1use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::random::{thread_rng, Rng};
10use scirs2_core::Complex64;
11use serde::{Deserialize, Serialize};
12use std::collections::HashMap;
13use std::f64::consts::PI;
14use std::sync::{Arc, Mutex};
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18use scirs2_core::random::prelude::*;
19
20#[derive(Debug, Clone, Serialize, Deserialize)]
22pub struct QuantumInspiredConfig {
23 pub num_variables: usize,
25 pub algorithm_category: AlgorithmCategory,
27 pub algorithm_config: AlgorithmConfig,
29 pub optimization_config: OptimizationConfig,
31 pub ml_config: Option<MLConfig>,
33 pub sampling_config: SamplingConfig,
35 pub linalg_config: LinalgConfig,
37 pub graph_config: GraphConfig,
39 pub benchmarking_config: BenchmarkingConfig,
41 pub enable_quantum_heuristics: bool,
43 pub precision: f64,
45 pub random_seed: Option<u64>,
47}
48
49impl Default for QuantumInspiredConfig {
50 fn default() -> Self {
51 Self {
52 num_variables: 16,
53 algorithm_category: AlgorithmCategory::Optimization,
54 algorithm_config: AlgorithmConfig::default(),
55 optimization_config: OptimizationConfig::default(),
56 ml_config: Some(MLConfig::default()),
57 sampling_config: SamplingConfig::default(),
58 linalg_config: LinalgConfig::default(),
59 graph_config: GraphConfig::default(),
60 benchmarking_config: BenchmarkingConfig::default(),
61 enable_quantum_heuristics: true,
62 precision: 1e-8,
63 random_seed: None,
64 }
65 }
66}
67
68#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
70pub enum AlgorithmCategory {
71 Optimization,
73 MachineLearning,
75 Sampling,
77 LinearAlgebra,
79 GraphAlgorithms,
81 HybridQuantumClassical,
83}
84
85#[derive(Debug, Clone, Serialize, Deserialize)]
87pub struct AlgorithmConfig {
88 pub max_iterations: usize,
90 pub tolerance: f64,
92 pub population_size: usize,
94 pub elite_ratio: f64,
96 pub mutation_rate: f64,
98 pub crossover_rate: f64,
100 pub temperature_schedule: TemperatureSchedule,
102 pub quantum_parameters: QuantumParameters,
104}
105
106impl Default for AlgorithmConfig {
107 fn default() -> Self {
108 Self {
109 max_iterations: 1000,
110 tolerance: 1e-6,
111 population_size: 100,
112 elite_ratio: 0.1,
113 mutation_rate: 0.1,
114 crossover_rate: 0.8,
115 temperature_schedule: TemperatureSchedule::Exponential,
116 quantum_parameters: QuantumParameters::default(),
117 }
118 }
119}
120
121#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
123pub enum TemperatureSchedule {
124 Exponential,
126 Linear,
128 Logarithmic,
130 QuantumAdiabatic,
132 Custom,
134}
135
136#[derive(Debug, Clone, Serialize, Deserialize)]
138pub struct QuantumParameters {
139 pub superposition_strength: f64,
141 pub entanglement_strength: f64,
143 pub interference_strength: f64,
145 pub tunneling_probability: f64,
147 pub decoherence_rate: f64,
149 pub measurement_probability: f64,
151 pub quantum_walk_params: QuantumWalkParams,
153}
154
155impl Default for QuantumParameters {
156 fn default() -> Self {
157 Self {
158 superposition_strength: 0.5,
159 entanglement_strength: 0.3,
160 interference_strength: 0.2,
161 tunneling_probability: 0.1,
162 decoherence_rate: 0.01,
163 measurement_probability: 0.1,
164 quantum_walk_params: QuantumWalkParams::default(),
165 }
166 }
167}
168
169#[derive(Debug, Clone, Serialize, Deserialize)]
171pub struct QuantumWalkParams {
172 pub coin_bias: f64,
174 pub step_size: f64,
176 pub num_steps: usize,
178 pub dimension: usize,
180}
181
182impl Default for QuantumWalkParams {
183 fn default() -> Self {
184 Self {
185 coin_bias: 0.5,
186 step_size: 1.0,
187 num_steps: 100,
188 dimension: 1,
189 }
190 }
191}
192
193#[derive(Debug, Clone, Serialize, Deserialize)]
195pub struct OptimizationConfig {
196 pub algorithm_type: OptimizationAlgorithm,
198 pub objective_function: ObjectiveFunction,
200 pub bounds: Vec<(f64, f64)>,
202 pub constraint_method: ConstraintMethod,
204 pub multi_objective: bool,
206 pub parallel_evaluation: bool,
208}
209
210impl Default for OptimizationConfig {
211 fn default() -> Self {
212 Self {
213 algorithm_type: OptimizationAlgorithm::QuantumGeneticAlgorithm,
214 objective_function: ObjectiveFunction::Quadratic,
215 bounds: vec![(-10.0, 10.0); 16],
216 constraint_method: ConstraintMethod::PenaltyFunction,
217 multi_objective: false,
218 parallel_evaluation: true,
219 }
220 }
221}
222
223#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
225pub enum OptimizationAlgorithm {
226 QuantumGeneticAlgorithm,
228 QuantumParticleSwarm,
230 QuantumSimulatedAnnealing,
232 QuantumDifferentialEvolution,
234 ClassicalQAOA,
236 ClassicalVQE,
238 QuantumAntColony,
240 QuantumHarmonySearch,
242}
243
244#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
246pub enum ObjectiveFunction {
247 Quadratic,
249 Rastrigin,
251 Rosenbrock,
253 Ackley,
255 Sphere,
257 Griewank,
259 Custom,
261}
262
263#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
265pub enum ConstraintMethod {
266 PenaltyFunction,
268 BarrierFunction,
270 LagrangeMultiplier,
272 Projection,
274 Rejection,
276}
277
278#[derive(Debug, Clone, Serialize, Deserialize)]
280pub struct MLConfig {
281 pub algorithm_type: MLAlgorithm,
283 pub architecture: NetworkArchitecture,
285 pub training_config: TrainingConfig,
287 pub tensor_network_config: TensorNetworkConfig,
289}
290
291impl Default for MLConfig {
292 fn default() -> Self {
293 Self {
294 algorithm_type: MLAlgorithm::QuantumInspiredNeuralNetwork,
295 architecture: NetworkArchitecture::default(),
296 training_config: TrainingConfig::default(),
297 tensor_network_config: TensorNetworkConfig::default(),
298 }
299 }
300}
301
302#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
304pub enum MLAlgorithm {
305 QuantumInspiredNeuralNetwork,
307 TensorNetworkML,
309 MPSNeuralNetwork,
311 QuantumInspiredAutoencoder,
313 QuantumInspiredRL,
315 QuantumInspiredSVM,
317 QuantumInspiredClustering,
319 QuantumInspiredPCA,
321}
322
323#[derive(Debug, Clone, Serialize, Deserialize)]
325pub struct NetworkArchitecture {
326 pub input_dim: usize,
328 pub hidden_layers: Vec<usize>,
330 pub output_dim: usize,
332 pub activation: ActivationFunction,
334 pub quantum_connections: bool,
336}
337
338impl Default for NetworkArchitecture {
339 fn default() -> Self {
340 Self {
341 input_dim: 16,
342 hidden_layers: vec![32, 16],
343 output_dim: 8,
344 activation: ActivationFunction::QuantumInspiredTanh,
345 quantum_connections: true,
346 }
347 }
348}
349
350#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
352pub enum ActivationFunction {
353 QuantumInspiredTanh,
355 QuantumInspiredSigmoid,
357 QuantumInspiredReLU,
359 QuantumInspiredSoftmax,
361 QuantumPhase,
363}
364
365#[derive(Debug, Clone, Serialize, Deserialize)]
367pub struct TrainingConfig {
368 pub learning_rate: f64,
370 pub epochs: usize,
372 pub batch_size: usize,
374 pub optimizer: OptimizerType,
376 pub regularization: f64,
378}
379
380impl Default for TrainingConfig {
381 fn default() -> Self {
382 Self {
383 learning_rate: 0.01,
384 epochs: 100,
385 batch_size: 32,
386 optimizer: OptimizerType::QuantumInspiredAdam,
387 regularization: 0.001,
388 }
389 }
390}
391
392#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
394pub enum OptimizerType {
395 QuantumInspiredAdam,
397 QuantumInspiredSGD,
399 QuantumNaturalGradient,
401 QuantumInspiredRMSprop,
403}
404
405#[derive(Debug, Clone, Serialize, Deserialize)]
407pub struct TensorNetworkConfig {
408 pub bond_dimension: usize,
410 pub topology: TensorTopology,
412 pub contraction_method: ContractionMethod,
414 pub truncation_threshold: f64,
416}
417
418impl Default for TensorNetworkConfig {
419 fn default() -> Self {
420 Self {
421 bond_dimension: 64,
422 topology: TensorTopology::MPS,
423 contraction_method: ContractionMethod::OptimalContraction,
424 truncation_threshold: 1e-12,
425 }
426 }
427}
428
429#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
431pub enum TensorTopology {
432 MPS,
434 MPO,
436 TTN,
438 PEPS,
440 MERA,
442}
443
444#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
446pub enum ContractionMethod {
447 OptimalContraction,
449 GreedyContraction,
451 DynamicProgramming,
453 BranchAndBound,
455}
456
457#[derive(Debug, Clone, Serialize, Deserialize)]
459pub struct SamplingConfig {
460 pub algorithm_type: SamplingAlgorithm,
462 pub num_samples: usize,
464 pub burn_in: usize,
466 pub thinning: usize,
468 pub proposal_distribution: ProposalDistribution,
470 pub wave_function_config: WaveFunctionConfig,
472}
473
474impl Default for SamplingConfig {
475 fn default() -> Self {
476 Self {
477 algorithm_type: SamplingAlgorithm::QuantumInspiredMCMC,
478 num_samples: 10_000,
479 burn_in: 1000,
480 thinning: 10,
481 proposal_distribution: ProposalDistribution::Gaussian,
482 wave_function_config: WaveFunctionConfig::default(),
483 }
484 }
485}
486
487#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
489pub enum SamplingAlgorithm {
490 QuantumInspiredMCMC,
492 QuantumInspiredVMC,
494 QuantumInspiredImportanceSampling,
496 ClassicalPIMC,
498 QuantumInspiredGibbs,
500 QuantumInspiredMetropolis,
502}
503
504#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
506pub enum ProposalDistribution {
507 Gaussian,
509 Uniform,
511 Cauchy,
513 QuantumInspired,
515}
516
517#[derive(Debug, Clone, Serialize, Deserialize)]
519pub struct WaveFunctionConfig {
520 pub wave_function_type: WaveFunctionType,
522 pub num_parameters: usize,
524 pub jastrow_strength: f64,
526 pub backflow_enabled: bool,
528}
529
530impl Default for WaveFunctionConfig {
531 fn default() -> Self {
532 Self {
533 wave_function_type: WaveFunctionType::SlaterJastrow,
534 num_parameters: 32,
535 jastrow_strength: 1.0,
536 backflow_enabled: false,
537 }
538 }
539}
540
541#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
543pub enum WaveFunctionType {
544 SlaterJastrow,
546 QuantumNeuralNetwork,
548 MatrixProductState,
550 Pfaffian,
552 BCS,
554}
555
556#[derive(Debug, Clone, Serialize, Deserialize)]
558pub struct LinalgConfig {
559 pub algorithm_type: LinalgAlgorithm,
561 pub matrix_dimension: usize,
563 pub precision: f64,
565 pub max_iterations: usize,
567 pub krylov_dimension: usize,
569}
570
571impl Default for LinalgConfig {
572 fn default() -> Self {
573 Self {
574 algorithm_type: LinalgAlgorithm::QuantumInspiredLinearSolver,
575 matrix_dimension: 1024,
576 precision: 1e-8,
577 max_iterations: 1000,
578 krylov_dimension: 50,
579 }
580 }
581}
582
583#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
585pub enum LinalgAlgorithm {
586 QuantumInspiredLinearSolver,
588 QuantumInspiredSVD,
590 QuantumInspiredEigenSolver,
592 QuantumInspiredInversion,
594 QuantumInspiredPCA,
596 QuantumInspiredMatrixExp,
598}
599
600#[derive(Debug, Clone, Serialize, Deserialize)]
602pub struct GraphConfig {
603 pub algorithm_type: GraphAlgorithm,
605 pub num_vertices: usize,
607 pub connectivity: f64,
609 pub walk_params: QuantumWalkParams,
611 pub community_params: CommunityDetectionParams,
613}
614
615impl Default for GraphConfig {
616 fn default() -> Self {
617 Self {
618 algorithm_type: GraphAlgorithm::QuantumInspiredRandomWalk,
619 num_vertices: 100,
620 connectivity: 0.1,
621 walk_params: QuantumWalkParams::default(),
622 community_params: CommunityDetectionParams::default(),
623 }
624 }
625}
626
627#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
629pub enum GraphAlgorithm {
630 QuantumInspiredRandomWalk,
632 QuantumInspiredShortestPath,
634 QuantumInspiredGraphColoring,
636 QuantumInspiredCommunityDetection,
638 QuantumInspiredMaxCut,
640 QuantumInspiredGraphMatching,
642}
643
644#[derive(Debug, Clone, Serialize, Deserialize)]
646pub struct CommunityDetectionParams {
647 pub resolution: f64,
649 pub num_iterations: usize,
651 pub modularity_threshold: f64,
653}
654
655impl Default for CommunityDetectionParams {
656 fn default() -> Self {
657 Self {
658 resolution: 1.0,
659 num_iterations: 100,
660 modularity_threshold: 0.01,
661 }
662 }
663}
664
665#[derive(Debug, Clone, Serialize, Deserialize)]
667pub struct BenchmarkingConfig {
668 pub enabled: bool,
670 pub num_runs: usize,
672 pub compare_classical: bool,
674 pub detailed_metrics: bool,
676 pub performance_analysis: PerformanceAnalysisConfig,
678}
679
680impl Default for BenchmarkingConfig {
681 fn default() -> Self {
682 Self {
683 enabled: true,
684 num_runs: 10,
685 compare_classical: true,
686 detailed_metrics: true,
687 performance_analysis: PerformanceAnalysisConfig::default(),
688 }
689 }
690}
691
692#[derive(Debug, Clone, Serialize, Deserialize)]
694pub struct PerformanceAnalysisConfig {
695 pub analyze_convergence: bool,
697 pub analyze_scalability: bool,
699 pub analyze_quantum_advantage: bool,
701 pub record_memory_usage: bool,
703}
704
705impl Default for PerformanceAnalysisConfig {
706 fn default() -> Self {
707 Self {
708 analyze_convergence: true,
709 analyze_scalability: true,
710 analyze_quantum_advantage: true,
711 record_memory_usage: true,
712 }
713 }
714}
715
716#[derive(Debug)]
718pub struct QuantumInspiredFramework {
719 config: QuantumInspiredConfig,
721 state: QuantumInspiredState,
723 backend: Option<SciRS2Backend>,
725 stats: QuantumInspiredStats,
727 rng: Arc<Mutex<scirs2_core::random::CoreRandom>>,
729}
730
731#[derive(Debug)]
733pub struct QuantumInspiredState {
734 pub variables: Array1<f64>,
736 pub objective_value: f64,
738 pub iteration: usize,
740 pub best_solution: Array1<f64>,
742 pub best_objective: f64,
744 pub convergence_history: Vec<f64>,
746 pub runtime_stats: RuntimeStats,
748}
749
750#[derive(Debug, Clone)]
752pub struct RuntimeStats {
753 pub function_evaluations: usize,
755 pub gradient_evaluations: usize,
757 pub cpu_time: f64,
759 pub memory_usage: usize,
761 pub quantum_operations: usize,
763}
764
765impl Default for RuntimeStats {
766 fn default() -> Self {
767 Self {
768 function_evaluations: 0,
769 gradient_evaluations: 0,
770 cpu_time: 0.0,
771 memory_usage: 0,
772 quantum_operations: 0,
773 }
774 }
775}
776
777#[derive(Debug, Clone, Default)]
779pub struct QuantumInspiredStats {
780 pub execution_stats: ExecutionStats,
782 pub comparison_stats: ComparisonStats,
784 pub convergence_analysis: ConvergenceAnalysis,
786 pub quantum_advantage_metrics: QuantumAdvantageMetrics,
788}
789
790#[derive(Debug, Clone)]
792pub struct ExecutionStats {
793 pub total_runtime: f64,
795 pub avg_runtime_per_iteration: f64,
797 pub peak_memory_usage: usize,
799 pub successful_runs: usize,
801 pub failed_runs: usize,
803}
804
805impl Default for ExecutionStats {
806 fn default() -> Self {
807 Self {
808 total_runtime: 0.0,
809 avg_runtime_per_iteration: 0.0,
810 peak_memory_usage: 0,
811 successful_runs: 0,
812 failed_runs: 0,
813 }
814 }
815}
816
817#[derive(Debug, Clone)]
819pub struct ComparisonStats {
820 pub quantum_inspired_performance: f64,
822 pub classical_performance: f64,
824 pub speedup_factor: f64,
826 pub solution_quality_ratio: f64,
828 pub convergence_speed_ratio: f64,
830}
831
832impl Default for ComparisonStats {
833 fn default() -> Self {
834 Self {
835 quantum_inspired_performance: 0.0,
836 classical_performance: 0.0,
837 speedup_factor: 1.0,
838 solution_quality_ratio: 1.0,
839 convergence_speed_ratio: 1.0,
840 }
841 }
842}
843
844#[derive(Debug, Clone)]
846pub struct ConvergenceAnalysis {
847 pub convergence_rate: f64,
849 pub iterations_to_convergence: usize,
851 pub final_gradient_norm: f64,
853 pub converged: bool,
855 pub convergence_criterion: String,
857}
858
859impl Default for ConvergenceAnalysis {
860 fn default() -> Self {
861 Self {
862 convergence_rate: 0.0,
863 iterations_to_convergence: 0,
864 final_gradient_norm: f64::INFINITY,
865 converged: false,
866 convergence_criterion: "tolerance".to_string(),
867 }
868 }
869}
870
871#[derive(Debug, Clone)]
873pub struct QuantumAdvantageMetrics {
874 pub theoretical_speedup: f64,
876 pub practical_advantage: f64,
878 pub complexity_class: String,
880 pub quantum_resource_requirements: usize,
882 pub classical_resource_requirements: usize,
884}
885
886impl Default for QuantumAdvantageMetrics {
887 fn default() -> Self {
888 Self {
889 theoretical_speedup: 1.0,
890 practical_advantage: 1.0,
891 complexity_class: "NP".to_string(),
892 quantum_resource_requirements: 0,
893 classical_resource_requirements: 0,
894 }
895 }
896}
897
898#[derive(Debug, Clone)]
900pub struct OptimizationResult {
901 pub solution: Array1<f64>,
903 pub objective_value: f64,
905 pub iterations: usize,
907 pub converged: bool,
909 pub runtime_stats: RuntimeStats,
911 pub metadata: HashMap<String, f64>,
913}
914
915#[derive(Debug, Clone)]
917pub struct MLTrainingResult {
918 pub parameters: Array1<f64>,
920 pub loss_history: Vec<f64>,
922 pub validation_accuracy: f64,
924 pub training_time: f64,
926 pub complexity_metrics: HashMap<String, f64>,
928}
929
930#[derive(Debug, Clone)]
932pub struct SamplingResult {
933 pub samples: Array2<f64>,
935 pub statistics: SampleStatistics,
937 pub acceptance_rate: f64,
939 pub effective_sample_size: usize,
941 pub autocorr_times: Array1<f64>,
943}
944
945#[derive(Debug, Clone)]
947pub struct SampleStatistics {
948 pub mean: Array1<f64>,
950 pub variance: Array1<f64>,
952 pub skewness: Array1<f64>,
954 pub kurtosis: Array1<f64>,
956 pub correlation_matrix: Array2<f64>,
958}
959
960#[derive(Debug, Clone)]
962pub struct LinalgResult {
963 pub solution: Array1<Complex64>,
965 pub eigenvalues: Option<Array1<Complex64>>,
967 pub eigenvectors: Option<Array2<Complex64>>,
969 pub singular_values: Option<Array1<f64>>,
971 pub residual_norm: f64,
973 pub iterations: usize,
975}
976
977#[derive(Debug, Clone)]
979pub struct GraphResult {
980 pub solution: Vec<usize>,
982 pub objective_value: f64,
984 pub graph_metrics: GraphMetrics,
986 pub walk_stats: Option<WalkStatistics>,
988}
989
990#[derive(Debug, Clone)]
992pub struct GraphMetrics {
993 pub modularity: f64,
995 pub clustering_coefficient: f64,
997 pub average_path_length: f64,
999 pub diameter: usize,
1001}
1002
1003#[derive(Debug, Clone)]
1005pub struct WalkStatistics {
1006 pub visit_frequency: Array1<f64>,
1008 pub hitting_times: Array1<f64>,
1010 pub return_times: Array1<f64>,
1012 pub mixing_time: f64,
1014}
1015
1016#[derive(Debug, Clone)]
1018pub struct BenchmarkingResults {
1019 pub performance_metrics: Vec<f64>,
1021 pub execution_times: Vec<f64>,
1023 pub memory_usage: Vec<usize>,
1025 pub solution_qualities: Vec<f64>,
1027 pub convergence_rates: Vec<f64>,
1029 pub statistical_analysis: StatisticalAnalysis,
1031}
1032
1033#[derive(Debug, Clone)]
1035pub struct StatisticalAnalysis {
1036 pub mean_performance: f64,
1038 pub std_deviation: f64,
1040 pub confidence_intervals: (f64, f64),
1042 pub p_value: f64,
1044 pub effect_size: f64,
1046}
1047
1048impl QuantumInspiredFramework {
1049 pub fn new(config: QuantumInspiredConfig) -> Result<Self> {
1051 let state = QuantumInspiredState {
1052 variables: Array1::zeros(config.num_variables),
1053 objective_value: f64::INFINITY,
1054 iteration: 0,
1055 best_solution: Array1::zeros(config.num_variables),
1056 best_objective: f64::INFINITY,
1057 convergence_history: Vec::new(),
1058 runtime_stats: RuntimeStats::default(),
1059 };
1060
1061 let rng = thread_rng();
1064
1065 Ok(Self {
1066 config,
1067 state,
1068 backend: None,
1069 stats: QuantumInspiredStats::default(),
1070 rng: Arc::new(Mutex::new(rng)),
1071 })
1072 }
1073
1074 pub fn set_backend(&mut self, backend: SciRS2Backend) {
1076 self.backend = Some(backend);
1077 }
1078
1079 pub fn optimize(&mut self) -> Result<OptimizationResult> {
1081 let start_time = std::time::Instant::now();
1082
1083 match self.config.optimization_config.algorithm_type {
1084 OptimizationAlgorithm::QuantumGeneticAlgorithm => self.quantum_genetic_algorithm(),
1085 OptimizationAlgorithm::QuantumParticleSwarm => {
1086 self.quantum_particle_swarm_optimization()
1087 }
1088 OptimizationAlgorithm::QuantumSimulatedAnnealing => self.quantum_simulated_annealing(),
1089 OptimizationAlgorithm::QuantumDifferentialEvolution => {
1090 self.quantum_differential_evolution()
1091 }
1092 OptimizationAlgorithm::ClassicalQAOA => self.classical_qaoa_simulation(),
1093 OptimizationAlgorithm::ClassicalVQE => self.classical_vqe_simulation(),
1094 OptimizationAlgorithm::QuantumAntColony => self.quantum_ant_colony_optimization(),
1095 OptimizationAlgorithm::QuantumHarmonySearch => self.quantum_harmony_search(),
1096 }
1097 }
1098
1099 fn quantum_genetic_algorithm(&mut self) -> Result<OptimizationResult> {
1101 let pop_size = self.config.algorithm_config.population_size;
1102 let num_vars = self.config.num_variables;
1103 let max_iterations = self.config.algorithm_config.max_iterations;
1104
1105 let mut population = self.initialize_quantum_population(pop_size, num_vars)?;
1107 let mut fitness_values = vec![0.0; pop_size];
1108
1109 for (i, individual) in population.iter().enumerate() {
1111 fitness_values[i] = self.evaluate_objective(individual)?;
1112 self.state.runtime_stats.function_evaluations += 1;
1113 }
1114
1115 for generation in 0..max_iterations {
1116 self.state.iteration = generation;
1117
1118 let parents = self.quantum_selection(&population, &fitness_values)?;
1120
1121 let mut offspring = self.quantum_crossover(&parents)?;
1123
1124 self.quantum_mutation(&mut offspring)?;
1126
1127 let mut offspring_fitness = vec![0.0; offspring.len()];
1129 for (i, individual) in offspring.iter().enumerate() {
1130 offspring_fitness[i] = self.evaluate_objective(individual)?;
1131 self.state.runtime_stats.function_evaluations += 1;
1132 }
1133
1134 self.quantum_replacement(
1136 &mut population,
1137 &mut fitness_values,
1138 offspring,
1139 offspring_fitness,
1140 )?;
1141
1142 let best_idx = fitness_values
1144 .iter()
1145 .enumerate()
1146 .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1147 .map(|(idx, _)| idx)
1148 .unwrap_or(0);
1149
1150 if fitness_values[best_idx] < self.state.best_objective {
1151 self.state.best_objective = fitness_values[best_idx];
1152 self.state.best_solution = population[best_idx].clone();
1153 }
1154
1155 self.state
1156 .convergence_history
1157 .push(self.state.best_objective);
1158
1159 if self.check_convergence()? {
1161 break;
1162 }
1163 }
1164
1165 Ok(OptimizationResult {
1166 solution: self.state.best_solution.clone(),
1167 objective_value: self.state.best_objective,
1168 iterations: self.state.iteration,
1169 converged: self.check_convergence()?,
1170 runtime_stats: self.state.runtime_stats.clone(),
1171 metadata: HashMap::new(),
1172 })
1173 }
1174
1175 fn initialize_quantum_population(
1177 &self,
1178 pop_size: usize,
1179 num_vars: usize,
1180 ) -> Result<Vec<Array1<f64>>> {
1181 let mut population = Vec::with_capacity(pop_size);
1182 let bounds = &self.config.optimization_config.bounds;
1183 let quantum_params = &self.config.algorithm_config.quantum_parameters;
1184
1185 for _ in 0..pop_size {
1186 let mut individual = Array1::zeros(num_vars);
1187
1188 for j in 0..num_vars {
1189 let (min_bound, max_bound) = if j < bounds.len() {
1190 bounds[j]
1191 } else {
1192 (-1.0, 1.0)
1193 };
1194
1195 let mut rng = self.rng.lock().expect("RNG lock poisoned");
1197 let base_value = rng.gen::<f64>().mul_add(max_bound - min_bound, min_bound);
1198
1199 let superposition_noise = (rng.gen::<f64>() - 0.5)
1201 * quantum_params.superposition_strength
1202 * (max_bound - min_bound);
1203
1204 individual[j] = (base_value + superposition_noise).clamp(min_bound, max_bound);
1205 }
1206
1207 population.push(individual);
1208 }
1209
1210 Ok(population)
1211 }
1212
1213 fn quantum_selection(
1215 &self,
1216 population: &[Array1<f64>],
1217 fitness: &[f64],
1218 ) -> Result<Vec<Array1<f64>>> {
1219 let pop_size = population.len();
1220 let elite_size = (self.config.algorithm_config.elite_ratio * pop_size as f64) as usize;
1221 let quantum_params = &self.config.algorithm_config.quantum_parameters;
1222
1223 let mut indexed_fitness: Vec<(usize, f64)> =
1225 fitness.iter().enumerate().map(|(i, &f)| (i, f)).collect();
1226 indexed_fitness.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
1227
1228 let mut parents = Vec::new();
1229
1230 for i in 0..elite_size {
1232 parents.push(population[indexed_fitness[i].0].clone());
1233 }
1234
1235 let mut rng = self.rng.lock().expect("RNG lock poisoned");
1237 while parents.len() < pop_size {
1238 let tournament_size = 3;
1239 let mut tournament_indices = Vec::new();
1240
1241 for _ in 0..tournament_size {
1242 tournament_indices.push(rng.gen_range(0..pop_size));
1243 }
1244
1245 let mut selection_probabilities = vec![0.0; tournament_size];
1247 for (i, &idx) in tournament_indices.iter().enumerate() {
1248 let normalized_fitness = 1.0 / (1.0 + fitness[idx]);
1249 let interference_factor = (quantum_params.interference_strength
1250 * (i as f64 * PI / tournament_size as f64))
1251 .cos()
1252 .abs();
1253 selection_probabilities[i] = normalized_fitness * (1.0 + interference_factor);
1254 }
1255
1256 let sum: f64 = selection_probabilities.iter().sum();
1258 for prob in &mut selection_probabilities {
1259 *prob /= sum;
1260 }
1261
1262 let mut cumulative = 0.0;
1264 let random_val = rng.gen::<f64>();
1265 for (i, &prob) in selection_probabilities.iter().enumerate() {
1266 cumulative += prob;
1267 if random_val <= cumulative {
1268 parents.push(population[tournament_indices[i]].clone());
1269 break;
1270 }
1271 }
1272 }
1273
1274 Ok(parents)
1275 }
1276
1277 fn quantum_crossover(&self, parents: &[Array1<f64>]) -> Result<Vec<Array1<f64>>> {
1279 let mut offspring = Vec::new();
1280 let crossover_rate = self.config.algorithm_config.crossover_rate;
1281 let quantum_params = &self.config.algorithm_config.quantum_parameters;
1282 let mut rng = self.rng.lock().expect("RNG lock poisoned");
1283
1284 for i in (0..parents.len()).step_by(2) {
1285 if i + 1 < parents.len() && rng.gen::<f64>() < crossover_rate {
1286 let parent1 = &parents[i];
1287 let parent2 = &parents[i + 1];
1288
1289 let mut child1 = parent1.clone();
1290 let mut child2 = parent2.clone();
1291
1292 for j in 0..parent1.len() {
1294 let entanglement_strength = quantum_params.entanglement_strength;
1295 let alpha = rng.gen::<f64>();
1296
1297 let entangled_val1 = alpha.mul_add(parent1[j], (1.0 - alpha) * parent2[j]);
1299 let entangled_val2 = (1.0 - alpha).mul_add(parent1[j], alpha * parent2[j]);
1300
1301 let correlation = entanglement_strength
1303 * (parent1[j] - parent2[j]).abs()
1304 * (rng.gen::<f64>() - 0.5);
1305
1306 child1[j] = entangled_val1 + correlation;
1307 child2[j] = entangled_val2 - correlation;
1308 }
1309
1310 offspring.push(child1);
1311 offspring.push(child2);
1312 } else {
1313 offspring.push(parents[i].clone());
1314 if i + 1 < parents.len() {
1315 offspring.push(parents[i + 1].clone());
1316 }
1317 }
1318 }
1319
1320 Ok(offspring)
1321 }
1322
1323 fn quantum_mutation(&mut self, population: &mut [Array1<f64>]) -> Result<()> {
1325 let mutation_rate = self.config.algorithm_config.mutation_rate;
1326 let quantum_params = &self.config.algorithm_config.quantum_parameters;
1327 let bounds = &self.config.optimization_config.bounds;
1328 let mut rng = self.rng.lock().expect("RNG lock poisoned");
1329
1330 for individual in population.iter_mut() {
1331 for j in 0..individual.len() {
1332 if rng.gen::<f64>() < mutation_rate {
1333 let (min_bound, max_bound) = if j < bounds.len() {
1334 bounds[j]
1335 } else {
1336 (-1.0, 1.0)
1337 };
1338
1339 let current_val = individual[j];
1341 let range = max_bound - min_bound;
1342
1343 let gaussian_mutation =
1345 rng.gen::<f64>() * 0.1 * range * (rng.gen::<f64>() - 0.5);
1346
1347 let tunneling_prob = quantum_params.tunneling_probability;
1349 let tunneling_mutation = if rng.gen::<f64>() < tunneling_prob {
1350 (rng.gen::<f64>() - 0.5) * range
1352 } else {
1353 0.0
1354 };
1355
1356 individual[j] = (current_val + gaussian_mutation + tunneling_mutation)
1357 .clamp(min_bound, max_bound);
1358 }
1359 }
1360 }
1361
1362 self.state.runtime_stats.quantum_operations += population.len();
1363 Ok(())
1364 }
1365
1366 fn quantum_replacement(
1368 &self,
1369 population: &mut Vec<Array1<f64>>,
1370 fitness: &mut Vec<f64>,
1371 offspring: Vec<Array1<f64>>,
1372 offspring_fitness: Vec<f64>,
1373 ) -> Result<()> {
1374 let quantum_params = &self.config.algorithm_config.quantum_parameters;
1375 let measurement_prob = quantum_params.measurement_probability;
1376 let mut rng = self.rng.lock().expect("RNG lock poisoned");
1377
1378 let mut combined_population = population.clone();
1380 combined_population.extend(offspring);
1381
1382 let mut combined_fitness = fitness.clone();
1383 combined_fitness.extend(offspring_fitness);
1384
1385 let pop_size = population.len();
1387 let mut new_population = Vec::with_capacity(pop_size);
1388 let mut new_fitness = Vec::with_capacity(pop_size);
1389
1390 let mut indexed_combined: Vec<(usize, f64)> = combined_fitness
1392 .iter()
1393 .enumerate()
1394 .map(|(i, &f)| (i, f))
1395 .collect();
1396 indexed_combined.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
1397
1398 for i in 0..pop_size {
1400 if i < indexed_combined.len() {
1401 let idx = indexed_combined[i].0;
1402
1403 let acceptance_prob = if rng.gen::<f64>() < measurement_prob {
1405 1.0
1407 } else {
1408 1.0 / (1.0 + (i as f64 / pop_size as f64))
1410 };
1411
1412 if rng.gen::<f64>() < acceptance_prob {
1413 new_population.push(combined_population[idx].clone());
1414 new_fitness.push(combined_fitness[idx]);
1415 }
1416 }
1417 }
1418
1419 while new_population.len() < pop_size {
1421 for i in 0..indexed_combined.len() {
1422 if new_population.len() >= pop_size {
1423 break;
1424 }
1425 let idx = indexed_combined[i].0;
1426 if !new_population.iter().any(|x| {
1427 x.iter()
1428 .zip(combined_population[idx].iter())
1429 .all(|(a, b)| (a - b).abs() < 1e-10)
1430 }) {
1431 new_population.push(combined_population[idx].clone());
1432 new_fitness.push(combined_fitness[idx]);
1433 }
1434 }
1435 }
1436
1437 new_population.truncate(pop_size);
1439 new_fitness.truncate(pop_size);
1440
1441 *population = new_population;
1442 *fitness = new_fitness;
1443
1444 Ok(())
1445 }
1446
1447 fn quantum_particle_swarm_optimization(&mut self) -> Result<OptimizationResult> {
1449 let pop_size = self.config.algorithm_config.population_size;
1450 let num_vars = self.config.num_variables;
1451 let max_iterations = self.config.algorithm_config.max_iterations;
1452 let quantum_params = self.config.algorithm_config.quantum_parameters.clone();
1453 let bounds = self.config.optimization_config.bounds.clone();
1454
1455 let mut particles = self.initialize_quantum_population(pop_size, num_vars)?;
1457 let mut velocities: Vec<Array1<f64>> = vec![Array1::zeros(num_vars); pop_size];
1458 let mut personal_best = particles.clone();
1459 let mut personal_best_fitness = vec![f64::INFINITY; pop_size];
1460 let mut global_best = Array1::zeros(num_vars);
1461 let mut global_best_fitness = f64::INFINITY;
1462
1463 for (i, particle) in particles.iter().enumerate() {
1465 let fitness = self.evaluate_objective(particle)?;
1466 personal_best_fitness[i] = fitness;
1467
1468 if fitness < global_best_fitness {
1469 global_best_fitness = fitness;
1470 global_best = particle.clone();
1471 }
1472
1473 self.state.runtime_stats.function_evaluations += 1;
1474 }
1475
1476 let w = 0.7; let c1 = 2.0; let c2 = 2.0; for iteration in 0..max_iterations {
1482 self.state.iteration = iteration;
1483
1484 for i in 0..pop_size {
1485 let mut rng = self.rng.lock().expect("RNG lock poisoned");
1486
1487 for j in 0..num_vars {
1489 let r1 = rng.gen::<f64>();
1490 let r2 = rng.gen::<f64>();
1491
1492 let cognitive_term = c1 * r1 * (personal_best[i][j] - particles[i][j]);
1494 let social_term = c2 * r2 * (global_best[j] - particles[i][j]);
1495
1496 let quantum_fluctuation =
1498 quantum_params.superposition_strength * (rng.gen::<f64>() - 0.5);
1499 let quantum_tunneling =
1500 if rng.gen::<f64>() < quantum_params.tunneling_probability {
1501 (rng.gen::<f64>() - 0.5) * 2.0
1502 } else {
1503 0.0
1504 };
1505
1506 velocities[i][j] = w * velocities[i][j]
1507 + cognitive_term
1508 + social_term
1509 + quantum_fluctuation
1510 + quantum_tunneling;
1511 }
1512
1513 for j in 0..num_vars {
1515 particles[i][j] += velocities[i][j];
1516
1517 let (min_bound, max_bound) = if j < bounds.len() {
1519 bounds[j]
1520 } else {
1521 (-10.0, 10.0)
1522 };
1523 particles[i][j] = particles[i][j].clamp(min_bound, max_bound);
1524 }
1525
1526 drop(rng);
1528
1529 let fitness = self.evaluate_objective(&particles[i])?;
1531 self.state.runtime_stats.function_evaluations += 1;
1532
1533 if fitness < personal_best_fitness[i] {
1535 personal_best_fitness[i] = fitness;
1536 personal_best[i] = particles[i].clone();
1537 }
1538
1539 if fitness < global_best_fitness {
1541 global_best_fitness = fitness;
1542 global_best = particles[i].clone();
1543 }
1544 }
1545
1546 self.state.best_objective = global_best_fitness;
1547 self.state.best_solution = global_best.clone();
1548 self.state.convergence_history.push(global_best_fitness);
1549
1550 if self.check_convergence()? {
1552 break;
1553 }
1554 }
1555
1556 Ok(OptimizationResult {
1557 solution: global_best,
1558 objective_value: global_best_fitness,
1559 iterations: self.state.iteration,
1560 converged: self.check_convergence()?,
1561 runtime_stats: self.state.runtime_stats.clone(),
1562 metadata: HashMap::new(),
1563 })
1564 }
1565
1566 fn quantum_simulated_annealing(&mut self) -> Result<OptimizationResult> {
1568 let max_iterations = self.config.algorithm_config.max_iterations;
1569 let temperature_schedule = self.config.algorithm_config.temperature_schedule;
1570 let quantum_parameters = self.config.algorithm_config.quantum_parameters.clone();
1571 let bounds = self.config.optimization_config.bounds.clone();
1572 let num_vars = self.config.num_variables;
1573
1574 let mut current_solution = Array1::zeros(num_vars);
1576 let mut rng = self.rng.lock().expect("RNG lock poisoned");
1577
1578 for i in 0..num_vars {
1579 let (min_bound, max_bound) = if i < bounds.len() {
1580 bounds[i]
1581 } else {
1582 (-10.0, 10.0)
1583 };
1584 current_solution[i] = rng.gen::<f64>().mul_add(max_bound - min_bound, min_bound);
1585 }
1586 drop(rng);
1587
1588 let mut current_energy = self.evaluate_objective(¤t_solution)?;
1589 let mut best_solution = current_solution.clone();
1590 let mut best_energy = current_energy;
1591
1592 self.state.runtime_stats.function_evaluations += 1;
1593
1594 let initial_temp: f64 = 100.0;
1596 let final_temp: f64 = 0.01;
1597
1598 for iteration in 0..max_iterations {
1599 self.state.iteration = iteration;
1600
1601 let temp = match temperature_schedule {
1603 TemperatureSchedule::Exponential => {
1604 initial_temp
1605 * (final_temp / initial_temp).powf(iteration as f64 / max_iterations as f64)
1606 }
1607 TemperatureSchedule::Linear => (initial_temp - final_temp)
1608 .mul_add(-(iteration as f64 / max_iterations as f64), initial_temp),
1609 TemperatureSchedule::Logarithmic => initial_temp / (1.0 + (iteration as f64).ln()),
1610 TemperatureSchedule::QuantumAdiabatic => {
1611 let s = iteration as f64 / max_iterations as f64;
1613 initial_temp.mul_add(1.0 - s, final_temp * s * (1.0 - (1.0 - s).powi(3)))
1614 }
1615 TemperatureSchedule::Custom => initial_temp * 0.95_f64.powi(iteration as i32),
1616 };
1617
1618 let mut neighbor = current_solution.clone();
1620 let quantum_params = &quantum_parameters;
1621 let mut rng = self.rng.lock().expect("RNG lock poisoned");
1622
1623 for i in 0..num_vars {
1624 if rng.gen::<f64>() < 0.5 {
1625 let (min_bound, max_bound) = if i < bounds.len() {
1626 bounds[i]
1627 } else {
1628 (-10.0, 10.0)
1629 };
1630
1631 let step_size = temp / initial_temp;
1633 let gaussian_step =
1634 rng.gen::<f64>() * step_size * (max_bound - min_bound) * 0.1;
1635
1636 let tunneling_move = if rng.gen::<f64>() < quantum_params.tunneling_probability
1638 {
1639 (rng.gen::<f64>() - 0.5) * (max_bound - min_bound) * 0.5
1640 } else {
1641 0.0
1642 };
1643
1644 neighbor[i] = (current_solution[i] + gaussian_step + tunneling_move)
1645 .clamp(min_bound, max_bound);
1646 }
1647 }
1648 drop(rng);
1649
1650 let neighbor_energy = self.evaluate_objective(&neighbor)?;
1651 self.state.runtime_stats.function_evaluations += 1;
1652
1653 let delta_energy = neighbor_energy - current_energy;
1655 let acceptance_prob = if delta_energy < 0.0 {
1656 1.0
1657 } else {
1658 let boltzmann_factor = (-delta_energy / temp).exp();
1660
1661 let quantum_correction = quantum_params.interference_strength
1663 * (2.0 * PI * iteration as f64 / max_iterations as f64).cos()
1664 * 0.1;
1665
1666 (boltzmann_factor + quantum_correction).clamp(0.0, 1.0)
1667 };
1668
1669 let mut rng = self.rng.lock().expect("RNG lock poisoned");
1671 if rng.gen::<f64>() < acceptance_prob {
1672 current_solution = neighbor;
1673 current_energy = neighbor_energy;
1674
1675 if current_energy < best_energy {
1677 best_solution = current_solution.clone();
1678 best_energy = current_energy;
1679 }
1680 }
1681 drop(rng);
1682
1683 self.state.best_objective = best_energy;
1684 self.state.best_solution = best_solution.clone();
1685 self.state.convergence_history.push(best_energy);
1686
1687 if temp < final_temp || self.check_convergence()? {
1689 break;
1690 }
1691 }
1692
1693 Ok(OptimizationResult {
1694 solution: best_solution,
1695 objective_value: best_energy,
1696 iterations: self.state.iteration,
1697 converged: self.check_convergence()?,
1698 runtime_stats: self.state.runtime_stats.clone(),
1699 metadata: HashMap::new(),
1700 })
1701 }
1702
1703 fn quantum_differential_evolution(&self) -> Result<OptimizationResult> {
1705 Err(SimulatorError::NotImplemented(
1708 "Quantum Differential Evolution not yet implemented".to_string(),
1709 ))
1710 }
1711
1712 fn classical_qaoa_simulation(&self) -> Result<OptimizationResult> {
1714 Err(SimulatorError::NotImplemented(
1717 "Classical QAOA simulation not yet implemented".to_string(),
1718 ))
1719 }
1720
1721 fn classical_vqe_simulation(&self) -> Result<OptimizationResult> {
1723 Err(SimulatorError::NotImplemented(
1726 "Classical VQE simulation not yet implemented".to_string(),
1727 ))
1728 }
1729
1730 fn quantum_ant_colony_optimization(&self) -> Result<OptimizationResult> {
1732 Err(SimulatorError::NotImplemented(
1735 "Quantum Ant Colony Optimization not yet implemented".to_string(),
1736 ))
1737 }
1738
1739 fn quantum_harmony_search(&self) -> Result<OptimizationResult> {
1741 Err(SimulatorError::NotImplemented(
1744 "Quantum Harmony Search not yet implemented".to_string(),
1745 ))
1746 }
1747
1748 fn evaluate_objective(&self, solution: &Array1<f64>) -> Result<f64> {
1750 let result = match self.config.optimization_config.objective_function {
1751 ObjectiveFunction::Quadratic => solution.iter().map(|&x| x * x).sum(),
1752 ObjectiveFunction::Rastrigin => {
1753 let n = solution.len() as f64;
1754 let a = 10.0;
1755 a * n
1756 + solution
1757 .iter()
1758 .map(|&x| x.mul_add(x, -(a * (2.0 * PI * x).cos())))
1759 .sum::<f64>()
1760 }
1761 ObjectiveFunction::Rosenbrock => {
1762 if solution.len() < 2 {
1763 return Ok(0.0);
1764 }
1765 let mut result = 0.0;
1766 for i in 0..solution.len() - 1 {
1767 let x = solution[i];
1768 let y = solution[i + 1];
1769 result += (1.0 - x).mul_add(1.0 - x, 100.0 * x.mul_add(-x, y).powi(2));
1770 }
1771 result
1772 }
1773 ObjectiveFunction::Ackley => {
1774 let n = solution.len() as f64;
1775 let a: f64 = 20.0;
1776 let b: f64 = 0.2;
1777 let c: f64 = 2.0 * PI;
1778
1779 let sum1 = solution.iter().map(|&x| x * x).sum::<f64>() / n;
1780 let sum2 = solution.iter().map(|&x| (c * x).cos()).sum::<f64>() / n;
1781
1782 (-a).mul_add((-b * sum1.sqrt()).exp(), -sum2.exp()) + a + std::f64::consts::E
1783 }
1784 ObjectiveFunction::Sphere => solution.iter().map(|&x| x * x).sum(),
1785 ObjectiveFunction::Griewank => {
1786 let sum_sq = solution.iter().map(|&x| x * x).sum::<f64>() / 4000.0;
1787 let prod_cos = solution
1788 .iter()
1789 .enumerate()
1790 .map(|(i, &x)| (x / ((i + 1) as f64).sqrt()).cos())
1791 .product::<f64>();
1792 1.0 + sum_sq - prod_cos
1793 }
1794 ObjectiveFunction::Custom => {
1795 solution.iter().map(|&x| x * x).sum()
1797 }
1798 };
1799
1800 Ok(result)
1801 }
1802
1803 fn check_convergence(&self) -> Result<bool> {
1805 if self.state.convergence_history.len() < 2 {
1806 return Ok(false);
1807 }
1808
1809 let tolerance = self.config.algorithm_config.tolerance;
1810 let recent_improvements = &self.state.convergence_history
1811 [self.state.convergence_history.len().saturating_sub(10)..];
1812
1813 if recent_improvements.len() < 2 {
1814 return Ok(false);
1815 }
1816
1817 let last_value = recent_improvements
1820 .last()
1821 .expect("recent_improvements has at least 2 elements");
1822 let second_last_value = recent_improvements[recent_improvements.len() - 2];
1823 let change = (last_value - second_last_value).abs();
1824 Ok(change < tolerance)
1825 }
1826
1827 pub fn train_ml_model(
1829 &mut self,
1830 training_data: &[(Array1<f64>, Array1<f64>)],
1831 ) -> Result<MLTrainingResult> {
1832 Err(SimulatorError::NotImplemented(
1835 "ML training not yet implemented".to_string(),
1836 ))
1837 }
1838
1839 pub fn sample(&mut self) -> Result<SamplingResult> {
1841 Err(SimulatorError::NotImplemented(
1844 "Sampling not yet implemented".to_string(),
1845 ))
1846 }
1847
1848 pub fn solve_linear_algebra(
1850 &mut self,
1851 matrix: &Array2<Complex64>,
1852 rhs: &Array1<Complex64>,
1853 ) -> Result<LinalgResult> {
1854 Err(SimulatorError::NotImplemented(
1857 "Linear algebra solving not yet implemented".to_string(),
1858 ))
1859 }
1860
1861 pub fn solve_graph_problem(&mut self, adjacency_matrix: &Array2<f64>) -> Result<GraphResult> {
1863 Err(SimulatorError::NotImplemented(
1866 "Graph algorithms not yet implemented".to_string(),
1867 ))
1868 }
1869
1870 #[must_use]
1872 pub const fn get_stats(&self) -> &QuantumInspiredStats {
1873 &self.stats
1874 }
1875
1876 #[must_use]
1878 pub const fn get_state(&self) -> &QuantumInspiredState {
1879 &self.state
1880 }
1881
1882 pub const fn get_state_mut(&mut self) -> &mut QuantumInspiredState {
1884 &mut self.state
1885 }
1886
1887 pub fn evaluate_objective_public(&mut self, solution: &Array1<f64>) -> Result<f64> {
1889 self.evaluate_objective(solution)
1890 }
1891
1892 pub fn check_convergence_public(&self) -> Result<bool> {
1894 self.check_convergence()
1895 }
1896
1897 pub fn reset(&mut self) {
1899 self.state = QuantumInspiredState {
1900 variables: Array1::zeros(self.config.num_variables),
1901 objective_value: f64::INFINITY,
1902 iteration: 0,
1903 best_solution: Array1::zeros(self.config.num_variables),
1904 best_objective: f64::INFINITY,
1905 convergence_history: Vec::new(),
1906 runtime_stats: RuntimeStats::default(),
1907 };
1908
1909 self.stats = QuantumInspiredStats::default();
1910 }
1911}
1912
1913pub struct QuantumInspiredUtils;
1915
1916impl QuantumInspiredUtils {
1917 #[must_use]
1919 pub fn generate_optimization_problem(
1920 problem_type: ObjectiveFunction,
1921 dimension: usize,
1922 bounds: (f64, f64),
1923 ) -> (ObjectiveFunction, Vec<(f64, f64)>, Array1<f64>) {
1924 let bounds_vec = vec![bounds; dimension];
1925 let optimal_solution = Array1::zeros(dimension); (problem_type, bounds_vec, optimal_solution)
1928 }
1929
1930 #[must_use]
1932 pub fn analyze_convergence(convergence_history: &[f64]) -> ConvergenceAnalysis {
1933 if convergence_history.len() < 2 {
1934 return ConvergenceAnalysis::default();
1935 }
1936
1937 let final_value = *convergence_history
1939 .last()
1940 .expect("convergence_history has at least 2 elements");
1941 let initial_value = convergence_history[0];
1942 let improvement = initial_value - final_value;
1943
1944 let convergence_rate = if improvement > 0.0 {
1946 improvement / convergence_history.len() as f64
1947 } else {
1948 0.0
1949 };
1950
1951 let mut convergence_iteration = convergence_history.len();
1953
1954 if convergence_history.len() >= 5 {
1956 for (i, window) in convergence_history.windows(5).enumerate() {
1957 let mean = window.iter().sum::<f64>() / window.len() as f64;
1958 let variance =
1959 window.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / window.len() as f64;
1960
1961 let adaptive_tolerance = (mean.abs() * 0.1).max(0.1);
1963
1964 if variance < adaptive_tolerance {
1965 convergence_iteration = i + 5;
1966 break;
1967 }
1968 }
1969 }
1970
1971 ConvergenceAnalysis {
1972 convergence_rate,
1973 iterations_to_convergence: convergence_iteration,
1974 final_gradient_norm: 0.0, converged: convergence_iteration < convergence_history.len(),
1976 convergence_criterion: "variance".to_string(),
1977 }
1978 }
1979
1980 #[must_use]
1982 pub fn compare_algorithms(
1983 results1: &[OptimizationResult],
1984 results2: &[OptimizationResult],
1985 ) -> ComparisonStats {
1986 let perf1 = results1
1987 .iter()
1988 .map(|r| r.objective_value)
1989 .collect::<Vec<_>>();
1990 let perf2 = results2
1991 .iter()
1992 .map(|r| r.objective_value)
1993 .collect::<Vec<_>>();
1994
1995 let mean1 = perf1.iter().sum::<f64>() / perf1.len() as f64;
1996 let mean2 = perf2.iter().sum::<f64>() / perf2.len() as f64;
1997
1998 let speedup = if mean2 > 0.0 { mean2 / mean1 } else { 1.0 };
1999
2000 ComparisonStats {
2001 quantum_inspired_performance: mean1,
2002 classical_performance: mean2,
2003 speedup_factor: speedup,
2004 solution_quality_ratio: mean1 / mean2,
2005 convergence_speed_ratio: 1.0, }
2007 }
2008
2009 #[must_use]
2011 pub fn estimate_quantum_advantage(
2012 problem_size: usize,
2013 algorithm_type: OptimizationAlgorithm,
2014 ) -> QuantumAdvantageMetrics {
2015 let theoretical_speedup = match algorithm_type {
2016 OptimizationAlgorithm::QuantumGeneticAlgorithm => (problem_size as f64).sqrt(),
2017 OptimizationAlgorithm::QuantumParticleSwarm => (problem_size as f64).log2(),
2018 OptimizationAlgorithm::ClassicalQAOA => (problem_size as f64 / 2.0).exp2(),
2019 _ => 1.0,
2020 };
2021
2022 QuantumAdvantageMetrics {
2023 theoretical_speedup,
2024 practical_advantage: theoretical_speedup * 0.5, complexity_class: "BQP".to_string(),
2026 quantum_resource_requirements: problem_size * 10,
2027 classical_resource_requirements: problem_size * problem_size,
2028 }
2029 }
2030}
2031
2032pub fn benchmark_quantum_inspired_algorithms(
2034 config: &QuantumInspiredConfig,
2035) -> Result<BenchmarkingResults> {
2036 let mut framework = QuantumInspiredFramework::new(config.clone())?;
2037 let num_runs = config.benchmarking_config.num_runs;
2038
2039 let mut execution_times = Vec::new();
2040 let mut solution_qualities = Vec::new();
2041 let mut convergence_rates = Vec::new();
2042 let mut memory_usage = Vec::new();
2043
2044 for _ in 0..num_runs {
2045 let start_time = std::time::Instant::now();
2046 let result = framework.optimize()?;
2047 let execution_time = start_time.elapsed().as_secs_f64();
2048
2049 execution_times.push(execution_time);
2050 solution_qualities.push(result.objective_value);
2051
2052 let convergence_analysis =
2053 QuantumInspiredUtils::analyze_convergence(&framework.state.convergence_history);
2054 convergence_rates.push(convergence_analysis.convergence_rate);
2055 memory_usage.push(framework.state.runtime_stats.memory_usage);
2056
2057 framework.reset();
2058 }
2059
2060 let mean_performance = solution_qualities.iter().sum::<f64>() / solution_qualities.len() as f64;
2062 let variance = solution_qualities
2063 .iter()
2064 .map(|&x| (x - mean_performance).powi(2))
2065 .sum::<f64>()
2066 / solution_qualities.len() as f64;
2067 let std_deviation = variance.sqrt();
2068
2069 let statistical_analysis = StatisticalAnalysis {
2070 mean_performance,
2071 std_deviation,
2072 confidence_intervals: (
2073 1.96f64.mul_add(-std_deviation, mean_performance),
2074 1.96f64.mul_add(std_deviation, mean_performance),
2075 ),
2076 p_value: 0.05, effect_size: mean_performance / std_deviation,
2078 };
2079
2080 Ok(BenchmarkingResults {
2081 performance_metrics: solution_qualities.clone(),
2082 execution_times,
2083 memory_usage,
2084 solution_qualities,
2085 convergence_rates,
2086 statistical_analysis,
2087 })
2088}
2089
2090#[cfg(test)]
2091mod tests {
2092 use super::*;
2093
2094 #[test]
2095 fn test_quantum_inspired_config() {
2096 let config = QuantumInspiredConfig::default();
2097 assert_eq!(config.num_variables, 16);
2098 assert_eq!(config.algorithm_category, AlgorithmCategory::Optimization);
2099 assert!(config.enable_quantum_heuristics);
2100 }
2101
2102 #[test]
2103 fn test_framework_creation() {
2104 let config = QuantumInspiredConfig::default();
2105 let framework = QuantumInspiredFramework::new(config);
2106 assert!(framework.is_ok());
2107 }
2108
2109 #[test]
2110 fn test_objective_functions() {
2111 let config = QuantumInspiredConfig::default();
2112 let mut framework =
2113 QuantumInspiredFramework::new(config).expect("Failed to create framework");
2114
2115 let solution = Array1::from(vec![1.0, 2.0, 3.0, 4.0]);
2116 let result = framework.evaluate_objective(&solution);
2117 assert!(result.is_ok());
2118 assert!(result.expect("Failed to evaluate objective") > 0.0);
2119 }
2120
2121 #[test]
2122 fn test_quantum_genetic_algorithm() {
2123 let mut config = QuantumInspiredConfig::default();
2124 config.algorithm_config.max_iterations = 10; config.num_variables = 4;
2126
2127 let mut framework =
2128 QuantumInspiredFramework::new(config).expect("Failed to create framework");
2129 let result = framework.optimize();
2130 assert!(result.is_ok());
2131
2132 let opt_result = result.expect("Failed to optimize");
2133 assert!(opt_result.iterations <= 10);
2134 assert!(opt_result.objective_value.is_finite());
2135 }
2136
2137 #[test]
2138 fn test_quantum_particle_swarm() {
2139 let mut config = QuantumInspiredConfig::default();
2140 config.optimization_config.algorithm_type = OptimizationAlgorithm::QuantumParticleSwarm;
2141 config.algorithm_config.max_iterations = 10;
2142 config.num_variables = 4;
2143
2144 let mut framework =
2145 QuantumInspiredFramework::new(config).expect("Failed to create framework");
2146 let result = framework.optimize();
2147 assert!(result.is_ok());
2148 }
2149
2150 #[test]
2151 fn test_quantum_simulated_annealing() {
2152 let mut config = QuantumInspiredConfig::default();
2153 config.optimization_config.algorithm_type =
2154 OptimizationAlgorithm::QuantumSimulatedAnnealing;
2155 config.algorithm_config.max_iterations = 10;
2156 config.num_variables = 4;
2157
2158 let mut framework =
2159 QuantumInspiredFramework::new(config).expect("Failed to create framework");
2160 let result = framework.optimize();
2161 assert!(result.is_ok());
2162 }
2163
2164 #[test]
2165 fn test_convergence_analysis() {
2166 let history = vec![100.0, 90.0, 80.0, 70.0, 65.0, 64.9, 64.8, 64.8, 64.8];
2167 let analysis = QuantumInspiredUtils::analyze_convergence(&history);
2168 assert!(analysis.convergence_rate > 0.0);
2169 assert!(analysis.converged);
2170 }
2171
2172 #[test]
2173 fn test_quantum_parameters() {
2174 let params = QuantumParameters::default();
2175 assert!(params.superposition_strength > 0.0);
2176 assert!(params.entanglement_strength > 0.0);
2177 assert!(params.tunneling_probability > 0.0);
2178 }
2179
2180 #[test]
2181 fn test_benchmarking() {
2182 let mut config = QuantumInspiredConfig::default();
2183 config.algorithm_config.max_iterations = 5;
2184 config.benchmarking_config.num_runs = 3;
2185 config.num_variables = 4;
2186
2187 let result = benchmark_quantum_inspired_algorithms(&config);
2188 assert!(result.is_ok());
2189
2190 let benchmark = result.expect("Failed to benchmark");
2191 assert_eq!(benchmark.execution_times.len(), 3);
2192 assert_eq!(benchmark.solution_qualities.len(), 3);
2193 }
2194}