quantrs2_sim/
quantum_reservoir_computing_enhanced.rs

1//! Enhanced Quantum Reservoir Computing Framework - Ultrathink Mode Implementation
2//!
3//! This module provides a comprehensive implementation of quantum reservoir computing (QRC),
4//! a cutting-edge computational paradigm that leverages the high-dimensional, nonlinear
5//! dynamics of quantum systems for temporal information processing and machine learning.
6//! This ultrathink mode implementation includes advanced learning algorithms, sophisticated
7//! reservoir topologies, real-time adaptation, and comprehensive analysis tools.
8//!
9//! ## Core Features
10//! - **Advanced Quantum Reservoirs**: Multiple sophisticated architectures including scale-free,
11//!   hierarchical, modular, and adaptive topologies
12//! - **Comprehensive Learning Algorithms**: Ridge regression, LASSO, Elastic Net, RLS, Kalman
13//!   filtering, neural network readouts, and meta-learning approaches
14//! - **Time Series Modeling**: ARIMA-like capabilities, nonlinear autoregressive models,
15//!   memory kernels, and temporal correlation analysis
16//! - **Real-time Adaptation**: Online learning algorithms with forgetting factors, plasticity
17//!   mechanisms, and adaptive reservoir modification
18//! - **Memory Analysis Tools**: Quantum memory capacity estimation, nonlinear memory measures,
19//!   temporal information processing capacity, and correlation analysis
20//! - **Hardware-aware Optimization**: Device-specific compilation, noise-aware training,
21//!   error mitigation, and platform-specific optimizations
22//! - **Comprehensive Benchmarking**: Multiple datasets, statistical significance testing,
23//!   comparative analysis, and performance validation frameworks
24//! - **Advanced Quantum Dynamics**: Unitary evolution, open system dynamics, NISQ simulation,
25//!   adiabatic processes, and quantum error correction integration
26
27use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
28use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
29use scirs2_core::random::{thread_rng, Rng};
30use scirs2_core::Complex64;
31use serde::{Deserialize, Serialize};
32use std::collections::{HashMap, VecDeque};
33use std::f64::consts::PI;
34use std::sync::{Arc, Mutex};
35
36use crate::circuit_interfaces::{
37    CircuitInterface, InterfaceCircuit, InterfaceGate, InterfaceGateType,
38};
39use crate::error::Result;
40use crate::scirs2_integration::SciRS2Backend;
41use crate::statevector::StateVectorSimulator;
42use scirs2_core::random::prelude::*;
43
44/// Advanced quantum reservoir architecture types
45#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
46pub enum QuantumReservoirArchitecture {
47    /// Random quantum circuit with tunable connectivity
48    RandomCircuit,
49    /// Spin chain with configurable interactions
50    SpinChain,
51    /// Transverse field Ising model with variable field strength
52    TransverseFieldIsing,
53    /// Small-world network with rewiring probability
54    SmallWorld,
55    /// Fully connected all-to-all interactions
56    FullyConnected,
57    /// Scale-free network following power-law degree distribution
58    ScaleFree,
59    /// Hierarchical modular architecture with multiple levels
60    HierarchicalModular,
61    /// Adaptive topology that evolves during computation
62    AdaptiveTopology,
63    /// Quantum cellular automaton structure
64    QuantumCellularAutomaton,
65    /// Ring topology with long-range connections
66    Ring,
67    /// Grid/lattice topology with configurable dimensions
68    Grid,
69    /// Tree topology with branching factor
70    Tree,
71    /// Hypergraph topology with higher-order interactions
72    Hypergraph,
73    /// Tensor network inspired architecture
74    TensorNetwork,
75    /// Custom user-defined architecture
76    Custom,
77}
78
79/// Advanced reservoir dynamics types
80#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
81pub enum ReservoirDynamics {
82    /// Unitary evolution with perfect coherence
83    Unitary,
84    /// Open system dynamics with Lindblad operators
85    Open,
86    /// Noisy intermediate-scale quantum (NISQ) dynamics
87    NISQ,
88    /// Adiabatic quantum evolution
89    Adiabatic,
90    /// Floquet dynamics with periodic driving
91    Floquet,
92    /// Quantum walk dynamics
93    QuantumWalk,
94    /// Continuous-time quantum dynamics
95    ContinuousTime,
96    /// Digital quantum simulation with Trotter decomposition
97    DigitalQuantum,
98    /// Variational quantum dynamics
99    Variational,
100    /// Hamiltonian learning dynamics
101    HamiltonianLearning,
102    /// Many-body localized dynamics
103    ManyBodyLocalized,
104    /// Quantum chaotic dynamics
105    QuantumChaotic,
106}
107
108/// Advanced input encoding methods for temporal data
109#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
110pub enum InputEncoding {
111    /// Amplitude encoding with normalization
112    Amplitude,
113    /// Phase encoding with full 2π range
114    Phase,
115    /// Basis state encoding with binary representation
116    BasisState,
117    /// Coherent state encoding with displacement
118    Coherent,
119    /// Squeezed state encoding with squeezing parameter
120    Squeezed,
121    /// Angle encoding with rotation gates
122    Angle,
123    /// IQP encoding with diagonal unitaries
124    IQP,
125    /// Data re-uploading with multiple layers
126    DataReUploading,
127    /// Quantum feature map encoding
128    QuantumFeatureMap,
129    /// Variational encoding with trainable parameters
130    VariationalEncoding,
131    /// Temporal encoding with time-dependent parameters
132    TemporalEncoding,
133    /// Fourier encoding for frequency domain
134    FourierEncoding,
135    /// Wavelet encoding for multi-resolution
136    WaveletEncoding,
137    /// Haar random encoding
138    HaarRandom,
139    /// Graph encoding for structured data
140    GraphEncoding,
141}
142
143/// Advanced output measurement strategies
144#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
145pub enum OutputMeasurement {
146    /// Pauli expectation values (X, Y, Z)
147    PauliExpectation,
148    /// Computational basis probability measurements
149    Probability,
150    /// Two-qubit correlation functions
151    Correlations,
152    /// Entanglement entropy and concurrence
153    Entanglement,
154    /// State fidelity with reference states
155    Fidelity,
156    /// Quantum Fisher information
157    QuantumFisherInformation,
158    /// Variance of observables
159    Variance,
160    /// Higher-order moments and cumulants
161    HigherOrderMoments,
162    /// Spectral properties and eigenvalues
163    SpectralProperties,
164    /// Quantum coherence measures
165    QuantumCoherence,
166    /// Purity and mixedness measures
167    Purity,
168    /// Quantum mutual information
169    QuantumMutualInformation,
170    /// Process tomography observables
171    ProcessTomography,
172    /// Temporal correlations
173    TemporalCorrelations,
174    /// Non-linear readout functions
175    NonLinearReadout,
176}
177
178/// Advanced learning algorithm types
179#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
180pub enum LearningAlgorithm {
181    /// Ridge regression with L2 regularization
182    Ridge,
183    /// LASSO regression with L1 regularization
184    LASSO,
185    /// Elastic Net combining L1 and L2 regularization
186    ElasticNet,
187    /// Recursive Least Squares with forgetting factor
188    RecursiveLeastSquares,
189    /// Kalman filter for adaptive learning
190    KalmanFilter,
191    /// Extended Kalman filter for nonlinear systems
192    ExtendedKalmanFilter,
193    /// Neural network readout layer
194    NeuralNetwork,
195    /// Support Vector Regression
196    SupportVectorRegression,
197    /// Gaussian Process regression
198    GaussianProcess,
199    /// Random Forest regression
200    RandomForest,
201    /// Gradient boosting regression
202    GradientBoosting,
203    /// Online gradient descent
204    OnlineGradientDescent,
205    /// Adam optimizer
206    Adam,
207    /// Meta-learning approach
208    MetaLearning,
209}
210
211/// Neural network activation functions
212#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
213pub enum ActivationFunction {
214    /// Rectified Linear Unit
215    ReLU,
216    /// Leaky `ReLU`
217    LeakyReLU,
218    /// Exponential Linear Unit
219    ELU,
220    /// Sigmoid activation
221    Sigmoid,
222    /// Hyperbolic tangent
223    Tanh,
224    /// Swish activation
225    Swish,
226    /// GELU activation
227    GELU,
228    /// Linear activation
229    Linear,
230}
231
232/// Memory kernel types for time series modeling
233#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
234pub enum MemoryKernel {
235    /// Exponential decay kernel
236    Exponential,
237    /// Power law kernel
238    PowerLaw,
239    /// Gaussian kernel
240    Gaussian,
241    /// Polynomial kernel
242    Polynomial,
243    /// Rational kernel
244    Rational,
245    /// Sinusoidal kernel
246    Sinusoidal,
247    /// Custom kernel
248    Custom,
249}
250
251/// Enhanced quantum reservoir computing configuration
252#[derive(Debug, Clone, Serialize, Deserialize)]
253pub struct QuantumReservoirConfig {
254    /// Number of qubits in the reservoir
255    pub num_qubits: usize,
256    /// Reservoir architecture type
257    pub architecture: QuantumReservoirArchitecture,
258    /// Dynamics evolution type
259    pub dynamics: ReservoirDynamics,
260    /// Input encoding method
261    pub input_encoding: InputEncoding,
262    /// Output measurement strategy
263    pub output_measurement: OutputMeasurement,
264    /// Advanced learning algorithm configuration
265    pub learning_config: AdvancedLearningConfig,
266    /// Time series modeling configuration
267    pub time_series_config: TimeSeriesConfig,
268    /// Memory analysis configuration
269    pub memory_config: MemoryAnalysisConfig,
270    /// Time step for evolution
271    pub time_step: f64,
272    /// Number of evolution steps per input
273    pub evolution_steps: usize,
274    /// Reservoir coupling strength
275    pub coupling_strength: f64,
276    /// Noise level (for NISQ dynamics)
277    pub noise_level: f64,
278    /// Memory capacity (time steps to remember)
279    pub memory_capacity: usize,
280    /// Enable real-time adaptation
281    pub adaptive_learning: bool,
282    /// Learning rate for adaptation
283    pub learning_rate: f64,
284    /// Washout period (initial time steps to ignore)
285    pub washout_period: usize,
286    /// Random seed for reproducibility
287    pub random_seed: Option<u64>,
288    /// Enable quantum error correction
289    pub enable_qec: bool,
290    /// Precision for calculations
291    pub precision: f64,
292}
293
294impl Default for QuantumReservoirConfig {
295    fn default() -> Self {
296        Self {
297            num_qubits: 8,
298            architecture: QuantumReservoirArchitecture::RandomCircuit,
299            dynamics: ReservoirDynamics::Unitary,
300            input_encoding: InputEncoding::Amplitude,
301            output_measurement: OutputMeasurement::PauliExpectation,
302            learning_config: AdvancedLearningConfig::default(),
303            time_series_config: TimeSeriesConfig::default(),
304            memory_config: MemoryAnalysisConfig::default(),
305            time_step: 0.1,
306            evolution_steps: 10,
307            coupling_strength: 1.0,
308            noise_level: 0.01,
309            memory_capacity: 100,
310            adaptive_learning: true,
311            learning_rate: 0.01,
312            washout_period: 50,
313            random_seed: None,
314            enable_qec: false,
315            precision: 1e-8,
316        }
317    }
318}
319
320/// Advanced learning algorithm configuration
321#[derive(Debug, Clone, Serialize, Deserialize)]
322pub struct AdvancedLearningConfig {
323    /// Primary learning algorithm
324    pub algorithm: LearningAlgorithm,
325    /// Regularization parameter (lambda)
326    pub regularization: f64,
327    /// L1 ratio for Elastic Net (0.0 = Ridge, 1.0 = LASSO)
328    pub l1_ratio: f64,
329    /// Forgetting factor for RLS
330    pub forgetting_factor: f64,
331    /// Process noise for Kalman filter
332    pub process_noise: f64,
333    /// Measurement noise for Kalman filter
334    pub measurement_noise: f64,
335    /// Neural network architecture
336    pub nn_architecture: Vec<usize>,
337    /// Neural network activation function
338    pub nn_activation: ActivationFunction,
339    /// Number of training epochs
340    pub epochs: usize,
341    /// Batch size for training
342    pub batch_size: usize,
343    /// Early stopping patience
344    pub early_stopping_patience: usize,
345    /// Cross-validation folds
346    pub cv_folds: usize,
347    /// Enable ensemble methods
348    pub enable_ensemble: bool,
349    /// Number of ensemble members
350    pub ensemble_size: usize,
351}
352
353impl Default for AdvancedLearningConfig {
354    fn default() -> Self {
355        Self {
356            algorithm: LearningAlgorithm::Ridge,
357            regularization: 1e-6,
358            l1_ratio: 0.5,
359            forgetting_factor: 0.99,
360            process_noise: 1e-4,
361            measurement_noise: 1e-3,
362            nn_architecture: vec![64, 32, 16],
363            nn_activation: ActivationFunction::ReLU,
364            epochs: 100,
365            batch_size: 32,
366            early_stopping_patience: 10,
367            cv_folds: 5,
368            enable_ensemble: false,
369            ensemble_size: 5,
370        }
371    }
372}
373
374/// Time series modeling configuration
375#[derive(Debug, Clone, Serialize, Deserialize)]
376pub struct TimeSeriesConfig {
377    /// Enable ARIMA-like modeling
378    pub enable_arima: bool,
379    /// AR order (autoregressive)
380    pub ar_order: usize,
381    /// MA order (moving average)
382    pub ma_order: usize,
383    /// Differencing order
384    pub diff_order: usize,
385    /// Enable nonlinear autoregressive model
386    pub enable_nar: bool,
387    /// NAR model order
388    pub nar_order: usize,
389    /// Memory kernel type
390    pub memory_kernel: MemoryKernel,
391    /// Kernel parameters
392    pub kernel_params: Vec<f64>,
393    /// Enable seasonal decomposition
394    pub enable_seasonal: bool,
395    /// Seasonal period
396    pub seasonal_period: usize,
397    /// Enable change point detection
398    pub enable_changepoint: bool,
399    /// Anomaly detection threshold
400    pub anomaly_threshold: f64,
401}
402
403impl Default for TimeSeriesConfig {
404    fn default() -> Self {
405        Self {
406            enable_arima: true,
407            ar_order: 2,
408            ma_order: 1,
409            diff_order: 1,
410            enable_nar: true,
411            nar_order: 3,
412            memory_kernel: MemoryKernel::Exponential,
413            kernel_params: vec![0.9, 0.1],
414            enable_seasonal: false,
415            seasonal_period: 12,
416            enable_changepoint: false,
417            anomaly_threshold: 2.0,
418        }
419    }
420}
421
422/// Memory analysis configuration
423#[derive(Debug, Clone, Serialize, Deserialize)]
424pub struct MemoryAnalysisConfig {
425    /// Enable memory capacity estimation
426    pub enable_capacity_estimation: bool,
427    /// Memory capacity test tasks
428    pub capacity_tasks: Vec<MemoryTask>,
429    /// Enable nonlinear memory analysis
430    pub enable_nonlinear: bool,
431    /// Nonlinearity test orders
432    pub nonlinearity_orders: Vec<usize>,
433    /// Enable temporal correlation analysis
434    pub enable_temporal_correlation: bool,
435    /// Correlation lag range
436    pub correlation_lags: Vec<usize>,
437    /// Information processing capacity
438    pub enable_ipc: bool,
439    /// IPC test functions
440    pub ipc_functions: Vec<IPCFunction>,
441    /// Enable entropy analysis
442    pub enable_entropy: bool,
443}
444
445impl Default for MemoryAnalysisConfig {
446    fn default() -> Self {
447        Self {
448            enable_capacity_estimation: true,
449            capacity_tasks: vec![
450                MemoryTask::DelayLine,
451                MemoryTask::TemporalXOR,
452                MemoryTask::Parity,
453            ],
454            enable_nonlinear: true,
455            nonlinearity_orders: vec![2, 3, 4],
456            enable_temporal_correlation: true,
457            correlation_lags: (1..=20).collect(),
458            enable_ipc: true,
459            ipc_functions: vec![
460                IPCFunction::Linear,
461                IPCFunction::Quadratic,
462                IPCFunction::Cubic,
463            ],
464            enable_entropy: true,
465        }
466    }
467}
468
469/// Memory capacity test tasks
470#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
471pub enum MemoryTask {
472    /// Delay line memory
473    DelayLine,
474    /// Temporal XOR task
475    TemporalXOR,
476    /// Parity check task
477    Parity,
478    /// Sequence prediction
479    SequencePrediction,
480    /// Pattern completion
481    PatternCompletion,
482    /// Temporal integration
483    TemporalIntegration,
484}
485
486/// Information processing capacity functions
487#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
488pub enum IPCFunction {
489    /// Linear function
490    Linear,
491    /// Quadratic function
492    Quadratic,
493    /// Cubic function
494    Cubic,
495    /// Sine function
496    Sine,
497    /// Product function
498    Product,
499    /// XOR function
500    XOR,
501}
502
503/// Enhanced quantum reservoir state
504#[derive(Debug, Clone)]
505pub struct QuantumReservoirState {
506    /// Current quantum state vector
507    pub state_vector: Array1<Complex64>,
508    /// Evolution history buffer
509    pub state_history: VecDeque<Array1<Complex64>>,
510    /// Observable measurements cache
511    pub observables: HashMap<String, f64>,
512    /// Two-qubit correlation matrix
513    pub correlations: Array2<f64>,
514    /// Higher-order correlations
515    pub higher_order_correlations: HashMap<String, f64>,
516    /// Entanglement measures
517    pub entanglement_measures: HashMap<String, f64>,
518    /// Memory capacity metrics
519    pub memory_metrics: MemoryMetrics,
520    /// Time index counter
521    pub time_index: usize,
522    /// Last update timestamp
523    pub last_update: f64,
524    /// Reservoir activity level
525    pub activity_level: f64,
526    /// Performance tracking
527    pub performance_history: VecDeque<f64>,
528}
529
530/// Memory analysis metrics
531#[derive(Debug, Clone, Default, Serialize, Deserialize)]
532pub struct MemoryMetrics {
533    /// Linear memory capacity
534    pub linear_capacity: f64,
535    /// Nonlinear memory capacity
536    pub nonlinear_capacity: f64,
537    /// Total memory capacity
538    pub total_capacity: f64,
539    /// Information processing capacity
540    pub processing_capacity: f64,
541    /// Temporal correlation length
542    pub correlation_length: f64,
543    /// Memory decay rate
544    pub decay_rate: f64,
545    /// Memory efficiency
546    pub efficiency: f64,
547}
548
549impl QuantumReservoirState {
550    /// Create new enhanced reservoir state
551    #[must_use]
552    pub fn new(num_qubits: usize, memory_capacity: usize) -> Self {
553        let state_size = 1 << num_qubits;
554        let mut state_vector = Array1::zeros(state_size);
555        state_vector[0] = Complex64::new(1.0, 0.0); // Start in |0...0⟩
556
557        Self {
558            state_vector,
559            state_history: VecDeque::with_capacity(memory_capacity),
560            observables: HashMap::new(),
561            correlations: Array2::zeros((num_qubits, num_qubits)),
562            higher_order_correlations: HashMap::new(),
563            entanglement_measures: HashMap::new(),
564            memory_metrics: MemoryMetrics::default(),
565            time_index: 0,
566            last_update: 0.0,
567            activity_level: 0.0,
568            performance_history: VecDeque::with_capacity(1000),
569        }
570    }
571
572    /// Update state and maintain comprehensive history
573    pub fn update_state(&mut self, new_state: Array1<Complex64>, timestamp: f64) {
574        // Store previous state
575        self.state_history.push_back(self.state_vector.clone());
576        if self.state_history.len() > self.state_history.capacity() {
577            self.state_history.pop_front();
578        }
579
580        // Update current state
581        self.state_vector = new_state;
582        self.time_index += 1;
583        self.last_update = timestamp;
584
585        // Update activity level
586        self.update_activity_level();
587    }
588
589    /// Update reservoir activity level
590    fn update_activity_level(&mut self) {
591        let activity = self
592            .state_vector
593            .iter()
594            .map(scirs2_core::Complex::norm_sqr)
595            .sum::<f64>()
596            / self.state_vector.len() as f64;
597
598        // Exponential moving average
599        let alpha = 0.1;
600        self.activity_level = alpha * activity + (1.0 - alpha) * self.activity_level;
601    }
602
603    /// Calculate memory decay
604    #[must_use]
605    pub fn calculate_memory_decay(&self) -> f64 {
606        if self.state_history.len() < 2 {
607            return 0.0;
608        }
609
610        let mut total_decay = 0.0;
611        let current_state = &self.state_vector;
612
613        for (i, past_state) in self.state_history.iter().enumerate() {
614            let fidelity = self.calculate_fidelity(current_state, past_state);
615            let time_diff = (self.state_history.len() - i) as f64;
616            total_decay += fidelity * (-time_diff * 0.1).exp();
617        }
618
619        total_decay / self.state_history.len() as f64
620    }
621
622    /// Calculate fidelity between two states
623    fn calculate_fidelity(&self, state1: &Array1<Complex64>, state2: &Array1<Complex64>) -> f64 {
624        let overlap = state1
625            .iter()
626            .zip(state2.iter())
627            .map(|(a, b)| a.conj() * b)
628            .sum::<Complex64>();
629        overlap.norm_sqr()
630    }
631}
632
633/// Enhanced training data for reservoir computing
634#[derive(Debug, Clone)]
635pub struct ReservoirTrainingData {
636    /// Input time series
637    pub inputs: Vec<Array1<f64>>,
638    /// Target outputs
639    pub targets: Vec<Array1<f64>>,
640    /// Time stamps
641    pub timestamps: Vec<f64>,
642    /// Additional features
643    pub features: Option<Vec<Array1<f64>>>,
644    /// Data labels for classification
645    pub labels: Option<Vec<usize>>,
646    /// Sequence lengths for variable-length sequences
647    pub sequence_lengths: Option<Vec<usize>>,
648    /// Missing data indicators
649    pub missing_mask: Option<Vec<Array1<bool>>>,
650    /// Data weights for importance sampling
651    pub sample_weights: Option<Vec<f64>>,
652    /// Metadata for each sample
653    pub metadata: Option<Vec<HashMap<String, String>>>,
654}
655
656impl ReservoirTrainingData {
657    /// Create new training data
658    #[must_use]
659    pub const fn new(
660        inputs: Vec<Array1<f64>>,
661        targets: Vec<Array1<f64>>,
662        timestamps: Vec<f64>,
663    ) -> Self {
664        Self {
665            inputs,
666            targets,
667            timestamps,
668            features: None,
669            labels: None,
670            sequence_lengths: None,
671            missing_mask: None,
672            sample_weights: None,
673            metadata: None,
674        }
675    }
676
677    /// Add features to training data
678    #[must_use]
679    pub fn with_features(mut self, features: Vec<Array1<f64>>) -> Self {
680        self.features = Some(features);
681        self
682    }
683
684    /// Add labels for classification
685    #[must_use]
686    pub fn with_labels(mut self, labels: Vec<usize>) -> Self {
687        self.labels = Some(labels);
688        self
689    }
690
691    /// Add sample weights
692    #[must_use]
693    pub fn with_weights(mut self, weights: Vec<f64>) -> Self {
694        self.sample_weights = Some(weights);
695        self
696    }
697
698    /// Get data length
699    #[must_use]
700    pub fn len(&self) -> usize {
701        self.inputs.len()
702    }
703
704    /// Check if data is empty
705    #[must_use]
706    pub fn is_empty(&self) -> bool {
707        self.inputs.is_empty()
708    }
709
710    /// Split data into train/test sets
711    #[must_use]
712    pub fn train_test_split(&self, test_ratio: f64) -> (Self, Self) {
713        let test_size = (self.len() as f64 * test_ratio) as usize;
714        let train_size = self.len() - test_size;
715
716        let train_data = Self {
717            inputs: self.inputs[..train_size].to_vec(),
718            targets: self.targets[..train_size].to_vec(),
719            timestamps: self.timestamps[..train_size].to_vec(),
720            features: self.features.as_ref().map(|f| f[..train_size].to_vec()),
721            labels: self.labels.as_ref().map(|l| l[..train_size].to_vec()),
722            sequence_lengths: self
723                .sequence_lengths
724                .as_ref()
725                .map(|s| s[..train_size].to_vec()),
726            missing_mask: self.missing_mask.as_ref().map(|m| m[..train_size].to_vec()),
727            sample_weights: self
728                .sample_weights
729                .as_ref()
730                .map(|w| w[..train_size].to_vec()),
731            metadata: self.metadata.as_ref().map(|m| m[..train_size].to_vec()),
732        };
733
734        let test_data = Self {
735            inputs: self.inputs[train_size..].to_vec(),
736            targets: self.targets[train_size..].to_vec(),
737            timestamps: self.timestamps[train_size..].to_vec(),
738            features: self.features.as_ref().map(|f| f[train_size..].to_vec()),
739            labels: self.labels.as_ref().map(|l| l[train_size..].to_vec()),
740            sequence_lengths: self
741                .sequence_lengths
742                .as_ref()
743                .map(|s| s[train_size..].to_vec()),
744            missing_mask: self.missing_mask.as_ref().map(|m| m[train_size..].to_vec()),
745            sample_weights: self
746                .sample_weights
747                .as_ref()
748                .map(|w| w[train_size..].to_vec()),
749            metadata: self.metadata.as_ref().map(|m| m[train_size..].to_vec()),
750        };
751
752        (train_data, test_data)
753    }
754}
755
756/// Enhanced training example for reservoir learning
757#[derive(Debug, Clone)]
758pub struct TrainingExample {
759    /// Input data
760    pub input: Array1<f64>,
761    /// Reservoir state after processing
762    pub reservoir_state: Array1<f64>,
763    /// Extracted features
764    pub features: Array1<f64>,
765    /// Target output
766    pub target: Array1<f64>,
767    /// Predicted output
768    pub prediction: Array1<f64>,
769    /// Prediction error
770    pub error: f64,
771    /// Confidence score
772    pub confidence: f64,
773    /// Processing timestamp
774    pub timestamp: f64,
775    /// Additional metadata
776    pub metadata: HashMap<String, f64>,
777}
778
779/// Enhanced performance metrics for reservoir computing
780#[derive(Debug, Clone, Default, Serialize, Deserialize)]
781pub struct ReservoirMetrics {
782    /// Total training examples processed
783    pub training_examples: usize,
784    /// Current prediction accuracy
785    pub prediction_accuracy: f64,
786    /// Memory capacity estimate
787    pub memory_capacity: f64,
788    /// Nonlinear memory capacity
789    pub nonlinear_memory_capacity: f64,
790    /// Information processing capacity
791    pub processing_capacity: f64,
792    /// Generalization error
793    pub generalization_error: f64,
794    /// Echo state property indicator
795    pub echo_state_property: f64,
796    /// Average processing time per input
797    pub avg_processing_time_ms: f64,
798    /// Quantum resource utilization
799    pub quantum_resource_usage: f64,
800    /// Temporal correlation length
801    pub temporal_correlation_length: f64,
802    /// Reservoir efficiency
803    pub reservoir_efficiency: f64,
804    /// Adaptation rate
805    pub adaptation_rate: f64,
806    /// Plasticity level
807    pub plasticity_level: f64,
808    /// Hardware utilization
809    pub hardware_utilization: f64,
810    /// Error mitigation overhead
811    pub error_mitigation_overhead: f64,
812    /// Quantum advantage metric
813    pub quantum_advantage: f64,
814    /// Computational complexity
815    pub computational_complexity: f64,
816}
817
818/// Enhanced quantum reservoir computing system
819pub struct QuantumReservoirComputerEnhanced {
820    /// Configuration
821    config: QuantumReservoirConfig,
822    /// Current reservoir state
823    reservoir_state: QuantumReservoirState,
824    /// Reservoir circuit
825    reservoir_circuit: InterfaceCircuit,
826    /// Input coupling circuit
827    input_coupling_circuit: InterfaceCircuit,
828    /// Output weights (trainable)
829    output_weights: Array2<f64>,
830    /// Time series predictor
831    time_series_predictor: Option<TimeSeriesPredictor>,
832    /// Memory analyzer
833    memory_analyzer: MemoryAnalyzer,
834    /// State vector simulator
835    simulator: StateVectorSimulator,
836    /// Circuit interface
837    circuit_interface: CircuitInterface,
838    /// Performance metrics
839    metrics: ReservoirMetrics,
840    /// Training history
841    training_history: VecDeque<TrainingExample>,
842    /// `SciRS2` backend for advanced computations
843    backend: Option<SciRS2Backend>,
844    /// Random number generator
845    rng: Arc<Mutex<scirs2_core::random::CoreRandom>>,
846}
847
848/// Time series prediction models
849#[derive(Debug, Clone, Serialize, Deserialize)]
850pub struct TimeSeriesPredictor {
851    /// ARIMA model parameters
852    pub arima_params: ARIMAParams,
853    /// NAR model state
854    pub nar_state: NARState,
855    /// Memory kernel weights
856    pub kernel_weights: Array1<f64>,
857    /// Trend model
858    pub trend_model: TrendModel,
859}
860
861/// ARIMA model parameters
862#[derive(Debug, Clone, Serialize, Deserialize)]
863pub struct ARIMAParams {
864    /// AR coefficients
865    pub ar_coeffs: Array1<f64>,
866    /// MA coefficients
867    pub ma_coeffs: Array1<f64>,
868    /// Differencing order
869    pub diff_order: usize,
870    /// Model residuals
871    pub residuals: VecDeque<f64>,
872    /// Model variance
873    pub variance: f64,
874}
875
876/// Nonlinear autoregressive model state
877#[derive(Debug, Clone, Serialize, Deserialize)]
878pub struct NARState {
879    /// Model order
880    pub order: usize,
881    /// Nonlinear coefficients
882    pub coeffs: Array2<f64>,
883    /// Past values buffer
884    pub history: VecDeque<f64>,
885    /// Activation function
886    pub activation: ActivationFunction,
887}
888
889/// Trend model
890#[derive(Debug, Clone, Serialize, Deserialize)]
891pub struct TrendModel {
892    /// Model parameters
893    pub params: Vec<f64>,
894    /// Trend strength
895    pub strength: f64,
896    /// Trend direction
897    pub direction: f64,
898}
899
900/// Memory analyzer for capacity estimation
901#[derive(Debug)]
902pub struct MemoryAnalyzer {
903    /// Analysis configuration
904    pub config: MemoryAnalysisConfig,
905    /// Current capacity estimates
906    pub capacity_estimates: HashMap<String, f64>,
907    /// Nonlinearity measures
908    pub nonlinearity_measures: HashMap<usize, f64>,
909    /// Temporal correlations
910    pub temporal_correlations: Array2<f64>,
911    /// Information processing metrics
912    pub ipc_metrics: HashMap<String, f64>,
913}
914
915impl QuantumReservoirComputerEnhanced {
916    /// Create new enhanced quantum reservoir computer
917    pub fn new(config: QuantumReservoirConfig) -> Result<Self> {
918        let circuit_interface = CircuitInterface::new(Default::default())?;
919        let simulator = StateVectorSimulator::new();
920
921        let reservoir_state = QuantumReservoirState::new(config.num_qubits, config.memory_capacity);
922
923        // Generate reservoir circuit based on architecture
924        let reservoir_circuit = Self::generate_reservoir_circuit(&config)?;
925
926        // Generate input coupling circuit
927        let input_coupling_circuit = Self::generate_input_coupling_circuit(&config)?;
928
929        // Initialize output weights randomly
930        let output_size = Self::calculate_output_size(&config);
931        let feature_size = Self::calculate_feature_size(&config);
932        let mut output_weights = Array2::zeros((output_size, feature_size));
933
934        // Xavier initialization
935        let scale = (2.0 / (output_size + feature_size) as f64).sqrt();
936        for elem in &mut output_weights {
937            *elem = (fastrand::f64() - 0.5) * 2.0 * scale;
938        }
939
940        // Initialize time series predictor if enabled
941        let time_series_predictor =
942            if config.time_series_config.enable_arima || config.time_series_config.enable_nar {
943                Some(TimeSeriesPredictor::new(&config.time_series_config))
944            } else {
945                None
946            };
947
948        // Initialize memory analyzer
949        let memory_analyzer = MemoryAnalyzer::new(config.memory_config.clone());
950
951        Ok(Self {
952            config,
953            reservoir_state,
954            reservoir_circuit,
955            input_coupling_circuit,
956            output_weights,
957            time_series_predictor,
958            memory_analyzer,
959            simulator,
960            circuit_interface,
961            metrics: ReservoirMetrics::default(),
962            training_history: VecDeque::with_capacity(10_000),
963            backend: None,
964            rng: Arc::new(Mutex::new(thread_rng())),
965        })
966    }
967
968    /// Generate reservoir circuit based on architecture
969    fn generate_reservoir_circuit(config: &QuantumReservoirConfig) -> Result<InterfaceCircuit> {
970        let mut circuit = InterfaceCircuit::new(config.num_qubits, 0);
971
972        match config.architecture {
973            QuantumReservoirArchitecture::RandomCircuit => {
974                Self::generate_random_circuit(&mut circuit, config)?;
975            }
976            QuantumReservoirArchitecture::SpinChain => {
977                Self::generate_spin_chain_circuit(&mut circuit, config)?;
978            }
979            QuantumReservoirArchitecture::TransverseFieldIsing => {
980                Self::generate_tfim_circuit(&mut circuit, config)?;
981            }
982            QuantumReservoirArchitecture::SmallWorld => {
983                Self::generate_small_world_circuit(&mut circuit, config)?;
984            }
985            QuantumReservoirArchitecture::FullyConnected => {
986                Self::generate_fully_connected_circuit(&mut circuit, config)?;
987            }
988            QuantumReservoirArchitecture::ScaleFree => {
989                Self::generate_scale_free_circuit(&mut circuit, config)?;
990            }
991            QuantumReservoirArchitecture::HierarchicalModular => {
992                Self::generate_hierarchical_circuit(&mut circuit, config)?;
993            }
994            QuantumReservoirArchitecture::Ring => {
995                Self::generate_ring_circuit(&mut circuit, config)?;
996            }
997            QuantumReservoirArchitecture::Grid => {
998                Self::generate_grid_circuit(&mut circuit, config)?;
999            }
1000            _ => {
1001                // Default to random circuit for other architectures
1002                Self::generate_random_circuit(&mut circuit, config)?;
1003            }
1004        }
1005
1006        Ok(circuit)
1007    }
1008
1009    /// Generate random quantum circuit
1010    fn generate_random_circuit(
1011        circuit: &mut InterfaceCircuit,
1012        config: &QuantumReservoirConfig,
1013    ) -> Result<()> {
1014        let depth = config.evolution_steps;
1015
1016        for _ in 0..depth {
1017            // Add random single-qubit gates
1018            for qubit in 0..config.num_qubits {
1019                let angle = fastrand::f64() * 2.0 * PI;
1020                let gate_type = match fastrand::usize(0..3) {
1021                    0 => InterfaceGateType::RX(angle),
1022                    1 => InterfaceGateType::RY(angle),
1023                    _ => InterfaceGateType::RZ(angle),
1024                };
1025                circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
1026            }
1027
1028            // Add random two-qubit gates
1029            for _ in 0..(config.num_qubits / 2) {
1030                let qubit1 = fastrand::usize(0..config.num_qubits);
1031                let qubit2 = fastrand::usize(0..config.num_qubits);
1032                if qubit1 != qubit2 {
1033                    circuit.add_gate(InterfaceGate::new(
1034                        InterfaceGateType::CNOT,
1035                        vec![qubit1, qubit2],
1036                    ));
1037                }
1038            }
1039        }
1040
1041        Ok(())
1042    }
1043
1044    /// Generate spin chain circuit
1045    fn generate_spin_chain_circuit(
1046        circuit: &mut InterfaceCircuit,
1047        config: &QuantumReservoirConfig,
1048    ) -> Result<()> {
1049        let coupling = config.coupling_strength;
1050
1051        for _ in 0..config.evolution_steps {
1052            // Nearest-neighbor interactions
1053            for i in 0..config.num_qubits - 1 {
1054                // ZZ interaction
1055                circuit.add_gate(InterfaceGate::new(
1056                    InterfaceGateType::RZ(coupling * config.time_step),
1057                    vec![i],
1058                ));
1059                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1060                circuit.add_gate(InterfaceGate::new(
1061                    InterfaceGateType::RZ(coupling * config.time_step),
1062                    vec![i + 1],
1063                ));
1064                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1065            }
1066        }
1067
1068        Ok(())
1069    }
1070
1071    /// Generate transverse field Ising model circuit
1072    fn generate_tfim_circuit(
1073        circuit: &mut InterfaceCircuit,
1074        config: &QuantumReservoirConfig,
1075    ) -> Result<()> {
1076        let coupling = config.coupling_strength;
1077        let field = coupling * 0.5; // Transverse field strength
1078
1079        for _ in 0..config.evolution_steps {
1080            // Transverse field (X rotations)
1081            for qubit in 0..config.num_qubits {
1082                circuit.add_gate(InterfaceGate::new(
1083                    InterfaceGateType::RX(field * config.time_step),
1084                    vec![qubit],
1085                ));
1086            }
1087
1088            // Nearest-neighbor ZZ interactions
1089            for i in 0..config.num_qubits - 1 {
1090                circuit.add_gate(InterfaceGate::new(
1091                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1092                    vec![i],
1093                ));
1094                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1095                circuit.add_gate(InterfaceGate::new(
1096                    InterfaceGateType::RZ(coupling * config.time_step),
1097                    vec![i + 1],
1098                ));
1099                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1100                circuit.add_gate(InterfaceGate::new(
1101                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1102                    vec![i],
1103                ));
1104            }
1105        }
1106
1107        Ok(())
1108    }
1109
1110    /// Generate small-world network circuit
1111    fn generate_small_world_circuit(
1112        circuit: &mut InterfaceCircuit,
1113        config: &QuantumReservoirConfig,
1114    ) -> Result<()> {
1115        let coupling = config.coupling_strength;
1116        let rewiring_prob = 0.1; // Small-world rewiring probability
1117
1118        for _ in 0..config.evolution_steps {
1119            // Regular lattice connections
1120            for i in 0..config.num_qubits {
1121                let next = (i + 1) % config.num_qubits;
1122
1123                // Random rewiring
1124                let target = if fastrand::f64() < rewiring_prob {
1125                    fastrand::usize(0..config.num_qubits)
1126                } else {
1127                    next
1128                };
1129
1130                if target != i {
1131                    circuit.add_gate(InterfaceGate::new(
1132                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1133                        vec![i],
1134                    ));
1135                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, target]));
1136                    circuit.add_gate(InterfaceGate::new(
1137                        InterfaceGateType::RZ(coupling * config.time_step),
1138                        vec![target],
1139                    ));
1140                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, target]));
1141                    circuit.add_gate(InterfaceGate::new(
1142                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1143                        vec![i],
1144                    ));
1145                }
1146            }
1147        }
1148
1149        Ok(())
1150    }
1151
1152    /// Generate fully connected circuit
1153    fn generate_fully_connected_circuit(
1154        circuit: &mut InterfaceCircuit,
1155        config: &QuantumReservoirConfig,
1156    ) -> Result<()> {
1157        let coupling = config.coupling_strength / config.num_qubits as f64; // Scale by system size
1158
1159        for _ in 0..config.evolution_steps {
1160            // All-to-all interactions
1161            for i in 0..config.num_qubits {
1162                for j in i + 1..config.num_qubits {
1163                    circuit.add_gate(InterfaceGate::new(
1164                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1165                        vec![i],
1166                    ));
1167                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1168                    circuit.add_gate(InterfaceGate::new(
1169                        InterfaceGateType::RZ(coupling * config.time_step),
1170                        vec![j],
1171                    ));
1172                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1173                    circuit.add_gate(InterfaceGate::new(
1174                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1175                        vec![i],
1176                    ));
1177                }
1178            }
1179        }
1180
1181        Ok(())
1182    }
1183
1184    /// Generate scale-free network circuit
1185    fn generate_scale_free_circuit(
1186        circuit: &mut InterfaceCircuit,
1187        config: &QuantumReservoirConfig,
1188    ) -> Result<()> {
1189        // Implement scale-free topology with preferential attachment
1190        let mut degree_dist = vec![1; config.num_qubits];
1191        let coupling = config.coupling_strength;
1192
1193        for _ in 0..config.evolution_steps {
1194            // Scale-free connections based on degree distribution
1195            for i in 0..config.num_qubits {
1196                // Probability proportional to degree
1197                let total_degree: usize = degree_dist.iter().sum();
1198                let prob_threshold = degree_dist[i] as f64 / total_degree as f64;
1199
1200                if fastrand::f64() < prob_threshold {
1201                    let j = fastrand::usize(0..config.num_qubits);
1202                    if i != j {
1203                        // Add interaction
1204                        circuit.add_gate(InterfaceGate::new(
1205                            InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1206                            vec![i],
1207                        ));
1208                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1209                        circuit.add_gate(InterfaceGate::new(
1210                            InterfaceGateType::RZ(coupling * config.time_step),
1211                            vec![j],
1212                        ));
1213                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1214
1215                        // Update degrees
1216                        degree_dist[i] += 1;
1217                        degree_dist[j] += 1;
1218                    }
1219                }
1220            }
1221        }
1222
1223        Ok(())
1224    }
1225
1226    /// Generate hierarchical modular circuit
1227    fn generate_hierarchical_circuit(
1228        circuit: &mut InterfaceCircuit,
1229        config: &QuantumReservoirConfig,
1230    ) -> Result<()> {
1231        let coupling = config.coupling_strength;
1232        let module_size = (config.num_qubits as f64).sqrt() as usize;
1233
1234        for _ in 0..config.evolution_steps {
1235            // Intra-module connections (stronger)
1236            for module in 0..(config.num_qubits / module_size) {
1237                let start = module * module_size;
1238                let end = ((module + 1) * module_size).min(config.num_qubits);
1239
1240                for i in start..end {
1241                    for j in (i + 1)..end {
1242                        circuit.add_gate(InterfaceGate::new(
1243                            InterfaceGateType::RZ(coupling * config.time_step),
1244                            vec![i],
1245                        ));
1246                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1247                    }
1248                }
1249            }
1250
1251            // Inter-module connections (weaker)
1252            for i in 0..config.num_qubits {
1253                let j = fastrand::usize(0..config.num_qubits);
1254                if i / module_size != j / module_size && i != j {
1255                    circuit.add_gate(InterfaceGate::new(
1256                        InterfaceGateType::RZ(coupling * config.time_step * 0.3),
1257                        vec![i],
1258                    ));
1259                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1260                }
1261            }
1262        }
1263
1264        Ok(())
1265    }
1266
1267    /// Generate ring topology circuit
1268    fn generate_ring_circuit(
1269        circuit: &mut InterfaceCircuit,
1270        config: &QuantumReservoirConfig,
1271    ) -> Result<()> {
1272        let coupling = config.coupling_strength;
1273
1274        for _ in 0..config.evolution_steps {
1275            // Ring connections
1276            for i in 0..config.num_qubits {
1277                let j = (i + 1) % config.num_qubits;
1278
1279                circuit.add_gate(InterfaceGate::new(
1280                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1281                    vec![i],
1282                ));
1283                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1284                circuit.add_gate(InterfaceGate::new(
1285                    InterfaceGateType::RZ(coupling * config.time_step),
1286                    vec![j],
1287                ));
1288                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1289            }
1290
1291            // Long-range connections (sparse)
1292            if fastrand::f64() < 0.1 {
1293                let i = fastrand::usize(0..config.num_qubits);
1294                let j = fastrand::usize(0..config.num_qubits);
1295                if i != j && (i as i32 - j as i32).abs() > 2 {
1296                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1297                }
1298            }
1299        }
1300
1301        Ok(())
1302    }
1303
1304    /// Generate grid topology circuit
1305    fn generate_grid_circuit(
1306        circuit: &mut InterfaceCircuit,
1307        config: &QuantumReservoirConfig,
1308    ) -> Result<()> {
1309        let coupling = config.coupling_strength;
1310        let grid_size = (config.num_qubits as f64).sqrt() as usize;
1311
1312        for _ in 0..config.evolution_steps {
1313            // Grid connections (nearest neighbors)
1314            for i in 0..grid_size {
1315                for j in 0..grid_size {
1316                    let current = i * grid_size + j;
1317                    if current >= config.num_qubits {
1318                        break;
1319                    }
1320
1321                    // Right neighbor
1322                    if j + 1 < grid_size {
1323                        let neighbor = i * grid_size + j + 1;
1324                        if neighbor < config.num_qubits {
1325                            circuit.add_gate(InterfaceGate::new(
1326                                InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1327                                vec![current],
1328                            ));
1329                            circuit.add_gate(InterfaceGate::new(
1330                                InterfaceGateType::CNOT,
1331                                vec![current, neighbor],
1332                            ));
1333                        }
1334                    }
1335
1336                    // Bottom neighbor
1337                    if i + 1 < grid_size {
1338                        let neighbor = (i + 1) * grid_size + j;
1339                        if neighbor < config.num_qubits {
1340                            circuit.add_gate(InterfaceGate::new(
1341                                InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1342                                vec![current],
1343                            ));
1344                            circuit.add_gate(InterfaceGate::new(
1345                                InterfaceGateType::CNOT,
1346                                vec![current, neighbor],
1347                            ));
1348                        }
1349                    }
1350                }
1351            }
1352        }
1353
1354        Ok(())
1355    }
1356
1357    /// Generate input coupling circuit
1358    fn generate_input_coupling_circuit(
1359        config: &QuantumReservoirConfig,
1360    ) -> Result<InterfaceCircuit> {
1361        let mut circuit = InterfaceCircuit::new(config.num_qubits, 0);
1362
1363        match config.input_encoding {
1364            InputEncoding::Amplitude => {
1365                // Amplitude encoding through controlled rotations
1366                for qubit in 0..config.num_qubits {
1367                    circuit.add_gate(InterfaceGate::new(
1368                        InterfaceGateType::RY(0.0), // Will be set dynamically
1369                        vec![qubit],
1370                    ));
1371                }
1372            }
1373            InputEncoding::Phase => {
1374                // Phase encoding through Z rotations
1375                for qubit in 0..config.num_qubits {
1376                    circuit.add_gate(InterfaceGate::new(
1377                        InterfaceGateType::RZ(0.0), // Will be set dynamically
1378                        vec![qubit],
1379                    ));
1380                }
1381            }
1382            InputEncoding::BasisState => {
1383                // Basis state encoding through X gates
1384                for qubit in 0..config.num_qubits {
1385                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::X, vec![qubit]));
1386                }
1387            }
1388            InputEncoding::Angle => {
1389                // Angle encoding with multiple rotation axes
1390                for qubit in 0..config.num_qubits {
1391                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RX(0.0), vec![qubit]));
1392                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
1393                }
1394            }
1395            _ => {
1396                // Default to amplitude encoding
1397                for qubit in 0..config.num_qubits {
1398                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
1399                }
1400            }
1401        }
1402
1403        Ok(circuit)
1404    }
1405
1406    /// Calculate output size based on configuration
1407    const fn calculate_output_size(config: &QuantumReservoirConfig) -> usize {
1408        // For time series prediction, typically 1 output
1409        1
1410    }
1411
1412    /// Calculate feature size based on configuration
1413    fn calculate_feature_size(config: &QuantumReservoirConfig) -> usize {
1414        match config.output_measurement {
1415            OutputMeasurement::PauliExpectation => config.num_qubits * 3,
1416            OutputMeasurement::Probability => 1 << config.num_qubits.min(10), // Limit for memory
1417            OutputMeasurement::Correlations => config.num_qubits * config.num_qubits,
1418            OutputMeasurement::Entanglement => config.num_qubits,
1419            OutputMeasurement::Fidelity => 1,
1420            OutputMeasurement::QuantumFisherInformation => config.num_qubits,
1421            OutputMeasurement::Variance => config.num_qubits * 3,
1422            OutputMeasurement::HigherOrderMoments => config.num_qubits * 6, // Up to 3rd moments
1423            OutputMeasurement::SpectralProperties => config.num_qubits,
1424            OutputMeasurement::QuantumCoherence => config.num_qubits,
1425            OutputMeasurement::Purity => 1,
1426            OutputMeasurement::QuantumMutualInformation => config.num_qubits * config.num_qubits,
1427            OutputMeasurement::ProcessTomography => config.num_qubits * config.num_qubits * 4,
1428            OutputMeasurement::TemporalCorrelations => config.memory_capacity,
1429            OutputMeasurement::NonLinearReadout => config.num_qubits * 2,
1430        }
1431    }
1432
1433    /// Process input through quantum reservoir
1434    pub fn process_input(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
1435        let start_time = std::time::Instant::now();
1436
1437        // Encode input into quantum state
1438        self.encode_input(input)?;
1439
1440        // Evolve through reservoir dynamics
1441        self.evolve_reservoir()?;
1442
1443        // Extract features from reservoir state
1444        let features = self.extract_features()?;
1445
1446        // Update reservoir state with timestamp
1447        let timestamp = start_time.elapsed().as_secs_f64();
1448        self.reservoir_state
1449            .update_state(self.reservoir_state.state_vector.clone(), timestamp);
1450
1451        // Update metrics
1452        let processing_time = start_time.elapsed().as_secs_f64() * 1000.0;
1453        self.update_processing_time(processing_time);
1454
1455        Ok(features)
1456    }
1457
1458    /// Encode input data into quantum state
1459    fn encode_input(&mut self, input: &Array1<f64>) -> Result<()> {
1460        match self.config.input_encoding {
1461            InputEncoding::Amplitude => {
1462                self.encode_amplitude(input)?;
1463            }
1464            InputEncoding::Phase => {
1465                self.encode_phase(input)?;
1466            }
1467            InputEncoding::BasisState => {
1468                self.encode_basis_state(input)?;
1469            }
1470            InputEncoding::Angle => {
1471                self.encode_angle(input)?;
1472            }
1473            _ => {
1474                self.encode_amplitude(input)?;
1475            }
1476        }
1477        Ok(())
1478    }
1479
1480    /// Amplitude encoding
1481    fn encode_amplitude(&mut self, input: &Array1<f64>) -> Result<()> {
1482        let num_inputs = input.len().min(self.config.num_qubits);
1483
1484        for i in 0..num_inputs {
1485            let angle = input[i] * PI; // Scale to [0, π]
1486            self.apply_single_qubit_rotation(i, InterfaceGateType::RY(angle))?;
1487        }
1488
1489        Ok(())
1490    }
1491
1492    /// Phase encoding
1493    fn encode_phase(&mut self, input: &Array1<f64>) -> Result<()> {
1494        let num_inputs = input.len().min(self.config.num_qubits);
1495
1496        for i in 0..num_inputs {
1497            let angle = input[i] * 2.0 * PI; // Full phase range
1498            self.apply_single_qubit_rotation(i, InterfaceGateType::RZ(angle))?;
1499        }
1500
1501        Ok(())
1502    }
1503
1504    /// Basis state encoding
1505    fn encode_basis_state(&mut self, input: &Array1<f64>) -> Result<()> {
1506        let num_inputs = input.len().min(self.config.num_qubits);
1507
1508        for i in 0..num_inputs {
1509            if input[i] > 0.5 {
1510                self.apply_single_qubit_gate(i, InterfaceGateType::X)?;
1511            }
1512        }
1513
1514        Ok(())
1515    }
1516
1517    /// Angle encoding with multiple rotation axes
1518    fn encode_angle(&mut self, input: &Array1<f64>) -> Result<()> {
1519        let num_inputs = input.len().min(self.config.num_qubits);
1520
1521        for i in 0..num_inputs {
1522            let angle_x = input[i] * PI;
1523            let angle_y = if i + 1 < input.len() {
1524                input[i + 1] * PI
1525            } else {
1526                0.0
1527            };
1528
1529            self.apply_single_qubit_rotation(i, InterfaceGateType::RX(angle_x))?;
1530            self.apply_single_qubit_rotation(i, InterfaceGateType::RY(angle_y))?;
1531        }
1532
1533        Ok(())
1534    }
1535
1536    /// Apply single qubit rotation
1537    fn apply_single_qubit_rotation(
1538        &mut self,
1539        qubit: usize,
1540        gate_type: InterfaceGateType,
1541    ) -> Result<()> {
1542        let mut temp_circuit = InterfaceCircuit::new(self.config.num_qubits, 0);
1543        temp_circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
1544
1545        self.simulator.apply_interface_circuit(&temp_circuit)?;
1546
1547        Ok(())
1548    }
1549
1550    /// Apply single qubit gate
1551    fn apply_single_qubit_gate(
1552        &mut self,
1553        qubit: usize,
1554        gate_type: InterfaceGateType,
1555    ) -> Result<()> {
1556        let mut temp_circuit = InterfaceCircuit::new(self.config.num_qubits, 0);
1557        temp_circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
1558
1559        self.simulator.apply_interface_circuit(&temp_circuit)?;
1560
1561        Ok(())
1562    }
1563
1564    /// Evolve quantum reservoir through dynamics
1565    fn evolve_reservoir(&mut self) -> Result<()> {
1566        match self.config.dynamics {
1567            ReservoirDynamics::Unitary => {
1568                self.evolve_unitary()?;
1569            }
1570            ReservoirDynamics::Open => {
1571                self.evolve_open_system()?;
1572            }
1573            ReservoirDynamics::NISQ => {
1574                self.evolve_nisq()?;
1575            }
1576            ReservoirDynamics::Adiabatic => {
1577                self.evolve_adiabatic()?;
1578            }
1579            ReservoirDynamics::Floquet => {
1580                self.evolve_floquet()?;
1581            }
1582            _ => {
1583                // Default to unitary evolution
1584                self.evolve_unitary()?;
1585            }
1586        }
1587        Ok(())
1588    }
1589
1590    /// Unitary evolution
1591    fn evolve_unitary(&mut self) -> Result<()> {
1592        self.simulator
1593            .apply_interface_circuit(&self.reservoir_circuit)?;
1594        Ok(())
1595    }
1596
1597    /// Open system evolution with noise
1598    fn evolve_open_system(&mut self) -> Result<()> {
1599        // Apply unitary evolution first
1600        self.evolve_unitary()?;
1601
1602        // Apply decoherence
1603        self.apply_decoherence()?;
1604
1605        Ok(())
1606    }
1607
1608    /// NISQ evolution with realistic noise
1609    fn evolve_nisq(&mut self) -> Result<()> {
1610        // Apply unitary evolution
1611        self.evolve_unitary()?;
1612
1613        // Apply gate errors
1614        self.apply_gate_errors()?;
1615
1616        // Apply measurement errors
1617        self.apply_measurement_errors()?;
1618
1619        Ok(())
1620    }
1621
1622    /// Adiabatic evolution
1623    fn evolve_adiabatic(&mut self) -> Result<()> {
1624        // Simplified adiabatic evolution
1625        // In practice, this would implement proper adiabatic dynamics
1626        self.evolve_unitary()?;
1627        Ok(())
1628    }
1629
1630    /// Floquet evolution with periodic driving
1631    fn evolve_floquet(&mut self) -> Result<()> {
1632        // Apply time-dependent Hamiltonian
1633        let drive_frequency = 1.0;
1634        let time = self.reservoir_state.time_index as f64 * self.config.time_step;
1635        let drive_strength = (drive_frequency * time).sin();
1636
1637        // Apply driving field
1638        for qubit in 0..self.config.num_qubits {
1639            let angle = drive_strength * self.config.time_step;
1640            self.apply_single_qubit_rotation(qubit, InterfaceGateType::RX(angle))?;
1641        }
1642
1643        // Apply base evolution
1644        self.evolve_unitary()?;
1645
1646        Ok(())
1647    }
1648
1649    /// Apply decoherence to the reservoir state
1650    fn apply_decoherence(&mut self) -> Result<()> {
1651        let decoherence_rate = self.config.noise_level;
1652
1653        for amplitude in &mut self.reservoir_state.state_vector {
1654            // Apply phase decoherence
1655            let phase_noise = (fastrand::f64() - 0.5) * decoherence_rate * 2.0 * PI;
1656            *amplitude *= Complex64::new(0.0, phase_noise).exp();
1657
1658            // Apply amplitude damping
1659            let damping = (1.0 - decoherence_rate).sqrt();
1660            *amplitude *= damping;
1661        }
1662
1663        // Renormalize
1664        let norm: f64 = self
1665            .reservoir_state
1666            .state_vector
1667            .iter()
1668            .map(scirs2_core::Complex::norm_sqr)
1669            .sum::<f64>()
1670            .sqrt();
1671
1672        if norm > 1e-15 {
1673            self.reservoir_state.state_vector.mapv_inplace(|x| x / norm);
1674        }
1675
1676        Ok(())
1677    }
1678
1679    /// Apply gate errors
1680    fn apply_gate_errors(&mut self) -> Result<()> {
1681        let error_rate = self.config.noise_level;
1682
1683        for qubit in 0..self.config.num_qubits {
1684            if fastrand::f64() < error_rate {
1685                let error_type = fastrand::usize(0..3);
1686                let gate_type = match error_type {
1687                    0 => InterfaceGateType::X,
1688                    1 => InterfaceGateType::PauliY,
1689                    _ => InterfaceGateType::PauliZ,
1690                };
1691                self.apply_single_qubit_gate(qubit, gate_type)?;
1692            }
1693        }
1694
1695        Ok(())
1696    }
1697
1698    /// Apply measurement errors
1699    fn apply_measurement_errors(&mut self) -> Result<()> {
1700        let error_rate = self.config.noise_level * 0.1; // Lower rate for measurement errors
1701
1702        if fastrand::f64() < error_rate {
1703            let qubit = fastrand::usize(0..self.config.num_qubits);
1704            self.apply_single_qubit_gate(qubit, InterfaceGateType::X)?;
1705        }
1706
1707        Ok(())
1708    }
1709
1710    /// Extract features from reservoir state
1711    fn extract_features(&mut self) -> Result<Array1<f64>> {
1712        match self.config.output_measurement {
1713            OutputMeasurement::PauliExpectation => self.measure_pauli_expectations(),
1714            OutputMeasurement::Probability => self.measure_probabilities(),
1715            OutputMeasurement::Correlations => self.measure_correlations(),
1716            OutputMeasurement::Entanglement => self.measure_entanglement(),
1717            OutputMeasurement::Fidelity => self.measure_fidelity(),
1718            OutputMeasurement::QuantumFisherInformation => {
1719                self.measure_quantum_fisher_information()
1720            }
1721            OutputMeasurement::Variance => self.measure_variance(),
1722            OutputMeasurement::HigherOrderMoments => self.measure_higher_order_moments(),
1723            OutputMeasurement::QuantumCoherence => self.measure_quantum_coherence(),
1724            OutputMeasurement::Purity => self.measure_purity(),
1725            OutputMeasurement::TemporalCorrelations => self.measure_temporal_correlations(),
1726            _ => {
1727                // Default to Pauli expectations
1728                self.measure_pauli_expectations()
1729            }
1730        }
1731    }
1732
1733    /// Measure Pauli expectation values
1734    fn measure_pauli_expectations(&self) -> Result<Array1<f64>> {
1735        let mut expectations = Vec::new();
1736
1737        for qubit in 0..self.config.num_qubits {
1738            // X expectation
1739            let x_exp = self.calculate_single_qubit_expectation(
1740                qubit,
1741                &[
1742                    Complex64::new(0.0, 0.0),
1743                    Complex64::new(1.0, 0.0),
1744                    Complex64::new(1.0, 0.0),
1745                    Complex64::new(0.0, 0.0),
1746                ],
1747            )?;
1748            expectations.push(x_exp);
1749
1750            // Y expectation
1751            let y_exp = self.calculate_single_qubit_expectation(
1752                qubit,
1753                &[
1754                    Complex64::new(0.0, 0.0),
1755                    Complex64::new(0.0, -1.0),
1756                    Complex64::new(0.0, 1.0),
1757                    Complex64::new(0.0, 0.0),
1758                ],
1759            )?;
1760            expectations.push(y_exp);
1761
1762            // Z expectation
1763            let z_exp = self.calculate_single_qubit_expectation(
1764                qubit,
1765                &[
1766                    Complex64::new(1.0, 0.0),
1767                    Complex64::new(0.0, 0.0),
1768                    Complex64::new(0.0, 0.0),
1769                    Complex64::new(-1.0, 0.0),
1770                ],
1771            )?;
1772            expectations.push(z_exp);
1773        }
1774
1775        Ok(Array1::from_vec(expectations))
1776    }
1777
1778    /// Calculate single qubit expectation value
1779    fn calculate_single_qubit_expectation(
1780        &self,
1781        qubit: usize,
1782        pauli_matrix: &[Complex64; 4],
1783    ) -> Result<f64> {
1784        let state = &self.reservoir_state.state_vector;
1785        let mut expectation = 0.0;
1786
1787        for i in 0..state.len() {
1788            for j in 0..state.len() {
1789                let i_bit = (i >> qubit) & 1;
1790                let j_bit = (j >> qubit) & 1;
1791                let matrix_element = pauli_matrix[i_bit * 2 + j_bit];
1792
1793                expectation += (state[i].conj() * matrix_element * state[j]).re;
1794            }
1795        }
1796
1797        Ok(expectation)
1798    }
1799
1800    /// Measure probability distribution
1801    fn measure_probabilities(&self) -> Result<Array1<f64>> {
1802        let probabilities: Vec<f64> = self
1803            .reservoir_state
1804            .state_vector
1805            .iter()
1806            .map(scirs2_core::Complex::norm_sqr)
1807            .collect();
1808
1809        // Limit size for large systems
1810        let max_size = 1 << 10; // 2^10 = 1024
1811        if probabilities.len() > max_size {
1812            // Sample random subset
1813            let mut sampled = Vec::with_capacity(max_size);
1814            for _ in 0..max_size {
1815                let idx = fastrand::usize(0..probabilities.len());
1816                sampled.push(probabilities[idx]);
1817            }
1818            Ok(Array1::from_vec(sampled))
1819        } else {
1820            Ok(Array1::from_vec(probabilities))
1821        }
1822    }
1823
1824    /// Measure two-qubit correlations
1825    fn measure_correlations(&mut self) -> Result<Array1<f64>> {
1826        let mut correlations = Vec::new();
1827
1828        for i in 0..self.config.num_qubits {
1829            for j in 0..self.config.num_qubits {
1830                if i == j {
1831                    correlations.push(1.0); // Self-correlation
1832                    self.reservoir_state.correlations[[i, j]] = 1.0;
1833                } else {
1834                    // ZZ correlation
1835                    let corr = self.calculate_two_qubit_correlation(i, j)?;
1836                    correlations.push(corr);
1837                    self.reservoir_state.correlations[[i, j]] = corr;
1838                }
1839            }
1840        }
1841
1842        Ok(Array1::from_vec(correlations))
1843    }
1844
1845    /// Calculate two-qubit correlation
1846    fn calculate_two_qubit_correlation(&self, qubit1: usize, qubit2: usize) -> Result<f64> {
1847        let state = &self.reservoir_state.state_vector;
1848        let mut correlation = 0.0;
1849
1850        for i in 0..state.len() {
1851            let bit1 = (i >> qubit1) & 1;
1852            let bit2 = (i >> qubit2) & 1;
1853            let sign = if bit1 == bit2 { 1.0 } else { -1.0 };
1854            correlation += sign * state[i].norm_sqr();
1855        }
1856
1857        Ok(correlation)
1858    }
1859
1860    /// Measure entanglement metrics
1861    fn measure_entanglement(&self) -> Result<Array1<f64>> {
1862        let mut entanglement_measures = Vec::new();
1863
1864        // Simplified entanglement measures
1865        for qubit in 0..self.config.num_qubits {
1866            // Von Neumann entropy of reduced state (approximation)
1867            let entropy = self.calculate_von_neumann_entropy(qubit)?;
1868            entanglement_measures.push(entropy);
1869        }
1870
1871        Ok(Array1::from_vec(entanglement_measures))
1872    }
1873
1874    /// Calculate von Neumann entropy (simplified)
1875    fn calculate_von_neumann_entropy(&self, _qubit: usize) -> Result<f64> {
1876        let state = &self.reservoir_state.state_vector;
1877        let mut entropy = 0.0;
1878
1879        for amplitude in state {
1880            let prob = amplitude.norm_sqr();
1881            if prob > 1e-15 {
1882                entropy -= prob * prob.ln();
1883            }
1884        }
1885
1886        Ok(entropy / (state.len() as f64).ln()) // Normalized entropy
1887    }
1888
1889    /// Measure fidelity with reference state
1890    fn measure_fidelity(&self) -> Result<Array1<f64>> {
1891        // Fidelity with initial state |0...0⟩
1892        let fidelity = self.reservoir_state.state_vector[0].norm_sqr();
1893        Ok(Array1::from_vec(vec![fidelity]))
1894    }
1895
1896    /// Measure quantum Fisher information
1897    fn measure_quantum_fisher_information(&self) -> Result<Array1<f64>> {
1898        let mut qfi_values = Vec::new();
1899
1900        for qubit in 0..self.config.num_qubits {
1901            // Simplified QFI calculation for single qubit observables
1902            let z_exp = self.calculate_single_qubit_expectation(
1903                qubit,
1904                &[
1905                    Complex64::new(1.0, 0.0),
1906                    Complex64::new(0.0, 0.0),
1907                    Complex64::new(0.0, 0.0),
1908                    Complex64::new(-1.0, 0.0),
1909                ],
1910            )?;
1911
1912            // QFI ≈ 4 * Var(Z) for single qubit
1913            let qfi = 4.0 * (1.0 - z_exp * z_exp);
1914            qfi_values.push(qfi);
1915        }
1916
1917        Ok(Array1::from_vec(qfi_values))
1918    }
1919
1920    /// Measure variance of observables
1921    fn measure_variance(&self) -> Result<Array1<f64>> {
1922        let mut variances = Vec::new();
1923
1924        for qubit in 0..self.config.num_qubits {
1925            // X, Y, Z variances
1926            for pauli_idx in 0..3 {
1927                let pauli_matrix = match pauli_idx {
1928                    0 => [
1929                        Complex64::new(0.0, 0.0),
1930                        Complex64::new(1.0, 0.0),
1931                        Complex64::new(1.0, 0.0),
1932                        Complex64::new(0.0, 0.0),
1933                    ],
1934                    1 => [
1935                        Complex64::new(0.0, 0.0),
1936                        Complex64::new(0.0, -1.0),
1937                        Complex64::new(0.0, 1.0),
1938                        Complex64::new(0.0, 0.0),
1939                    ],
1940                    _ => [
1941                        Complex64::new(1.0, 0.0),
1942                        Complex64::new(0.0, 0.0),
1943                        Complex64::new(0.0, 0.0),
1944                        Complex64::new(-1.0, 0.0),
1945                    ],
1946                };
1947
1948                let expectation = self.calculate_single_qubit_expectation(qubit, &pauli_matrix)?;
1949                let variance = 1.0 - expectation * expectation; // For Pauli operators
1950                variances.push(variance);
1951            }
1952        }
1953
1954        Ok(Array1::from_vec(variances))
1955    }
1956
1957    /// Measure higher-order moments
1958    fn measure_higher_order_moments(&self) -> Result<Array1<f64>> {
1959        let mut moments = Vec::new();
1960
1961        for qubit in 0..self.config.num_qubits {
1962            // Calculate moments up to 3rd order for Z observable
1963            let z_exp = self.calculate_single_qubit_expectation(
1964                qubit,
1965                &[
1966                    Complex64::new(1.0, 0.0),
1967                    Complex64::new(0.0, 0.0),
1968                    Complex64::new(0.0, 0.0),
1969                    Complex64::new(-1.0, 0.0),
1970                ],
1971            )?;
1972
1973            // First moment (mean)
1974            moments.push(z_exp);
1975
1976            // Second central moment (variance)
1977            let variance = 1.0 - z_exp * z_exp;
1978            moments.push(variance);
1979
1980            // Third central moment (skewness measure)
1981            // For Pauli-Z, this is typically zero due to symmetry
1982            moments.push(0.0);
1983
1984            // Kurtosis measure
1985            moments.push(variance * variance);
1986
1987            // Fifth moment (for more complex characterization)
1988            moments.push(z_exp * variance);
1989
1990            // Sixth moment
1991            moments.push(variance * variance * variance);
1992        }
1993
1994        Ok(Array1::from_vec(moments))
1995    }
1996
1997    /// Measure quantum coherence
1998    fn measure_quantum_coherence(&self) -> Result<Array1<f64>> {
1999        let mut coherence_measures = Vec::new();
2000
2001        for qubit in 0..self.config.num_qubits {
2002            // L1 norm of coherence (off-diagonal elements in computational basis)
2003            let mut coherence = 0.0;
2004            let state = &self.reservoir_state.state_vector;
2005
2006            for i in 0..state.len() {
2007                for j in 0..state.len() {
2008                    if i != j {
2009                        let i_bit = (i >> qubit) & 1;
2010                        let j_bit = (j >> qubit) & 1;
2011                        if i_bit != j_bit {
2012                            coherence += (state[i].conj() * state[j]).norm();
2013                        }
2014                    }
2015                }
2016            }
2017
2018            coherence_measures.push(coherence);
2019        }
2020
2021        Ok(Array1::from_vec(coherence_measures))
2022    }
2023
2024    /// Measure purity
2025    fn measure_purity(&self) -> Result<Array1<f64>> {
2026        // Purity = Tr(ρ²) for the full state
2027        let state = &self.reservoir_state.state_vector;
2028        let purity = state.iter().map(|x| x.norm_sqr().powi(2)).sum::<f64>();
2029
2030        Ok(Array1::from_vec(vec![purity]))
2031    }
2032
2033    /// Measure temporal correlations
2034    fn measure_temporal_correlations(&self) -> Result<Array1<f64>> {
2035        let mut correlations = Vec::new();
2036
2037        // Calculate autocorrelation with past states
2038        let current_state = &self.reservoir_state.state_vector;
2039
2040        for past_state in &self.reservoir_state.state_history {
2041            let correlation = current_state
2042                .iter()
2043                .zip(past_state.iter())
2044                .map(|(a, b)| (a.conj() * b).re)
2045                .sum::<f64>();
2046            correlations.push(correlation);
2047        }
2048
2049        // Pad with zeros if not enough history
2050        while correlations.len() < self.config.memory_capacity {
2051            correlations.push(0.0);
2052        }
2053
2054        Ok(Array1::from_vec(correlations))
2055    }
2056
2057    /// Train the enhanced reservoir computer
2058    pub fn train(&mut self, training_data: &ReservoirTrainingData) -> Result<TrainingResult> {
2059        let start_time = std::time::Instant::now();
2060
2061        let mut all_features = Vec::new();
2062        let mut all_targets = Vec::new();
2063
2064        // Washout period
2065        for i in 0..self.config.washout_period.min(training_data.inputs.len()) {
2066            let _ = self.process_input(&training_data.inputs[i])?;
2067        }
2068
2069        // Collect training data after washout
2070        for i in self.config.washout_period..training_data.inputs.len() {
2071            let features = self.process_input(&training_data.inputs[i])?;
2072            all_features.push(features);
2073
2074            if i < training_data.targets.len() {
2075                all_targets.push(training_data.targets[i].clone());
2076            }
2077        }
2078
2079        // Train output weights using the specified learning algorithm
2080        self.train_with_learning_algorithm(&all_features, &all_targets)?;
2081
2082        // Analyze memory capacity if enabled
2083        if self.config.memory_config.enable_capacity_estimation {
2084            self.analyze_memory_capacity(&all_features)?;
2085        }
2086
2087        // Evaluate performance
2088        let (training_error, test_error) =
2089            self.evaluate_performance(&all_features, &all_targets)?;
2090
2091        let training_time = start_time.elapsed().as_secs_f64() * 1000.0;
2092
2093        // Update metrics
2094        self.metrics.training_examples += all_features.len();
2095        self.metrics.generalization_error = test_error;
2096        self.metrics.memory_capacity = self.reservoir_state.memory_metrics.total_capacity;
2097
2098        Ok(TrainingResult {
2099            training_error,
2100            test_error,
2101            training_time_ms: training_time,
2102            num_examples: all_features.len(),
2103            echo_state_property: self.estimate_echo_state_property()?,
2104            memory_capacity: self.reservoir_state.memory_metrics.total_capacity,
2105            nonlinear_capacity: self.reservoir_state.memory_metrics.nonlinear_capacity,
2106            processing_capacity: self.reservoir_state.memory_metrics.processing_capacity,
2107        })
2108    }
2109
2110    /// Train using advanced learning algorithms
2111    fn train_with_learning_algorithm(
2112        &mut self,
2113        features: &[Array1<f64>],
2114        targets: &[Array1<f64>],
2115    ) -> Result<()> {
2116        match self.config.learning_config.algorithm {
2117            LearningAlgorithm::Ridge => {
2118                self.train_ridge_regression(features, targets)?;
2119            }
2120            LearningAlgorithm::LASSO => {
2121                self.train_lasso_regression(features, targets)?;
2122            }
2123            LearningAlgorithm::ElasticNet => {
2124                self.train_elastic_net(features, targets)?;
2125            }
2126            LearningAlgorithm::RecursiveLeastSquares => {
2127                self.train_recursive_least_squares(features, targets)?;
2128            }
2129            LearningAlgorithm::KalmanFilter => {
2130                self.train_kalman_filter(features, targets)?;
2131            }
2132            _ => {
2133                // Default to ridge regression
2134                self.train_ridge_regression(features, targets)?;
2135            }
2136        }
2137
2138        Ok(())
2139    }
2140
2141    /// Train ridge regression
2142    fn train_ridge_regression(
2143        &mut self,
2144        features: &[Array1<f64>],
2145        targets: &[Array1<f64>],
2146    ) -> Result<()> {
2147        if features.is_empty() || targets.is_empty() {
2148            return Ok(());
2149        }
2150
2151        let n_samples = features.len().min(targets.len());
2152        let n_features = features[0].len();
2153        let n_outputs = targets[0].len().min(self.output_weights.nrows());
2154
2155        // Create feature matrix
2156        let mut feature_matrix = Array2::zeros((n_samples, n_features));
2157        for (i, feature_vec) in features.iter().enumerate().take(n_samples) {
2158            for (j, &val) in feature_vec.iter().enumerate().take(n_features) {
2159                feature_matrix[[i, j]] = val;
2160            }
2161        }
2162
2163        // Create target matrix
2164        let mut target_matrix = Array2::zeros((n_samples, n_outputs));
2165        for (i, target_vec) in targets.iter().enumerate().take(n_samples) {
2166            for (j, &val) in target_vec.iter().enumerate().take(n_outputs) {
2167                target_matrix[[i, j]] = val;
2168            }
2169        }
2170
2171        // Ridge regression: W = (X^T X + λI)^(-1) X^T Y
2172        let lambda = self.config.learning_config.regularization;
2173
2174        // X^T X
2175        let xtx = feature_matrix.t().dot(&feature_matrix);
2176
2177        // Add regularization
2178        let mut xtx_reg = xtx;
2179        for i in 0..xtx_reg.nrows().min(xtx_reg.ncols()) {
2180            xtx_reg[[i, i]] += lambda;
2181        }
2182
2183        // X^T Y
2184        let xty = feature_matrix.t().dot(&target_matrix);
2185
2186        // Solve using simplified approach (in practice would use proper linear solver)
2187        self.solve_linear_system(&xtx_reg, &xty)?;
2188
2189        Ok(())
2190    }
2191
2192    /// Train LASSO regression (simplified)
2193    fn train_lasso_regression(
2194        &mut self,
2195        features: &[Array1<f64>],
2196        targets: &[Array1<f64>],
2197    ) -> Result<()> {
2198        // Simplified LASSO using coordinate descent
2199        let lambda = self.config.learning_config.regularization;
2200        let max_iter = 100;
2201
2202        for _ in 0..max_iter {
2203            // Coordinate descent updates
2204            for j in 0..self.output_weights.ncols().min(features[0].len()) {
2205                for i in 0..self.output_weights.nrows().min(targets[0].len()) {
2206                    // Soft thresholding update
2207                    let old_weight = self.output_weights[[i, j]];
2208                    let gradient = self.compute_lasso_gradient(features, targets, i, j)?;
2209                    let update = 0.01f64.mul_add(-gradient, old_weight);
2210
2211                    // Soft thresholding
2212                    self.output_weights[[i, j]] = if update > lambda {
2213                        update - lambda
2214                    } else if update < -lambda {
2215                        update + lambda
2216                    } else {
2217                        0.0
2218                    };
2219                }
2220            }
2221        }
2222
2223        Ok(())
2224    }
2225
2226    /// Compute LASSO gradient (simplified)
2227    fn compute_lasso_gradient(
2228        &self,
2229        features: &[Array1<f64>],
2230        targets: &[Array1<f64>],
2231        output_idx: usize,
2232        feature_idx: usize,
2233    ) -> Result<f64> {
2234        let mut gradient = 0.0;
2235
2236        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
2237            if feature_idx < feature_vec.len() && output_idx < target_vec.len() {
2238                let prediction = self.predict_single_output(feature_vec, output_idx)?;
2239                let error = prediction - target_vec[output_idx];
2240                gradient += error * feature_vec[feature_idx];
2241            }
2242        }
2243
2244        gradient /= features.len() as f64;
2245        Ok(gradient)
2246    }
2247
2248    /// Train Elastic Net regression
2249    fn train_elastic_net(
2250        &mut self,
2251        features: &[Array1<f64>],
2252        targets: &[Array1<f64>],
2253    ) -> Result<()> {
2254        let l1_ratio = self.config.learning_config.l1_ratio;
2255
2256        // Combine Ridge and LASSO with L1 ratio
2257        if l1_ratio > 0.5 {
2258            // More L1 regularization
2259            self.train_lasso_regression(features, targets)?;
2260        } else {
2261            // More L2 regularization
2262            self.train_ridge_regression(features, targets)?;
2263        }
2264
2265        Ok(())
2266    }
2267
2268    /// Train Recursive Least Squares
2269    fn train_recursive_least_squares(
2270        &mut self,
2271        features: &[Array1<f64>],
2272        targets: &[Array1<f64>],
2273    ) -> Result<()> {
2274        let forgetting_factor = self.config.learning_config.forgetting_factor;
2275        let n_features = features[0].len().min(self.output_weights.ncols());
2276        let n_outputs = targets[0].len().min(self.output_weights.nrows());
2277
2278        // Initialize covariance matrix
2279        let mut p_matrix = Array2::eye(n_features) * 1000.0; // Large initial covariance
2280
2281        // Online RLS updates
2282        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
2283            let x = feature_vec.slice(s![..n_features]).to_owned();
2284            let y = target_vec.slice(s![..n_outputs]).to_owned();
2285
2286            // Update covariance matrix
2287            let px = p_matrix.dot(&x);
2288            let denominator = forgetting_factor + x.dot(&px);
2289
2290            if denominator > 1e-15 {
2291                let k = &px / denominator;
2292
2293                // Update weights for each output
2294                for output_idx in 0..n_outputs {
2295                    let prediction = self.predict_single_output(feature_vec, output_idx)?;
2296                    let error = y[output_idx] - prediction;
2297
2298                    // RLS weight update
2299                    for feature_idx in 0..n_features {
2300                        self.output_weights[[output_idx, feature_idx]] += k[feature_idx] * error;
2301                    }
2302                }
2303
2304                // Update covariance matrix
2305                let outer_product = k
2306                    .view()
2307                    .insert_axis(Axis(1))
2308                    .dot(&x.view().insert_axis(Axis(0)));
2309                p_matrix = (p_matrix - outer_product) / forgetting_factor;
2310            }
2311        }
2312
2313        Ok(())
2314    }
2315
2316    /// Train Kalman filter
2317    fn train_kalman_filter(
2318        &mut self,
2319        features: &[Array1<f64>],
2320        targets: &[Array1<f64>],
2321    ) -> Result<()> {
2322        let process_noise = self.config.learning_config.process_noise;
2323        let measurement_noise = self.config.learning_config.measurement_noise;
2324
2325        let n_features = features[0].len().min(self.output_weights.ncols());
2326        let n_outputs = targets[0].len().min(self.output_weights.nrows());
2327
2328        // Initialize Kalman filter matrices
2329        let mut state_covariance = Array2::eye(n_features) * 1.0;
2330        let process_noise_matrix: Array2<f64> = Array2::eye(n_features) * process_noise;
2331        let measurement_noise_scalar = measurement_noise;
2332
2333        // Kalman filter updates
2334        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
2335            let x = feature_vec.slice(s![..n_features]).to_owned();
2336            let y = target_vec.slice(s![..n_outputs]).to_owned();
2337
2338            // Prediction step
2339            let predicted_covariance = &state_covariance + &process_noise_matrix;
2340
2341            // Update step for each output
2342            for output_idx in 0..n_outputs {
2343                let measurement = y[output_idx];
2344                let prediction = self.predict_single_output(feature_vec, output_idx)?;
2345
2346                // Kalman gain
2347                let s = x.dot(&predicted_covariance.dot(&x)) + measurement_noise_scalar;
2348                if s > 1e-15 {
2349                    let k = predicted_covariance.dot(&x) / s;
2350
2351                    // Update weights
2352                    let innovation = measurement - prediction;
2353                    for feature_idx in 0..n_features {
2354                        self.output_weights[[output_idx, feature_idx]] +=
2355                            k[feature_idx] * innovation;
2356                    }
2357
2358                    // Update covariance
2359                    let kh = k
2360                        .view()
2361                        .insert_axis(Axis(1))
2362                        .dot(&x.view().insert_axis(Axis(0)));
2363                    state_covariance = &predicted_covariance - &kh.dot(&predicted_covariance);
2364                }
2365            }
2366        }
2367
2368        Ok(())
2369    }
2370
2371    /// Predict single output value
2372    fn predict_single_output(&self, features: &Array1<f64>, output_idx: usize) -> Result<f64> {
2373        let feature_size = features.len().min(self.output_weights.ncols());
2374        let mut output = 0.0;
2375
2376        for j in 0..feature_size {
2377            output += self.output_weights[[output_idx, j]] * features[j];
2378        }
2379
2380        Ok(output)
2381    }
2382
2383    /// Analyze memory capacity
2384    fn analyze_memory_capacity(&mut self, features: &[Array1<f64>]) -> Result<()> {
2385        // Linear memory capacity
2386        let linear_capacity = self.estimate_linear_memory_capacity(features)?;
2387        self.reservoir_state.memory_metrics.linear_capacity = linear_capacity;
2388
2389        // Nonlinear memory capacity
2390        if self.config.memory_config.enable_nonlinear {
2391            let nonlinear_capacity = self.estimate_nonlinear_memory_capacity(features)?;
2392            self.reservoir_state.memory_metrics.nonlinear_capacity = nonlinear_capacity;
2393        }
2394
2395        // Total capacity
2396        self.reservoir_state.memory_metrics.total_capacity =
2397            self.reservoir_state.memory_metrics.linear_capacity
2398                + self.reservoir_state.memory_metrics.nonlinear_capacity;
2399
2400        // Information processing capacity
2401        if self.config.memory_config.enable_ipc {
2402            let ipc = self.estimate_information_processing_capacity(features)?;
2403            self.reservoir_state.memory_metrics.processing_capacity = ipc;
2404        }
2405
2406        // Update memory analyzer
2407        self.memory_analyzer.capacity_estimates.insert(
2408            "linear".to_string(),
2409            self.reservoir_state.memory_metrics.linear_capacity,
2410        );
2411        self.memory_analyzer.capacity_estimates.insert(
2412            "nonlinear".to_string(),
2413            self.reservoir_state.memory_metrics.nonlinear_capacity,
2414        );
2415        self.memory_analyzer.capacity_estimates.insert(
2416            "total".to_string(),
2417            self.reservoir_state.memory_metrics.total_capacity,
2418        );
2419
2420        Ok(())
2421    }
2422
2423    /// Estimate linear memory capacity
2424    fn estimate_linear_memory_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
2425        // Use correlation analysis to estimate linear memory
2426        let mut capacity = 0.0;
2427
2428        for lag in 1..=20 {
2429            if lag < features.len() {
2430                let mut correlation = 0.0;
2431                let mut count = 0;
2432
2433                for i in lag..features.len() {
2434                    for j in 0..features[i].len().min(features[i - lag].len()) {
2435                        correlation += features[i][j] * features[i - lag][j];
2436                        count += 1;
2437                    }
2438                }
2439
2440                if count > 0 {
2441                    correlation /= f64::from(count);
2442                    capacity += correlation.abs();
2443                }
2444            }
2445        }
2446
2447        Ok(capacity)
2448    }
2449
2450    /// Estimate nonlinear memory capacity
2451    fn estimate_nonlinear_memory_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
2452        let mut nonlinear_capacity = 0.0;
2453
2454        // Test various nonlinear functions
2455        for order in &self.config.memory_config.nonlinearity_orders {
2456            let capacity_order = self.test_nonlinear_order(*order, features)?;
2457            nonlinear_capacity += capacity_order;
2458        }
2459
2460        Ok(nonlinear_capacity)
2461    }
2462
2463    /// Test specific nonlinear order
2464    fn test_nonlinear_order(&self, order: usize, features: &[Array1<f64>]) -> Result<f64> {
2465        let mut capacity = 0.0;
2466
2467        // Generate nonlinear target function
2468        for lag in 1..=10 {
2469            if lag < features.len() {
2470                let mut correlation = 0.0;
2471                let mut count = 0;
2472
2473                for i in lag..features.len() {
2474                    for j in 0..features[i].len().min(features[i - lag].len()) {
2475                        // Nonlinear transformation
2476                        let current = features[i][j];
2477                        let past = features[i - lag][j];
2478                        let nonlinear_target = past.powi(order as i32);
2479
2480                        correlation += current * nonlinear_target;
2481                        count += 1;
2482                    }
2483                }
2484
2485                if count > 0 {
2486                    correlation /= f64::from(count);
2487                    capacity += correlation.abs() / order as f64; // Normalize by order
2488                }
2489            }
2490        }
2491
2492        Ok(capacity)
2493    }
2494
2495    /// Estimate information processing capacity
2496    fn estimate_information_processing_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
2497        let mut ipc = 0.0;
2498
2499        for ipc_function in &self.config.memory_config.ipc_functions {
2500            let capacity_func = self.test_ipc_function(*ipc_function, features)?;
2501            ipc += capacity_func;
2502        }
2503
2504        Ok(ipc)
2505    }
2506
2507    /// Test specific IPC function
2508    fn test_ipc_function(&self, function: IPCFunction, features: &[Array1<f64>]) -> Result<f64> {
2509        let mut capacity = 0.0;
2510
2511        for lag in 1..=10 {
2512            if lag < features.len() {
2513                let mut correlation = 0.0;
2514                let mut count = 0;
2515
2516                for i in lag..features.len() {
2517                    for j in 0..features[i].len().min(features[i - lag].len()) {
2518                        let current = features[i][j];
2519                        let past = features[i - lag][j];
2520
2521                        let target = match function {
2522                            IPCFunction::Linear => past,
2523                            IPCFunction::Quadratic => past * past,
2524                            IPCFunction::Cubic => past * past * past,
2525                            IPCFunction::Sine => past.sin(),
2526                            IPCFunction::Product => {
2527                                if j > 0 && j - 1 < features[i - lag].len() {
2528                                    past * features[i - lag][j - 1]
2529                                } else {
2530                                    past
2531                                }
2532                            }
2533                            IPCFunction::XOR => {
2534                                if past > 0.0 {
2535                                    1.0
2536                                } else {
2537                                    -1.0
2538                                }
2539                            }
2540                        };
2541
2542                        correlation += current * target;
2543                        count += 1;
2544                    }
2545                }
2546
2547                if count > 0 {
2548                    correlation /= f64::from(count);
2549                    capacity += correlation.abs();
2550                }
2551            }
2552        }
2553
2554        Ok(capacity)
2555    }
2556
2557    /// Solve linear system (simplified implementation)
2558    fn solve_linear_system(&mut self, a: &Array2<f64>, b: &Array2<f64>) -> Result<()> {
2559        let min_dim = a.nrows().min(a.ncols()).min(b.nrows());
2560
2561        for i in 0..min_dim.min(self.output_weights.nrows()) {
2562            for j in 0..b.ncols().min(self.output_weights.ncols()) {
2563                if a[[i, i]].abs() > 1e-15 {
2564                    self.output_weights[[i, j]] = b[[i, j]] / a[[i, i]];
2565                }
2566            }
2567        }
2568
2569        Ok(())
2570    }
2571
2572    /// Evaluate performance on training data
2573    fn evaluate_performance(
2574        &self,
2575        features: &[Array1<f64>],
2576        targets: &[Array1<f64>],
2577    ) -> Result<(f64, f64)> {
2578        if features.is_empty() || targets.is_empty() {
2579            return Ok((0.0, 0.0));
2580        }
2581
2582        let mut total_error = 0.0;
2583        let n_samples = features.len().min(targets.len());
2584
2585        for i in 0..n_samples {
2586            let prediction = self.predict_output(&features[i])?;
2587            let error = self.calculate_prediction_error(&prediction, &targets[i]);
2588            total_error += error;
2589        }
2590
2591        let training_error = total_error / n_samples as f64;
2592
2593        // Use same error for test (in practice, would use separate test set)
2594        let test_error = training_error;
2595
2596        Ok((training_error, test_error))
2597    }
2598
2599    /// Predict output for given features
2600    fn predict_output(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
2601        let feature_size = features.len().min(self.output_weights.ncols());
2602        let output_size = self.output_weights.nrows();
2603
2604        let mut output = Array1::zeros(output_size);
2605
2606        for i in 0..output_size {
2607            for j in 0..feature_size {
2608                output[i] += self.output_weights[[i, j]] * features[j];
2609            }
2610        }
2611
2612        Ok(output)
2613    }
2614
2615    /// Calculate prediction error
2616    fn calculate_prediction_error(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> f64 {
2617        let min_len = prediction.len().min(target.len());
2618        let mut error = 0.0;
2619
2620        for i in 0..min_len {
2621            let diff = prediction[i] - target[i];
2622            error += diff * diff;
2623        }
2624
2625        (error / min_len as f64).sqrt() // RMSE
2626    }
2627
2628    /// Estimate echo state property
2629    fn estimate_echo_state_property(&self) -> Result<f64> {
2630        let coupling = self.config.coupling_strength;
2631        let estimated_spectral_radius = coupling.tanh(); // Heuristic estimate
2632
2633        // Echo state property requires spectral radius < 1
2634        Ok(if estimated_spectral_radius < 1.0 {
2635            1.0
2636        } else {
2637            1.0 / estimated_spectral_radius
2638        })
2639    }
2640
2641    /// Update processing time metrics
2642    fn update_processing_time(&mut self, time_ms: f64) {
2643        let count = self.metrics.training_examples as f64;
2644        self.metrics.avg_processing_time_ms =
2645            self.metrics.avg_processing_time_ms.mul_add(count, time_ms) / (count + 1.0);
2646    }
2647
2648    /// Get current metrics
2649    pub const fn get_metrics(&self) -> &ReservoirMetrics {
2650        &self.metrics
2651    }
2652
2653    /// Get memory analysis results
2654    pub const fn get_memory_analysis(&self) -> &MemoryAnalyzer {
2655        &self.memory_analyzer
2656    }
2657
2658    /// Reset reservoir computer
2659    pub fn reset(&mut self) -> Result<()> {
2660        self.reservoir_state =
2661            QuantumReservoirState::new(self.config.num_qubits, self.config.memory_capacity);
2662        self.metrics = ReservoirMetrics::default();
2663        self.training_history.clear();
2664        Ok(())
2665    }
2666}
2667
2668impl TimeSeriesPredictor {
2669    /// Create new time series predictor
2670    #[must_use]
2671    pub fn new(config: &TimeSeriesConfig) -> Self {
2672        Self {
2673            arima_params: ARIMAParams {
2674                ar_coeffs: Array1::zeros(config.ar_order),
2675                ma_coeffs: Array1::zeros(config.ma_order),
2676                diff_order: config.diff_order,
2677                residuals: VecDeque::with_capacity(config.ma_order),
2678                variance: 1.0,
2679            },
2680            nar_state: NARState {
2681                order: config.nar_order,
2682                coeffs: Array2::zeros((config.nar_order, config.nar_order)),
2683                history: VecDeque::with_capacity(config.nar_order),
2684                activation: ActivationFunction::Tanh,
2685            },
2686            kernel_weights: Array1::from_vec(config.kernel_params.clone()),
2687            trend_model: TrendModel {
2688                params: vec![0.0, 0.0], // Linear trend: intercept, slope
2689                strength: 0.0,
2690                direction: 0.0,
2691            },
2692        }
2693    }
2694}
2695
2696impl MemoryAnalyzer {
2697    /// Create new memory analyzer
2698    #[must_use]
2699    pub fn new(config: MemoryAnalysisConfig) -> Self {
2700        Self {
2701            config,
2702            capacity_estimates: HashMap::new(),
2703            nonlinearity_measures: HashMap::new(),
2704            temporal_correlations: Array2::zeros((0, 0)),
2705            ipc_metrics: HashMap::new(),
2706        }
2707    }
2708}
2709
2710/// Enhanced training result
2711#[derive(Debug, Clone, Serialize, Deserialize)]
2712pub struct TrainingResult {
2713    /// Training error (RMSE)
2714    pub training_error: f64,
2715    /// Test error (RMSE)
2716    pub test_error: f64,
2717    /// Training time in milliseconds
2718    pub training_time_ms: f64,
2719    /// Number of training examples
2720    pub num_examples: usize,
2721    /// Echo state property measure
2722    pub echo_state_property: f64,
2723    /// Memory capacity estimate
2724    pub memory_capacity: f64,
2725    /// Nonlinear memory capacity
2726    pub nonlinear_capacity: f64,
2727    /// Information processing capacity
2728    pub processing_capacity: f64,
2729}
2730
2731/// Comprehensive benchmark for enhanced quantum reservoir computing
2732pub fn benchmark_enhanced_quantum_reservoir_computing() -> Result<HashMap<String, f64>> {
2733    let mut results = HashMap::new();
2734
2735    // Test different enhanced reservoir configurations
2736    let configs = vec![
2737        QuantumReservoirConfig {
2738            num_qubits: 6,
2739            architecture: QuantumReservoirArchitecture::RandomCircuit,
2740            learning_config: AdvancedLearningConfig {
2741                algorithm: LearningAlgorithm::Ridge,
2742                ..Default::default()
2743            },
2744            ..Default::default()
2745        },
2746        QuantumReservoirConfig {
2747            num_qubits: 8,
2748            architecture: QuantumReservoirArchitecture::ScaleFree,
2749            learning_config: AdvancedLearningConfig {
2750                algorithm: LearningAlgorithm::LASSO,
2751                ..Default::default()
2752            },
2753            ..Default::default()
2754        },
2755        QuantumReservoirConfig {
2756            num_qubits: 6,
2757            architecture: QuantumReservoirArchitecture::HierarchicalModular,
2758            learning_config: AdvancedLearningConfig {
2759                algorithm: LearningAlgorithm::RecursiveLeastSquares,
2760                ..Default::default()
2761            },
2762            memory_config: MemoryAnalysisConfig {
2763                enable_capacity_estimation: true,
2764                enable_nonlinear: true,
2765                ..Default::default()
2766            },
2767            ..Default::default()
2768        },
2769        QuantumReservoirConfig {
2770            num_qubits: 8,
2771            architecture: QuantumReservoirArchitecture::Grid,
2772            dynamics: ReservoirDynamics::Floquet,
2773            input_encoding: InputEncoding::Angle,
2774            output_measurement: OutputMeasurement::TemporalCorrelations,
2775            ..Default::default()
2776        },
2777    ];
2778
2779    for (i, config) in configs.into_iter().enumerate() {
2780        let start = std::time::Instant::now();
2781
2782        let mut qrc = QuantumReservoirComputerEnhanced::new(config)?;
2783
2784        // Generate enhanced test data
2785        let training_data = ReservoirTrainingData::new(
2786            (0..200)
2787                .map(|i| {
2788                    Array1::from_vec(vec![
2789                        (f64::from(i) * 0.1).sin(),
2790                        (f64::from(i) * 0.1).cos(),
2791                        (f64::from(i) * 0.05).sin() * (f64::from(i) * 0.2).cos(),
2792                    ])
2793                })
2794                .collect(),
2795            (0..200)
2796                .map(|i| Array1::from_vec(vec![f64::from(i).mul_add(0.1, 1.0).sin()]))
2797                .collect(),
2798            (0..200).map(|i| f64::from(i) * 0.1).collect(),
2799        );
2800
2801        // Train and test
2802        let training_result = qrc.train(&training_data)?;
2803
2804        let time = start.elapsed().as_secs_f64() * 1000.0;
2805        results.insert(format!("enhanced_config_{i}"), time);
2806
2807        // Add enhanced performance metrics
2808        let metrics = qrc.get_metrics();
2809        results.insert(
2810            format!("enhanced_config_{i}_accuracy"),
2811            metrics.prediction_accuracy,
2812        );
2813        results.insert(
2814            format!("enhanced_config_{i}_memory_capacity"),
2815            training_result.memory_capacity,
2816        );
2817        results.insert(
2818            format!("enhanced_config_{i}_nonlinear_capacity"),
2819            training_result.nonlinear_capacity,
2820        );
2821        results.insert(
2822            format!("enhanced_config_{i}_processing_capacity"),
2823            training_result.processing_capacity,
2824        );
2825        results.insert(
2826            format!("enhanced_config_{i}_quantum_advantage"),
2827            metrics.quantum_advantage,
2828        );
2829        results.insert(
2830            format!("enhanced_config_{i}_efficiency"),
2831            metrics.reservoir_efficiency,
2832        );
2833
2834        // Memory analysis results
2835        let memory_analyzer = qrc.get_memory_analysis();
2836        if let Some(&linear_capacity) = memory_analyzer.capacity_estimates.get("linear") {
2837            results.insert(
2838                format!("enhanced_config_{i}_linear_memory"),
2839                linear_capacity,
2840            );
2841        }
2842        if let Some(&total_capacity) = memory_analyzer.capacity_estimates.get("total") {
2843            results.insert(format!("enhanced_config_{i}_total_memory"), total_capacity);
2844        }
2845    }
2846
2847    Ok(results)
2848}
2849
2850#[cfg(test)]
2851mod tests {
2852    use super::*;
2853    use approx::assert_abs_diff_eq;
2854
2855    #[test]
2856    fn test_enhanced_quantum_reservoir_creation() {
2857        let config = QuantumReservoirConfig::default();
2858        let qrc = QuantumReservoirComputerEnhanced::new(config);
2859        assert!(qrc.is_ok());
2860    }
2861
2862    #[test]
2863    fn test_enhanced_reservoir_state_creation() {
2864        let state = QuantumReservoirState::new(3, 10);
2865        assert_eq!(state.state_vector.len(), 8); // 2^3
2866        assert_eq!(state.state_history.capacity(), 10);
2867        assert_eq!(state.time_index, 0);
2868        assert!(state.memory_metrics.total_capacity >= 0.0);
2869    }
2870
2871    #[test]
2872    fn test_enhanced_input_processing() {
2873        let config = QuantumReservoirConfig {
2874            num_qubits: 3,
2875            evolution_steps: 2,
2876            ..Default::default()
2877        };
2878        let mut qrc = QuantumReservoirComputerEnhanced::new(config).expect("Failed to create QRC");
2879
2880        let input = Array1::from_vec(vec![0.5, 0.3, 0.8]);
2881        let result = qrc.process_input(&input);
2882        assert!(result.is_ok());
2883
2884        let features = result.expect("Failed to process input");
2885        assert!(!features.is_empty());
2886    }
2887
2888    #[test]
2889    fn test_enhanced_architectures() {
2890        let architectures = vec![
2891            QuantumReservoirArchitecture::RandomCircuit,
2892            QuantumReservoirArchitecture::SpinChain,
2893            QuantumReservoirArchitecture::ScaleFree,
2894            QuantumReservoirArchitecture::HierarchicalModular,
2895            QuantumReservoirArchitecture::Ring,
2896            QuantumReservoirArchitecture::Grid,
2897        ];
2898
2899        for arch in architectures {
2900            let config = QuantumReservoirConfig {
2901                num_qubits: 4,
2902                architecture: arch,
2903                evolution_steps: 2,
2904                ..Default::default()
2905            };
2906
2907            let qrc = QuantumReservoirComputerEnhanced::new(config);
2908            assert!(qrc.is_ok(), "Failed for architecture: {arch:?}");
2909        }
2910    }
2911
2912    #[test]
2913    fn test_advanced_learning_algorithms() {
2914        let algorithms = vec![
2915            LearningAlgorithm::Ridge,
2916            LearningAlgorithm::LASSO,
2917            LearningAlgorithm::ElasticNet,
2918            LearningAlgorithm::RecursiveLeastSquares,
2919        ];
2920
2921        for algorithm in algorithms {
2922            let config = QuantumReservoirConfig {
2923                num_qubits: 3,
2924                learning_config: AdvancedLearningConfig {
2925                    algorithm,
2926                    ..Default::default()
2927                },
2928                ..Default::default()
2929            };
2930
2931            let qrc = QuantumReservoirComputerEnhanced::new(config);
2932            assert!(qrc.is_ok(), "Failed for algorithm: {algorithm:?}");
2933        }
2934    }
2935
2936    #[test]
2937    fn test_enhanced_encoding_methods() {
2938        let encodings = vec![
2939            InputEncoding::Amplitude,
2940            InputEncoding::Phase,
2941            InputEncoding::BasisState,
2942            InputEncoding::Angle,
2943        ];
2944
2945        for encoding in encodings {
2946            let config = QuantumReservoirConfig {
2947                num_qubits: 3,
2948                input_encoding: encoding,
2949                ..Default::default()
2950            };
2951            let mut qrc =
2952                QuantumReservoirComputerEnhanced::new(config).expect("Failed to create QRC");
2953
2954            let input = Array1::from_vec(vec![0.5, 0.3]);
2955            let result = qrc.encode_input(&input);
2956            assert!(result.is_ok(), "Failed for encoding: {encoding:?}");
2957        }
2958    }
2959
2960    #[test]
2961    fn test_enhanced_measurement_strategies() {
2962        let measurements = vec![
2963            OutputMeasurement::PauliExpectation,
2964            OutputMeasurement::Probability,
2965            OutputMeasurement::Correlations,
2966            OutputMeasurement::Entanglement,
2967            OutputMeasurement::QuantumFisherInformation,
2968            OutputMeasurement::Variance,
2969            OutputMeasurement::QuantumCoherence,
2970            OutputMeasurement::Purity,
2971            OutputMeasurement::TemporalCorrelations,
2972        ];
2973
2974        for measurement in measurements {
2975            let config = QuantumReservoirConfig {
2976                num_qubits: 3,
2977                output_measurement: measurement,
2978                ..Default::default()
2979            };
2980
2981            let qrc = QuantumReservoirComputerEnhanced::new(config);
2982            assert!(qrc.is_ok(), "Failed for measurement: {measurement:?}");
2983        }
2984    }
2985
2986    #[test]
2987    fn test_enhanced_reservoir_dynamics() {
2988        let dynamics = vec![
2989            ReservoirDynamics::Unitary,
2990            ReservoirDynamics::Open,
2991            ReservoirDynamics::NISQ,
2992            ReservoirDynamics::Floquet,
2993        ];
2994
2995        for dynamic in dynamics {
2996            let config = QuantumReservoirConfig {
2997                num_qubits: 3,
2998                dynamics: dynamic,
2999                evolution_steps: 1,
3000                ..Default::default()
3001            };
3002
3003            let mut qrc =
3004                QuantumReservoirComputerEnhanced::new(config).expect("Failed to create QRC");
3005            let result = qrc.evolve_reservoir();
3006            assert!(result.is_ok(), "Failed for dynamics: {dynamic:?}");
3007        }
3008    }
3009
3010    #[test]
3011    fn test_memory_analysis() {
3012        let config = QuantumReservoirConfig {
3013            num_qubits: 4,
3014            memory_config: MemoryAnalysisConfig {
3015                enable_capacity_estimation: true,
3016                enable_nonlinear: true,
3017                enable_ipc: true,
3018                ..Default::default()
3019            },
3020            ..Default::default()
3021        };
3022
3023        let qrc = QuantumReservoirComputerEnhanced::new(config).expect("Failed to create QRC");
3024        let memory_analyzer = qrc.get_memory_analysis();
3025
3026        assert!(memory_analyzer.config.enable_capacity_estimation);
3027        assert!(memory_analyzer.config.enable_nonlinear);
3028        assert!(memory_analyzer.config.enable_ipc);
3029    }
3030
3031    #[test]
3032    fn test_enhanced_training_data() {
3033        let training_data = ReservoirTrainingData::new(
3034            vec![
3035                Array1::from_vec(vec![0.1, 0.2]),
3036                Array1::from_vec(vec![0.3, 0.4]),
3037            ],
3038            vec![Array1::from_vec(vec![0.5]), Array1::from_vec(vec![0.6])],
3039            vec![0.0, 1.0],
3040        )
3041        .with_features(vec![
3042            Array1::from_vec(vec![0.7, 0.8]),
3043            Array1::from_vec(vec![0.9, 1.0]),
3044        ])
3045        .with_labels(vec![0, 1])
3046        .with_weights(vec![1.0, 1.0]);
3047
3048        assert_eq!(training_data.len(), 2);
3049        assert!(training_data.features.is_some());
3050        assert!(training_data.labels.is_some());
3051        assert!(training_data.sample_weights.is_some());
3052
3053        let (train, test) = training_data.train_test_split(0.5);
3054        assert_eq!(train.len(), 1);
3055        assert_eq!(test.len(), 1);
3056    }
3057
3058    #[test]
3059    fn test_time_series_predictor() {
3060        let config = TimeSeriesConfig::default();
3061        let predictor = TimeSeriesPredictor::new(&config);
3062
3063        assert_eq!(predictor.arima_params.ar_coeffs.len(), config.ar_order);
3064        assert_eq!(predictor.arima_params.ma_coeffs.len(), config.ma_order);
3065        assert_eq!(predictor.nar_state.order, config.nar_order);
3066    }
3067
3068    #[test]
3069    fn test_enhanced_metrics_tracking() {
3070        let config = QuantumReservoirConfig::default();
3071        let qrc = QuantumReservoirComputerEnhanced::new(config).expect("Failed to create QRC");
3072
3073        let metrics = qrc.get_metrics();
3074        assert_eq!(metrics.training_examples, 0);
3075        assert_eq!(metrics.prediction_accuracy, 0.0);
3076        assert_eq!(metrics.memory_capacity, 0.0);
3077        assert_eq!(metrics.nonlinear_memory_capacity, 0.0);
3078        assert_eq!(metrics.quantum_advantage, 0.0);
3079    }
3080
3081    #[test]
3082    fn test_enhanced_feature_sizes() {
3083        let measurements = vec![
3084            (OutputMeasurement::PauliExpectation, 24), // 8 qubits * 3 Pauli
3085            (OutputMeasurement::QuantumFisherInformation, 8), // 8 qubits
3086            (OutputMeasurement::Variance, 24),         // 8 qubits * 3 Pauli
3087            (OutputMeasurement::Purity, 1),            // Single value
3088        ];
3089
3090        for (measurement, expected_size) in measurements {
3091            let config = QuantumReservoirConfig {
3092                num_qubits: 8,
3093                output_measurement: measurement,
3094                ..Default::default()
3095            };
3096
3097            let feature_size = QuantumReservoirComputerEnhanced::calculate_feature_size(&config);
3098            assert_eq!(
3099                feature_size, expected_size,
3100                "Feature size mismatch for {measurement:?}"
3101            );
3102        }
3103    }
3104}