0,
794        porter_thomas: PorterThomasResult {
795            chi_squared: 0.0,
796            degrees_freedom: 0,
797            p_value: 0.0,
798            is_porter_thomas: false,
799            ks_statistic: 0.0,
800            mean: 0.0,
801            variance: 0.0,
802        },
803        hog_score: 0.0,
804        cost_comparison: CostComparison {
805            classical_time: 0.0,
806            quantum_time: 0.0,
807            classical_memory: 0,
808            speedup_factor: 0.0,
809            operation_count: 0,
810        },
811    })
812}
813
814#[cfg(test)]
815mod tests {
816    use super::*;
817
818    #[test]
819    fn test_verifier_creation() {
820        let params = VerificationParams::default();
821        let verifier = QuantumSupremacyVerifier::new(10, params);
822        assert!(verifier.is_ok());
823    }
824
825    #[test]
826    fn test_linear_xeb_calculation() {
827        let mut verifier = QuantumSupremacyVerifier::new(3, VerificationParams::default())
828            .expect("Failed to create verifier");
829
830        // Create dummy data
831        let amplitudes = Array1::from_vec(vec![
832            Complex64::new(0.5, 0.0),
833            Complex64::new(0.5, 0.0),
834            Complex64::new(0.5, 0.0),
835            Complex64::new(0.5, 0.0),
836            Complex64::new(0.0, 0.0),
837            Complex64::new(0.0, 0.0),
838            Complex64::new(0.0, 0.0),
839            Complex64::new(0.0, 0.0),
840        ]);
841
842        let samples = vec![vec![0, 0, 0], vec![0, 0, 1], vec![0, 1, 0], vec![0, 1, 1]];
843
844        let xeb = verifier
845            .compute_circuit_linear_xeb(&amplitudes, &samples)
846            .expect("Failed to compute linear XEB");
847        assert!(xeb >= 0.0);
848    }
849
850    #[test]
851    fn test_bitstring_conversion() {
852        let verifier = QuantumSupremacyVerifier::new(3, VerificationParams::default())
853            .expect("Failed to create verifier");
854
855        assert_eq!(verifier.bitstring_to_index(&[0, 0, 0]), 0);
856        assert_eq!(verifier.bitstring_to_index(&[0, 0, 1]), 1);
857        assert_eq!(verifier.bitstring_to_index(&[1, 1, 1]), 7);
858    }
859
860    #[test]
861    fn test_porter_thomas_analysis() {
862        let verifier = QuantumSupremacyVerifier::new(2, VerificationParams::default())
863            .expect("Failed to create verifier");
864
865        // Create uniform random amplitudes
866        let amplitudes = vec![Array1::from_vec(vec![
867            Complex64::new(0.5, 0.0),
868            Complex64::new(0.5, 0.0),
869            Complex64::new(0.5, 0.0),
870            Complex64::new(0.5, 0.0),
871        ])];
872
873        let result = verifier
874            .analyze_porter_thomas(&amplitudes)
875            .expect("Failed to analyze Porter-Thomas distribution");
876        assert!(result.chi_squared >= 0.0);
877        assert!(result.p_value >= 0.0 && result.p_value <= 1.0);
878    }
879}