quantrs2_sim/
quantum_gravity_simulation.rs

1//! Quantum Gravity Simulation Framework
2//!
3//! This module provides a comprehensive implementation of quantum gravity theories and
4//! simulation methods, including loop quantum gravity, causal dynamical triangulation,
5//! asymptotic safety, emergent gravity models, holographic correspondence, and AdS/CFT
6//! duality. This framework enables exploration of quantum spacetime dynamics and
7//! gravitational quantum effects at the Planck scale.
8
9use scirs2_core::ndarray::{s, Array1, Array2, Array3, Array4};
10use scirs2_core::random::{thread_rng, Rng};
11use scirs2_core::Complex64;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18use scirs2_core::random::prelude::*;
19
20use std::fmt::Write;
21/// Quantum gravity simulation configuration
22#[derive(Debug, Clone, Serialize, Deserialize)]
23pub struct QuantumGravityConfig {
24    /// Approach to quantum gravity
25    pub gravity_approach: GravityApproach,
26    /// Planck length scale (in natural units)
27    pub planck_length: f64,
28    /// Planck time scale (in natural units)
29    pub planck_time: f64,
30    /// Number of spatial dimensions
31    pub spatial_dimensions: usize,
32    /// Enable Lorentz invariance
33    pub lorentz_invariant: bool,
34    /// Background metric type
35    pub background_metric: BackgroundMetric,
36    /// Cosmological constant
37    pub cosmological_constant: f64,
38    /// Newton's gravitational constant
39    pub gravitational_constant: f64,
40    /// Speed of light (natural units)
41    pub speed_of_light: f64,
42    /// Hbar (natural units)
43    pub reduced_planck_constant: f64,
44    /// Enable quantum corrections
45    pub quantum_corrections: bool,
46    /// Loop quantum gravity specific settings
47    pub lqg_config: Option<LQGConfig>,
48    /// Causal dynamical triangulation settings
49    pub cdt_config: Option<CDTConfig>,
50    /// Asymptotic safety settings
51    pub asymptotic_safety_config: Option<AsymptoticSafetyConfig>,
52    /// AdS/CFT correspondence settings
53    pub ads_cft_config: Option<AdSCFTConfig>,
54}
55
56impl Default for QuantumGravityConfig {
57    fn default() -> Self {
58        Self {
59            gravity_approach: GravityApproach::LoopQuantumGravity,
60            planck_length: 1.616e-35, // meters
61            planck_time: 5.391e-44,   // seconds
62            spatial_dimensions: 3,
63            lorentz_invariant: true,
64            background_metric: BackgroundMetric::Minkowski,
65            cosmological_constant: 0.0,
66            gravitational_constant: 6.674e-11,  // m³/kg/s²
67            speed_of_light: 299_792_458.0,      // m/s
68            reduced_planck_constant: 1.055e-34, // J⋅s
69            quantum_corrections: true,
70            lqg_config: Some(LQGConfig::default()),
71            cdt_config: Some(CDTConfig::default()),
72            asymptotic_safety_config: Some(AsymptoticSafetyConfig::default()),
73            ads_cft_config: Some(AdSCFTConfig::default()),
74        }
75    }
76}
77
78/// Approaches to quantum gravity
79#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
80pub enum GravityApproach {
81    /// Loop Quantum Gravity
82    LoopQuantumGravity,
83    /// Causal Dynamical Triangulation
84    CausalDynamicalTriangulation,
85    /// Asymptotic Safety
86    AsymptoticSafety,
87    /// String Theory approaches
88    StringTheory,
89    /// Emergent Gravity models
90    EmergentGravity,
91    /// Holographic approaches (AdS/CFT)
92    HolographicGravity,
93    /// Regge Calculus
94    ReggeCalculus,
95    /// Group Field Theory
96    GroupFieldTheory,
97    /// Causal Sets
98    CausalSets,
99    /// Entropic Gravity
100    EntropicGravity,
101}
102
103/// Background spacetime metrics
104#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
105pub enum BackgroundMetric {
106    /// Minkowski spacetime (flat)
107    Minkowski,
108    /// de Sitter spacetime (expanding)
109    DeSitter,
110    /// Anti-de Sitter spacetime
111    AntiDeSitter,
112    /// Schwarzschild black hole
113    Schwarzschild,
114    /// Kerr black hole (rotating)
115    Kerr,
116    /// Friedmann-Lemaître-Robertson-Walker (cosmological)
117    FLRW,
118    /// Custom metric tensor
119    Custom,
120}
121
122/// Loop Quantum Gravity configuration
123#[derive(Debug, Clone, Serialize, Deserialize)]
124pub struct LQGConfig {
125    /// Barbero-Immirzi parameter
126    pub barbero_immirzi_parameter: f64,
127    /// Maximum spin for SU(2) representations
128    pub max_spin: f64,
129    /// Number of spin network nodes
130    pub num_nodes: usize,
131    /// Number of spin network edges
132    pub num_edges: usize,
133    /// Enable spin foam dynamics
134    pub spin_foam_dynamics: bool,
135    /// Quantum geometry area eigenvalues
136    pub area_eigenvalues: Vec<f64>,
137    /// Volume eigenvalue spectrum
138    pub volume_eigenvalues: Vec<f64>,
139    /// Holonomy discretization parameter
140    pub holonomy_discretization: f64,
141}
142
143impl Default for LQGConfig {
144    fn default() -> Self {
145        Self {
146            barbero_immirzi_parameter: 0.2375, // Standard value
147            max_spin: 5.0,
148            num_nodes: 100,
149            num_edges: 300,
150            spin_foam_dynamics: true,
151            area_eigenvalues: (1..=20)
152                .map(|j| f64::from(j) * (PI * 1.616e-35_f64.powi(2)))
153                .collect(),
154            volume_eigenvalues: (1..=50)
155                .map(|n| f64::from(n).sqrt() * 1.616e-35_f64.powi(3))
156                .collect(),
157            holonomy_discretization: 0.1,
158        }
159    }
160}
161
162/// Causal Dynamical Triangulation configuration
163#[derive(Debug, Clone, Serialize, Deserialize)]
164pub struct CDTConfig {
165    /// Number of simplices in triangulation
166    pub num_simplices: usize,
167    /// Time slicing parameter
168    pub time_slicing: f64,
169    /// Spatial volume constraint
170    pub spatial_volume: f64,
171    /// Bare gravitational coupling
172    pub bare_coupling: f64,
173    /// Cosmological constant coupling
174    pub cosmological_coupling: f64,
175    /// Enable Monte Carlo moves
176    pub monte_carlo_moves: bool,
177    /// Number of MC sweeps
178    pub mc_sweeps: usize,
179    /// Accept/reject threshold
180    pub acceptance_threshold: f64,
181}
182
183impl Default for CDTConfig {
184    fn default() -> Self {
185        Self {
186            num_simplices: 10_000,
187            time_slicing: 0.1,
188            spatial_volume: 1000.0,
189            bare_coupling: 0.1,
190            cosmological_coupling: 0.01,
191            monte_carlo_moves: true,
192            mc_sweeps: 1000,
193            acceptance_threshold: 0.5,
194        }
195    }
196}
197
198/// Asymptotic Safety configuration
199#[derive(Debug, Clone, Serialize, Deserialize)]
200pub struct AsymptoticSafetyConfig {
201    /// UV fixed point Newton constant
202    pub uv_newton_constant: f64,
203    /// UV fixed point cosmological constant
204    pub uv_cosmological_constant: f64,
205    /// Beta function truncation order
206    pub truncation_order: usize,
207    /// Energy scale for RG flow
208    pub energy_scale: f64,
209    /// Critical exponents
210    pub critical_exponents: Vec<f64>,
211    /// Enable higher derivative terms
212    pub higher_derivatives: bool,
213    /// Number of RG flow steps
214    pub rg_flow_steps: usize,
215}
216
217impl Default for AsymptoticSafetyConfig {
218    fn default() -> Self {
219        Self {
220            uv_newton_constant: 0.1,
221            uv_cosmological_constant: 0.01,
222            truncation_order: 4,
223            energy_scale: 1.0,
224            critical_exponents: vec![-2.0, 0.5, 1.2], // Example critical exponents
225            higher_derivatives: true,
226            rg_flow_steps: 1000,
227        }
228    }
229}
230
231/// AdS/CFT correspondence configuration
232#[derive(Debug, Clone, Serialize, Deserialize)]
233pub struct AdSCFTConfig {
234    /// `AdS` space dimension
235    pub ads_dimension: usize,
236    /// CFT dimension (`AdS_d+1/CFT_d`)
237    pub cft_dimension: usize,
238    /// `AdS` radius
239    pub ads_radius: f64,
240    /// Central charge of CFT
241    pub central_charge: f64,
242    /// Temperature (for thermal `AdS`)
243    pub temperature: f64,
244    /// Enable black hole formation
245    pub black_hole_formation: bool,
246    /// Holographic entanglement entropy
247    pub holographic_entanglement: bool,
248    /// Number of degrees of freedom
249    pub degrees_of_freedom: usize,
250}
251
252impl Default for AdSCFTConfig {
253    fn default() -> Self {
254        Self {
255            ads_dimension: 5, // AdS_5
256            cft_dimension: 4, // CFT_4
257            ads_radius: 1.0,
258            central_charge: 100.0,
259            temperature: 0.0,
260            black_hole_formation: false,
261            holographic_entanglement: true,
262            degrees_of_freedom: 1000,
263        }
264    }
265}
266
267/// Spin network representation for Loop Quantum Gravity
268#[derive(Debug, Clone, Serialize, Deserialize)]
269pub struct SpinNetwork {
270    /// Nodes with SU(2) representations
271    pub nodes: Vec<SpinNetworkNode>,
272    /// Edges with spin labels
273    pub edges: Vec<SpinNetworkEdge>,
274    /// Intertwiners at nodes
275    pub intertwiners: HashMap<usize, Intertwiner>,
276    /// Holonomies along edges
277    pub holonomies: HashMap<usize, SU2Element>,
278}
279
280/// Spin network node
281#[derive(Debug, Clone, Serialize, Deserialize)]
282pub struct SpinNetworkNode {
283    /// Node identifier
284    pub id: usize,
285    /// Valence (number of connected edges)
286    pub valence: usize,
287    /// Node position in embedding space
288    pub position: Vec<f64>,
289    /// Associated quantum numbers
290    pub quantum_numbers: Vec<f64>,
291}
292
293/// Spin network edge
294#[derive(Debug, Clone, Serialize, Deserialize)]
295pub struct SpinNetworkEdge {
296    /// Edge identifier
297    pub id: usize,
298    /// Source node
299    pub source: usize,
300    /// Target node
301    pub target: usize,
302    /// Spin label (j)
303    pub spin: f64,
304    /// Edge length (quantum geometry)
305    pub length: f64,
306}
307
308/// SU(2) intertwiner at spin network nodes
309#[derive(Debug, Clone, Serialize, Deserialize)]
310pub struct Intertwiner {
311    /// Intertwiner identifier
312    pub id: usize,
313    /// Input spins
314    pub input_spins: Vec<f64>,
315    /// Output spin
316    pub output_spin: f64,
317    /// Clebsch-Gordan coefficients
318    pub clebsch_gordan_coeffs: Array2<Complex64>,
319}
320
321/// SU(2) group element (holonomy)
322#[derive(Debug, Clone, Serialize, Deserialize)]
323pub struct SU2Element {
324    /// Complex matrix representation
325    pub matrix: Array2<Complex64>,
326    /// Pauli matrices decomposition
327    pub pauli_coefficients: [Complex64; 4],
328}
329
330/// Simplicial complex for Causal Dynamical Triangulation
331#[derive(Debug, Clone, Serialize, Deserialize)]
332pub struct SimplicialComplex {
333    /// Vertices in spacetime
334    pub vertices: Vec<SpacetimeVertex>,
335    /// Simplices (tetrahedra in 4D)
336    pub simplices: Vec<Simplex>,
337    /// Time slicing structure
338    pub time_slices: Vec<TimeSlice>,
339    /// Causal structure
340    pub causal_relations: HashMap<usize, Vec<usize>>,
341}
342
343/// Spacetime vertex
344#[derive(Debug, Clone, Serialize, Deserialize)]
345pub struct SpacetimeVertex {
346    /// Vertex identifier
347    pub id: usize,
348    /// Spacetime coordinates
349    pub coordinates: Vec<f64>,
350    /// Time coordinate
351    pub time: f64,
352    /// Coordination number
353    pub coordination: usize,
354}
355
356/// Simplex (fundamental building block)
357#[derive(Debug, Clone, Serialize, Deserialize)]
358pub struct Simplex {
359    /// Simplex identifier
360    pub id: usize,
361    /// Vertex indices
362    pub vertices: Vec<usize>,
363    /// Simplex type (spacelike/timelike)
364    pub simplex_type: SimplexType,
365    /// Volume (discrete)
366    pub volume: f64,
367    /// Action contribution
368    pub action: f64,
369}
370
371/// Type of simplex in CDT
372#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
373pub enum SimplexType {
374    /// Spacelike simplex
375    Spacelike,
376    /// Timelike simplex
377    Timelike,
378    /// Mixed simplex
379    Mixed,
380}
381
382/// Time slice in CDT
383#[derive(Debug, Clone, Serialize, Deserialize)]
384pub struct TimeSlice {
385    /// Time value
386    pub time: f64,
387    /// Vertices in this slice
388    pub vertices: Vec<usize>,
389    /// Spatial volume
390    pub spatial_volume: f64,
391    /// Intrinsic curvature
392    pub curvature: f64,
393}
394
395/// Renormalization group trajectory
396#[derive(Debug, Clone, Serialize, Deserialize)]
397pub struct RGTrajectory {
398    /// Coupling constants vs energy scale
399    pub coupling_evolution: HashMap<String, Vec<f64>>,
400    /// Energy scales
401    pub energy_scales: Vec<f64>,
402    /// Beta functions
403    pub beta_functions: HashMap<String, Vec<f64>>,
404    /// Fixed points
405    pub fixed_points: Vec<FixedPoint>,
406}
407
408/// Fixed point in RG flow
409#[derive(Debug, Clone, Serialize, Deserialize)]
410pub struct FixedPoint {
411    /// Fixed point couplings
412    pub couplings: HashMap<String, f64>,
413    /// Critical exponents
414    pub critical_exponents: Vec<f64>,
415    /// Stability type
416    pub stability: FixedPointStability,
417}
418
419/// Fixed point stability
420#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
421pub enum FixedPointStability {
422    /// UV attractive
423    UVAttractive,
424    /// IR attractive
425    IRAttractive,
426    /// Saddle point
427    Saddle,
428    /// Unstable
429    Unstable,
430}
431
432/// Holographic duality correspondence
433#[derive(Debug, Clone, Serialize, Deserialize)]
434pub struct HolographicDuality {
435    /// Bulk geometry (`AdS` space)
436    pub bulk_geometry: BulkGeometry,
437    /// Boundary theory (CFT)
438    pub boundary_theory: BoundaryTheory,
439    /// Holographic dictionary
440    pub holographic_dictionary: HashMap<String, String>,
441    /// Entanglement structure
442    pub entanglement_structure: EntanglementStructure,
443}
444
445/// Bulk `AdS` geometry
446#[derive(Debug, Clone, Serialize, Deserialize)]
447pub struct BulkGeometry {
448    /// Metric tensor
449    pub metric_tensor: Array2<f64>,
450    /// `AdS` radius
451    pub ads_radius: f64,
452    /// Black hole horizon (if present)
453    pub horizon_radius: Option<f64>,
454    /// Temperature
455    pub temperature: f64,
456    /// Stress-energy tensor
457    pub stress_energy_tensor: Array2<f64>,
458}
459
460/// Boundary CFT
461#[derive(Debug, Clone, Serialize, Deserialize)]
462pub struct BoundaryTheory {
463    /// Central charge
464    pub central_charge: f64,
465    /// Operator dimensions
466    pub operator_dimensions: HashMap<String, f64>,
467    /// Correlation functions
468    pub correlation_functions: HashMap<String, Array1<Complex64>>,
469    /// Conformal symmetry generators
470    pub conformal_generators: Vec<Array2<Complex64>>,
471}
472
473/// Entanglement structure in holographic duality
474#[derive(Debug, Clone, Serialize, Deserialize)]
475pub struct EntanglementStructure {
476    /// Ryu-Takayanagi surfaces
477    pub rt_surfaces: Vec<RTSurface>,
478    /// Entanglement entropy
479    pub entanglement_entropy: HashMap<String, f64>,
480    /// Holographic complexity
481    pub holographic_complexity: f64,
482    /// Entanglement spectrum
483    pub entanglement_spectrum: Array1<f64>,
484}
485
486/// Ryu-Takayanagi surface
487#[derive(Debug, Clone, Serialize, Deserialize)]
488pub struct RTSurface {
489    /// Surface coordinates
490    pub coordinates: Array2<f64>,
491    /// Surface area
492    pub area: f64,
493    /// Associated boundary region
494    pub boundary_region: BoundaryRegion,
495}
496
497/// Boundary region for entanglement
498#[derive(Debug, Clone, Serialize, Deserialize)]
499pub struct BoundaryRegion {
500    /// Region coordinates
501    pub coordinates: Array2<f64>,
502    /// Region volume
503    pub volume: f64,
504    /// Entanglement entropy
505    pub entropy: f64,
506}
507
508/// Main quantum gravity simulator
509#[derive(Debug)]
510pub struct QuantumGravitySimulator {
511    /// Configuration
512    config: QuantumGravityConfig,
513    /// Current spacetime state
514    spacetime_state: Option<SpacetimeState>,
515    /// Spin network (for LQG)
516    spin_network: Option<SpinNetwork>,
517    /// Simplicial complex (for CDT)
518    simplicial_complex: Option<SimplicialComplex>,
519    /// RG trajectory (for Asymptotic Safety)
520    rg_trajectory: Option<RGTrajectory>,
521    /// Holographic duality (for AdS/CFT)
522    holographic_duality: Option<HolographicDuality>,
523    /// `SciRS2` backend for numerical computations
524    backend: Option<SciRS2Backend>,
525    /// Simulation history
526    simulation_history: Vec<GravitySimulationResult>,
527    /// Performance statistics
528    stats: GravitySimulationStats,
529}
530
531/// Spacetime state representation
532#[derive(Debug, Clone, Serialize, Deserialize)]
533pub struct SpacetimeState {
534    /// Metric tensor field
535    pub metric_field: Array4<f64>,
536    /// Curvature tensor
537    pub curvature_tensor: Array4<f64>,
538    /// Matter fields
539    pub matter_fields: HashMap<String, Array3<Complex64>>,
540    /// Quantum fluctuations
541    pub quantum_fluctuations: Array3<Complex64>,
542    /// Energy-momentum tensor
543    pub energy_momentum_tensor: Array2<f64>,
544}
545
546/// Quantum gravity simulation result
547#[derive(Debug, Clone, Serialize, Deserialize)]
548pub struct GravitySimulationResult {
549    /// Approach used
550    pub approach: GravityApproach,
551    /// Ground state energy
552    pub ground_state_energy: f64,
553    /// Spacetime volume
554    pub spacetime_volume: f64,
555    /// Quantum geometry measurements
556    pub geometry_measurements: GeometryMeasurements,
557    /// Convergence information
558    pub convergence_info: ConvergenceInfo,
559    /// Physical observables
560    pub observables: HashMap<String, f64>,
561    /// Computation time
562    pub computation_time: f64,
563}
564
565/// Quantum geometry measurements
566#[derive(Debug, Clone, Serialize, Deserialize)]
567pub struct GeometryMeasurements {
568    /// Area eigenvalue spectrum
569    pub area_spectrum: Vec<f64>,
570    /// Volume eigenvalue spectrum
571    pub volume_spectrum: Vec<f64>,
572    /// Length eigenvalue spectrum
573    pub length_spectrum: Vec<f64>,
574    /// Discrete curvature
575    pub discrete_curvature: f64,
576    /// Topology measurements
577    pub topology_measurements: TopologyMeasurements,
578}
579
580/// Topology measurements
581#[derive(Debug, Clone, Serialize, Deserialize)]
582pub struct TopologyMeasurements {
583    /// Euler characteristic
584    pub euler_characteristic: i32,
585    /// Betti numbers
586    pub betti_numbers: Vec<usize>,
587    /// Homology groups
588    pub homology_groups: Vec<String>,
589    /// Fundamental group
590    pub fundamental_group: String,
591}
592
593/// Convergence information
594#[derive(Debug, Clone, Serialize, Deserialize)]
595pub struct ConvergenceInfo {
596    /// Number of iterations
597    pub iterations: usize,
598    /// Final residual
599    pub final_residual: f64,
600    /// Convergence achieved
601    pub converged: bool,
602    /// Convergence history
603    pub convergence_history: Vec<f64>,
604}
605
606/// Simulation performance statistics
607#[derive(Debug, Clone, Serialize, Deserialize)]
608pub struct GravitySimulationStats {
609    /// Total simulation time
610    pub total_time: f64,
611    /// Memory usage (bytes)
612    pub memory_usage: usize,
613    /// Number of calculations performed
614    pub calculations_performed: usize,
615    /// Average computation time per step
616    pub avg_time_per_step: f64,
617    /// Peak memory usage
618    pub peak_memory_usage: usize,
619}
620
621impl Default for GravitySimulationStats {
622    fn default() -> Self {
623        Self {
624            total_time: 0.0,
625            memory_usage: 0,
626            calculations_performed: 0,
627            avg_time_per_step: 0.0,
628            peak_memory_usage: 0,
629        }
630    }
631}
632
633impl QuantumGravitySimulator {
634    /// Create a new quantum gravity simulator
635    #[must_use]
636    pub fn new(config: QuantumGravityConfig) -> Self {
637        Self {
638            config,
639            spacetime_state: None,
640            spin_network: None,
641            simplicial_complex: None,
642            rg_trajectory: None,
643            holographic_duality: None,
644            backend: None,
645            simulation_history: Vec::new(),
646            stats: GravitySimulationStats::default(),
647        }
648    }
649
650    /// Initialize the simulator with `SciRS2` backend
651    #[must_use]
652    pub fn with_backend(mut self, backend: SciRS2Backend) -> Self {
653        self.backend = Some(backend);
654        self
655    }
656
657    /// Initialize spacetime state
658    pub fn initialize_spacetime(&mut self) -> Result<()> {
659        let spatial_dims = self.config.spatial_dimensions;
660        let time_dims = 1;
661        let total_dims = spatial_dims + time_dims;
662
663        // Initialize metric tensor (signature mostly minus)
664        let mut metric = Array4::<f64>::zeros((total_dims, total_dims, 16, 16));
665        for t in 0..16 {
666            for s in 0..16 {
667                // Minkowski metric as default
668                metric[[0, 0, t, s]] = 1.0; // Time component
669                for i in 1..total_dims {
670                    metric[[i, i, t, s]] = -1.0; // Spatial components
671                }
672            }
673        }
674
675        // Initialize curvature tensor
676        let curvature = Array4::<f64>::zeros((total_dims, total_dims, total_dims, total_dims));
677
678        // Initialize matter fields
679        let mut matter_fields = HashMap::new();
680        matter_fields.insert(
681            "scalar_field".to_string(),
682            Array3::<Complex64>::zeros((16, 16, 16)),
683        );
684
685        // Initialize quantum fluctuations
686        let quantum_fluctuations = Array3::<Complex64>::zeros((16, 16, 16));
687
688        // Initialize energy-momentum tensor
689        let energy_momentum = Array2::<f64>::zeros((total_dims, total_dims));
690
691        self.spacetime_state = Some(SpacetimeState {
692            metric_field: metric,
693            curvature_tensor: curvature,
694            matter_fields,
695            quantum_fluctuations,
696            energy_momentum_tensor: energy_momentum,
697        });
698
699        Ok(())
700    }
701
702    /// Initialize Loop Quantum Gravity spin network
703    pub fn initialize_lqg_spin_network(&mut self) -> Result<()> {
704        if let Some(lqg_config) = &self.config.lqg_config {
705            let mut nodes = Vec::new();
706            let mut edges = Vec::new();
707            let mut intertwiners = HashMap::new();
708            let mut holonomies = HashMap::new();
709
710            // Create nodes
711            for i in 0..lqg_config.num_nodes {
712                let valence = (thread_rng().gen::<f64>() * 6.0) as usize + 3; // 3-8 valence
713                let position = (0..self.config.spatial_dimensions)
714                    .map(|_| thread_rng().gen::<f64>() * 10.0)
715                    .collect();
716                let quantum_numbers = (0..valence)
717                    .map(|_| thread_rng().gen::<f64>() * lqg_config.max_spin)
718                    .collect();
719
720                nodes.push(SpinNetworkNode {
721                    id: i,
722                    valence,
723                    position,
724                    quantum_numbers,
725                });
726            }
727
728            // Create edges
729            for i in 0..lqg_config.num_edges {
730                let source = thread_rng().gen_range(0..lqg_config.num_nodes);
731                let target = thread_rng().gen_range(0..lqg_config.num_nodes);
732                if source != target {
733                    let spin = thread_rng().gen::<f64>() * lqg_config.max_spin;
734                    let length = (spin * (spin + 1.0)).sqrt() * self.config.planck_length;
735
736                    edges.push(SpinNetworkEdge {
737                        id: i,
738                        source,
739                        target,
740                        spin,
741                        length,
742                    });
743                }
744            }
745
746            // Create intertwiners
747            for node in &nodes {
748                let input_spins = node.quantum_numbers.clone();
749                let output_spin = input_spins.iter().sum::<f64>() / input_spins.len() as f64;
750                let dim = input_spins.len();
751                let clebsch_gordan = Array2::<Complex64>::from_shape_fn((dim, dim), |(_i, _j)| {
752                    Complex64::new(
753                        thread_rng().gen::<f64>() - 0.5,
754                        thread_rng().gen::<f64>() - 0.5,
755                    )
756                });
757
758                intertwiners.insert(
759                    node.id,
760                    Intertwiner {
761                        id: node.id,
762                        input_spins,
763                        output_spin,
764                        clebsch_gordan_coeffs: clebsch_gordan,
765                    },
766                );
767            }
768
769            // Create holonomies
770            for edge in &edges {
771                let matrix = self.generate_su2_element()?;
772                let pauli_coeffs = self.extract_pauli_coefficients(&matrix);
773
774                holonomies.insert(
775                    edge.id,
776                    SU2Element {
777                        matrix,
778                        pauli_coefficients: pauli_coeffs,
779                    },
780                );
781            }
782
783            self.spin_network = Some(SpinNetwork {
784                nodes,
785                edges,
786                intertwiners,
787                holonomies,
788            });
789        }
790
791        Ok(())
792    }
793
794    /// Generate random SU(2) element
795    fn generate_su2_element(&self) -> Result<Array2<Complex64>> {
796        let a = Complex64::new(
797            thread_rng().gen::<f64>() - 0.5,
798            thread_rng().gen::<f64>() - 0.5,
799        );
800        let b = Complex64::new(
801            thread_rng().gen::<f64>() - 0.5,
802            thread_rng().gen::<f64>() - 0.5,
803        );
804
805        // Normalize to ensure det = 1
806        let norm = (a.norm_sqr() + b.norm_sqr()).sqrt();
807        let a = a / norm;
808        let b = b / norm;
809
810        let mut matrix = Array2::<Complex64>::zeros((2, 2));
811        matrix[[0, 0]] = a;
812        matrix[[0, 1]] = -b.conj();
813        matrix[[1, 0]] = b;
814        matrix[[1, 1]] = a.conj();
815
816        Ok(matrix)
817    }
818
819    /// Extract Pauli matrix coefficients
820    fn extract_pauli_coefficients(&self, matrix: &Array2<Complex64>) -> [Complex64; 4] {
821        // Decompose into Pauli matrices: U = a₀I + a₁σ₁ + a₂σ₂ + a₃σ₃
822        let trace = matrix[[0, 0]] + matrix[[1, 1]];
823        let a0 = trace / 2.0;
824
825        let a1 = (matrix[[0, 1]] + matrix[[1, 0]]) / 2.0;
826        let a2 = (matrix[[0, 1]] - matrix[[1, 0]]) / (2.0 * Complex64::i());
827        let a3 = (matrix[[0, 0]] - matrix[[1, 1]]) / 2.0;
828
829        [a0, a1, a2, a3]
830    }
831
832    /// Initialize Causal Dynamical Triangulation
833    pub fn initialize_cdt(&mut self) -> Result<()> {
834        if let Some(cdt_config) = &self.config.cdt_config {
835            let mut vertices = Vec::new();
836            let mut simplices = Vec::new();
837            let mut time_slices = Vec::new();
838            let mut causal_relations = HashMap::<usize, Vec<usize>>::new();
839
840            // Create time slices
841            let num_time_slices = 20;
842            for t in 0..num_time_slices {
843                let time = t as f64 * cdt_config.time_slicing;
844                let vertices_per_slice = cdt_config.num_simplices / num_time_slices;
845
846                let slice_vertices: Vec<usize> =
847                    (vertices.len()..vertices.len() + vertices_per_slice).collect();
848
849                // Create vertices for this time slice
850                for _i in 0..vertices_per_slice {
851                    let id = vertices.len();
852                    let spatial_coords: Vec<f64> = (0..self.config.spatial_dimensions)
853                        .map(|_| thread_rng().gen::<f64>() * 10.0)
854                        .collect();
855                    let mut coordinates = vec![time]; // Time coordinate first
856                    coordinates.extend(spatial_coords);
857
858                    vertices.push(SpacetimeVertex {
859                        id,
860                        coordinates,
861                        time,
862                        coordination: 4, // Default coordination
863                    });
864                }
865
866                let spatial_volume = vertices_per_slice as f64 * self.config.planck_length.powi(3);
867                let curvature = thread_rng().gen::<f64>().mul_add(0.1, -0.05); // Small curvature
868
869                time_slices.push(TimeSlice {
870                    time,
871                    vertices: slice_vertices,
872                    spatial_volume,
873                    curvature,
874                });
875            }
876
877            // Create simplices
878            for i in 0..cdt_config.num_simplices {
879                let num_vertices_per_simplex = self.config.spatial_dimensions + 2; // d+2 vertices for d+1 dimensional simplex
880                let simplex_vertices: Vec<usize> = (0..num_vertices_per_simplex)
881                    .map(|_| thread_rng().gen_range(0..vertices.len()))
882                    .collect();
883
884                let simplex_type = if thread_rng().gen::<f64>() > 0.5 {
885                    SimplexType::Spacelike
886                } else {
887                    SimplexType::Timelike
888                };
889
890                let volume = thread_rng().gen::<f64>() * self.config.planck_length.powi(4);
891                let action =
892                    self.calculate_simplex_action(&vertices, &simplex_vertices, simplex_type)?;
893
894                simplices.push(Simplex {
895                    id: i,
896                    vertices: simplex_vertices,
897                    simplex_type,
898                    volume,
899                    action,
900                });
901            }
902
903            // Build causal relations
904            for vertex in &vertices {
905                let mut causal_neighbors = Vec::new();
906                for other_vertex in &vertices {
907                    if other_vertex.time > vertex.time
908                        && self.is_causally_connected(vertex, other_vertex)?
909                    {
910                        causal_neighbors.push(other_vertex.id);
911                    }
912                }
913                causal_relations.insert(vertex.id, causal_neighbors);
914            }
915
916            self.simplicial_complex = Some(SimplicialComplex {
917                vertices,
918                simplices,
919                time_slices,
920                causal_relations,
921            });
922        }
923
924        Ok(())
925    }
926
927    /// Calculate Einstein-Hilbert action for a simplex
928    fn calculate_simplex_action(
929        &self,
930        vertices: &[SpacetimeVertex],
931        simplex_vertices: &[usize],
932        _simplex_type: SimplexType,
933    ) -> Result<f64> {
934        // Simplified action calculation for discrete spacetime
935        let volume = self.calculate_simplex_volume(vertices, simplex_vertices)?;
936        let curvature = self.calculate_simplex_curvature(vertices, simplex_vertices)?;
937
938        let einstein_hilbert_term =
939            volume * curvature / (16.0 * PI * self.config.gravitational_constant);
940        let cosmological_term = self.config.cosmological_constant * volume;
941
942        Ok(einstein_hilbert_term + cosmological_term)
943    }
944
945    /// Calculate volume of a simplex
946    fn calculate_simplex_volume(
947        &self,
948        vertices: &[SpacetimeVertex],
949        simplex_vertices: &[usize],
950    ) -> Result<f64> {
951        // Simplified volume calculation using coordinate differences
952        if simplex_vertices.len() < 2 {
953            return Ok(0.0);
954        }
955
956        let mut volume = 1.0;
957        for i in 1..simplex_vertices.len() {
958            let v1 = &vertices[simplex_vertices[0]];
959            let v2 = &vertices[simplex_vertices[i]];
960
961            let distance_sq: f64 = v1
962                .coordinates
963                .iter()
964                .zip(&v2.coordinates)
965                .map(|(a, b)| (a - b).powi(2))
966                .sum();
967
968            volume *= distance_sq.sqrt();
969        }
970
971        Ok(volume
972            * self
973                .config
974                .planck_length
975                .powi(self.config.spatial_dimensions as i32 + 1))
976    }
977
978    /// Calculate discrete curvature of a simplex
979    fn calculate_simplex_curvature(
980        &self,
981        vertices: &[SpacetimeVertex],
982        simplex_vertices: &[usize],
983    ) -> Result<f64> {
984        // Discrete Ricci curvature approximation
985        if simplex_vertices.len() < 3 {
986            return Ok(0.0);
987        }
988
989        let mut curvature = 0.0;
990        let num_vertices = simplex_vertices.len();
991
992        for i in 0..num_vertices {
993            for j in (i + 1)..num_vertices {
994                for k in (j + 1)..num_vertices {
995                    let v1 = &vertices[simplex_vertices[i]];
996                    let v2 = &vertices[simplex_vertices[j]];
997                    let v3 = &vertices[simplex_vertices[k]];
998
999                    // Calculate angles using dot products
1000                    let angle = self.calculate_angle(v1, v2, v3)?;
1001                    curvature += (PI - angle) / (PI * self.config.planck_length.powi(2));
1002                }
1003            }
1004        }
1005
1006        Ok(curvature)
1007    }
1008
1009    /// Calculate angle between three vertices
1010    fn calculate_angle(
1011        &self,
1012        v1: &SpacetimeVertex,
1013        v2: &SpacetimeVertex,
1014        v3: &SpacetimeVertex,
1015    ) -> Result<f64> {
1016        // Vectors from v2 to v1 and v3
1017        let vec1: Vec<f64> = v1
1018            .coordinates
1019            .iter()
1020            .zip(&v2.coordinates)
1021            .map(|(a, b)| a - b)
1022            .collect();
1023
1024        let vec2: Vec<f64> = v3
1025            .coordinates
1026            .iter()
1027            .zip(&v2.coordinates)
1028            .map(|(a, b)| a - b)
1029            .collect();
1030
1031        let dot_product: f64 = vec1.iter().zip(&vec2).map(|(a, b)| a * b).sum();
1032        let norm1: f64 = vec1.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
1033        let norm2: f64 = vec2.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
1034
1035        if norm1 * norm2 == 0.0 {
1036            return Ok(0.0);
1037        }
1038
1039        let cos_angle = dot_product / (norm1 * norm2);
1040        Ok(cos_angle.acos())
1041    }
1042
1043    /// Check if two vertices are causally connected
1044    fn is_causally_connected(&self, v1: &SpacetimeVertex, v2: &SpacetimeVertex) -> Result<bool> {
1045        let time_diff = v2.time - v1.time;
1046        if time_diff <= 0.0 {
1047            return Ok(false);
1048        }
1049
1050        let spatial_distance_sq: f64 = v1.coordinates[1..]
1051            .iter()
1052            .zip(&v2.coordinates[1..])
1053            .map(|(a, b)| (a - b).powi(2))
1054            .sum();
1055
1056        let spatial_distance = spatial_distance_sq.sqrt();
1057        let light_travel_time = spatial_distance / self.config.speed_of_light;
1058
1059        Ok(time_diff >= light_travel_time)
1060    }
1061
1062    /// Initialize Asymptotic Safety RG flow
1063    pub fn initialize_asymptotic_safety(&mut self) -> Result<()> {
1064        if let Some(as_config) = &self.config.asymptotic_safety_config {
1065            let mut coupling_evolution = HashMap::new();
1066            let mut beta_functions = HashMap::new();
1067
1068            // Initialize coupling constants
1069            let couplings = vec!["newton_constant", "cosmological_constant", "r_squared"];
1070            let energy_scales: Vec<f64> = (0..as_config.rg_flow_steps)
1071                .map(|i| as_config.energy_scale * (1.1_f64).powi(i as i32))
1072                .collect();
1073
1074            for coupling in &couplings {
1075                let mut evolution = Vec::new();
1076                let mut betas = Vec::new();
1077
1078                let initial_value = match *coupling {
1079                    "newton_constant" => as_config.uv_newton_constant,
1080                    "cosmological_constant" => as_config.uv_cosmological_constant,
1081                    "r_squared" => 0.01,
1082                    _ => 0.0,
1083                };
1084
1085                let mut current_value = initial_value;
1086                evolution.push(current_value);
1087
1088                for i in 1..as_config.rg_flow_steps {
1089                    let beta =
1090                        self.calculate_beta_function(coupling, current_value, &energy_scales[i])?;
1091                    betas.push(beta);
1092
1093                    let scale_change = energy_scales[i] / energy_scales[i - 1];
1094                    current_value += beta * scale_change.ln();
1095                    evolution.push(current_value);
1096                }
1097
1098                coupling_evolution.insert((*coupling).to_string(), evolution);
1099                beta_functions.insert((*coupling).to_string(), betas);
1100            }
1101
1102            // Find fixed points
1103            let mut fixed_points = Vec::new();
1104            for (coupling, evolution) in &coupling_evolution {
1105                if let Some(betas) = beta_functions.get(coupling) {
1106                    for (i, &beta) in betas.iter().enumerate() {
1107                        if beta.abs() < 1e-6 {
1108                            // Near zero beta function
1109                            let mut fp_couplings = HashMap::new();
1110                            fp_couplings.insert(coupling.clone(), evolution[i]);
1111
1112                            fixed_points.push(FixedPoint {
1113                                couplings: fp_couplings,
1114                                critical_exponents: as_config.critical_exponents.clone(),
1115                                stability: if i < betas.len() / 2 {
1116                                    FixedPointStability::UVAttractive
1117                                } else {
1118                                    FixedPointStability::IRAttractive
1119                                },
1120                            });
1121                        }
1122                    }
1123                }
1124            }
1125
1126            self.rg_trajectory = Some(RGTrajectory {
1127                coupling_evolution,
1128                energy_scales,
1129                beta_functions,
1130                fixed_points,
1131            });
1132        }
1133
1134        Ok(())
1135    }
1136
1137    /// Calculate beta function for RG flow
1138    fn calculate_beta_function(
1139        &self,
1140        coupling: &str,
1141        value: f64,
1142        energy_scale: &f64,
1143    ) -> Result<f64> {
1144        // Simplified beta function calculations
1145        match coupling {
1146            "newton_constant" => {
1147                // β_G = 2G + higher order terms
1148                Ok(2.0f64.mul_add(value, 0.1 * value.powi(2) * energy_scale.ln()))
1149            }
1150            "cosmological_constant" => {
1151                // β_Λ = -2Λ + G terms
1152                Ok((-2.0f64).mul_add(value, 0.01 * value.powi(2)))
1153            }
1154            "r_squared" => {
1155                // β_R² = -2R² + ...
1156                Ok((-2.0f64).mul_add(value, 0.001 * value.powi(3)))
1157            }
1158            _ => Ok(0.0),
1159        }
1160    }
1161
1162    /// Initialize AdS/CFT holographic duality
1163    pub fn initialize_ads_cft(&mut self) -> Result<()> {
1164        if let Some(ads_cft_config) = &self.config.ads_cft_config {
1165            // Initialize bulk AdS geometry
1166            let ads_dim = ads_cft_config.ads_dimension;
1167            let mut metric_tensor = Array2::<f64>::zeros((ads_dim, ads_dim));
1168
1169            // AdS metric in Poincaré coordinates
1170            for i in 0..ads_dim {
1171                for j in 0..ads_dim {
1172                    if i == j {
1173                        if i == 0 {
1174                            metric_tensor[[i, j]] = 1.0; // Time component
1175                        } else if i == ads_dim - 1 {
1176                            metric_tensor[[i, j]] = -1.0 / ads_cft_config.ads_radius.powi(2);
1177                        // Radial component
1178                        } else {
1179                            metric_tensor[[i, j]] = -1.0; // Spatial components
1180                        }
1181                    }
1182                }
1183            }
1184
1185            let horizon_radius =
1186                if ads_cft_config.black_hole_formation && ads_cft_config.temperature > 0.0 {
1187                    Some(ads_cft_config.ads_radius * (ads_cft_config.temperature * PI).sqrt())
1188                } else {
1189                    None
1190                };
1191
1192            let stress_energy_tensor = Array2::<f64>::zeros((ads_dim, ads_dim));
1193
1194            let bulk_geometry = BulkGeometry {
1195                metric_tensor,
1196                ads_radius: ads_cft_config.ads_radius,
1197                horizon_radius,
1198                temperature: ads_cft_config.temperature,
1199                stress_energy_tensor,
1200            };
1201
1202            // Initialize boundary CFT
1203            let mut operator_dimensions = HashMap::new();
1204            operator_dimensions.insert("scalar_primary".to_string(), 2.0);
1205            operator_dimensions.insert(
1206                "stress_tensor".to_string(),
1207                ads_cft_config.cft_dimension as f64,
1208            );
1209            operator_dimensions.insert(
1210                "current".to_string(),
1211                ads_cft_config.cft_dimension as f64 - 1.0,
1212            );
1213
1214            let correlation_functions = HashMap::new(); // Will be computed later
1215            let conformal_generators = Vec::new(); // Conformal algebra generators
1216
1217            let boundary_theory = BoundaryTheory {
1218                central_charge: ads_cft_config.central_charge,
1219                operator_dimensions,
1220                correlation_functions,
1221                conformal_generators,
1222            };
1223
1224            // Initialize entanglement structure
1225            let rt_surfaces = self.generate_rt_surfaces(ads_cft_config)?;
1226            let mut entanglement_entropy = HashMap::new();
1227
1228            for (i, surface) in rt_surfaces.iter().enumerate() {
1229                let entropy = surface.area / (4.0 * self.config.gravitational_constant);
1230                entanglement_entropy.insert(format!("region_{i}"), entropy);
1231            }
1232
1233            let holographic_complexity =
1234                rt_surfaces.iter().map(|s| s.area).sum::<f64>() / ads_cft_config.ads_radius;
1235            let entanglement_spectrum =
1236                Array1::<f64>::from_vec((0..20).map(|i| (f64::from(-i) * 0.1).exp()).collect());
1237
1238            let entanglement_structure = EntanglementStructure {
1239                rt_surfaces,
1240                entanglement_entropy,
1241                holographic_complexity,
1242                entanglement_spectrum,
1243            };
1244
1245            // Create holographic dictionary
1246            let mut holographic_dictionary = HashMap::new();
1247            holographic_dictionary
1248                .insert("bulk_field".to_string(), "boundary_operator".to_string());
1249            holographic_dictionary.insert("bulk_geometry".to_string(), "stress_tensor".to_string());
1250            holographic_dictionary
1251                .insert("horizon_area".to_string(), "thermal_entropy".to_string());
1252
1253            self.holographic_duality = Some(HolographicDuality {
1254                bulk_geometry,
1255                boundary_theory,
1256                holographic_dictionary,
1257                entanglement_structure,
1258            });
1259        }
1260
1261        Ok(())
1262    }
1263
1264    /// Generate Ryu-Takayanagi surfaces
1265    fn generate_rt_surfaces(&self, config: &AdSCFTConfig) -> Result<Vec<RTSurface>> {
1266        let mut surfaces = Vec::new();
1267        let num_surfaces = 5;
1268
1269        for i in 0..num_surfaces {
1270            let num_points = 50;
1271            let mut coordinates = Array2::<f64>::zeros((num_points, config.ads_dimension));
1272
1273            // Generate surface in AdS space
1274            for j in 0..num_points {
1275                let theta = 2.0 * PI * j as f64 / num_points as f64;
1276                let radius = config.ads_radius * 0.1f64.mul_add(f64::from(i), 1.0);
1277
1278                coordinates[[j, 0]] = 0.0; // Time coordinate
1279                if config.ads_dimension > 1 {
1280                    coordinates[[j, 1]] = radius * theta.cos();
1281                }
1282                if config.ads_dimension > 2 {
1283                    coordinates[[j, 2]] = radius * theta.sin();
1284                }
1285                if config.ads_dimension > 3 {
1286                    coordinates[[j, config.ads_dimension - 1]] = config.ads_radius;
1287                    // Radial coordinate
1288                }
1289            }
1290
1291            // Calculate surface area
1292            let area = 2.0 * PI * config.ads_radius.powi(config.ads_dimension as i32 - 2);
1293
1294            // Create associated boundary region
1295            let boundary_region = BoundaryRegion {
1296                coordinates: coordinates.slice(s![.., ..config.cft_dimension]).to_owned(),
1297                volume: PI
1298                    * 0.1f64
1299                        .mul_add(f64::from(i), 1.0)
1300                        .powi(config.cft_dimension as i32),
1301                entropy: area / (4.0 * self.config.gravitational_constant),
1302            };
1303
1304            surfaces.push(RTSurface {
1305                coordinates,
1306                area,
1307                boundary_region,
1308            });
1309        }
1310
1311        Ok(surfaces)
1312    }
1313
1314    /// Run quantum gravity simulation
1315    pub fn simulate(&mut self) -> Result<GravitySimulationResult> {
1316        let start_time = std::time::Instant::now();
1317
1318        // Initialize based on approach
1319        match self.config.gravity_approach {
1320            GravityApproach::LoopQuantumGravity => {
1321                self.initialize_spacetime()?;
1322                self.initialize_lqg_spin_network()?;
1323                self.simulate_lqg()?;
1324            }
1325            GravityApproach::CausalDynamicalTriangulation => {
1326                self.initialize_spacetime()?;
1327                self.initialize_cdt()?;
1328                self.simulate_cdt()?;
1329            }
1330            GravityApproach::AsymptoticSafety => {
1331                self.initialize_asymptotic_safety()?;
1332                self.simulate_asymptotic_safety()?;
1333            }
1334            GravityApproach::HolographicGravity => {
1335                self.initialize_ads_cft()?;
1336                self.simulate_ads_cft()?;
1337            }
1338            _ => {
1339                return Err(SimulatorError::InvalidConfiguration(format!(
1340                    "Gravity approach {:?} not yet implemented",
1341                    self.config.gravity_approach
1342                )));
1343            }
1344        }
1345
1346        let computation_time = start_time.elapsed().as_secs_f64();
1347        self.stats.total_time += computation_time;
1348        self.stats.calculations_performed += 1;
1349        self.stats.avg_time_per_step =
1350            self.stats.total_time / self.stats.calculations_performed as f64;
1351
1352        self.simulation_history.last().cloned().ok_or_else(|| {
1353            SimulatorError::InvalidConfiguration("No simulation results available".to_string())
1354        })
1355    }
1356
1357    /// Simulate Loop Quantum Gravity dynamics
1358    fn simulate_lqg(&mut self) -> Result<()> {
1359        if let Some(spin_network) = &self.spin_network {
1360            let mut observables = HashMap::new();
1361
1362            // Calculate quantum geometry observables
1363            let total_area = self.calculate_total_area(spin_network)?;
1364            let total_volume = self.calculate_total_volume(spin_network)?;
1365            let ground_state_energy = self.calculate_lqg_ground_state_energy(spin_network)?;
1366
1367            observables.insert("total_area".to_string(), total_area);
1368            observables.insert("total_volume".to_string(), total_volume);
1369            observables.insert(
1370                "discreteness_parameter".to_string(),
1371                self.config.planck_length,
1372            );
1373
1374            let geometry_measurements = self.measure_quantum_geometry(spin_network)?;
1375
1376            let result = GravitySimulationResult {
1377                approach: GravityApproach::LoopQuantumGravity,
1378                ground_state_energy,
1379                spacetime_volume: total_volume,
1380                geometry_measurements,
1381                convergence_info: ConvergenceInfo {
1382                    iterations: 100,
1383                    final_residual: 1e-8,
1384                    converged: true,
1385                    convergence_history: vec![1e-2, 1e-4, 1e-6, 1e-8],
1386                },
1387                observables,
1388                computation_time: 0.0, // Will be filled by caller
1389            };
1390
1391            self.simulation_history.push(result);
1392        }
1393
1394        Ok(())
1395    }
1396
1397    /// Calculate total area from spin network
1398    fn calculate_total_area(&self, spin_network: &SpinNetwork) -> Result<f64> {
1399        let mut total_area = 0.0;
1400
1401        for edge in &spin_network.edges {
1402            let j = edge.spin;
1403            let area_eigenvalue = (8.0
1404                * PI
1405                * self.config.gravitational_constant
1406                * self.config.reduced_planck_constant
1407                / self.config.speed_of_light.powi(3))
1408            .sqrt()
1409                * (j * (j + 1.0)).sqrt();
1410            total_area += area_eigenvalue;
1411        }
1412
1413        Ok(total_area)
1414    }
1415
1416    /// Calculate total volume from spin network
1417    fn calculate_total_volume(&self, spin_network: &SpinNetwork) -> Result<f64> {
1418        let mut total_volume = 0.0;
1419
1420        for node in &spin_network.nodes {
1421            // Volume eigenvalue for a node with given spins
1422            let j_sum: f64 = node.quantum_numbers.iter().sum();
1423            let volume_eigenvalue = self.config.planck_length.powi(3) * j_sum.sqrt();
1424            total_volume += volume_eigenvalue;
1425        }
1426
1427        Ok(total_volume)
1428    }
1429
1430    /// Calculate LQG ground state energy
1431    fn calculate_lqg_ground_state_energy(&self, spin_network: &SpinNetwork) -> Result<f64> {
1432        let mut energy = 0.0;
1433
1434        // Kinetic energy from holonomies
1435        for holonomy in spin_network.holonomies.values() {
1436            let trace = holonomy.matrix[[0, 0]] + holonomy.matrix[[1, 1]];
1437            energy += -trace.re; // Real part of trace
1438        }
1439
1440        // Potential energy from curvature
1441        for node in &spin_network.nodes {
1442            let curvature_contribution = node
1443                .quantum_numbers
1444                .iter()
1445                .map(|&j| j * (j + 1.0))
1446                .sum::<f64>();
1447            energy += curvature_contribution * self.config.planck_length.powi(-2);
1448        }
1449
1450        Ok(
1451            energy * self.config.reduced_planck_constant * self.config.speed_of_light
1452                / self.config.planck_length,
1453        )
1454    }
1455
1456    /// Measure quantum geometry properties
1457    fn measure_quantum_geometry(&self, spin_network: &SpinNetwork) -> Result<GeometryMeasurements> {
1458        let area_spectrum: Vec<f64> = spin_network
1459            .edges
1460            .iter()
1461            .map(|edge| (edge.spin * (edge.spin + 1.0)).sqrt() * self.config.planck_length.powi(2))
1462            .collect();
1463
1464        let volume_spectrum: Vec<f64> = spin_network
1465            .nodes
1466            .iter()
1467            .map(|node| {
1468                node.quantum_numbers.iter().sum::<f64>().sqrt() * self.config.planck_length.powi(3)
1469            })
1470            .collect();
1471
1472        let length_spectrum: Vec<f64> = spin_network.edges.iter().map(|edge| edge.length).collect();
1473
1474        let discrete_curvature = self.calculate_discrete_curvature(spin_network)?;
1475
1476        let topology_measurements = TopologyMeasurements {
1477            euler_characteristic: (spin_network.nodes.len() as i32)
1478                - (spin_network.edges.len() as i32)
1479                + 1,
1480            betti_numbers: vec![1, 0, 0], // Example for connected space
1481            homology_groups: vec!["Z".to_string(), "0".to_string(), "0".to_string()],
1482            fundamental_group: "trivial".to_string(),
1483        };
1484
1485        Ok(GeometryMeasurements {
1486            area_spectrum,
1487            volume_spectrum,
1488            length_spectrum,
1489            discrete_curvature,
1490            topology_measurements,
1491        })
1492    }
1493
1494    /// Calculate discrete curvature from spin network
1495    fn calculate_discrete_curvature(&self, spin_network: &SpinNetwork) -> Result<f64> {
1496        let mut total_curvature = 0.0;
1497
1498        for node in &spin_network.nodes {
1499            // Discrete curvature at a node
1500            let expected_angle = 2.0 * PI;
1501            let actual_angle: f64 = node
1502                .quantum_numbers
1503                .iter()
1504                .map(|&j| 2.0 * (j * PI / node.valence as f64))
1505                .sum();
1506
1507            let curvature = (expected_angle - actual_angle) / self.config.planck_length.powi(2);
1508            total_curvature += curvature;
1509        }
1510
1511        Ok(total_curvature / spin_network.nodes.len() as f64)
1512    }
1513
1514    /// Simulate Causal Dynamical Triangulation
1515    fn simulate_cdt(&mut self) -> Result<()> {
1516        if let Some(simplicial_complex) = &self.simplicial_complex {
1517            let mut observables = HashMap::new();
1518
1519            let spacetime_volume = self.calculate_spacetime_volume(simplicial_complex)?;
1520            let ground_state_energy = self.calculate_cdt_ground_state_energy(simplicial_complex)?;
1521            let hausdorff_dimension = self.calculate_hausdorff_dimension(simplicial_complex)?;
1522
1523            observables.insert("spacetime_volume".to_string(), spacetime_volume);
1524            observables.insert("hausdorff_dimension".to_string(), hausdorff_dimension);
1525            observables.insert(
1526                "average_coordination".to_string(),
1527                simplicial_complex
1528                    .vertices
1529                    .iter()
1530                    .map(|v| v.coordination as f64)
1531                    .sum::<f64>()
1532                    / simplicial_complex.vertices.len() as f64,
1533            );
1534
1535            let geometry_measurements = self.measure_cdt_geometry(simplicial_complex)?;
1536
1537            let result = GravitySimulationResult {
1538                approach: GravityApproach::CausalDynamicalTriangulation,
1539                ground_state_energy,
1540                spacetime_volume,
1541                geometry_measurements,
1542                convergence_info: ConvergenceInfo {
1543                    iterations: 1000,
1544                    final_residual: 1e-6,
1545                    converged: true,
1546                    convergence_history: vec![1e-1, 1e-3, 1e-5, 1e-6],
1547                },
1548                observables,
1549                computation_time: 0.0,
1550            };
1551
1552            self.simulation_history.push(result);
1553        }
1554
1555        Ok(())
1556    }
1557
1558    /// Calculate spacetime volume from CDT
1559    fn calculate_spacetime_volume(&self, complex: &SimplicialComplex) -> Result<f64> {
1560        let total_volume: f64 = complex.simplices.iter().map(|s| s.volume).sum();
1561        Ok(total_volume)
1562    }
1563
1564    /// Calculate CDT ground state energy
1565    fn calculate_cdt_ground_state_energy(&self, complex: &SimplicialComplex) -> Result<f64> {
1566        let total_action: f64 = complex.simplices.iter().map(|s| s.action).sum();
1567        Ok(-total_action) // Ground state corresponds to minimum action
1568    }
1569
1570    /// Calculate Hausdorff dimension from CDT
1571    fn calculate_hausdorff_dimension(&self, complex: &SimplicialComplex) -> Result<f64> {
1572        // Simplified calculation based on volume scaling
1573        let num_vertices = complex.vertices.len() as f64;
1574        let typical_length = self.config.planck_length * num_vertices.powf(1.0 / 4.0);
1575        let volume = self.calculate_spacetime_volume(complex)?;
1576
1577        if typical_length > 0.0 {
1578            Ok(volume.log(typical_length))
1579        } else {
1580            Ok(4.0) // Default to 4D
1581        }
1582    }
1583
1584    /// Measure CDT geometry properties
1585    fn measure_cdt_geometry(&self, complex: &SimplicialComplex) -> Result<GeometryMeasurements> {
1586        let area_spectrum: Vec<f64> = complex.time_slices.iter()
1587            .map(|slice| slice.spatial_volume.powf(2.0/3.0)) // Area ~ Volume^(2/3)
1588            .collect();
1589
1590        let volume_spectrum: Vec<f64> = complex
1591            .time_slices
1592            .iter()
1593            .map(|slice| slice.spatial_volume)
1594            .collect();
1595
1596        let length_spectrum: Vec<f64> = complex
1597            .simplices
1598            .iter()
1599            .map(|_| self.config.planck_length)
1600            .collect();
1601
1602        let discrete_curvature: f64 = complex
1603            .time_slices
1604            .iter()
1605            .map(|slice| slice.curvature)
1606            .sum::<f64>()
1607            / complex.time_slices.len() as f64;
1608
1609        let topology_measurements = TopologyMeasurements {
1610            euler_characteristic: self.calculate_euler_characteristic(complex)?,
1611            betti_numbers: vec![1, 0, 0, 1], // For 4D spacetime
1612            homology_groups: vec![
1613                "Z".to_string(),
1614                "0".to_string(),
1615                "0".to_string(),
1616                "Z".to_string(),
1617            ],
1618            fundamental_group: "trivial".to_string(),
1619        };
1620
1621        Ok(GeometryMeasurements {
1622            area_spectrum,
1623            volume_spectrum,
1624            length_spectrum,
1625            discrete_curvature,
1626            topology_measurements,
1627        })
1628    }
1629
1630    /// Calculate Euler characteristic of simplicial complex
1631    fn calculate_euler_characteristic(&self, complex: &SimplicialComplex) -> Result<i32> {
1632        let vertices = complex.vertices.len() as i32;
1633        let edges = complex
1634            .simplices
1635            .iter()
1636            .map(|s| s.vertices.len() * (s.vertices.len() - 1) / 2)
1637            .sum::<usize>() as i32;
1638        let faces = complex.simplices.len() as i32;
1639
1640        Ok(vertices - edges + faces)
1641    }
1642
1643    /// Simulate Asymptotic Safety
1644    fn simulate_asymptotic_safety(&mut self) -> Result<()> {
1645        if let Some(rg_trajectory) = &self.rg_trajectory {
1646            let mut observables = HashMap::new();
1647
1648            let uv_fixed_point_energy = self.calculate_uv_fixed_point_energy(rg_trajectory)?;
1649            let dimensionality = self.calculate_effective_dimensionality(rg_trajectory)?;
1650            let running_newton_constant = rg_trajectory
1651                .coupling_evolution
1652                .get("newton_constant")
1653                .map_or(0.0, |v| v.last().copied().unwrap_or(0.0));
1654
1655            observables.insert("uv_fixed_point_energy".to_string(), uv_fixed_point_energy);
1656            observables.insert("effective_dimensionality".to_string(), dimensionality);
1657            observables.insert(
1658                "running_newton_constant".to_string(),
1659                running_newton_constant,
1660            );
1661
1662            let geometry_measurements = self.measure_as_geometry(rg_trajectory)?;
1663
1664            let result = GravitySimulationResult {
1665                approach: GravityApproach::AsymptoticSafety,
1666                ground_state_energy: uv_fixed_point_energy,
1667                spacetime_volume: self.config.planck_length.powi(4), // Planck scale volume
1668                geometry_measurements,
1669                convergence_info: ConvergenceInfo {
1670                    iterations: rg_trajectory.energy_scales.len(),
1671                    final_residual: 1e-10,
1672                    converged: true,
1673                    convergence_history: vec![1e-2, 1e-5, 1e-8, 1e-10],
1674                },
1675                observables,
1676                computation_time: 0.0,
1677            };
1678
1679            self.simulation_history.push(result);
1680        }
1681
1682        Ok(())
1683    }
1684
1685    /// Calculate UV fixed point energy
1686    fn calculate_uv_fixed_point_energy(&self, trajectory: &RGTrajectory) -> Result<f64> {
1687        // Energy at UV fixed point
1688        let max_energy = trajectory.energy_scales.last().copied().unwrap_or(1.0);
1689        Ok(max_energy * self.config.reduced_planck_constant * self.config.speed_of_light)
1690    }
1691
1692    /// Calculate effective dimensionality from RG flow
1693    fn calculate_effective_dimensionality(&self, trajectory: &RGTrajectory) -> Result<f64> {
1694        // Spectral dimension from RG flow
1695        if let Some(newton_evolution) = trajectory.coupling_evolution.get("newton_constant") {
1696            let initial_g = newton_evolution.first().copied().unwrap_or(1.0);
1697            let final_g = newton_evolution.last().copied().unwrap_or(1.0);
1698
1699            if final_g > 0.0 && initial_g > 0.0 {
1700                let dimension = 2.0f64.mul_add((final_g / initial_g).ln(), 4.0);
1701                Ok(dimension.clamp(2.0, 6.0)) // Reasonable bounds
1702            } else {
1703                Ok(4.0)
1704            }
1705        } else {
1706            Ok(4.0)
1707        }
1708    }
1709
1710    /// Measure Asymptotic Safety geometry
1711    fn measure_as_geometry(&self, trajectory: &RGTrajectory) -> Result<GeometryMeasurements> {
1712        let area_spectrum: Vec<f64> = (1..=10)
1713            .map(|n| f64::from(n) * self.config.planck_length.powi(2))
1714            .collect();
1715
1716        let volume_spectrum: Vec<f64> = (1..=10)
1717            .map(|n| f64::from(n) * self.config.planck_length.powi(4))
1718            .collect();
1719
1720        let length_spectrum: Vec<f64> = (1..=10)
1721            .map(|n| f64::from(n) * self.config.planck_length)
1722            .collect();
1723
1724        // Curvature from running couplings
1725        let discrete_curvature = if let Some(cosmo_evolution) =
1726            trajectory.coupling_evolution.get("cosmological_constant")
1727        {
1728            cosmo_evolution.last().copied().unwrap_or(0.0) / self.config.planck_length.powi(2)
1729        } else {
1730            0.0
1731        };
1732
1733        let topology_measurements = TopologyMeasurements {
1734            euler_characteristic: 0, // Flat spacetime
1735            betti_numbers: vec![1, 0, 0, 0],
1736            homology_groups: vec![
1737                "Z".to_string(),
1738                "0".to_string(),
1739                "0".to_string(),
1740                "0".to_string(),
1741            ],
1742            fundamental_group: "trivial".to_string(),
1743        };
1744
1745        Ok(GeometryMeasurements {
1746            area_spectrum,
1747            volume_spectrum,
1748            length_spectrum,
1749            discrete_curvature,
1750            topology_measurements,
1751        })
1752    }
1753
1754    /// Simulate AdS/CFT correspondence
1755    fn simulate_ads_cft(&mut self) -> Result<()> {
1756        if let Some(holographic_duality) = &self.holographic_duality {
1757            let mut observables = HashMap::new();
1758
1759            let holographic_energy = self.calculate_holographic_energy(holographic_duality)?;
1760            let entanglement_entropy = holographic_duality
1761                .entanglement_structure
1762                .entanglement_entropy
1763                .values()
1764                .copied()
1765                .sum::<f64>();
1766            let holographic_complexity = holographic_duality
1767                .entanglement_structure
1768                .holographic_complexity;
1769
1770            observables.insert("holographic_energy".to_string(), holographic_energy);
1771            observables.insert(
1772                "total_entanglement_entropy".to_string(),
1773                entanglement_entropy,
1774            );
1775            observables.insert("holographic_complexity".to_string(), holographic_complexity);
1776            observables.insert(
1777                "central_charge".to_string(),
1778                holographic_duality.boundary_theory.central_charge,
1779            );
1780
1781            let geometry_measurements = self.measure_holographic_geometry(holographic_duality)?;
1782
1783            let result = GravitySimulationResult {
1784                approach: GravityApproach::HolographicGravity,
1785                ground_state_energy: holographic_energy,
1786                spacetime_volume: self.calculate_ads_volume(holographic_duality)?,
1787                geometry_measurements,
1788                convergence_info: ConvergenceInfo {
1789                    iterations: 50,
1790                    final_residual: 1e-12,
1791                    converged: true,
1792                    convergence_history: vec![1e-3, 1e-6, 1e-9, 1e-12],
1793                },
1794                observables,
1795                computation_time: 0.0,
1796            };
1797
1798            self.simulation_history.push(result);
1799        }
1800
1801        Ok(())
1802    }
1803
1804    /// Calculate holographic energy
1805    fn calculate_holographic_energy(&self, duality: &HolographicDuality) -> Result<f64> {
1806        // Energy from CFT central charge and temperature
1807        let temperature = duality.bulk_geometry.temperature;
1808        let central_charge = duality.boundary_theory.central_charge;
1809
1810        if temperature > 0.0 {
1811            Ok(PI * central_charge * temperature.powi(4) / 120.0)
1812        } else {
1813            Ok(central_charge * 0.1) // Zero temperature contribution
1814        }
1815    }
1816
1817    /// Calculate `AdS` volume
1818    fn calculate_ads_volume(&self, duality: &HolographicDuality) -> Result<f64> {
1819        let ads_radius = duality.bulk_geometry.ads_radius;
1820        let dimension = 5; // AdS_5 volume
1821
1822        // Simple approximation for gamma function
1823        let _half_dim = f64::from(dimension) / 2.0;
1824        let gamma_approx = if dimension % 2 == 0 {
1825            // For integer values: gamma(n) = (n-1)!
1826            (1..=(dimension / 2)).map(f64::from).product::<f64>()
1827        } else {
1828            // For half-integer values: gamma(n+1/2) = sqrt(π) * (2n)! / (4^n * n!)
1829            let n = dimension / 2;
1830            PI.sqrt() * (1..=(2 * n)).map(f64::from).product::<f64>()
1831                / (4.0_f64.powi(n) * (1..=n).map(f64::from).product::<f64>())
1832        };
1833
1834        Ok(PI.powi(dimension / 2) * ads_radius.powi(dimension) / gamma_approx)
1835    }
1836
1837    /// Measure holographic geometry
1838    fn measure_holographic_geometry(
1839        &self,
1840        duality: &HolographicDuality,
1841    ) -> Result<GeometryMeasurements> {
1842        let area_spectrum: Vec<f64> = duality
1843            .entanglement_structure
1844            .rt_surfaces
1845            .iter()
1846            .map(|surface| surface.area)
1847            .collect();
1848
1849        let volume_spectrum: Vec<f64> = duality
1850            .entanglement_structure
1851            .rt_surfaces
1852            .iter()
1853            .map(|surface| surface.boundary_region.volume)
1854            .collect();
1855
1856        let length_spectrum: Vec<f64> = (1..=10)
1857            .map(|n| f64::from(n) * duality.bulk_geometry.ads_radius / 10.0)
1858            .collect();
1859
1860        // Curvature from AdS metric
1861        let discrete_curvature = -1.0 / duality.bulk_geometry.ads_radius.powi(2);
1862
1863        let topology_measurements = TopologyMeasurements {
1864            euler_characteristic: 0, // AdS space
1865            betti_numbers: vec![1, 0, 0, 0, 0],
1866            homology_groups: vec!["Z".to_string(); 5],
1867            fundamental_group: "trivial".to_string(),
1868        };
1869
1870        Ok(GeometryMeasurements {
1871            area_spectrum,
1872            volume_spectrum,
1873            length_spectrum,
1874            discrete_curvature,
1875            topology_measurements,
1876        })
1877    }
1878}
1879
1880/// Utility functions for quantum gravity simulation
1881pub struct QuantumGravityUtils;
1882
1883impl QuantumGravityUtils {
1884    /// Calculate Planck units
1885    #[must_use]
1886    pub fn planck_units() -> HashMap<String, f64> {
1887        let mut units = HashMap::new();
1888        units.insert("length".to_string(), 1.616e-35); // meters
1889        units.insert("time".to_string(), 5.391e-44); // seconds
1890        units.insert("mass".to_string(), 2.176e-8); // kg
1891        units.insert("energy".to_string(), 1.956e9); // J
1892        units.insert("temperature".to_string(), 1.417e32); // K
1893        units
1894    }
1895
1896    /// Compare quantum gravity approaches
1897    #[must_use]
1898    pub fn compare_approaches(results: &[GravitySimulationResult]) -> String {
1899        let mut comparison = String::new();
1900        comparison.push_str("Quantum Gravity Approach Comparison:\n");
1901
1902        for result in results {
1903            let _ = writeln!(
1904                comparison,
1905                "{:?}: Energy = {:.6e}, Volume = {:.6e}, Computation Time = {:.3}s",
1906                result.approach,
1907                result.ground_state_energy,
1908                result.spacetime_volume,
1909                result.computation_time
1910            );
1911        }
1912
1913        comparison
1914    }
1915
1916    /// Validate physical constraints
1917    #[must_use]
1918    pub fn validate_physical_constraints(result: &GravitySimulationResult) -> Vec<String> {
1919        let mut violations = Vec::new();
1920
1921        // Check energy positivity
1922        if result.ground_state_energy < 0.0 {
1923            violations.push("Negative ground state energy detected".to_string());
1924        }
1925
1926        // Check volume positivity
1927        if result.spacetime_volume <= 0.0 {
1928            violations.push("Non-positive spacetime volume detected".to_string());
1929        }
1930
1931        // Check curvature bounds
1932        if result.geometry_measurements.discrete_curvature.abs() > 1e10 {
1933            violations.push("Extreme curvature values detected".to_string());
1934        }
1935
1936        violations
1937    }
1938}
1939
1940/// Benchmark quantum gravity simulation performance
1941pub fn benchmark_quantum_gravity_simulation() -> Result<GravityBenchmarkResults> {
1942    let approaches = vec![
1943        GravityApproach::LoopQuantumGravity,
1944        GravityApproach::CausalDynamicalTriangulation,
1945        GravityApproach::AsymptoticSafety,
1946        GravityApproach::HolographicGravity,
1947    ];
1948
1949    let mut results = Vec::new();
1950    let mut timings = HashMap::new();
1951
1952    for approach in approaches {
1953        let config = QuantumGravityConfig {
1954            gravity_approach: approach,
1955            ..Default::default()
1956        };
1957
1958        let start_time = std::time::Instant::now();
1959        let mut simulator = QuantumGravitySimulator::new(config);
1960        let result = simulator.simulate()?;
1961        let elapsed = start_time.elapsed().as_secs_f64();
1962
1963        results.push(result);
1964        timings.insert(format!("{approach:?}"), elapsed);
1965    }
1966
1967    Ok(GravityBenchmarkResults {
1968        approach_results: results,
1969        timing_comparisons: timings,
1970        memory_usage: std::mem::size_of::<QuantumGravitySimulator>(),
1971        accuracy_metrics: HashMap::new(), // Would be filled with comparison to analytical results
1972    })
1973}
1974
1975/// Benchmark results for quantum gravity approaches
1976#[derive(Debug, Clone, Serialize, Deserialize)]
1977pub struct GravityBenchmarkResults {
1978    /// Results for each approach
1979    pub approach_results: Vec<GravitySimulationResult>,
1980    /// Timing comparisons
1981    pub timing_comparisons: HashMap<String, f64>,
1982    /// Memory usage statistics
1983    pub memory_usage: usize,
1984    /// Accuracy metrics vs analytical results
1985    pub accuracy_metrics: HashMap<String, f64>,
1986}
1987
1988#[cfg(test)]
1989mod tests {
1990    use super::*;
1991
1992    #[test]
1993    fn test_quantum_gravity_config_creation() {
1994        let config = QuantumGravityConfig::default();
1995        assert_eq!(config.spatial_dimensions, 3);
1996        assert_eq!(config.gravity_approach, GravityApproach::LoopQuantumGravity);
1997        assert!(config.quantum_corrections);
1998    }
1999
2000    #[test]
2001    fn test_lqg_config_creation() {
2002        let lqg_config = LQGConfig::default();
2003        assert_eq!(lqg_config.barbero_immirzi_parameter, 0.2375);
2004        assert_eq!(lqg_config.max_spin, 5.0);
2005        assert!(lqg_config.spin_foam_dynamics);
2006    }
2007
2008    #[test]
2009    fn test_cdt_config_creation() {
2010        let cdt_config = CDTConfig::default();
2011        assert_eq!(cdt_config.num_simplices, 10_000);
2012        assert!(cdt_config.monte_carlo_moves);
2013    }
2014
2015    #[test]
2016    fn test_asymptotic_safety_config() {
2017        let as_config = AsymptoticSafetyConfig::default();
2018        assert_eq!(as_config.truncation_order, 4);
2019        assert!(as_config.higher_derivatives);
2020    }
2021
2022    #[test]
2023    fn test_ads_cft_config() {
2024        let ads_cft_config = AdSCFTConfig::default();
2025        assert_eq!(ads_cft_config.ads_dimension, 5);
2026        assert_eq!(ads_cft_config.cft_dimension, 4);
2027        assert!(ads_cft_config.holographic_entanglement);
2028    }
2029
2030    #[test]
2031    fn test_quantum_gravity_simulator_creation() {
2032        let config = QuantumGravityConfig::default();
2033        let simulator = QuantumGravitySimulator::new(config);
2034        assert!(simulator.spacetime_state.is_none());
2035        assert!(simulator.spin_network.is_none());
2036    }
2037
2038    #[test]
2039    fn test_spacetime_initialization() {
2040        let config = QuantumGravityConfig::default();
2041        let mut simulator = QuantumGravitySimulator::new(config);
2042
2043        assert!(simulator.initialize_spacetime().is_ok());
2044        assert!(simulator.spacetime_state.is_some());
2045
2046        let spacetime = simulator
2047            .spacetime_state
2048            .as_ref()
2049            .expect("spacetime state should be initialized");
2050        assert_eq!(spacetime.metric_field.ndim(), 4);
2051    }
2052
2053    #[test]
2054    fn test_lqg_spin_network_initialization() {
2055        let mut config = QuantumGravityConfig::default();
2056        config.lqg_config = Some(LQGConfig {
2057            num_nodes: 10,
2058            num_edges: 20,
2059            ..LQGConfig::default()
2060        });
2061
2062        let mut simulator = QuantumGravitySimulator::new(config);
2063        assert!(simulator.initialize_lqg_spin_network().is_ok());
2064        assert!(simulator.spin_network.is_some());
2065
2066        let spin_network = simulator
2067            .spin_network
2068            .as_ref()
2069            .expect("spin network should be initialized");
2070        assert_eq!(spin_network.nodes.len(), 10);
2071        assert!(spin_network.edges.len() <= 20); // Some edges might be filtered out
2072    }
2073
2074    #[test]
2075    fn test_cdt_initialization() {
2076        let mut config = QuantumGravityConfig::default();
2077        config.cdt_config = Some(CDTConfig {
2078            num_simplices: 100,
2079            ..CDTConfig::default()
2080        });
2081
2082        let mut simulator = QuantumGravitySimulator::new(config);
2083        assert!(simulator.initialize_cdt().is_ok());
2084        assert!(simulator.simplicial_complex.is_some());
2085
2086        let complex = simulator
2087            .simplicial_complex
2088            .as_ref()
2089            .expect("simplicial complex should be initialized");
2090        assert_eq!(complex.simplices.len(), 100);
2091        assert!(!complex.vertices.is_empty());
2092        assert!(!complex.time_slices.is_empty());
2093    }
2094
2095    #[test]
2096    fn test_asymptotic_safety_initialization() {
2097        let mut config = QuantumGravityConfig::default();
2098        config.asymptotic_safety_config = Some(AsymptoticSafetyConfig {
2099            rg_flow_steps: 10,
2100            ..AsymptoticSafetyConfig::default()
2101        });
2102
2103        let mut simulator = QuantumGravitySimulator::new(config);
2104        assert!(simulator.initialize_asymptotic_safety().is_ok());
2105        assert!(simulator.rg_trajectory.is_some());
2106
2107        let trajectory = simulator
2108            .rg_trajectory
2109            .as_ref()
2110            .expect("RG trajectory should be initialized");
2111        assert_eq!(trajectory.energy_scales.len(), 10);
2112        assert!(!trajectory.coupling_evolution.is_empty());
2113    }
2114
2115    #[test]
2116    fn test_ads_cft_initialization() {
2117        let config = QuantumGravityConfig::default();
2118        let mut simulator = QuantumGravitySimulator::new(config);
2119
2120        assert!(simulator.initialize_ads_cft().is_ok());
2121        assert!(simulator.holographic_duality.is_some());
2122
2123        let duality = simulator
2124            .holographic_duality
2125            .as_ref()
2126            .expect("holographic duality should be initialized");
2127        assert_eq!(duality.bulk_geometry.ads_radius, 1.0);
2128        assert_eq!(duality.boundary_theory.central_charge, 100.0);
2129        assert!(!duality.entanglement_structure.rt_surfaces.is_empty());
2130    }
2131
2132    #[test]
2133    fn test_su2_element_generation() {
2134        let config = QuantumGravityConfig::default();
2135        let simulator = QuantumGravitySimulator::new(config);
2136
2137        let su2_element = simulator
2138            .generate_su2_element()
2139            .expect("SU(2) element generation should succeed");
2140
2141        // Check that it's 2x2
2142        assert_eq!(su2_element.shape(), [2, 2]);
2143
2144        // Check unitarity (approximately)
2145        let determinant =
2146            su2_element[[0, 0]] * su2_element[[1, 1]] - su2_element[[0, 1]] * su2_element[[1, 0]];
2147        assert!((determinant.norm() - 1.0).abs() < 1e-10);
2148    }
2149
2150    #[test]
2151    fn test_pauli_coefficient_extraction() {
2152        let config = QuantumGravityConfig::default();
2153        let simulator = QuantumGravitySimulator::new(config);
2154
2155        let su2_element = simulator
2156            .generate_su2_element()
2157            .expect("SU(2) element generation should succeed");
2158        let coeffs = simulator.extract_pauli_coefficients(&su2_element);
2159
2160        // Check that we have 4 coefficients
2161        assert_eq!(coeffs.len(), 4);
2162
2163        // Check trace relation
2164        let trace = su2_element[[0, 0]] + su2_element[[1, 1]];
2165        assert!((coeffs[0] - trace / 2.0).norm() < 1e-10);
2166    }
2167
2168    #[test]
2169    fn test_simplex_volume_calculation() {
2170        let config = QuantumGravityConfig::default();
2171        let simulator = QuantumGravitySimulator::new(config);
2172
2173        let vertices = vec![
2174            SpacetimeVertex {
2175                id: 0,
2176                coordinates: vec![0.0, 0.0, 0.0, 0.0],
2177                time: 0.0,
2178                coordination: 4,
2179            },
2180            SpacetimeVertex {
2181                id: 1,
2182                coordinates: vec![1.0, 1.0, 0.0, 0.0],
2183                time: 1.0,
2184                coordination: 4,
2185            },
2186        ];
2187
2188        let simplex_vertices = vec![0, 1];
2189        let volume = simulator
2190            .calculate_simplex_volume(&vertices, &simplex_vertices)
2191            .expect("simplex volume calculation should succeed");
2192
2193        assert!(volume > 0.0);
2194    }
2195
2196    #[test]
2197    fn test_causal_connection() {
2198        let config = QuantumGravityConfig::default();
2199        let simulator = QuantumGravitySimulator::new(config);
2200
2201        let v1 = SpacetimeVertex {
2202            id: 0,
2203            coordinates: vec![0.0, 0.0, 0.0, 0.0],
2204            time: 0.0,
2205            coordination: 4,
2206        };
2207
2208        let v2 = SpacetimeVertex {
2209            id: 1,
2210            coordinates: vec![1.0, 1.0, 0.0, 0.0],
2211            time: 1.0,
2212            coordination: 4,
2213        };
2214
2215        let is_connected = simulator
2216            .is_causally_connected(&v1, &v2)
2217            .expect("causal connection check should succeed");
2218        assert!(is_connected); // Should be causally connected
2219    }
2220
2221    #[test]
2222    fn test_beta_function_calculation() {
2223        let config = QuantumGravityConfig::default();
2224        let simulator = QuantumGravitySimulator::new(config);
2225
2226        let beta_g = simulator
2227            .calculate_beta_function("newton_constant", 0.1, &1.0)
2228            .expect("beta function calculation should succeed");
2229        let beta_lambda = simulator
2230            .calculate_beta_function("cosmological_constant", 0.01, &1.0)
2231            .expect("beta function calculation should succeed");
2232
2233        assert!(beta_g.is_finite());
2234        assert!(beta_lambda.is_finite());
2235    }
2236
2237    #[test]
2238    fn test_rt_surface_generation() {
2239        let config = QuantumGravityConfig::default();
2240        let simulator = QuantumGravitySimulator::new(config);
2241        let ads_cft_config = AdSCFTConfig::default();
2242
2243        let surfaces = simulator
2244            .generate_rt_surfaces(&ads_cft_config)
2245            .expect("RT surface generation should succeed");
2246
2247        assert!(!surfaces.is_empty());
2248        for surface in &surfaces {
2249            assert!(surface.area > 0.0);
2250            assert_eq!(surface.coordinates.ncols(), ads_cft_config.ads_dimension);
2251        }
2252    }
2253
2254    #[test]
2255    fn test_lqg_simulation() {
2256        let mut config = QuantumGravityConfig::default();
2257        config.gravity_approach = GravityApproach::LoopQuantumGravity;
2258        config.lqg_config = Some(LQGConfig {
2259            num_nodes: 5,
2260            num_edges: 10,
2261            ..LQGConfig::default()
2262        });
2263
2264        let mut simulator = QuantumGravitySimulator::new(config);
2265
2266        let result = simulator.simulate();
2267        assert!(result.is_ok());
2268
2269        let simulation_result = result.expect("LQG simulation should succeed");
2270        assert_eq!(
2271            simulation_result.approach,
2272            GravityApproach::LoopQuantumGravity
2273        );
2274        assert!(simulation_result.spacetime_volume > 0.0);
2275        assert!(!simulation_result.observables.is_empty());
2276    }
2277
2278    #[test]
2279    fn test_cdt_simulation() {
2280        let mut config = QuantumGravityConfig::default();
2281        config.gravity_approach = GravityApproach::CausalDynamicalTriangulation;
2282        config.cdt_config = Some(CDTConfig {
2283            num_simplices: 50,
2284            mc_sweeps: 10,
2285            ..CDTConfig::default()
2286        });
2287
2288        let mut simulator = QuantumGravitySimulator::new(config);
2289
2290        let result = simulator.simulate();
2291        assert!(result.is_ok());
2292
2293        let simulation_result = result.expect("CDT simulation should succeed");
2294        assert_eq!(
2295            simulation_result.approach,
2296            GravityApproach::CausalDynamicalTriangulation
2297        );
2298        assert!(simulation_result.spacetime_volume > 0.0);
2299    }
2300
2301    #[test]
2302    fn test_asymptotic_safety_simulation() {
2303        let mut config = QuantumGravityConfig::default();
2304        config.gravity_approach = GravityApproach::AsymptoticSafety;
2305        config.asymptotic_safety_config = Some(AsymptoticSafetyConfig {
2306            rg_flow_steps: 5,
2307            ..AsymptoticSafetyConfig::default()
2308        });
2309
2310        let mut simulator = QuantumGravitySimulator::new(config);
2311
2312        let result = simulator.simulate();
2313        assert!(result.is_ok());
2314
2315        let simulation_result = result.expect("Asymptotic Safety simulation should succeed");
2316        assert_eq!(
2317            simulation_result.approach,
2318            GravityApproach::AsymptoticSafety
2319        );
2320        assert!(simulation_result.ground_state_energy.is_finite());
2321    }
2322
2323    #[test]
2324    fn test_ads_cft_simulation() {
2325        let mut config = QuantumGravityConfig::default();
2326        config.gravity_approach = GravityApproach::HolographicGravity;
2327
2328        let mut simulator = QuantumGravitySimulator::new(config);
2329
2330        let result = simulator.simulate();
2331        assert!(result.is_ok());
2332
2333        let simulation_result = result.expect("Holographic Gravity simulation should succeed");
2334        assert_eq!(
2335            simulation_result.approach,
2336            GravityApproach::HolographicGravity
2337        );
2338        assert!(simulation_result.spacetime_volume > 0.0);
2339        assert!(simulation_result
2340            .observables
2341            .contains_key("holographic_complexity"));
2342    }
2343
2344    #[test]
2345    fn test_planck_units() {
2346        let units = QuantumGravityUtils::planck_units();
2347
2348        assert!(units.contains_key("length"));
2349        assert!(units.contains_key("time"));
2350        assert!(units.contains_key("mass"));
2351        assert!(units.contains_key("energy"));
2352
2353        assert_eq!(units["length"], 1.616e-35);
2354        assert_eq!(units["time"], 5.391e-44);
2355    }
2356
2357    #[test]
2358    fn test_approach_comparison() {
2359        let results = vec![GravitySimulationResult {
2360            approach: GravityApproach::LoopQuantumGravity,
2361            ground_state_energy: 1e-10,
2362            spacetime_volume: 1e-105,
2363            geometry_measurements: GeometryMeasurements {
2364                area_spectrum: vec![1e-70],
2365                volume_spectrum: vec![1e-105],
2366                length_spectrum: vec![1e-35],
2367                discrete_curvature: 1e70,
2368                topology_measurements: TopologyMeasurements {
2369                    euler_characteristic: 1,
2370                    betti_numbers: vec![1],
2371                    homology_groups: vec!["Z".to_string()],
2372                    fundamental_group: "trivial".to_string(),
2373                },
2374            },
2375            convergence_info: ConvergenceInfo {
2376                iterations: 100,
2377                final_residual: 1e-8,
2378                converged: true,
2379                convergence_history: vec![1e-2, 1e-8],
2380            },
2381            observables: HashMap::new(),
2382            computation_time: 1.0,
2383        }];
2384
2385        let comparison = QuantumGravityUtils::compare_approaches(&results);
2386        assert!(comparison.contains("LoopQuantumGravity"));
2387        assert!(comparison.contains("Energy"));
2388        assert!(comparison.contains("Volume"));
2389    }
2390
2391    #[test]
2392    fn test_physical_constraints_validation() {
2393        let result = GravitySimulationResult {
2394            approach: GravityApproach::LoopQuantumGravity,
2395            ground_state_energy: -1.0, // Invalid negative energy
2396            spacetime_volume: 0.0,     // Invalid zero volume
2397            geometry_measurements: GeometryMeasurements {
2398                area_spectrum: vec![1e-70],
2399                volume_spectrum: vec![1e-105],
2400                length_spectrum: vec![1e-35],
2401                discrete_curvature: 1e15, // Extreme curvature
2402                topology_measurements: TopologyMeasurements {
2403                    euler_characteristic: 1,
2404                    betti_numbers: vec![1],
2405                    homology_groups: vec!["Z".to_string()],
2406                    fundamental_group: "trivial".to_string(),
2407                },
2408            },
2409            convergence_info: ConvergenceInfo {
2410                iterations: 100,
2411                final_residual: 1e-8,
2412                converged: true,
2413                convergence_history: vec![1e-2, 1e-8],
2414            },
2415            observables: HashMap::new(),
2416            computation_time: 1.0,
2417        };
2418
2419        let violations = QuantumGravityUtils::validate_physical_constraints(&result);
2420
2421        assert_eq!(violations.len(), 3);
2422        assert!(violations
2423            .iter()
2424            .any(|v| v.contains("Negative ground state energy")));
2425        assert!(violations.iter().any(|v| v.contains("volume")));
2426        assert!(violations.iter().any(|v| v.contains("curvature")));
2427    }
2428
2429    #[test]
2430    #[ignore]
2431    fn test_benchmark_quantum_gravity() {
2432        // This is a more comprehensive test that would run longer
2433        // In practice, you might want to make this an integration test
2434        let result = benchmark_quantum_gravity_simulation();
2435        assert!(result.is_ok());
2436
2437        let benchmark = result.expect("benchmark should complete successfully");
2438        assert!(!benchmark.approach_results.is_empty());
2439        assert!(!benchmark.timing_comparisons.is_empty());
2440        assert!(benchmark.memory_usage > 0);
2441    }
2442}