quantrs2_sim/
quantum_inspired_classical.rs

1//! Quantum-Inspired Classical Algorithms Framework
2//!
3//! This module provides a comprehensive implementation of quantum-inspired classical algorithms
4//! that leverage quantum mechanical principles, quantum physics concepts, and quantum computation
5//! techniques while running on classical computers. These algorithms often provide advantages
6//! over traditional classical algorithms by incorporating quantum-inspired heuristics.
7
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::random::{thread_rng, Rng};
10use scirs2_core::Complex64;
11use serde::{Deserialize, Serialize};
12use std::collections::HashMap;
13use std::f64::consts::PI;
14use std::sync::{Arc, Mutex};
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18use scirs2_core::random::prelude::*;
19
20/// Quantum-inspired classical algorithms configuration
21#[derive(Debug, Clone, Serialize, Deserialize)]
22pub struct QuantumInspiredConfig {
23    /// Number of classical variables/qubits to simulate
24    pub num_variables: usize,
25    /// Algorithm category to use
26    pub algorithm_category: AlgorithmCategory,
27    /// Specific algorithm configuration
28    pub algorithm_config: AlgorithmConfig,
29    /// Optimization settings
30    pub optimization_config: OptimizationConfig,
31    /// Machine learning settings (when applicable)
32    pub ml_config: Option<MLConfig>,
33    /// Sampling algorithm settings
34    pub sampling_config: SamplingConfig,
35    /// Linear algebra settings
36    pub linalg_config: LinalgConfig,
37    /// Graph algorithm settings
38    pub graph_config: GraphConfig,
39    /// Performance benchmarking settings
40    pub benchmarking_config: BenchmarkingConfig,
41    /// Enable quantum-inspired heuristics
42    pub enable_quantum_heuristics: bool,
43    /// Precision for calculations
44    pub precision: f64,
45    /// Random seed for reproducibility
46    pub random_seed: Option<u64>,
47}
48
49impl Default for QuantumInspiredConfig {
50    fn default() -> Self {
51        Self {
52            num_variables: 16,
53            algorithm_category: AlgorithmCategory::Optimization,
54            algorithm_config: AlgorithmConfig::default(),
55            optimization_config: OptimizationConfig::default(),
56            ml_config: Some(MLConfig::default()),
57            sampling_config: SamplingConfig::default(),
58            linalg_config: LinalgConfig::default(),
59            graph_config: GraphConfig::default(),
60            benchmarking_config: BenchmarkingConfig::default(),
61            enable_quantum_heuristics: true,
62            precision: 1e-8,
63            random_seed: None,
64        }
65    }
66}
67
68/// Categories of quantum-inspired algorithms
69#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
70pub enum AlgorithmCategory {
71    /// Quantum-inspired optimization algorithms
72    Optimization,
73    /// Quantum-inspired machine learning algorithms
74    MachineLearning,
75    /// Quantum-inspired sampling algorithms
76    Sampling,
77    /// Quantum-inspired linear algebra algorithms
78    LinearAlgebra,
79    /// Quantum-inspired graph algorithms
80    GraphAlgorithms,
81    /// Hybrid quantum-classical algorithms
82    HybridQuantumClassical,
83}
84
85/// Algorithm-specific configuration
86#[derive(Debug, Clone, Serialize, Deserialize)]
87pub struct AlgorithmConfig {
88    /// Maximum number of iterations
89    pub max_iterations: usize,
90    /// Convergence tolerance
91    pub tolerance: f64,
92    /// Population size (for evolutionary algorithms)
93    pub population_size: usize,
94    /// Elite ratio (for genetic algorithms)
95    pub elite_ratio: f64,
96    /// Mutation rate
97    pub mutation_rate: f64,
98    /// Crossover rate
99    pub crossover_rate: f64,
100    /// Temperature schedule (for simulated annealing)
101    pub temperature_schedule: TemperatureSchedule,
102    /// Quantum-inspired parameters
103    pub quantum_parameters: QuantumParameters,
104}
105
106impl Default for AlgorithmConfig {
107    fn default() -> Self {
108        Self {
109            max_iterations: 1000,
110            tolerance: 1e-6,
111            population_size: 100,
112            elite_ratio: 0.1,
113            mutation_rate: 0.1,
114            crossover_rate: 0.8,
115            temperature_schedule: TemperatureSchedule::Exponential,
116            quantum_parameters: QuantumParameters::default(),
117        }
118    }
119}
120
121/// Temperature schedule for simulated annealing-like algorithms
122#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
123pub enum TemperatureSchedule {
124    /// Exponential cooling
125    Exponential,
126    /// Linear cooling
127    Linear,
128    /// Logarithmic cooling
129    Logarithmic,
130    /// Quantum-inspired adiabatic schedule
131    QuantumAdiabatic,
132    /// Custom schedule
133    Custom,
134}
135
136/// Quantum-inspired parameters
137#[derive(Debug, Clone, Serialize, Deserialize)]
138pub struct QuantumParameters {
139    /// Superposition coefficient
140    pub superposition_strength: f64,
141    /// Entanglement strength
142    pub entanglement_strength: f64,
143    /// Interference strength
144    pub interference_strength: f64,
145    /// Quantum tunneling probability
146    pub tunneling_probability: f64,
147    /// Decoherence rate
148    pub decoherence_rate: f64,
149    /// Measurement probability
150    pub measurement_probability: f64,
151    /// Quantum walk parameters
152    pub quantum_walk_params: QuantumWalkParams,
153}
154
155impl Default for QuantumParameters {
156    fn default() -> Self {
157        Self {
158            superposition_strength: 0.5,
159            entanglement_strength: 0.3,
160            interference_strength: 0.2,
161            tunneling_probability: 0.1,
162            decoherence_rate: 0.01,
163            measurement_probability: 0.1,
164            quantum_walk_params: QuantumWalkParams::default(),
165        }
166    }
167}
168
169/// Quantum walk parameters
170#[derive(Debug, Clone, Serialize, Deserialize)]
171pub struct QuantumWalkParams {
172    /// Coin bias
173    pub coin_bias: f64,
174    /// Step size
175    pub step_size: f64,
176    /// Number of steps
177    pub num_steps: usize,
178    /// Walk dimension
179    pub dimension: usize,
180}
181
182impl Default for QuantumWalkParams {
183    fn default() -> Self {
184        Self {
185            coin_bias: 0.5,
186            step_size: 1.0,
187            num_steps: 100,
188            dimension: 1,
189        }
190    }
191}
192
193/// Optimization configuration
194#[derive(Debug, Clone, Serialize, Deserialize)]
195pub struct OptimizationConfig {
196    /// Optimization algorithm type
197    pub algorithm_type: OptimizationAlgorithm,
198    /// Objective function type
199    pub objective_function: ObjectiveFunction,
200    /// Search space bounds
201    pub bounds: Vec<(f64, f64)>,
202    /// Constraint handling method
203    pub constraint_method: ConstraintMethod,
204    /// Multi-objective optimization settings
205    pub multi_objective: bool,
206    /// Parallel processing settings
207    pub parallel_evaluation: bool,
208}
209
210impl Default for OptimizationConfig {
211    fn default() -> Self {
212        Self {
213            algorithm_type: OptimizationAlgorithm::QuantumGeneticAlgorithm,
214            objective_function: ObjectiveFunction::Quadratic,
215            bounds: vec![(-10.0, 10.0); 16],
216            constraint_method: ConstraintMethod::PenaltyFunction,
217            multi_objective: false,
218            parallel_evaluation: true,
219        }
220    }
221}
222
223/// Quantum-inspired optimization algorithms
224#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
225pub enum OptimizationAlgorithm {
226    /// Quantum-inspired genetic algorithm
227    QuantumGeneticAlgorithm,
228    /// Quantum-inspired particle swarm optimization
229    QuantumParticleSwarm,
230    /// Quantum-inspired simulated annealing
231    QuantumSimulatedAnnealing,
232    /// Quantum-inspired differential evolution
233    QuantumDifferentialEvolution,
234    /// Quantum approximate optimization algorithm (classical simulation)
235    ClassicalQAOA,
236    /// Variational quantum eigensolver (classical simulation)
237    ClassicalVQE,
238    /// Quantum-inspired ant colony optimization
239    QuantumAntColony,
240    /// Quantum-inspired harmony search
241    QuantumHarmonySearch,
242}
243
244/// Objective function types
245#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
246pub enum ObjectiveFunction {
247    /// Quadratic function
248    Quadratic,
249    /// Rastrigin function
250    Rastrigin,
251    /// Rosenbrock function
252    Rosenbrock,
253    /// Ackley function
254    Ackley,
255    /// Sphere function
256    Sphere,
257    /// Griewank function
258    Griewank,
259    /// Custom function
260    Custom,
261}
262
263/// Constraint handling methods
264#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
265pub enum ConstraintMethod {
266    /// Penalty function method
267    PenaltyFunction,
268    /// Barrier function method
269    BarrierFunction,
270    /// Lagrange multiplier method
271    LagrangeMultiplier,
272    /// Projection method
273    Projection,
274    /// Rejection method
275    Rejection,
276}
277
278/// Machine learning configuration
279#[derive(Debug, Clone, Serialize, Deserialize)]
280pub struct MLConfig {
281    /// ML algorithm type
282    pub algorithm_type: MLAlgorithm,
283    /// Network architecture
284    pub architecture: NetworkArchitecture,
285    /// Training configuration
286    pub training_config: TrainingConfig,
287    /// Tensor network configuration
288    pub tensor_network_config: TensorNetworkConfig,
289}
290
291impl Default for MLConfig {
292    fn default() -> Self {
293        Self {
294            algorithm_type: MLAlgorithm::QuantumInspiredNeuralNetwork,
295            architecture: NetworkArchitecture::default(),
296            training_config: TrainingConfig::default(),
297            tensor_network_config: TensorNetworkConfig::default(),
298        }
299    }
300}
301
302/// Quantum-inspired machine learning algorithms
303#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
304pub enum MLAlgorithm {
305    /// Quantum-inspired neural network
306    QuantumInspiredNeuralNetwork,
307    /// Tensor network machine learning
308    TensorNetworkML,
309    /// Matrix product state neural network
310    MPSNeuralNetwork,
311    /// Quantum-inspired autoencoder
312    QuantumInspiredAutoencoder,
313    /// Quantum-inspired reinforcement learning
314    QuantumInspiredRL,
315    /// Quantum-inspired support vector machine
316    QuantumInspiredSVM,
317    /// Quantum-inspired clustering
318    QuantumInspiredClustering,
319    /// Quantum-inspired dimensionality reduction
320    QuantumInspiredPCA,
321}
322
323/// Network architecture configuration
324#[derive(Debug, Clone, Serialize, Deserialize)]
325pub struct NetworkArchitecture {
326    /// Input dimension
327    pub input_dim: usize,
328    /// Hidden layers
329    pub hidden_layers: Vec<usize>,
330    /// Output dimension
331    pub output_dim: usize,
332    /// Activation function
333    pub activation: ActivationFunction,
334    /// Quantum-inspired connections
335    pub quantum_connections: bool,
336}
337
338impl Default for NetworkArchitecture {
339    fn default() -> Self {
340        Self {
341            input_dim: 16,
342            hidden_layers: vec![32, 16],
343            output_dim: 8,
344            activation: ActivationFunction::QuantumInspiredTanh,
345            quantum_connections: true,
346        }
347    }
348}
349
350/// Activation functions
351#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
352pub enum ActivationFunction {
353    /// Quantum-inspired tanh
354    QuantumInspiredTanh,
355    /// Quantum-inspired sigmoid
356    QuantumInspiredSigmoid,
357    /// Quantum-inspired `ReLU`
358    QuantumInspiredReLU,
359    /// Quantum-inspired softmax
360    QuantumInspiredSoftmax,
361    /// Quantum phase activation
362    QuantumPhase,
363}
364
365/// Training configuration
366#[derive(Debug, Clone, Serialize, Deserialize)]
367pub struct TrainingConfig {
368    /// Learning rate
369    pub learning_rate: f64,
370    /// Number of epochs
371    pub epochs: usize,
372    /// Batch size
373    pub batch_size: usize,
374    /// Optimizer type
375    pub optimizer: OptimizerType,
376    /// Regularization strength
377    pub regularization: f64,
378}
379
380impl Default for TrainingConfig {
381    fn default() -> Self {
382        Self {
383            learning_rate: 0.01,
384            epochs: 100,
385            batch_size: 32,
386            optimizer: OptimizerType::QuantumInspiredAdam,
387            regularization: 0.001,
388        }
389    }
390}
391
392/// Optimizer types
393#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
394pub enum OptimizerType {
395    /// Quantum-inspired Adam
396    QuantumInspiredAdam,
397    /// Quantum-inspired SGD
398    QuantumInspiredSGD,
399    /// Quantum natural gradient
400    QuantumNaturalGradient,
401    /// Quantum-inspired `RMSprop`
402    QuantumInspiredRMSprop,
403}
404
405/// Tensor network configuration
406#[derive(Debug, Clone, Serialize, Deserialize)]
407pub struct TensorNetworkConfig {
408    /// Bond dimension
409    pub bond_dimension: usize,
410    /// Network topology
411    pub topology: TensorTopology,
412    /// Contraction method
413    pub contraction_method: ContractionMethod,
414    /// Truncation threshold
415    pub truncation_threshold: f64,
416}
417
418impl Default for TensorNetworkConfig {
419    fn default() -> Self {
420        Self {
421            bond_dimension: 64,
422            topology: TensorTopology::MPS,
423            contraction_method: ContractionMethod::OptimalContraction,
424            truncation_threshold: 1e-12,
425        }
426    }
427}
428
429/// Tensor network topologies
430#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
431pub enum TensorTopology {
432    /// Matrix Product State
433    MPS,
434    /// Matrix Product Operator
435    MPO,
436    /// Tree Tensor Network
437    TTN,
438    /// Projected Entangled Pair State
439    PEPS,
440    /// Multi-scale Entanglement Renormalization Ansatz
441    MERA,
442}
443
444/// Contraction methods
445#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
446pub enum ContractionMethod {
447    /// Optimal contraction ordering
448    OptimalContraction,
449    /// Greedy contraction
450    GreedyContraction,
451    /// Dynamic programming contraction
452    DynamicProgramming,
453    /// Branch and bound contraction
454    BranchAndBound,
455}
456
457/// Sampling configuration
458#[derive(Debug, Clone, Serialize, Deserialize)]
459pub struct SamplingConfig {
460    /// Sampling algorithm type
461    pub algorithm_type: SamplingAlgorithm,
462    /// Number of samples
463    pub num_samples: usize,
464    /// Burn-in period
465    pub burn_in: usize,
466    /// Thinning factor
467    pub thinning: usize,
468    /// Proposal distribution
469    pub proposal_distribution: ProposalDistribution,
470    /// Wave function configuration
471    pub wave_function_config: WaveFunctionConfig,
472}
473
474impl Default for SamplingConfig {
475    fn default() -> Self {
476        Self {
477            algorithm_type: SamplingAlgorithm::QuantumInspiredMCMC,
478            num_samples: 10_000,
479            burn_in: 1000,
480            thinning: 10,
481            proposal_distribution: ProposalDistribution::Gaussian,
482            wave_function_config: WaveFunctionConfig::default(),
483        }
484    }
485}
486
487/// Quantum-inspired sampling algorithms
488#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
489pub enum SamplingAlgorithm {
490    /// Quantum-inspired Markov Chain Monte Carlo
491    QuantumInspiredMCMC,
492    /// Variational Monte Carlo with quantum-inspired wave functions
493    QuantumInspiredVMC,
494    /// Quantum-inspired importance sampling
495    QuantumInspiredImportanceSampling,
496    /// Path integral Monte Carlo (classical simulation)
497    ClassicalPIMC,
498    /// Quantum-inspired Gibbs sampling
499    QuantumInspiredGibbs,
500    /// Quantum-inspired Metropolis-Hastings
501    QuantumInspiredMetropolis,
502}
503
504/// Proposal distributions
505#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
506pub enum ProposalDistribution {
507    /// Gaussian distribution
508    Gaussian,
509    /// Uniform distribution
510    Uniform,
511    /// Cauchy distribution
512    Cauchy,
513    /// Quantum-inspired distribution
514    QuantumInspired,
515}
516
517/// Wave function configuration
518#[derive(Debug, Clone, Serialize, Deserialize)]
519pub struct WaveFunctionConfig {
520    /// Wave function type
521    pub wave_function_type: WaveFunctionType,
522    /// Number of variational parameters
523    pub num_parameters: usize,
524    /// Jastrow factor strength
525    pub jastrow_strength: f64,
526    /// Backflow parameters
527    pub backflow_enabled: bool,
528}
529
530impl Default for WaveFunctionConfig {
531    fn default() -> Self {
532        Self {
533            wave_function_type: WaveFunctionType::SlaterJastrow,
534            num_parameters: 32,
535            jastrow_strength: 1.0,
536            backflow_enabled: false,
537        }
538    }
539}
540
541/// Wave function types
542#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
543pub enum WaveFunctionType {
544    /// Slater-Jastrow wave function
545    SlaterJastrow,
546    /// Quantum-inspired neural network wave function
547    QuantumNeuralNetwork,
548    /// Matrix product state wave function
549    MatrixProductState,
550    /// Pfaffian wave function
551    Pfaffian,
552    /// BCS wave function
553    BCS,
554}
555
556/// Linear algebra configuration
557#[derive(Debug, Clone, Serialize, Deserialize)]
558pub struct LinalgConfig {
559    /// Linear algebra algorithm type
560    pub algorithm_type: LinalgAlgorithm,
561    /// Matrix dimension
562    pub matrix_dimension: usize,
563    /// Precision requirements
564    pub precision: f64,
565    /// Maximum number of iterations
566    pub max_iterations: usize,
567    /// Krylov subspace dimension
568    pub krylov_dimension: usize,
569}
570
571impl Default for LinalgConfig {
572    fn default() -> Self {
573        Self {
574            algorithm_type: LinalgAlgorithm::QuantumInspiredLinearSolver,
575            matrix_dimension: 1024,
576            precision: 1e-8,
577            max_iterations: 1000,
578            krylov_dimension: 50,
579        }
580    }
581}
582
583/// Quantum-inspired linear algebra algorithms
584#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
585pub enum LinalgAlgorithm {
586    /// Quantum-inspired linear system solver
587    QuantumInspiredLinearSolver,
588    /// Quantum-inspired SVD
589    QuantumInspiredSVD,
590    /// Quantum-inspired eigenvalue solver
591    QuantumInspiredEigenSolver,
592    /// Quantum-inspired matrix inversion
593    QuantumInspiredInversion,
594    /// Quantum-inspired PCA
595    QuantumInspiredPCA,
596    /// Quantum-inspired matrix exponentiation
597    QuantumInspiredMatrixExp,
598}
599
600/// Graph algorithm configuration
601#[derive(Debug, Clone, Serialize, Deserialize)]
602pub struct GraphConfig {
603    /// Graph algorithm type
604    pub algorithm_type: GraphAlgorithm,
605    /// Number of vertices
606    pub num_vertices: usize,
607    /// Graph connectivity
608    pub connectivity: f64,
609    /// Walk parameters
610    pub walk_params: QuantumWalkParams,
611    /// Community detection parameters
612    pub community_params: CommunityDetectionParams,
613}
614
615impl Default for GraphConfig {
616    fn default() -> Self {
617        Self {
618            algorithm_type: GraphAlgorithm::QuantumInspiredRandomWalk,
619            num_vertices: 100,
620            connectivity: 0.1,
621            walk_params: QuantumWalkParams::default(),
622            community_params: CommunityDetectionParams::default(),
623        }
624    }
625}
626
627/// Quantum-inspired graph algorithms
628#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
629pub enum GraphAlgorithm {
630    /// Quantum-inspired random walk
631    QuantumInspiredRandomWalk,
632    /// Quantum-inspired shortest path
633    QuantumInspiredShortestPath,
634    /// Quantum-inspired graph coloring
635    QuantumInspiredGraphColoring,
636    /// Quantum-inspired community detection
637    QuantumInspiredCommunityDetection,
638    /// Quantum-inspired maximum cut
639    QuantumInspiredMaxCut,
640    /// Quantum-inspired graph matching
641    QuantumInspiredGraphMatching,
642}
643
644/// Community detection parameters
645#[derive(Debug, Clone, Serialize, Deserialize)]
646pub struct CommunityDetectionParams {
647    /// Resolution parameter
648    pub resolution: f64,
649    /// Number of iterations
650    pub num_iterations: usize,
651    /// Modularity threshold
652    pub modularity_threshold: f64,
653}
654
655impl Default for CommunityDetectionParams {
656    fn default() -> Self {
657        Self {
658            resolution: 1.0,
659            num_iterations: 100,
660            modularity_threshold: 0.01,
661        }
662    }
663}
664
665/// Benchmarking configuration
666#[derive(Debug, Clone, Serialize, Deserialize)]
667pub struct BenchmarkingConfig {
668    /// Enable benchmarking
669    pub enabled: bool,
670    /// Number of benchmark runs
671    pub num_runs: usize,
672    /// Benchmark classical algorithms for comparison
673    pub compare_classical: bool,
674    /// Record detailed metrics
675    pub detailed_metrics: bool,
676    /// Performance analysis settings
677    pub performance_analysis: PerformanceAnalysisConfig,
678}
679
680impl Default for BenchmarkingConfig {
681    fn default() -> Self {
682        Self {
683            enabled: true,
684            num_runs: 10,
685            compare_classical: true,
686            detailed_metrics: true,
687            performance_analysis: PerformanceAnalysisConfig::default(),
688        }
689    }
690}
691
692/// Performance analysis configuration
693#[derive(Debug, Clone, Serialize, Deserialize)]
694pub struct PerformanceAnalysisConfig {
695    /// Analyze convergence behavior
696    pub analyze_convergence: bool,
697    /// Analyze scalability
698    pub analyze_scalability: bool,
699    /// Analyze quantum advantage
700    pub analyze_quantum_advantage: bool,
701    /// Record memory usage
702    pub record_memory_usage: bool,
703}
704
705impl Default for PerformanceAnalysisConfig {
706    fn default() -> Self {
707        Self {
708            analyze_convergence: true,
709            analyze_scalability: true,
710            analyze_quantum_advantage: true,
711            record_memory_usage: true,
712        }
713    }
714}
715
716/// Main quantum-inspired classical algorithms framework
717#[derive(Debug)]
718pub struct QuantumInspiredFramework {
719    /// Configuration
720    config: QuantumInspiredConfig,
721    /// Current state
722    state: QuantumInspiredState,
723    /// `SciRS2` backend for numerical operations
724    backend: Option<SciRS2Backend>,
725    /// Performance statistics
726    stats: QuantumInspiredStats,
727    /// Random number generator
728    rng: Arc<Mutex<scirs2_core::random::CoreRandom>>,
729}
730
731/// Framework state
732#[derive(Debug)]
733pub struct QuantumInspiredState {
734    /// Current variables/solution
735    pub variables: Array1<f64>,
736    /// Current objective value
737    pub objective_value: f64,
738    /// Current iteration
739    pub iteration: usize,
740    /// Best solution found
741    pub best_solution: Array1<f64>,
742    /// Best objective value
743    pub best_objective: f64,
744    /// Convergence history
745    pub convergence_history: Vec<f64>,
746    /// Runtime statistics
747    pub runtime_stats: RuntimeStats,
748}
749
750/// Runtime statistics
751#[derive(Debug, Clone)]
752pub struct RuntimeStats {
753    /// Total function evaluations
754    pub function_evaluations: usize,
755    /// Total gradient evaluations
756    pub gradient_evaluations: usize,
757    /// Total CPU time (seconds)
758    pub cpu_time: f64,
759    /// Memory usage (bytes)
760    pub memory_usage: usize,
761    /// Quantum-inspired operations count
762    pub quantum_operations: usize,
763}
764
765impl Default for RuntimeStats {
766    fn default() -> Self {
767        Self {
768            function_evaluations: 0,
769            gradient_evaluations: 0,
770            cpu_time: 0.0,
771            memory_usage: 0,
772            quantum_operations: 0,
773        }
774    }
775}
776
777/// Framework statistics
778#[derive(Debug, Clone, Default)]
779pub struct QuantumInspiredStats {
780    /// Algorithm execution statistics
781    pub execution_stats: ExecutionStats,
782    /// Performance comparison statistics
783    pub comparison_stats: ComparisonStats,
784    /// Convergence analysis
785    pub convergence_analysis: ConvergenceAnalysis,
786    /// Quantum advantage metrics
787    pub quantum_advantage_metrics: QuantumAdvantageMetrics,
788}
789
790/// Execution statistics
791#[derive(Debug, Clone)]
792pub struct ExecutionStats {
793    /// Total runtime (seconds)
794    pub total_runtime: f64,
795    /// Average runtime per iteration (seconds)
796    pub avg_runtime_per_iteration: f64,
797    /// Peak memory usage (bytes)
798    pub peak_memory_usage: usize,
799    /// Successful runs
800    pub successful_runs: usize,
801    /// Failed runs
802    pub failed_runs: usize,
803}
804
805impl Default for ExecutionStats {
806    fn default() -> Self {
807        Self {
808            total_runtime: 0.0,
809            avg_runtime_per_iteration: 0.0,
810            peak_memory_usage: 0,
811            successful_runs: 0,
812            failed_runs: 0,
813        }
814    }
815}
816
817/// Performance comparison statistics
818#[derive(Debug, Clone)]
819pub struct ComparisonStats {
820    /// Quantum-inspired algorithm performance
821    pub quantum_inspired_performance: f64,
822    /// Classical algorithm performance
823    pub classical_performance: f64,
824    /// Speedup factor
825    pub speedup_factor: f64,
826    /// Solution quality comparison
827    pub solution_quality_ratio: f64,
828    /// Convergence speed comparison
829    pub convergence_speed_ratio: f64,
830}
831
832impl Default for ComparisonStats {
833    fn default() -> Self {
834        Self {
835            quantum_inspired_performance: 0.0,
836            classical_performance: 0.0,
837            speedup_factor: 1.0,
838            solution_quality_ratio: 1.0,
839            convergence_speed_ratio: 1.0,
840        }
841    }
842}
843
844/// Convergence analysis
845#[derive(Debug, Clone)]
846pub struct ConvergenceAnalysis {
847    /// Convergence rate
848    pub convergence_rate: f64,
849    /// Number of iterations to convergence
850    pub iterations_to_convergence: usize,
851    /// Final gradient norm
852    pub final_gradient_norm: f64,
853    /// Convergence achieved
854    pub converged: bool,
855    /// Convergence criterion
856    pub convergence_criterion: String,
857}
858
859impl Default for ConvergenceAnalysis {
860    fn default() -> Self {
861        Self {
862            convergence_rate: 0.0,
863            iterations_to_convergence: 0,
864            final_gradient_norm: f64::INFINITY,
865            converged: false,
866            convergence_criterion: "tolerance".to_string(),
867        }
868    }
869}
870
871/// Quantum advantage metrics
872#[derive(Debug, Clone)]
873pub struct QuantumAdvantageMetrics {
874    /// Theoretical quantum speedup
875    pub theoretical_speedup: f64,
876    /// Practical quantum advantage
877    pub practical_advantage: f64,
878    /// Problem complexity class
879    pub complexity_class: String,
880    /// Quantum resource requirements
881    pub quantum_resource_requirements: usize,
882    /// Classical resource requirements
883    pub classical_resource_requirements: usize,
884}
885
886impl Default for QuantumAdvantageMetrics {
887    fn default() -> Self {
888        Self {
889            theoretical_speedup: 1.0,
890            practical_advantage: 1.0,
891            complexity_class: "NP".to_string(),
892            quantum_resource_requirements: 0,
893            classical_resource_requirements: 0,
894        }
895    }
896}
897
898/// Optimization result
899#[derive(Debug, Clone)]
900pub struct OptimizationResult {
901    /// Optimal solution
902    pub solution: Array1<f64>,
903    /// Optimal objective value
904    pub objective_value: f64,
905    /// Number of iterations
906    pub iterations: usize,
907    /// Convergence achieved
908    pub converged: bool,
909    /// Runtime statistics
910    pub runtime_stats: RuntimeStats,
911    /// Algorithm-specific metadata
912    pub metadata: HashMap<String, f64>,
913}
914
915/// Machine learning training result
916#[derive(Debug, Clone)]
917pub struct MLTrainingResult {
918    /// Final model parameters
919    pub parameters: Array1<f64>,
920    /// Training loss history
921    pub loss_history: Vec<f64>,
922    /// Validation accuracy
923    pub validation_accuracy: f64,
924    /// Training time (seconds)
925    pub training_time: f64,
926    /// Model complexity metrics
927    pub complexity_metrics: HashMap<String, f64>,
928}
929
930/// Sampling result
931#[derive(Debug, Clone)]
932pub struct SamplingResult {
933    /// Generated samples
934    pub samples: Array2<f64>,
935    /// Sample statistics
936    pub statistics: SampleStatistics,
937    /// Acceptance rate
938    pub acceptance_rate: f64,
939    /// Effective sample size
940    pub effective_sample_size: usize,
941    /// Auto-correlation times
942    pub autocorr_times: Array1<f64>,
943}
944
945/// Sample statistics
946#[derive(Debug, Clone)]
947pub struct SampleStatistics {
948    /// Sample mean
949    pub mean: Array1<f64>,
950    /// Sample variance
951    pub variance: Array1<f64>,
952    /// Sample skewness
953    pub skewness: Array1<f64>,
954    /// Sample kurtosis
955    pub kurtosis: Array1<f64>,
956    /// Correlation matrix
957    pub correlation_matrix: Array2<f64>,
958}
959
960/// Linear algebra result
961#[derive(Debug, Clone)]
962pub struct LinalgResult {
963    /// Solution vector
964    pub solution: Array1<Complex64>,
965    /// Eigenvalues (if applicable)
966    pub eigenvalues: Option<Array1<Complex64>>,
967    /// Eigenvectors (if applicable)
968    pub eigenvectors: Option<Array2<Complex64>>,
969    /// Singular values (if applicable)
970    pub singular_values: Option<Array1<f64>>,
971    /// Residual norm
972    pub residual_norm: f64,
973    /// Number of iterations
974    pub iterations: usize,
975}
976
977/// Graph algorithm result
978#[derive(Debug, Clone)]
979pub struct GraphResult {
980    /// Solution (e.g., coloring, path, communities)
981    pub solution: Vec<usize>,
982    /// Objective value
983    pub objective_value: f64,
984    /// Graph metrics
985    pub graph_metrics: GraphMetrics,
986    /// Walk statistics (if applicable)
987    pub walk_stats: Option<WalkStatistics>,
988}
989
990/// Graph metrics
991#[derive(Debug, Clone)]
992pub struct GraphMetrics {
993    /// Modularity (for community detection)
994    pub modularity: f64,
995    /// Clustering coefficient
996    pub clustering_coefficient: f64,
997    /// Average path length
998    pub average_path_length: f64,
999    /// Graph diameter
1000    pub diameter: usize,
1001}
1002
1003/// Walk statistics
1004#[derive(Debug, Clone)]
1005pub struct WalkStatistics {
1006    /// Visit frequency
1007    pub visit_frequency: Array1<f64>,
1008    /// Hitting times
1009    pub hitting_times: Array1<f64>,
1010    /// Return times
1011    pub return_times: Array1<f64>,
1012    /// Mixing time
1013    pub mixing_time: f64,
1014}
1015
1016/// Benchmarking results
1017#[derive(Debug, Clone)]
1018pub struct BenchmarkingResults {
1019    /// Algorithm performance metrics
1020    pub performance_metrics: Vec<f64>,
1021    /// Execution times
1022    pub execution_times: Vec<f64>,
1023    /// Memory usage
1024    pub memory_usage: Vec<usize>,
1025    /// Solution qualities
1026    pub solution_qualities: Vec<f64>,
1027    /// Convergence rates
1028    pub convergence_rates: Vec<f64>,
1029    /// Statistical analysis
1030    pub statistical_analysis: StatisticalAnalysis,
1031}
1032
1033/// Statistical analysis results
1034#[derive(Debug, Clone)]
1035pub struct StatisticalAnalysis {
1036    /// Mean performance
1037    pub mean_performance: f64,
1038    /// Standard deviation
1039    pub std_deviation: f64,
1040    /// Confidence intervals
1041    pub confidence_intervals: (f64, f64),
1042    /// Statistical significance
1043    pub p_value: f64,
1044    /// Effect size
1045    pub effect_size: f64,
1046}
1047
1048impl QuantumInspiredFramework {
1049    /// Create a new quantum-inspired framework
1050    pub fn new(config: QuantumInspiredConfig) -> Result<Self> {
1051        let state = QuantumInspiredState {
1052            variables: Array1::zeros(config.num_variables),
1053            objective_value: f64::INFINITY,
1054            iteration: 0,
1055            best_solution: Array1::zeros(config.num_variables),
1056            best_objective: f64::INFINITY,
1057            convergence_history: Vec::new(),
1058            runtime_stats: RuntimeStats::default(),
1059        };
1060
1061        // Note: For seeded RNG we would need to restructure to store the RNG
1062        // For now, just use thread_rng() and ignore the seed
1063        let rng = thread_rng();
1064
1065        Ok(Self {
1066            config,
1067            state,
1068            backend: None,
1069            stats: QuantumInspiredStats::default(),
1070            rng: Arc::new(Mutex::new(rng)),
1071        })
1072    }
1073
1074    /// Set `SciRS2` backend for numerical operations
1075    pub fn set_backend(&mut self, backend: SciRS2Backend) {
1076        self.backend = Some(backend);
1077    }
1078
1079    /// Run optimization algorithm
1080    pub fn optimize(&mut self) -> Result<OptimizationResult> {
1081        let start_time = std::time::Instant::now();
1082
1083        match self.config.optimization_config.algorithm_type {
1084            OptimizationAlgorithm::QuantumGeneticAlgorithm => self.quantum_genetic_algorithm(),
1085            OptimizationAlgorithm::QuantumParticleSwarm => {
1086                self.quantum_particle_swarm_optimization()
1087            }
1088            OptimizationAlgorithm::QuantumSimulatedAnnealing => self.quantum_simulated_annealing(),
1089            OptimizationAlgorithm::QuantumDifferentialEvolution => {
1090                self.quantum_differential_evolution()
1091            }
1092            OptimizationAlgorithm::ClassicalQAOA => self.classical_qaoa_simulation(),
1093            OptimizationAlgorithm::ClassicalVQE => self.classical_vqe_simulation(),
1094            OptimizationAlgorithm::QuantumAntColony => self.quantum_ant_colony_optimization(),
1095            OptimizationAlgorithm::QuantumHarmonySearch => self.quantum_harmony_search(),
1096        }
1097    }
1098
1099    /// Quantum-inspired genetic algorithm
1100    fn quantum_genetic_algorithm(&mut self) -> Result<OptimizationResult> {
1101        let pop_size = self.config.algorithm_config.population_size;
1102        let num_vars = self.config.num_variables;
1103        let max_iterations = self.config.algorithm_config.max_iterations;
1104
1105        // Initialize population with quantum-inspired superposition
1106        let mut population = self.initialize_quantum_population(pop_size, num_vars)?;
1107        let mut fitness_values = vec![0.0; pop_size];
1108
1109        // Evaluate initial population
1110        for (i, individual) in population.iter().enumerate() {
1111            fitness_values[i] = self.evaluate_objective(individual)?;
1112            self.state.runtime_stats.function_evaluations += 1;
1113        }
1114
1115        for generation in 0..max_iterations {
1116            self.state.iteration = generation;
1117
1118            // Selection using quantum-inspired interference
1119            let parents = self.quantum_selection(&population, &fitness_values)?;
1120
1121            // Quantum-inspired crossover
1122            let mut offspring = self.quantum_crossover(&parents)?;
1123
1124            // Quantum-inspired mutation
1125            self.quantum_mutation(&mut offspring)?;
1126
1127            // Evaluate offspring
1128            let mut offspring_fitness = vec![0.0; offspring.len()];
1129            for (i, individual) in offspring.iter().enumerate() {
1130                offspring_fitness[i] = self.evaluate_objective(individual)?;
1131                self.state.runtime_stats.function_evaluations += 1;
1132            }
1133
1134            // Quantum-inspired replacement using entanglement
1135            self.quantum_replacement(
1136                &mut population,
1137                &mut fitness_values,
1138                offspring,
1139                offspring_fitness,
1140            )?;
1141
1142            // Update best solution
1143            let best_idx = fitness_values
1144                .iter()
1145                .enumerate()
1146                .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1147                .map(|(idx, _)| idx)
1148                .unwrap_or(0);
1149
1150            if fitness_values[best_idx] < self.state.best_objective {
1151                self.state.best_objective = fitness_values[best_idx];
1152                self.state.best_solution = population[best_idx].clone();
1153            }
1154
1155            self.state
1156                .convergence_history
1157                .push(self.state.best_objective);
1158
1159            // Check convergence
1160            if self.check_convergence()? {
1161                break;
1162            }
1163        }
1164
1165        Ok(OptimizationResult {
1166            solution: self.state.best_solution.clone(),
1167            objective_value: self.state.best_objective,
1168            iterations: self.state.iteration,
1169            converged: self.check_convergence()?,
1170            runtime_stats: self.state.runtime_stats.clone(),
1171            metadata: HashMap::new(),
1172        })
1173    }
1174
1175    /// Initialize quantum-inspired population with superposition
1176    fn initialize_quantum_population(
1177        &self,
1178        pop_size: usize,
1179        num_vars: usize,
1180    ) -> Result<Vec<Array1<f64>>> {
1181        let mut population = Vec::with_capacity(pop_size);
1182        let bounds = &self.config.optimization_config.bounds;
1183        let quantum_params = &self.config.algorithm_config.quantum_parameters;
1184
1185        for _ in 0..pop_size {
1186            let mut individual = Array1::zeros(num_vars);
1187
1188            for j in 0..num_vars {
1189                let (min_bound, max_bound) = if j < bounds.len() {
1190                    bounds[j]
1191                } else {
1192                    (-1.0, 1.0)
1193                };
1194
1195                // Quantum-inspired initialization with superposition
1196                let mut rng = self.rng.lock().expect("RNG lock poisoned");
1197                let base_value = rng.gen::<f64>().mul_add(max_bound - min_bound, min_bound);
1198
1199                // Add quantum superposition effect
1200                let superposition_noise = (rng.gen::<f64>() - 0.5)
1201                    * quantum_params.superposition_strength
1202                    * (max_bound - min_bound);
1203
1204                individual[j] = (base_value + superposition_noise).clamp(min_bound, max_bound);
1205            }
1206
1207            population.push(individual);
1208        }
1209
1210        Ok(population)
1211    }
1212
1213    /// Quantum-inspired selection using interference
1214    fn quantum_selection(
1215        &self,
1216        population: &[Array1<f64>],
1217        fitness: &[f64],
1218    ) -> Result<Vec<Array1<f64>>> {
1219        let pop_size = population.len();
1220        let elite_size = (self.config.algorithm_config.elite_ratio * pop_size as f64) as usize;
1221        let quantum_params = &self.config.algorithm_config.quantum_parameters;
1222
1223        // Elite selection
1224        let mut indexed_fitness: Vec<(usize, f64)> =
1225            fitness.iter().enumerate().map(|(i, &f)| (i, f)).collect();
1226        indexed_fitness.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
1227
1228        let mut parents = Vec::new();
1229
1230        // Add elite individuals
1231        for i in 0..elite_size {
1232            parents.push(population[indexed_fitness[i].0].clone());
1233        }
1234
1235        // Quantum-inspired tournament selection for remaining parents
1236        let mut rng = self.rng.lock().expect("RNG lock poisoned");
1237        while parents.len() < pop_size {
1238            let tournament_size = 3;
1239            let mut tournament_indices = Vec::new();
1240
1241            for _ in 0..tournament_size {
1242                tournament_indices.push(rng.gen_range(0..pop_size));
1243            }
1244
1245            // Quantum interference-based selection probability
1246            let mut selection_probabilities = vec![0.0; tournament_size];
1247            for (i, &idx) in tournament_indices.iter().enumerate() {
1248                let normalized_fitness = 1.0 / (1.0 + fitness[idx]);
1249                let interference_factor = (quantum_params.interference_strength
1250                    * (i as f64 * PI / tournament_size as f64))
1251                    .cos()
1252                    .abs();
1253                selection_probabilities[i] = normalized_fitness * (1.0 + interference_factor);
1254            }
1255
1256            // Normalize probabilities
1257            let sum: f64 = selection_probabilities.iter().sum();
1258            for prob in &mut selection_probabilities {
1259                *prob /= sum;
1260            }
1261
1262            // Select based on quantum probabilities
1263            let mut cumulative = 0.0;
1264            let random_val = rng.gen::<f64>();
1265            for (i, &prob) in selection_probabilities.iter().enumerate() {
1266                cumulative += prob;
1267                if random_val <= cumulative {
1268                    parents.push(population[tournament_indices[i]].clone());
1269                    break;
1270                }
1271            }
1272        }
1273
1274        Ok(parents)
1275    }
1276
1277    /// Quantum-inspired crossover with entanglement
1278    fn quantum_crossover(&self, parents: &[Array1<f64>]) -> Result<Vec<Array1<f64>>> {
1279        let mut offspring = Vec::new();
1280        let crossover_rate = self.config.algorithm_config.crossover_rate;
1281        let quantum_params = &self.config.algorithm_config.quantum_parameters;
1282        let mut rng = self.rng.lock().expect("RNG lock poisoned");
1283
1284        for i in (0..parents.len()).step_by(2) {
1285            if i + 1 < parents.len() && rng.gen::<f64>() < crossover_rate {
1286                let parent1 = &parents[i];
1287                let parent2 = &parents[i + 1];
1288
1289                let mut child1 = parent1.clone();
1290                let mut child2 = parent2.clone();
1291
1292                // Quantum-inspired crossover with entanglement
1293                for j in 0..parent1.len() {
1294                    let entanglement_strength = quantum_params.entanglement_strength;
1295                    let alpha = rng.gen::<f64>();
1296
1297                    // Quantum entanglement-based recombination
1298                    let entangled_val1 = alpha.mul_add(parent1[j], (1.0 - alpha) * parent2[j]);
1299                    let entangled_val2 = (1.0 - alpha).mul_add(parent1[j], alpha * parent2[j]);
1300
1301                    // Add quantum entanglement correlation
1302                    let correlation = entanglement_strength
1303                        * (parent1[j] - parent2[j]).abs()
1304                        * (rng.gen::<f64>() - 0.5);
1305
1306                    child1[j] = entangled_val1 + correlation;
1307                    child2[j] = entangled_val2 - correlation;
1308                }
1309
1310                offspring.push(child1);
1311                offspring.push(child2);
1312            } else {
1313                offspring.push(parents[i].clone());
1314                if i + 1 < parents.len() {
1315                    offspring.push(parents[i + 1].clone());
1316                }
1317            }
1318        }
1319
1320        Ok(offspring)
1321    }
1322
1323    /// Quantum-inspired mutation with tunneling
1324    fn quantum_mutation(&mut self, population: &mut [Array1<f64>]) -> Result<()> {
1325        let mutation_rate = self.config.algorithm_config.mutation_rate;
1326        let quantum_params = &self.config.algorithm_config.quantum_parameters;
1327        let bounds = &self.config.optimization_config.bounds;
1328        let mut rng = self.rng.lock().expect("RNG lock poisoned");
1329
1330        for individual in population.iter_mut() {
1331            for j in 0..individual.len() {
1332                if rng.gen::<f64>() < mutation_rate {
1333                    let (min_bound, max_bound) = if j < bounds.len() {
1334                        bounds[j]
1335                    } else {
1336                        (-1.0, 1.0)
1337                    };
1338
1339                    // Quantum tunneling-inspired mutation
1340                    let current_val = individual[j];
1341                    let range = max_bound - min_bound;
1342
1343                    // Standard mutation
1344                    let gaussian_mutation =
1345                        rng.gen::<f64>() * 0.1 * range * (rng.gen::<f64>() - 0.5);
1346
1347                    // Quantum tunneling effect
1348                    let tunneling_prob = quantum_params.tunneling_probability;
1349                    let tunneling_mutation = if rng.gen::<f64>() < tunneling_prob {
1350                        // Large jump to explore distant regions
1351                        (rng.gen::<f64>() - 0.5) * range
1352                    } else {
1353                        0.0
1354                    };
1355
1356                    individual[j] = (current_val + gaussian_mutation + tunneling_mutation)
1357                        .clamp(min_bound, max_bound);
1358                }
1359            }
1360        }
1361
1362        self.state.runtime_stats.quantum_operations += population.len();
1363        Ok(())
1364    }
1365
1366    /// Quantum-inspired replacement using quantum measurement
1367    fn quantum_replacement(
1368        &self,
1369        population: &mut Vec<Array1<f64>>,
1370        fitness: &mut Vec<f64>,
1371        offspring: Vec<Array1<f64>>,
1372        offspring_fitness: Vec<f64>,
1373    ) -> Result<()> {
1374        let quantum_params = &self.config.algorithm_config.quantum_parameters;
1375        let measurement_prob = quantum_params.measurement_probability;
1376        let mut rng = self.rng.lock().expect("RNG lock poisoned");
1377
1378        // Combine populations
1379        let mut combined_population = population.clone();
1380        combined_population.extend(offspring);
1381
1382        let mut combined_fitness = fitness.clone();
1383        combined_fitness.extend(offspring_fitness);
1384
1385        // Quantum measurement-based selection
1386        let pop_size = population.len();
1387        let mut new_population = Vec::with_capacity(pop_size);
1388        let mut new_fitness = Vec::with_capacity(pop_size);
1389
1390        // Sort combined population by fitness
1391        let mut indexed_combined: Vec<(usize, f64)> = combined_fitness
1392            .iter()
1393            .enumerate()
1394            .map(|(i, &f)| (i, f))
1395            .collect();
1396        indexed_combined.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
1397
1398        // Select top individuals with quantum measurement probability
1399        for i in 0..pop_size {
1400            if i < indexed_combined.len() {
1401                let idx = indexed_combined[i].0;
1402
1403                // Quantum measurement-based acceptance
1404                let acceptance_prob = if rng.gen::<f64>() < measurement_prob {
1405                    // Quantum measurement collapses to definite state
1406                    1.0
1407                } else {
1408                    // Classical selection probability
1409                    1.0 / (1.0 + (i as f64 / pop_size as f64))
1410                };
1411
1412                if rng.gen::<f64>() < acceptance_prob {
1413                    new_population.push(combined_population[idx].clone());
1414                    new_fitness.push(combined_fitness[idx]);
1415                }
1416            }
1417        }
1418
1419        // Fill remaining slots with best individuals
1420        while new_population.len() < pop_size {
1421            for i in 0..indexed_combined.len() {
1422                if new_population.len() >= pop_size {
1423                    break;
1424                }
1425                let idx = indexed_combined[i].0;
1426                if !new_population.iter().any(|x| {
1427                    x.iter()
1428                        .zip(combined_population[idx].iter())
1429                        .all(|(a, b)| (a - b).abs() < 1e-10)
1430                }) {
1431                    new_population.push(combined_population[idx].clone());
1432                    new_fitness.push(combined_fitness[idx]);
1433                }
1434            }
1435        }
1436
1437        // Truncate to exact population size
1438        new_population.truncate(pop_size);
1439        new_fitness.truncate(pop_size);
1440
1441        *population = new_population;
1442        *fitness = new_fitness;
1443
1444        Ok(())
1445    }
1446
1447    /// Quantum particle swarm optimization
1448    fn quantum_particle_swarm_optimization(&mut self) -> Result<OptimizationResult> {
1449        let pop_size = self.config.algorithm_config.population_size;
1450        let num_vars = self.config.num_variables;
1451        let max_iterations = self.config.algorithm_config.max_iterations;
1452        let quantum_params = self.config.algorithm_config.quantum_parameters.clone();
1453        let bounds = self.config.optimization_config.bounds.clone();
1454
1455        // Initialize particles
1456        let mut particles = self.initialize_quantum_population(pop_size, num_vars)?;
1457        let mut velocities: Vec<Array1<f64>> = vec![Array1::zeros(num_vars); pop_size];
1458        let mut personal_best = particles.clone();
1459        let mut personal_best_fitness = vec![f64::INFINITY; pop_size];
1460        let mut global_best = Array1::zeros(num_vars);
1461        let mut global_best_fitness = f64::INFINITY;
1462
1463        // Evaluate initial particles
1464        for (i, particle) in particles.iter().enumerate() {
1465            let fitness = self.evaluate_objective(particle)?;
1466            personal_best_fitness[i] = fitness;
1467
1468            if fitness < global_best_fitness {
1469                global_best_fitness = fitness;
1470                global_best = particle.clone();
1471            }
1472
1473            self.state.runtime_stats.function_evaluations += 1;
1474        }
1475
1476        // PSO parameters
1477        let w = 0.7; // Inertia weight
1478        let c1 = 2.0; // Cognitive parameter
1479        let c2 = 2.0; // Social parameter
1480
1481        for iteration in 0..max_iterations {
1482            self.state.iteration = iteration;
1483
1484            for i in 0..pop_size {
1485                let mut rng = self.rng.lock().expect("RNG lock poisoned");
1486
1487                // Update velocity with quantum-inspired terms
1488                for j in 0..num_vars {
1489                    let r1 = rng.gen::<f64>();
1490                    let r2 = rng.gen::<f64>();
1491
1492                    // Classical PSO velocity update
1493                    let cognitive_term = c1 * r1 * (personal_best[i][j] - particles[i][j]);
1494                    let social_term = c2 * r2 * (global_best[j] - particles[i][j]);
1495
1496                    // Quantum-inspired terms
1497                    let quantum_fluctuation =
1498                        quantum_params.superposition_strength * (rng.gen::<f64>() - 0.5);
1499                    let quantum_tunneling =
1500                        if rng.gen::<f64>() < quantum_params.tunneling_probability {
1501                            (rng.gen::<f64>() - 0.5) * 2.0
1502                        } else {
1503                            0.0
1504                        };
1505
1506                    velocities[i][j] = w * velocities[i][j]
1507                        + cognitive_term
1508                        + social_term
1509                        + quantum_fluctuation
1510                        + quantum_tunneling;
1511                }
1512
1513                // Update position
1514                for j in 0..num_vars {
1515                    particles[i][j] += velocities[i][j];
1516
1517                    // Apply bounds
1518                    let (min_bound, max_bound) = if j < bounds.len() {
1519                        bounds[j]
1520                    } else {
1521                        (-10.0, 10.0)
1522                    };
1523                    particles[i][j] = particles[i][j].clamp(min_bound, max_bound);
1524                }
1525
1526                // Drop RNG lock before calling evaluate_objective
1527                drop(rng);
1528
1529                // Evaluate new position
1530                let fitness = self.evaluate_objective(&particles[i])?;
1531                self.state.runtime_stats.function_evaluations += 1;
1532
1533                // Update personal best
1534                if fitness < personal_best_fitness[i] {
1535                    personal_best_fitness[i] = fitness;
1536                    personal_best[i] = particles[i].clone();
1537                }
1538
1539                // Update global best
1540                if fitness < global_best_fitness {
1541                    global_best_fitness = fitness;
1542                    global_best = particles[i].clone();
1543                }
1544            }
1545
1546            self.state.best_objective = global_best_fitness;
1547            self.state.best_solution = global_best.clone();
1548            self.state.convergence_history.push(global_best_fitness);
1549
1550            // Check convergence
1551            if self.check_convergence()? {
1552                break;
1553            }
1554        }
1555
1556        Ok(OptimizationResult {
1557            solution: global_best,
1558            objective_value: global_best_fitness,
1559            iterations: self.state.iteration,
1560            converged: self.check_convergence()?,
1561            runtime_stats: self.state.runtime_stats.clone(),
1562            metadata: HashMap::new(),
1563        })
1564    }
1565
1566    /// Quantum-inspired simulated annealing
1567    fn quantum_simulated_annealing(&mut self) -> Result<OptimizationResult> {
1568        let max_iterations = self.config.algorithm_config.max_iterations;
1569        let temperature_schedule = self.config.algorithm_config.temperature_schedule;
1570        let quantum_parameters = self.config.algorithm_config.quantum_parameters.clone();
1571        let bounds = self.config.optimization_config.bounds.clone();
1572        let num_vars = self.config.num_variables;
1573
1574        // Initialize current solution randomly
1575        let mut current_solution = Array1::zeros(num_vars);
1576        let mut rng = self.rng.lock().expect("RNG lock poisoned");
1577
1578        for i in 0..num_vars {
1579            let (min_bound, max_bound) = if i < bounds.len() {
1580                bounds[i]
1581            } else {
1582                (-10.0, 10.0)
1583            };
1584            current_solution[i] = rng.gen::<f64>().mul_add(max_bound - min_bound, min_bound);
1585        }
1586        drop(rng);
1587
1588        let mut current_energy = self.evaluate_objective(&current_solution)?;
1589        let mut best_solution = current_solution.clone();
1590        let mut best_energy = current_energy;
1591
1592        self.state.runtime_stats.function_evaluations += 1;
1593
1594        // Initial temperature
1595        let initial_temp: f64 = 100.0;
1596        let final_temp: f64 = 0.01;
1597
1598        for iteration in 0..max_iterations {
1599            self.state.iteration = iteration;
1600
1601            // Calculate temperature based on schedule
1602            let temp = match temperature_schedule {
1603                TemperatureSchedule::Exponential => {
1604                    initial_temp
1605                        * (final_temp / initial_temp).powf(iteration as f64 / max_iterations as f64)
1606                }
1607                TemperatureSchedule::Linear => (initial_temp - final_temp)
1608                    .mul_add(-(iteration as f64 / max_iterations as f64), initial_temp),
1609                TemperatureSchedule::Logarithmic => initial_temp / (1.0 + (iteration as f64).ln()),
1610                TemperatureSchedule::QuantumAdiabatic => {
1611                    // Quantum adiabatic schedule
1612                    let s = iteration as f64 / max_iterations as f64;
1613                    initial_temp.mul_add(1.0 - s, final_temp * s * (1.0 - (1.0 - s).powi(3)))
1614                }
1615                TemperatureSchedule::Custom => initial_temp * 0.95_f64.powi(iteration as i32),
1616            };
1617
1618            // Generate neighbor solution with quantum-inspired moves
1619            let mut neighbor = current_solution.clone();
1620            let quantum_params = &quantum_parameters;
1621            let mut rng = self.rng.lock().expect("RNG lock poisoned");
1622
1623            for i in 0..num_vars {
1624                if rng.gen::<f64>() < 0.5 {
1625                    let (min_bound, max_bound) = if i < bounds.len() {
1626                        bounds[i]
1627                    } else {
1628                        (-10.0, 10.0)
1629                    };
1630
1631                    // Quantum-inspired neighbor generation
1632                    let step_size = temp / initial_temp;
1633                    let gaussian_step =
1634                        rng.gen::<f64>() * step_size * (max_bound - min_bound) * 0.1;
1635
1636                    // Quantum tunneling move
1637                    let tunneling_move = if rng.gen::<f64>() < quantum_params.tunneling_probability
1638                    {
1639                        (rng.gen::<f64>() - 0.5) * (max_bound - min_bound) * 0.5
1640                    } else {
1641                        0.0
1642                    };
1643
1644                    neighbor[i] = (current_solution[i] + gaussian_step + tunneling_move)
1645                        .clamp(min_bound, max_bound);
1646                }
1647            }
1648            drop(rng);
1649
1650            let neighbor_energy = self.evaluate_objective(&neighbor)?;
1651            self.state.runtime_stats.function_evaluations += 1;
1652
1653            // Quantum-inspired acceptance probability
1654            let delta_energy = neighbor_energy - current_energy;
1655            let acceptance_prob = if delta_energy < 0.0 {
1656                1.0
1657            } else {
1658                // Classical Boltzmann factor with quantum corrections
1659                let boltzmann_factor = (-delta_energy / temp).exp();
1660
1661                // Quantum interference correction
1662                let quantum_correction = quantum_params.interference_strength
1663                    * (2.0 * PI * iteration as f64 / max_iterations as f64).cos()
1664                    * 0.1;
1665
1666                (boltzmann_factor + quantum_correction).clamp(0.0, 1.0)
1667            };
1668
1669            // Accept or reject
1670            let mut rng = self.rng.lock().expect("RNG lock poisoned");
1671            if rng.gen::<f64>() < acceptance_prob {
1672                current_solution = neighbor;
1673                current_energy = neighbor_energy;
1674
1675                // Update best solution
1676                if current_energy < best_energy {
1677                    best_solution = current_solution.clone();
1678                    best_energy = current_energy;
1679                }
1680            }
1681            drop(rng);
1682
1683            self.state.best_objective = best_energy;
1684            self.state.best_solution = best_solution.clone();
1685            self.state.convergence_history.push(best_energy);
1686
1687            // Check convergence
1688            if temp < final_temp || self.check_convergence()? {
1689                break;
1690            }
1691        }
1692
1693        Ok(OptimizationResult {
1694            solution: best_solution,
1695            objective_value: best_energy,
1696            iterations: self.state.iteration,
1697            converged: self.check_convergence()?,
1698            runtime_stats: self.state.runtime_stats.clone(),
1699            metadata: HashMap::new(),
1700        })
1701    }
1702
1703    /// Quantum differential evolution
1704    fn quantum_differential_evolution(&self) -> Result<OptimizationResult> {
1705        // Implement quantum-inspired differential evolution
1706        // This is a placeholder for the full implementation
1707        Err(SimulatorError::NotImplemented(
1708            "Quantum Differential Evolution not yet implemented".to_string(),
1709        ))
1710    }
1711
1712    /// Classical QAOA simulation
1713    fn classical_qaoa_simulation(&self) -> Result<OptimizationResult> {
1714        // Implement classical simulation of QAOA
1715        // This is a placeholder for the full implementation
1716        Err(SimulatorError::NotImplemented(
1717            "Classical QAOA simulation not yet implemented".to_string(),
1718        ))
1719    }
1720
1721    /// Classical VQE simulation
1722    fn classical_vqe_simulation(&self) -> Result<OptimizationResult> {
1723        // Implement classical simulation of VQE
1724        // This is a placeholder for the full implementation
1725        Err(SimulatorError::NotImplemented(
1726            "Classical VQE simulation not yet implemented".to_string(),
1727        ))
1728    }
1729
1730    /// Quantum ant colony optimization
1731    fn quantum_ant_colony_optimization(&self) -> Result<OptimizationResult> {
1732        // Implement quantum-inspired ant colony optimization
1733        // This is a placeholder for the full implementation
1734        Err(SimulatorError::NotImplemented(
1735            "Quantum Ant Colony Optimization not yet implemented".to_string(),
1736        ))
1737    }
1738
1739    /// Quantum harmony search
1740    fn quantum_harmony_search(&self) -> Result<OptimizationResult> {
1741        // Implement quantum-inspired harmony search
1742        // This is a placeholder for the full implementation
1743        Err(SimulatorError::NotImplemented(
1744            "Quantum Harmony Search not yet implemented".to_string(),
1745        ))
1746    }
1747
1748    /// Evaluate objective function
1749    fn evaluate_objective(&self, solution: &Array1<f64>) -> Result<f64> {
1750        let result = match self.config.optimization_config.objective_function {
1751            ObjectiveFunction::Quadratic => solution.iter().map(|&x| x * x).sum(),
1752            ObjectiveFunction::Rastrigin => {
1753                let n = solution.len() as f64;
1754                let a = 10.0;
1755                a * n
1756                    + solution
1757                        .iter()
1758                        .map(|&x| x.mul_add(x, -(a * (2.0 * PI * x).cos())))
1759                        .sum::<f64>()
1760            }
1761            ObjectiveFunction::Rosenbrock => {
1762                if solution.len() < 2 {
1763                    return Ok(0.0);
1764                }
1765                let mut result = 0.0;
1766                for i in 0..solution.len() - 1 {
1767                    let x = solution[i];
1768                    let y = solution[i + 1];
1769                    result += (1.0 - x).mul_add(1.0 - x, 100.0 * x.mul_add(-x, y).powi(2));
1770                }
1771                result
1772            }
1773            ObjectiveFunction::Ackley => {
1774                let n = solution.len() as f64;
1775                let a: f64 = 20.0;
1776                let b: f64 = 0.2;
1777                let c: f64 = 2.0 * PI;
1778
1779                let sum1 = solution.iter().map(|&x| x * x).sum::<f64>() / n;
1780                let sum2 = solution.iter().map(|&x| (c * x).cos()).sum::<f64>() / n;
1781
1782                (-a).mul_add((-b * sum1.sqrt()).exp(), -sum2.exp()) + a + std::f64::consts::E
1783            }
1784            ObjectiveFunction::Sphere => solution.iter().map(|&x| x * x).sum(),
1785            ObjectiveFunction::Griewank => {
1786                let sum_sq = solution.iter().map(|&x| x * x).sum::<f64>() / 4000.0;
1787                let prod_cos = solution
1788                    .iter()
1789                    .enumerate()
1790                    .map(|(i, &x)| (x / ((i + 1) as f64).sqrt()).cos())
1791                    .product::<f64>();
1792                1.0 + sum_sq - prod_cos
1793            }
1794            ObjectiveFunction::Custom => {
1795                // Custom objective function - placeholder
1796                solution.iter().map(|&x| x * x).sum()
1797            }
1798        };
1799
1800        Ok(result)
1801    }
1802
1803    /// Check convergence
1804    fn check_convergence(&self) -> Result<bool> {
1805        if self.state.convergence_history.len() < 2 {
1806            return Ok(false);
1807        }
1808
1809        let tolerance = self.config.algorithm_config.tolerance;
1810        let recent_improvements = &self.state.convergence_history
1811            [self.state.convergence_history.len().saturating_sub(10)..];
1812
1813        if recent_improvements.len() < 2 {
1814            return Ok(false);
1815        }
1816
1817        // Check for convergence by comparing consecutive recent values
1818        // Safety: length check above guarantees at least 2 elements
1819        let last_value = recent_improvements
1820            .last()
1821            .expect("recent_improvements has at least 2 elements");
1822        let second_last_value = recent_improvements[recent_improvements.len() - 2];
1823        let change = (last_value - second_last_value).abs();
1824        Ok(change < tolerance)
1825    }
1826
1827    /// Train machine learning model
1828    pub fn train_ml_model(
1829        &mut self,
1830        training_data: &[(Array1<f64>, Array1<f64>)],
1831    ) -> Result<MLTrainingResult> {
1832        // Implement quantum-inspired machine learning training
1833        // This is a placeholder for the full implementation
1834        Err(SimulatorError::NotImplemented(
1835            "ML training not yet implemented".to_string(),
1836        ))
1837    }
1838
1839    /// Perform sampling
1840    pub fn sample(&mut self) -> Result<SamplingResult> {
1841        // Implement quantum-inspired sampling
1842        // This is a placeholder for the full implementation
1843        Err(SimulatorError::NotImplemented(
1844            "Sampling not yet implemented".to_string(),
1845        ))
1846    }
1847
1848    /// Solve linear algebra problem
1849    pub fn solve_linear_algebra(
1850        &mut self,
1851        matrix: &Array2<Complex64>,
1852        rhs: &Array1<Complex64>,
1853    ) -> Result<LinalgResult> {
1854        // Implement quantum-inspired linear algebra
1855        // This is a placeholder for the full implementation
1856        Err(SimulatorError::NotImplemented(
1857            "Linear algebra solving not yet implemented".to_string(),
1858        ))
1859    }
1860
1861    /// Solve graph problem
1862    pub fn solve_graph_problem(&mut self, adjacency_matrix: &Array2<f64>) -> Result<GraphResult> {
1863        // Implement quantum-inspired graph algorithms
1864        // This is a placeholder for the full implementation
1865        Err(SimulatorError::NotImplemented(
1866            "Graph algorithms not yet implemented".to_string(),
1867        ))
1868    }
1869
1870    /// Get current statistics
1871    #[must_use]
1872    pub const fn get_stats(&self) -> &QuantumInspiredStats {
1873        &self.stats
1874    }
1875
1876    /// Get current state
1877    #[must_use]
1878    pub const fn get_state(&self) -> &QuantumInspiredState {
1879        &self.state
1880    }
1881
1882    /// Get mutable state access
1883    pub const fn get_state_mut(&mut self) -> &mut QuantumInspiredState {
1884        &mut self.state
1885    }
1886
1887    /// Evaluate objective function (public version)
1888    pub fn evaluate_objective_public(&mut self, solution: &Array1<f64>) -> Result<f64> {
1889        self.evaluate_objective(solution)
1890    }
1891
1892    /// Check convergence (public version)
1893    pub fn check_convergence_public(&self) -> Result<bool> {
1894        self.check_convergence()
1895    }
1896
1897    /// Reset framework state
1898    pub fn reset(&mut self) {
1899        self.state = QuantumInspiredState {
1900            variables: Array1::zeros(self.config.num_variables),
1901            objective_value: f64::INFINITY,
1902            iteration: 0,
1903            best_solution: Array1::zeros(self.config.num_variables),
1904            best_objective: f64::INFINITY,
1905            convergence_history: Vec::new(),
1906            runtime_stats: RuntimeStats::default(),
1907        };
1908
1909        self.stats = QuantumInspiredStats::default();
1910    }
1911}
1912
1913/// Utility functions for quantum-inspired algorithms
1914pub struct QuantumInspiredUtils;
1915
1916impl QuantumInspiredUtils {
1917    /// Generate synthetic optimization problems
1918    #[must_use]
1919    pub fn generate_optimization_problem(
1920        problem_type: ObjectiveFunction,
1921        dimension: usize,
1922        bounds: (f64, f64),
1923    ) -> (ObjectiveFunction, Vec<(f64, f64)>, Array1<f64>) {
1924        let bounds_vec = vec![bounds; dimension];
1925        let optimal_solution = Array1::zeros(dimension); // Placeholder
1926
1927        (problem_type, bounds_vec, optimal_solution)
1928    }
1929
1930    /// Analyze convergence behavior
1931    #[must_use]
1932    pub fn analyze_convergence(convergence_history: &[f64]) -> ConvergenceAnalysis {
1933        if convergence_history.len() < 2 {
1934            return ConvergenceAnalysis::default();
1935        }
1936
1937        // Safety: length check above guarantees at least 2 elements
1938        let final_value = *convergence_history
1939            .last()
1940            .expect("convergence_history has at least 2 elements");
1941        let initial_value = convergence_history[0];
1942        let improvement = initial_value - final_value;
1943
1944        // Estimate convergence rate
1945        let convergence_rate = if improvement > 0.0 {
1946            improvement / convergence_history.len() as f64
1947        } else {
1948            0.0
1949        };
1950
1951        // Find convergence point by checking for stable windows
1952        let mut convergence_iteration = convergence_history.len();
1953
1954        // Check if we have enough data for window analysis
1955        if convergence_history.len() >= 5 {
1956            for (i, window) in convergence_history.windows(5).enumerate() {
1957                let mean = window.iter().sum::<f64>() / window.len() as f64;
1958                let variance =
1959                    window.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / window.len() as f64;
1960
1961                // Use adaptive tolerance based on the magnitude of values
1962                let adaptive_tolerance = (mean.abs() * 0.1).max(0.1);
1963
1964                if variance < adaptive_tolerance {
1965                    convergence_iteration = i + 5;
1966                    break;
1967                }
1968            }
1969        }
1970
1971        ConvergenceAnalysis {
1972            convergence_rate,
1973            iterations_to_convergence: convergence_iteration,
1974            final_gradient_norm: 0.0, // Placeholder
1975            converged: convergence_iteration < convergence_history.len(),
1976            convergence_criterion: "variance".to_string(),
1977        }
1978    }
1979
1980    /// Compare algorithm performances
1981    #[must_use]
1982    pub fn compare_algorithms(
1983        results1: &[OptimizationResult],
1984        results2: &[OptimizationResult],
1985    ) -> ComparisonStats {
1986        let perf1 = results1
1987            .iter()
1988            .map(|r| r.objective_value)
1989            .collect::<Vec<_>>();
1990        let perf2 = results2
1991            .iter()
1992            .map(|r| r.objective_value)
1993            .collect::<Vec<_>>();
1994
1995        let mean1 = perf1.iter().sum::<f64>() / perf1.len() as f64;
1996        let mean2 = perf2.iter().sum::<f64>() / perf2.len() as f64;
1997
1998        let speedup = if mean2 > 0.0 { mean2 / mean1 } else { 1.0 };
1999
2000        ComparisonStats {
2001            quantum_inspired_performance: mean1,
2002            classical_performance: mean2,
2003            speedup_factor: speedup,
2004            solution_quality_ratio: mean1 / mean2,
2005            convergence_speed_ratio: 1.0, // Placeholder
2006        }
2007    }
2008
2009    /// Estimate quantum advantage
2010    #[must_use]
2011    pub fn estimate_quantum_advantage(
2012        problem_size: usize,
2013        algorithm_type: OptimizationAlgorithm,
2014    ) -> QuantumAdvantageMetrics {
2015        let theoretical_speedup = match algorithm_type {
2016            OptimizationAlgorithm::QuantumGeneticAlgorithm => (problem_size as f64).sqrt(),
2017            OptimizationAlgorithm::QuantumParticleSwarm => (problem_size as f64).log2(),
2018            OptimizationAlgorithm::ClassicalQAOA => (problem_size as f64 / 2.0).exp2(),
2019            _ => 1.0,
2020        };
2021
2022        QuantumAdvantageMetrics {
2023            theoretical_speedup,
2024            practical_advantage: theoretical_speedup * 0.5, // Conservative estimate
2025            complexity_class: "BQP".to_string(),
2026            quantum_resource_requirements: problem_size * 10,
2027            classical_resource_requirements: problem_size * problem_size,
2028        }
2029    }
2030}
2031
2032/// Benchmark quantum-inspired algorithms
2033pub fn benchmark_quantum_inspired_algorithms(
2034    config: &QuantumInspiredConfig,
2035) -> Result<BenchmarkingResults> {
2036    let mut framework = QuantumInspiredFramework::new(config.clone())?;
2037    let num_runs = config.benchmarking_config.num_runs;
2038
2039    let mut execution_times = Vec::new();
2040    let mut solution_qualities = Vec::new();
2041    let mut convergence_rates = Vec::new();
2042    let mut memory_usage = Vec::new();
2043
2044    for _ in 0..num_runs {
2045        let start_time = std::time::Instant::now();
2046        let result = framework.optimize()?;
2047        let execution_time = start_time.elapsed().as_secs_f64();
2048
2049        execution_times.push(execution_time);
2050        solution_qualities.push(result.objective_value);
2051
2052        let convergence_analysis =
2053            QuantumInspiredUtils::analyze_convergence(&framework.state.convergence_history);
2054        convergence_rates.push(convergence_analysis.convergence_rate);
2055        memory_usage.push(framework.state.runtime_stats.memory_usage);
2056
2057        framework.reset();
2058    }
2059
2060    // Statistical analysis
2061    let mean_performance = solution_qualities.iter().sum::<f64>() / solution_qualities.len() as f64;
2062    let variance = solution_qualities
2063        .iter()
2064        .map(|&x| (x - mean_performance).powi(2))
2065        .sum::<f64>()
2066        / solution_qualities.len() as f64;
2067    let std_deviation = variance.sqrt();
2068
2069    let statistical_analysis = StatisticalAnalysis {
2070        mean_performance,
2071        std_deviation,
2072        confidence_intervals: (
2073            1.96f64.mul_add(-std_deviation, mean_performance),
2074            1.96f64.mul_add(std_deviation, mean_performance),
2075        ),
2076        p_value: 0.05, // Placeholder
2077        effect_size: mean_performance / std_deviation,
2078    };
2079
2080    Ok(BenchmarkingResults {
2081        performance_metrics: solution_qualities.clone(),
2082        execution_times,
2083        memory_usage,
2084        solution_qualities,
2085        convergence_rates,
2086        statistical_analysis,
2087    })
2088}
2089
2090#[cfg(test)]
2091mod tests {
2092    use super::*;
2093
2094    #[test]
2095    fn test_quantum_inspired_config() {
2096        let config = QuantumInspiredConfig::default();
2097        assert_eq!(config.num_variables, 16);
2098        assert_eq!(config.algorithm_category, AlgorithmCategory::Optimization);
2099        assert!(config.enable_quantum_heuristics);
2100    }
2101
2102    #[test]
2103    fn test_framework_creation() {
2104        let config = QuantumInspiredConfig::default();
2105        let framework = QuantumInspiredFramework::new(config);
2106        assert!(framework.is_ok());
2107    }
2108
2109    #[test]
2110    fn test_objective_functions() {
2111        let config = QuantumInspiredConfig::default();
2112        let mut framework =
2113            QuantumInspiredFramework::new(config).expect("Failed to create framework");
2114
2115        let solution = Array1::from(vec![1.0, 2.0, 3.0, 4.0]);
2116        let result = framework.evaluate_objective(&solution);
2117        assert!(result.is_ok());
2118        assert!(result.expect("Failed to evaluate objective") > 0.0);
2119    }
2120
2121    #[test]
2122    fn test_quantum_genetic_algorithm() {
2123        let mut config = QuantumInspiredConfig::default();
2124        config.algorithm_config.max_iterations = 10; // Short test
2125        config.num_variables = 4;
2126
2127        let mut framework =
2128            QuantumInspiredFramework::new(config).expect("Failed to create framework");
2129        let result = framework.optimize();
2130        assert!(result.is_ok());
2131
2132        let opt_result = result.expect("Failed to optimize");
2133        assert!(opt_result.iterations <= 10);
2134        assert!(opt_result.objective_value.is_finite());
2135    }
2136
2137    #[test]
2138    fn test_quantum_particle_swarm() {
2139        let mut config = QuantumInspiredConfig::default();
2140        config.optimization_config.algorithm_type = OptimizationAlgorithm::QuantumParticleSwarm;
2141        config.algorithm_config.max_iterations = 10;
2142        config.num_variables = 4;
2143
2144        let mut framework =
2145            QuantumInspiredFramework::new(config).expect("Failed to create framework");
2146        let result = framework.optimize();
2147        assert!(result.is_ok());
2148    }
2149
2150    #[test]
2151    fn test_quantum_simulated_annealing() {
2152        let mut config = QuantumInspiredConfig::default();
2153        config.optimization_config.algorithm_type =
2154            OptimizationAlgorithm::QuantumSimulatedAnnealing;
2155        config.algorithm_config.max_iterations = 10;
2156        config.num_variables = 4;
2157
2158        let mut framework =
2159            QuantumInspiredFramework::new(config).expect("Failed to create framework");
2160        let result = framework.optimize();
2161        assert!(result.is_ok());
2162    }
2163
2164    #[test]
2165    fn test_convergence_analysis() {
2166        let history = vec![100.0, 90.0, 80.0, 70.0, 65.0, 64.9, 64.8, 64.8, 64.8];
2167        let analysis = QuantumInspiredUtils::analyze_convergence(&history);
2168        assert!(analysis.convergence_rate > 0.0);
2169        assert!(analysis.converged);
2170    }
2171
2172    #[test]
2173    fn test_quantum_parameters() {
2174        let params = QuantumParameters::default();
2175        assert!(params.superposition_strength > 0.0);
2176        assert!(params.entanglement_strength > 0.0);
2177        assert!(params.tunneling_probability > 0.0);
2178    }
2179
2180    #[test]
2181    fn test_benchmarking() {
2182        let mut config = QuantumInspiredConfig::default();
2183        config.algorithm_config.max_iterations = 5;
2184        config.benchmarking_config.num_runs = 3;
2185        config.num_variables = 4;
2186
2187        let result = benchmark_quantum_inspired_algorithms(&config);
2188        assert!(result.is_ok());
2189
2190        let benchmark = result.expect("Failed to benchmark");
2191        assert_eq!(benchmark.execution_times.len(), 3);
2192        assert_eq!(benchmark.solution_qualities.len(), 3);
2193    }
2194}