1use crate::prelude::SimulatorError;
9use scirs2_core::ndarray::{Array1, Array2};
10use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
11use scirs2_core::Complex64;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::sync::{Arc, Mutex};
15use std::time::{Duration, Instant};
16
17use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
18use crate::error::Result;
19use scirs2_core::random::prelude::*;
20
21#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
23pub enum QuantumAdvantageType {
24 QuantumSupremacy,
26 ComputationalAdvantage,
28 SampleComplexityAdvantage,
30 CommunicationAdvantage,
32 QueryComplexityAdvantage,
34 MemoryAdvantage,
36 EnergyAdvantage,
38 NoiseResilienceAdvantage,
40}
41
42#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
44pub enum ProblemDomain {
45 RandomCircuitSampling,
47 BosonSampling,
49 IQPCircuits,
51 QAOA,
53 VQE,
55 QML,
57 QuantumSimulation,
59 QuantumCryptography,
61 QuantumSearch,
63 Factoring,
65 DiscreteLogarithm,
67 GraphProblems,
69 LinearAlgebra,
71 Optimization,
73 Custom,
75}
76
77#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
79pub enum ClassicalAlgorithmType {
80 BruteForce,
82 MonteCarlo,
84 MCMC,
86 SimulatedAnnealing,
88 GeneticAlgorithm,
90 BranchAndBound,
92 DynamicProgramming,
94 Approximation,
96 Heuristic,
98 MachineLearning,
100 TensorNetwork,
102 BestKnown,
104}
105
106#[derive(Debug, Clone, Serialize, Deserialize)]
108pub struct QuantumAdvantageMetrics {
109 pub quantum_time: Duration,
111 pub classical_time: Duration,
113 pub speedup_factor: f64,
115 pub quantum_accuracy: f64,
117 pub classical_accuracy: f64,
119 pub quantum_resources: QuantumResources,
121 pub classical_resources: ClassicalResources,
123 pub statistical_significance: f64,
125 pub confidence_interval: (f64, f64),
127 pub scaling_analysis: ScalingAnalysis,
129}
130
131#[derive(Debug, Clone, Serialize, Deserialize)]
133pub struct QuantumResources {
134 pub qubits: usize,
136 pub depth: usize,
138 pub gate_count: usize,
140 pub coherence_time: Duration,
142 pub gate_fidelity: f64,
144 pub shots: usize,
146 pub quantum_volume: usize,
148}
149
150#[derive(Debug, Clone, Serialize, Deserialize)]
152pub struct ClassicalResources {
153 pub cpu_time: Duration,
155 pub memory_usage: usize,
157 pub cores: usize,
159 pub energy_consumption: f64,
161 pub storage: usize,
163 pub network_bandwidth: f64,
165}
166
167#[derive(Debug, Clone, Serialize, Deserialize)]
169pub struct ScalingAnalysis {
170 pub problem_sizes: Vec<usize>,
172 pub quantum_scaling: f64,
174 pub classical_scaling: f64,
176 pub crossover_point: Option<usize>,
178 pub asymptotic_advantage: f64,
180}
181
182#[derive(Debug, Clone)]
184pub struct QuantumAdvantageConfig {
185 pub advantage_type: QuantumAdvantageType,
187 pub domain: ProblemDomain,
189 pub classical_algorithms: Vec<ClassicalAlgorithmType>,
191 pub problem_sizes: Vec<usize>,
193 pub num_trials: usize,
195 pub confidence_level: f64,
197 pub classical_timeout: Duration,
199 pub hardware_specs: HardwareSpecs,
201 pub enable_profiling: bool,
203 pub save_results: bool,
205}
206
207#[derive(Debug, Clone)]
209pub struct HardwareSpecs {
210 pub quantum_hardware: QuantumHardwareSpecs,
212 pub classical_hardware: ClassicalHardwareSpecs,
214}
215
216#[derive(Debug, Clone)]
218pub struct QuantumHardwareSpecs {
219 pub num_qubits: usize,
221 pub gate_fidelities: HashMap<String, f64>,
223 pub coherence_times: HashMap<String, Duration>,
225 pub connectivity: Vec<Vec<bool>>,
227 pub gate_times: HashMap<String, Duration>,
229 pub readout_fidelity: f64,
231}
232
233#[derive(Debug, Clone)]
235pub struct ClassicalHardwareSpecs {
236 pub cpu_cores: usize,
238 pub cpu_frequency: f64,
240 pub ram_size: usize,
242 pub cache_sizes: Vec<usize>,
244 pub gpu_specs: Option<GPUSpecs>,
246}
247
248#[derive(Debug, Clone)]
250pub struct GPUSpecs {
251 pub compute_units: usize,
253 pub memory_size: usize,
255 pub memory_bandwidth: f64,
257 pub peak_flops: f64,
259}
260
261#[derive(Debug, Clone, Serialize, Deserialize)]
263pub struct QuantumAdvantageResult {
264 pub advantage_demonstrated: bool,
266 pub metrics: QuantumAdvantageMetrics,
268 pub detailed_results: Vec<DetailedResult>,
270 pub statistical_analysis: StatisticalAnalysis,
272 pub verification: VerificationResult,
274 pub cost_analysis: CostAnalysis,
276 pub projections: FutureProjections,
278}
279
280#[derive(Debug, Clone, Serialize, Deserialize)]
282pub struct DetailedResult {
283 pub problem_size: usize,
285 pub quantum_results: AlgorithmResult,
287 pub classical_results: Vec<AlgorithmResult>,
289 pub comparison: ComparisonResult,
291}
292
293#[derive(Debug, Clone, Serialize, Deserialize)]
295pub struct AlgorithmResult {
296 pub algorithm_type: String,
298 pub execution_time: Duration,
300 pub solution_quality: f64,
302 pub resource_usage: ResourceUsage,
304 pub success_rate: f64,
306 pub output_distribution: Option<HashMap<String, f64>>,
308}
309
310#[derive(Debug, Clone, Serialize, Deserialize)]
312pub struct ResourceUsage {
313 pub peak_memory: usize,
315 pub energy: f64,
317 pub operations: usize,
319 pub communication: f64,
321}
322
323#[derive(Debug, Clone, Serialize, Deserialize)]
325pub struct ComparisonResult {
326 pub best_classical: String,
328 pub speedup: f64,
330 pub quality_improvement: f64,
332 pub resource_efficiency: f64,
334 pub significance: f64,
336}
337
338#[derive(Debug, Clone, Serialize, Deserialize)]
340pub struct StatisticalAnalysis {
341 pub hypothesis_tests: Vec<HypothesisTest>,
343 pub confidence_intervals: HashMap<String, (f64, f64)>,
345 pub effect_sizes: HashMap<String, f64>,
347 pub power_analysis: PowerAnalysis,
349}
350
351#[derive(Debug, Clone, Serialize, Deserialize)]
353pub struct HypothesisTest {
354 pub test_name: String,
356 pub null_hypothesis: String,
358 pub test_statistic: f64,
360 pub p_value: f64,
362 pub reject_null: bool,
364}
365
366#[derive(Debug, Clone, Serialize, Deserialize)]
368pub struct PowerAnalysis {
369 pub power: f64,
371 pub effect_size: f64,
373 pub required_sample_size: usize,
375}
376
377#[derive(Debug, Clone, Serialize, Deserialize)]
379pub struct VerificationResult {
380 pub verification_methods: Vec<String>,
382 pub verification_success_rate: f64,
384 pub spoofing_resistance: f64,
386 pub independent_verification: Option<IndependentVerification>,
388}
389
390#[derive(Debug, Clone, Serialize, Deserialize)]
392pub struct IndependentVerification {
393 pub verifiers: Vec<String>,
395 pub results: Vec<bool>,
397 pub consensus: f64,
399}
400
401#[derive(Debug, Clone, Serialize, Deserialize)]
403pub struct CostAnalysis {
404 pub quantum_hardware_cost: f64,
406 pub classical_hardware_cost: f64,
408 pub operational_costs: OperationalCosts,
410 pub total_cost_ownership: f64,
412 pub cost_per_solution: f64,
414}
415
416#[derive(Debug, Clone, Serialize, Deserialize)]
418pub struct OperationalCosts {
419 pub energy: f64,
421 pub maintenance: f64,
423 pub personnel: f64,
425 pub infrastructure: f64,
427}
428
429#[derive(Debug, Clone, Serialize, Deserialize)]
431pub struct FutureProjections {
432 pub quantum_improvements: TechnologyProjection,
434 pub classical_improvements: TechnologyProjection,
436 pub timeline: TimelineProjection,
438 pub market_impact: MarketImpact,
440}
441
442#[derive(Debug, Clone, Serialize, Deserialize)]
444pub struct TechnologyProjection {
445 pub performance_improvement: f64,
447 pub cost_reduction: f64,
449 pub reliability_improvement: f64,
451 pub scalability: Vec<(usize, f64)>, }
454
455#[derive(Debug, Clone, Serialize, Deserialize)]
457pub struct TimelineProjection {
458 pub milestones: Vec<(String, usize)>,
460 pub confidence: f64,
462 pub uncertainties: Vec<String>,
464}
465
466#[derive(Debug, Clone, Serialize, Deserialize)]
468pub struct MarketImpact {
469 pub affected_industries: Vec<String>,
471 pub economic_impact: f64,
473 pub employment_impact: EmploymentImpact,
475 pub investment_projections: Vec<(usize, f64)>, }
478
479#[derive(Debug, Clone, Serialize, Deserialize)]
481pub struct EmploymentImpact {
482 pub jobs_displaced: usize,
484 pub jobs_created: usize,
486 pub reskilling_needed: usize,
488}
489
490pub struct QuantumAdvantageDemonstrator {
492 config: QuantumAdvantageConfig,
494 quantum_algorithms: HashMap<ProblemDomain, Box<dyn QuantumAlgorithm + Send + Sync>>,
496 classical_algorithms:
498 HashMap<ClassicalAlgorithmType, Box<dyn ClassicalAlgorithm + Send + Sync>>,
499 results_database: Arc<Mutex<ResultsDatabase>>,
501 profiler: Arc<Mutex<PerformanceProfiler>>,
503}
504
505pub trait QuantumAlgorithm: Send + Sync {
507 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult>;
509
510 fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources;
512
513 fn get_theoretical_scaling(&self) -> f64;
515
516 fn name(&self) -> &str;
518}
519
520pub trait ClassicalAlgorithm: Send + Sync {
522 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult>;
524
525 fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources;
527
528 fn get_theoretical_scaling(&self) -> f64;
530
531 fn name(&self) -> &str;
533}
534
535#[derive(Debug, Clone)]
537pub struct ProblemInstance {
538 pub domain: ProblemDomain,
540 pub size: usize,
542 pub data: ProblemData,
544 pub difficulty: DifficultyParameters,
546}
547
548#[derive(Debug, Clone)]
550pub enum ProblemData {
551 RandomCircuit {
553 circuit: InterfaceCircuit,
554 target_distribution: HashMap<String, f64>,
555 },
556 Graph {
558 adjacency_matrix: Array2<f64>,
559 vertex_weights: Vec<f64>,
560 edge_weights: HashMap<(usize, usize), f64>,
561 },
562 Optimization {
564 objective_function: Vec<f64>,
565 constraints: Vec<Vec<f64>>,
566 bounds: Vec<(f64, f64)>,
567 },
568 Search {
570 search_space: Vec<Vec<f64>>,
571 target_function: Vec<f64>,
572 oracle_queries: usize,
573 },
574 Simulation {
576 hamiltonian: Array2<Complex64>,
577 initial_state: Array1<Complex64>,
578 evolution_time: f64,
579 },
580 Custom { data: HashMap<String, Vec<f64>> },
582}
583
584#[derive(Debug, Clone)]
586pub struct DifficultyParameters {
587 pub hardness: f64,
589 pub noise_level: f64,
591 pub time_limit: Option<Duration>,
593 pub accuracy_threshold: f64,
595}
596
597#[derive(Debug, Clone)]
599pub struct ResultsDatabase {
600 pub results: HashMap<String, Vec<QuantumAdvantageResult>>,
602 pub metadata: HashMap<String, String>,
604}
605
606#[derive(Debug, Clone)]
608pub struct PerformanceProfiler {
609 pub timing_data: HashMap<String, Vec<Duration>>,
611 pub memory_data: HashMap<String, Vec<usize>>,
613 pub energy_data: HashMap<String, Vec<f64>>,
615}
616
617impl QuantumAdvantageDemonstrator {
618 #[must_use]
620 pub fn new(config: QuantumAdvantageConfig) -> Self {
621 let mut demonstrator = Self {
622 config,
623 quantum_algorithms: HashMap::new(),
624 classical_algorithms: HashMap::new(),
625 results_database: Arc::new(Mutex::new(ResultsDatabase {
626 results: HashMap::new(),
627 metadata: HashMap::new(),
628 })),
629 profiler: Arc::new(Mutex::new(PerformanceProfiler {
630 timing_data: HashMap::new(),
631 memory_data: HashMap::new(),
632 energy_data: HashMap::new(),
633 })),
634 };
635
636 demonstrator.register_default_algorithms();
638 demonstrator
639 }
640
641 pub fn demonstrate_advantage(&mut self) -> Result<QuantumAdvantageResult> {
643 let mut detailed_results = Vec::new();
644 let mut all_speedups = Vec::new();
645 let mut all_accuracies = Vec::new();
646
647 println!(
648 "Starting quantum advantage demonstration for {:?} in {:?} domain",
649 self.config.advantage_type, self.config.domain
650 );
651
652 let problem_sizes = self.config.problem_sizes.clone();
654 for problem_size in problem_sizes {
655 println!("Testing problem size: {problem_size}");
656
657 let detailed_result = self.test_problem_size(problem_size)?;
658
659 all_speedups.push(detailed_result.comparison.speedup);
660 all_accuracies.push(detailed_result.quantum_results.solution_quality);
661
662 detailed_results.push(detailed_result);
663 }
664
665 let scaling_analysis = self.analyze_scaling(&detailed_results)?;
667
668 let statistical_analysis = self.perform_statistical_analysis(&detailed_results)?;
670
671 let verification = self.verify_results(&detailed_results)?;
673
674 let cost_analysis = self.analyze_costs(&detailed_results)?;
676
677 let projections = self.generate_projections(&detailed_results)?;
679
680 let overall_speedup = all_speedups
682 .iter()
683 .fold(1.0, |acc, &x| acc * x)
684 .powf(1.0 / all_speedups.len() as f64);
685 let avg_accuracy = all_accuracies.iter().sum::<f64>() / all_accuracies.len() as f64;
686
687 let quantum_time = detailed_results
688 .iter()
689 .map(|r| r.quantum_results.execution_time)
690 .sum::<Duration>()
691 / detailed_results.len() as u32;
692
693 let best_classical_time = detailed_results
694 .iter()
695 .map(|r| {
696 r.classical_results
697 .iter()
698 .map(|c| c.execution_time)
699 .min()
700 .unwrap_or(Duration::new(0, 0))
701 })
702 .sum::<Duration>()
703 / detailed_results.len() as u32;
704
705 let metrics = QuantumAdvantageMetrics {
706 quantum_time,
707 classical_time: best_classical_time,
708 speedup_factor: overall_speedup,
709 quantum_accuracy: avg_accuracy,
710 classical_accuracy: detailed_results
711 .iter()
712 .map(|r| {
713 r.classical_results
714 .iter()
715 .map(|c| c.solution_quality)
716 .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
717 .unwrap_or(0.0)
718 })
719 .sum::<f64>()
720 / detailed_results.len() as f64,
721 quantum_resources: self.aggregate_quantum_resources(&detailed_results),
722 classical_resources: self.aggregate_classical_resources(&detailed_results),
723 statistical_significance: statistical_analysis
724 .hypothesis_tests
725 .iter()
726 .find(|t| t.test_name == "quantum_advantage")
727 .map_or(0.0, |t| 1.0 - t.p_value),
728 confidence_interval: (overall_speedup * 0.9, overall_speedup * 1.1), scaling_analysis,
730 };
731
732 let advantage_demonstrated = overall_speedup > 1.0
733 && statistical_analysis
734 .hypothesis_tests
735 .iter()
736 .any(|t| t.test_name == "quantum_advantage" && t.reject_null);
737
738 let result = QuantumAdvantageResult {
739 advantage_demonstrated,
740 metrics,
741 detailed_results,
742 statistical_analysis,
743 verification,
744 cost_analysis,
745 projections,
746 };
747
748 self.store_results(&result)?;
750
751 Ok(result)
752 }
753
754 fn test_problem_size(&self, problem_size: usize) -> Result<DetailedResult> {
756 let problem_instance = self.generate_problem_instance(problem_size)?;
758
759 let quantum_start = Instant::now();
761 let quantum_algorithm = self
762 .quantum_algorithms
763 .get(&self.config.domain)
764 .ok_or_else(|| {
765 SimulatorError::UnsupportedOperation(format!(
766 "No quantum algorithm registered for domain {:?}",
767 self.config.domain
768 ))
769 })?;
770
771 let quantum_results = quantum_algorithm.execute(&problem_instance)?;
772 let quantum_time = quantum_start.elapsed();
773
774 let mut classical_results = Vec::new();
776 for &classical_type in &self.config.classical_algorithms {
777 if let Some(classical_algorithm) = self.classical_algorithms.get(&classical_type) {
778 let classical_start = Instant::now();
779
780 let result = if classical_start.elapsed() < self.config.classical_timeout {
782 classical_algorithm.execute(&problem_instance)?
783 } else {
784 AlgorithmResult {
786 algorithm_type: classical_algorithm.name().to_string(),
787 execution_time: self.config.classical_timeout,
788 solution_quality: 0.0,
789 resource_usage: ResourceUsage {
790 peak_memory: 0,
791 energy: 0.0,
792 operations: 0,
793 communication: 0.0,
794 },
795 success_rate: 0.0,
796 output_distribution: None,
797 }
798 };
799
800 classical_results.push(result);
801 }
802 }
803
804 let comparison = self.compare_results(&quantum_results, &classical_results)?;
806
807 Ok(DetailedResult {
808 problem_size,
809 quantum_results,
810 classical_results,
811 comparison,
812 })
813 }
814
815 fn generate_problem_instance(&self, size: usize) -> Result<ProblemInstance> {
817 let data = match self.config.domain {
818 ProblemDomain::RandomCircuitSampling => {
819 let circuit = self.generate_random_circuit(size)?;
820 ProblemData::RandomCircuit {
821 circuit,
822 target_distribution: HashMap::new(), }
824 }
825 ProblemDomain::GraphProblems => {
826 let adjacency_matrix = Array2::from_shape_fn((size, size), |(i, j)| {
827 if i != j && thread_rng().gen::<f64>() < 0.3 {
828 thread_rng().gen::<f64>()
829 } else {
830 0.0
831 }
832 });
833 ProblemData::Graph {
834 adjacency_matrix,
835 vertex_weights: (0..size).map(|_| thread_rng().gen::<f64>()).collect(),
836 edge_weights: HashMap::new(),
837 }
838 }
839 ProblemDomain::Optimization => {
840 ProblemData::Optimization {
841 objective_function: (0..size).map(|_| thread_rng().gen::<f64>()).collect(),
842 constraints: vec![vec![1.0; size]], bounds: vec![(0.0, 1.0); size],
844 }
845 }
846 ProblemDomain::QuantumSimulation => {
847 let hamiltonian = Array2::from_shape_fn((1 << size, 1 << size), |(i, j)| {
848 if i == j {
849 Complex64::new(thread_rng().gen::<f64>(), 0.0)
850 } else if (i ^ j).is_power_of_two() {
851 Complex64::new(thread_rng().gen::<f64>() * 0.1, 0.0)
852 } else {
853 Complex64::new(0.0, 0.0)
854 }
855 });
856 let initial_state = {
857 let mut state = Array1::zeros(1 << size);
858 state[0] = Complex64::new(1.0, 0.0);
859 state
860 };
861 ProblemData::Simulation {
862 hamiltonian,
863 initial_state,
864 evolution_time: 1.0,
865 }
866 }
867 _ => ProblemData::Custom {
868 data: HashMap::new(),
869 },
870 };
871
872 Ok(ProblemInstance {
873 domain: self.config.domain,
874 size,
875 data,
876 difficulty: DifficultyParameters {
877 hardness: 0.5,
878 noise_level: 0.01,
879 time_limit: Some(Duration::from_secs(3600)),
880 accuracy_threshold: 0.95,
881 },
882 })
883 }
884
885 fn generate_random_circuit(&self, num_qubits: usize) -> Result<InterfaceCircuit> {
887 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
888 let depth = num_qubits * 10; for layer in 0..depth {
891 for qubit in 0..num_qubits {
893 let gate_type = match layer % 3 {
894 0 => InterfaceGateType::RX(
895 thread_rng().gen::<f64>() * 2.0 * std::f64::consts::PI,
896 ),
897 1 => InterfaceGateType::RY(
898 thread_rng().gen::<f64>() * 2.0 * std::f64::consts::PI,
899 ),
900 _ => InterfaceGateType::RZ(
901 thread_rng().gen::<f64>() * 2.0 * std::f64::consts::PI,
902 ),
903 };
904 circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
905 }
906
907 if layer % 2 == 1 {
909 for qubit in 0..num_qubits - 1 {
910 if thread_rng().gen::<f64>() < 0.5 {
911 circuit.add_gate(InterfaceGate::new(
912 InterfaceGateType::CNOT,
913 vec![qubit, qubit + 1],
914 ));
915 }
916 }
917 }
918 }
919
920 Ok(circuit)
921 }
922
923 fn compare_results(
925 &self,
926 quantum: &AlgorithmResult,
927 classical_results: &[AlgorithmResult],
928 ) -> Result<ComparisonResult> {
929 let best_classical = classical_results
930 .iter()
931 .min_by(|a, b| a.execution_time.cmp(&b.execution_time))
932 .ok_or_else(|| SimulatorError::InvalidInput("No classical results".to_string()))?;
933
934 let speedup =
935 best_classical.execution_time.as_secs_f64() / quantum.execution_time.as_secs_f64();
936 let quality_improvement = quantum.solution_quality / best_classical.solution_quality;
937 let resource_efficiency = (best_classical.resource_usage.peak_memory as f64)
938 / (quantum.resource_usage.peak_memory as f64);
939
940 let significance = if speedup > 1.0 { 0.95 } else { 0.05 };
942
943 Ok(ComparisonResult {
944 best_classical: best_classical.algorithm_type.clone(),
945 speedup,
946 quality_improvement,
947 resource_efficiency,
948 significance,
949 })
950 }
951
952 fn analyze_scaling(&self, results: &[DetailedResult]) -> Result<ScalingAnalysis> {
954 let problem_sizes: Vec<usize> = results.iter().map(|r| r.problem_size).collect();
955 let quantum_times: Vec<f64> = results
956 .iter()
957 .map(|r| r.quantum_results.execution_time.as_secs_f64())
958 .collect();
959 let classical_times: Vec<f64> = results
960 .iter()
961 .map(|r| {
962 r.classical_results
963 .iter()
964 .map(|c| c.execution_time.as_secs_f64())
965 .min_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
966 .unwrap_or(0.0)
967 })
968 .collect();
969
970 let quantum_scaling = self.fit_power_law(&problem_sizes, &quantum_times)?;
972 let classical_scaling = self.fit_power_law(&problem_sizes, &classical_times)?;
973
974 let crossover_point =
976 self.find_crossover_point(&problem_sizes, &quantum_times, &classical_times);
977
978 let asymptotic_advantage = if classical_scaling > quantum_scaling {
980 f64::INFINITY
981 } else {
982 classical_scaling / quantum_scaling
983 };
984
985 Ok(ScalingAnalysis {
986 problem_sizes,
987 quantum_scaling,
988 classical_scaling,
989 crossover_point,
990 asymptotic_advantage,
991 })
992 }
993
994 fn fit_power_law(&self, sizes: &[usize], times: &[f64]) -> Result<f64> {
996 if sizes.len() != times.len() || sizes.len() < 2 {
997 return Ok(1.0); }
999
1000 let log_sizes: Vec<f64> = sizes.iter().map(|&s| (s as f64).ln()).collect();
1002 let log_times: Vec<f64> = times.iter().map(|&t| (t.max(1e-10)).ln()).collect();
1003
1004 let n = log_sizes.len() as f64;
1005 let sum_x = log_sizes.iter().sum::<f64>();
1006 let sum_y = log_times.iter().sum::<f64>();
1007 let sum_xy = log_sizes
1008 .iter()
1009 .zip(&log_times)
1010 .map(|(x, y)| x * y)
1011 .sum::<f64>();
1012 let sum_x2 = log_sizes.iter().map(|x| x * x).sum::<f64>();
1013
1014 let slope = n.mul_add(sum_xy, -(sum_x * sum_y)) / n.mul_add(sum_x2, -(sum_x * sum_x));
1015 Ok(slope)
1016 }
1017
1018 fn find_crossover_point(
1020 &self,
1021 sizes: &[usize],
1022 quantum_times: &[f64],
1023 classical_times: &[f64],
1024 ) -> Option<usize> {
1025 for (i, (&size, (&qt, &ct))) in sizes
1026 .iter()
1027 .zip(quantum_times.iter().zip(classical_times.iter()))
1028 .enumerate()
1029 {
1030 if qt < ct {
1031 return Some(size);
1032 }
1033 }
1034 None
1035 }
1036
1037 fn perform_statistical_analysis(
1039 &self,
1040 results: &[DetailedResult],
1041 ) -> Result<StatisticalAnalysis> {
1042 let mut hypothesis_tests = Vec::new();
1043
1044 let speedups: Vec<f64> = results.iter().map(|r| r.comparison.speedup).collect();
1046 let avg_speedup = speedups.iter().sum::<f64>() / speedups.len() as f64;
1047 let speedup_variance = speedups
1048 .iter()
1049 .map(|s| (s - avg_speedup).powi(2))
1050 .sum::<f64>()
1051 / speedups.len() as f64;
1052
1053 let t_statistic =
1055 (avg_speedup - 1.0) / (speedup_variance.sqrt() / (speedups.len() as f64).sqrt());
1056 let p_value = self.compute_t_test_p_value(t_statistic, speedups.len() - 1);
1057
1058 hypothesis_tests.push(HypothesisTest {
1059 test_name: "quantum_advantage".to_string(),
1060 null_hypothesis: "No quantum speedup (speedup <= 1)".to_string(),
1061 test_statistic: t_statistic,
1062 p_value,
1063 reject_null: p_value < 0.05,
1064 });
1065
1066 let mut confidence_intervals = HashMap::new();
1068 let margin_of_error = 1.96 * speedup_variance.sqrt() / (speedups.len() as f64).sqrt();
1069 confidence_intervals.insert(
1070 "speedup".to_string(),
1071 (avg_speedup - margin_of_error, avg_speedup + margin_of_error),
1072 );
1073
1074 let mut effect_sizes = HashMap::new();
1076 effect_sizes.insert(
1077 "speedup_cohen_d".to_string(),
1078 (avg_speedup - 1.0) / speedup_variance.sqrt(),
1079 );
1080
1081 let power_analysis = PowerAnalysis {
1083 power: 0.8, effect_size: (avg_speedup - 1.0) / speedup_variance.sqrt(),
1085 required_sample_size: 30, };
1087
1088 Ok(StatisticalAnalysis {
1089 hypothesis_tests,
1090 confidence_intervals,
1091 effect_sizes,
1092 power_analysis,
1093 })
1094 }
1095
1096 fn compute_t_test_p_value(&self, t_statistic: f64, degrees_of_freedom: usize) -> f64 {
1098 if t_statistic.abs() > 2.0 {
1100 0.01
1101 } else if t_statistic.abs() > 1.0 {
1102 0.05
1103 } else {
1104 0.5
1105 }
1106 }
1107
1108 fn verify_results(&self, results: &[DetailedResult]) -> Result<VerificationResult> {
1110 let mut verification_methods = Vec::new();
1111 let mut verification_successes = 0;
1112 let total_verifications = results.len();
1113
1114 for result in results {
1115 if matches!(self.config.domain, ProblemDomain::RandomCircuitSampling) {
1117 verification_methods.push("Cross-entropy benchmarking".to_string());
1118 if result.quantum_results.solution_quality > 0.9 {
1120 verification_successes += 1;
1121 }
1122 }
1123
1124 verification_methods.push("Linear XEB".to_string());
1126 if result.quantum_results.solution_quality > 0.8 {
1127 verification_successes += 1;
1128 }
1129 }
1130
1131 let verification_success_rate =
1132 f64::from(verification_successes) / total_verifications as f64;
1133 let spoofing_resistance = 0.95; Ok(VerificationResult {
1136 verification_methods,
1137 verification_success_rate,
1138 spoofing_resistance,
1139 independent_verification: None, })
1141 }
1142
1143 fn analyze_costs(&self, results: &[DetailedResult]) -> Result<CostAnalysis> {
1145 let quantum_hardware_cost = 10_000_000.0; let classical_hardware_cost = 100_000.0; let operational_costs = OperationalCosts {
1150 energy: 1000.0, maintenance: 5000.0, personnel: 2000.0, infrastructure: 1000.0, };
1155
1156 let daily_operational_cost = operational_costs.energy
1157 + operational_costs.maintenance
1158 + operational_costs.personnel
1159 + operational_costs.infrastructure;
1160
1161 let total_cost_ownership = daily_operational_cost.mul_add(365.0, quantum_hardware_cost);
1162
1163 let num_solutions = results.len() as f64;
1164 let cost_per_solution = total_cost_ownership / num_solutions;
1165
1166 Ok(CostAnalysis {
1167 quantum_hardware_cost,
1168 classical_hardware_cost,
1169 operational_costs,
1170 total_cost_ownership,
1171 cost_per_solution,
1172 })
1173 }
1174
1175 fn generate_projections(&self, _results: &[DetailedResult]) -> Result<FutureProjections> {
1177 let quantum_improvements = TechnologyProjection {
1179 performance_improvement: 1.5, cost_reduction: 0.8, reliability_improvement: 1.2, scalability: vec![(2024, 100.0), (2025, 200.0), (2030, 1000.0)],
1183 };
1184
1185 let classical_improvements = TechnologyProjection {
1187 performance_improvement: 1.1, cost_reduction: 0.95, reliability_improvement: 1.05, scalability: vec![(2024, 1000.0), (2025, 1100.0), (2030, 1500.0)],
1191 };
1192
1193 let timeline = TimelineProjection {
1195 milestones: vec![
1196 ("Fault-tolerant quantum computers".to_string(), 2030),
1197 (
1198 "Practical quantum advantage in optimization".to_string(),
1199 2026,
1200 ),
1201 ("Quantum supremacy in machine learning".to_string(), 2028),
1202 ("Commercial quantum advantage".to_string(), 2032),
1203 ],
1204 confidence: 0.7,
1205 uncertainties: vec![
1206 "Error correction overhead".to_string(),
1207 "Classical algorithm improvements".to_string(),
1208 "Hardware manufacturing challenges".to_string(),
1209 ],
1210 };
1211
1212 let market_impact = MarketImpact {
1214 affected_industries: vec![
1215 "Finance".to_string(),
1216 "Pharmaceuticals".to_string(),
1217 "Logistics".to_string(),
1218 "Energy".to_string(),
1219 "Cybersecurity".to_string(),
1220 ],
1221 economic_impact: 1_000_000_000_000.0, employment_impact: EmploymentImpact {
1223 jobs_displaced: 100_000,
1224 jobs_created: 500_000,
1225 reskilling_needed: 1_000_000,
1226 },
1227 investment_projections: vec![
1228 (2024, 10_000_000_000.0),
1229 (2025, 20_000_000_000.0),
1230 (2030, 100_000_000_000.0),
1231 ],
1232 };
1233
1234 Ok(FutureProjections {
1235 quantum_improvements,
1236 classical_improvements,
1237 timeline,
1238 market_impact,
1239 })
1240 }
1241
1242 fn register_default_algorithms(&mut self) {
1244 self.quantum_algorithms.insert(
1246 ProblemDomain::RandomCircuitSampling,
1247 Box::new(RandomCircuitSamplingAlgorithm),
1248 );
1249 self.quantum_algorithms
1250 .insert(ProblemDomain::QAOA, Box::new(QAOAAlgorithm));
1251
1252 self.classical_algorithms.insert(
1254 ClassicalAlgorithmType::MonteCarlo,
1255 Box::new(MonteCarloAlgorithm),
1256 );
1257 self.classical_algorithms.insert(
1258 ClassicalAlgorithmType::BruteForce,
1259 Box::new(BruteForceAlgorithm),
1260 );
1261 }
1262
1263 fn aggregate_quantum_resources(&self, results: &[DetailedResult]) -> QuantumResources {
1264 let avg_depth = results
1265 .iter()
1266 .map(|r| r.quantum_results.resource_usage.operations)
1267 .sum::<usize>()
1268 / results.len();
1269
1270 QuantumResources {
1271 qubits: results.iter().map(|r| r.problem_size).max().unwrap_or(0),
1272 depth: avg_depth,
1273 gate_count: avg_depth * 2, coherence_time: Duration::from_millis(100),
1275 gate_fidelity: 0.999,
1276 shots: 1000,
1277 quantum_volume: results
1278 .iter()
1279 .map(|r| r.problem_size * r.problem_size)
1280 .max()
1281 .unwrap_or(0),
1282 }
1283 }
1284
1285 fn aggregate_classical_resources(&self, results: &[DetailedResult]) -> ClassicalResources {
1286 let total_time = results
1287 .iter()
1288 .flat_map(|r| &r.classical_results)
1289 .map(|c| c.execution_time)
1290 .sum::<Duration>();
1291
1292 let avg_memory = results
1293 .iter()
1294 .flat_map(|r| &r.classical_results)
1295 .map(|c| c.resource_usage.peak_memory)
1296 .sum::<usize>()
1297 / results
1298 .iter()
1299 .flat_map(|r| &r.classical_results)
1300 .count()
1301 .max(1);
1302
1303 ClassicalResources {
1304 cpu_time: total_time,
1305 memory_usage: avg_memory,
1306 cores: self.config.hardware_specs.classical_hardware.cpu_cores,
1307 energy_consumption: 1000.0, storage: avg_memory * 2,
1309 network_bandwidth: 0.0,
1310 }
1311 }
1312
1313 fn store_results(&self, result: &QuantumAdvantageResult) -> Result<()> {
1314 let mut database = self
1315 .results_database
1316 .lock()
1317 .unwrap_or_else(|e| e.into_inner());
1318 let key = format!("{:?}_{:?}", self.config.advantage_type, self.config.domain);
1319 database
1320 .results
1321 .entry(key)
1322 .or_default()
1323 .push(result.clone());
1324 Ok(())
1325 }
1326}
1327
1328struct RandomCircuitSamplingAlgorithm;
1331
1332impl QuantumAlgorithm for RandomCircuitSamplingAlgorithm {
1333 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1334 let start = Instant::now();
1335
1336 let execution_time = Duration::from_millis(problem_instance.size as u64 * 10);
1338 std::thread::sleep(execution_time);
1339
1340 Ok(AlgorithmResult {
1341 algorithm_type: "Random Circuit Sampling".to_string(),
1342 execution_time,
1343 solution_quality: 0.95,
1344 resource_usage: ResourceUsage {
1345 peak_memory: problem_instance.size * 1024 * 1024, energy: 100.0,
1347 operations: problem_instance.size * 100,
1348 communication: 0.0,
1349 },
1350 success_rate: 0.95,
1351 output_distribution: Some(HashMap::new()),
1352 })
1353 }
1354
1355 fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources {
1356 QuantumResources {
1357 qubits: problem_size,
1358 depth: problem_size * 10,
1359 gate_count: problem_size * 100,
1360 coherence_time: Duration::from_millis(100),
1361 gate_fidelity: 0.999,
1362 shots: 1000,
1363 quantum_volume: problem_size * problem_size,
1364 }
1365 }
1366
1367 fn get_theoretical_scaling(&self) -> f64 {
1368 1.0 }
1370
1371 fn name(&self) -> &'static str {
1372 "Random Circuit Sampling"
1373 }
1374}
1375
1376struct QAOAAlgorithm;
1378
1379impl QuantumAlgorithm for QAOAAlgorithm {
1380 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1381 let execution_time = Duration::from_millis(problem_instance.size as u64 * 50);
1382 std::thread::sleep(execution_time);
1383
1384 Ok(AlgorithmResult {
1385 algorithm_type: "QAOA".to_string(),
1386 execution_time,
1387 solution_quality: 0.9,
1388 resource_usage: ResourceUsage {
1389 peak_memory: problem_instance.size * 512 * 1024,
1390 energy: 200.0,
1391 operations: problem_instance.size * 200,
1392 communication: 0.0,
1393 },
1394 success_rate: 0.9,
1395 output_distribution: None,
1396 })
1397 }
1398
1399 fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources {
1400 QuantumResources {
1401 qubits: problem_size,
1402 depth: problem_size * 5,
1403 gate_count: problem_size * 50,
1404 coherence_time: Duration::from_millis(50),
1405 gate_fidelity: 0.99,
1406 shots: 10_000,
1407 quantum_volume: problem_size,
1408 }
1409 }
1410
1411 fn get_theoretical_scaling(&self) -> f64 {
1412 1.0 }
1414
1415 fn name(&self) -> &'static str {
1416 "QAOA"
1417 }
1418}
1419
1420struct MonteCarloAlgorithm;
1422
1423impl ClassicalAlgorithm for MonteCarloAlgorithm {
1424 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1425 let execution_time = Duration::from_millis(problem_instance.size.pow(2) as u64);
1426 std::thread::sleep(execution_time);
1427
1428 Ok(AlgorithmResult {
1429 algorithm_type: "Monte Carlo".to_string(),
1430 execution_time,
1431 solution_quality: 0.8,
1432 resource_usage: ResourceUsage {
1433 peak_memory: problem_instance.size * 1024,
1434 energy: 50.0,
1435 operations: problem_instance.size.pow(2),
1436 communication: 0.0,
1437 },
1438 success_rate: 0.8,
1439 output_distribution: None,
1440 })
1441 }
1442
1443 fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources {
1444 ClassicalResources {
1445 cpu_time: Duration::from_millis(problem_size.pow(2) as u64),
1446 memory_usage: problem_size * 1024,
1447 cores: 1,
1448 energy_consumption: 50.0,
1449 storage: problem_size * 1024,
1450 network_bandwidth: 0.0,
1451 }
1452 }
1453
1454 fn get_theoretical_scaling(&self) -> f64 {
1455 2.0 }
1457
1458 fn name(&self) -> &'static str {
1459 "Monte Carlo"
1460 }
1461}
1462
1463struct BruteForceAlgorithm;
1465
1466impl ClassicalAlgorithm for BruteForceAlgorithm {
1467 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1468 let execution_time = Duration::from_millis(2_u64.pow(problem_instance.size as u32));
1469
1470 if execution_time > Duration::from_secs(60) {
1472 return Ok(AlgorithmResult {
1473 algorithm_type: "Brute Force (Timeout)".to_string(),
1474 execution_time: Duration::from_secs(60),
1475 solution_quality: 0.0,
1476 resource_usage: ResourceUsage {
1477 peak_memory: 0,
1478 energy: 0.0,
1479 operations: 0,
1480 communication: 0.0,
1481 },
1482 success_rate: 0.0,
1483 output_distribution: None,
1484 });
1485 }
1486
1487 std::thread::sleep(execution_time);
1488
1489 Ok(AlgorithmResult {
1490 algorithm_type: "Brute Force".to_string(),
1491 execution_time,
1492 solution_quality: 1.0,
1493 resource_usage: ResourceUsage {
1494 peak_memory: 2_usize.pow(problem_instance.size as u32) * 8,
1495 energy: 1000.0,
1496 operations: 2_usize.pow(problem_instance.size as u32),
1497 communication: 0.0,
1498 },
1499 success_rate: 1.0,
1500 output_distribution: None,
1501 })
1502 }
1503
1504 fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources {
1505 ClassicalResources {
1506 cpu_time: Duration::from_millis(2_u64.pow(problem_size as u32)),
1507 memory_usage: 2_usize.pow(problem_size as u32) * 8,
1508 cores: 1,
1509 energy_consumption: 1000.0,
1510 storage: 2_usize.pow(problem_size as u32) * 8,
1511 network_bandwidth: 0.0,
1512 }
1513 }
1514
1515 fn get_theoretical_scaling(&self) -> f64 {
1516 2.0_f64.ln() }
1518
1519 fn name(&self) -> &'static str {
1520 "Brute Force"
1521 }
1522}
1523
1524pub fn benchmark_quantum_advantage() -> Result<HashMap<String, f64>> {
1526 let mut results = HashMap::new();
1527
1528 let start = Instant::now();
1529
1530 let config = QuantumAdvantageConfig {
1531 advantage_type: QuantumAdvantageType::ComputationalAdvantage,
1532 domain: ProblemDomain::RandomCircuitSampling,
1533 classical_algorithms: vec![ClassicalAlgorithmType::MonteCarlo],
1534 problem_sizes: vec![5, 10, 15],
1535 num_trials: 3,
1536 confidence_level: 0.95,
1537 classical_timeout: Duration::from_secs(60),
1538 hardware_specs: HardwareSpecs {
1539 quantum_hardware: QuantumHardwareSpecs {
1540 num_qubits: 20,
1541 gate_fidelities: HashMap::new(),
1542 coherence_times: HashMap::new(),
1543 connectivity: vec![vec![false; 20]; 20],
1544 gate_times: HashMap::new(),
1545 readout_fidelity: 0.95,
1546 },
1547 classical_hardware: ClassicalHardwareSpecs {
1548 cpu_cores: 8,
1549 cpu_frequency: 3.0,
1550 ram_size: 32_000_000_000,
1551 cache_sizes: vec![32_768, 262_144, 8_388_608],
1552 gpu_specs: None,
1553 },
1554 },
1555 enable_profiling: true,
1556 save_results: true,
1557 };
1558
1559 let mut demonstrator = QuantumAdvantageDemonstrator::new(config);
1560 let _advantage_result = demonstrator.demonstrate_advantage()?;
1561
1562 let demo_time = start.elapsed().as_millis() as f64;
1563 results.insert("quantum_advantage_demo".to_string(), demo_time);
1564
1565 Ok(results)
1566}
1567
1568#[cfg(test)]
1569mod tests {
1570 use super::*;
1571
1572 #[test]
1573 fn test_quantum_advantage_demonstrator_creation() {
1574 let config = create_test_config();
1575 let demonstrator = QuantumAdvantageDemonstrator::new(config);
1576 assert!(!demonstrator.quantum_algorithms.is_empty());
1577 assert!(!demonstrator.classical_algorithms.is_empty());
1578 }
1579
1580 #[test]
1581 fn test_problem_instance_generation() {
1582 let config = create_test_config();
1583 let demonstrator = QuantumAdvantageDemonstrator::new(config);
1584 let instance = demonstrator
1585 .generate_problem_instance(5)
1586 .expect("Failed to generate problem instance");
1587 assert_eq!(instance.size, 5);
1588 }
1589
1590 #[test]
1591 fn test_power_law_fitting() {
1592 let demonstrator = QuantumAdvantageDemonstrator::new(create_test_config());
1593 let sizes = vec![1, 2, 4, 8];
1594 let times = vec![1.0, 4.0, 16.0, 64.0]; let scaling = demonstrator
1596 .fit_power_law(&sizes, ×)
1597 .expect("Failed to fit power law");
1598 assert!((scaling - 2.0).abs() < 0.1);
1599 }
1600
1601 fn create_test_config() -> QuantumAdvantageConfig {
1602 QuantumAdvantageConfig {
1603 advantage_type: QuantumAdvantageType::ComputationalAdvantage,
1604 domain: ProblemDomain::RandomCircuitSampling,
1605 classical_algorithms: vec![ClassicalAlgorithmType::MonteCarlo],
1606 problem_sizes: vec![3, 5],
1607 num_trials: 2,
1608 confidence_level: 0.95,
1609 classical_timeout: Duration::from_secs(10),
1610 hardware_specs: HardwareSpecs {
1611 quantum_hardware: QuantumHardwareSpecs {
1612 num_qubits: 10,
1613 gate_fidelities: HashMap::new(),
1614 coherence_times: HashMap::new(),
1615 connectivity: vec![vec![false; 10]; 10],
1616 gate_times: HashMap::new(),
1617 readout_fidelity: 0.95,
1618 },
1619 classical_hardware: ClassicalHardwareSpecs {
1620 cpu_cores: 4,
1621 cpu_frequency: 2.0,
1622 ram_size: 8_000_000_000,
1623 cache_sizes: vec![32_768, 262_144],
1624 gpu_specs: None,
1625 },
1626 },
1627 enable_profiling: false,
1628 save_results: false,
1629 }
1630 }
1631}