quantrs2_sim/
quantum_advantage_demonstration.rs

1//! Quantum Advantage Demonstration Framework
2//!
3//! This module provides comprehensive tools for demonstrating and verifying
4//! quantum computational advantages across various problem domains, including
5//! quantum supremacy tests, quantum advantage benchmarks, and comparative
6//! analysis with classical algorithms.
7
8use crate::prelude::SimulatorError;
9use scirs2_core::ndarray::{Array1, Array2};
10use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
11use scirs2_core::Complex64;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::sync::{Arc, Mutex};
15use std::time::{Duration, Instant};
16
17use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
18use crate::error::Result;
19use scirs2_core::random::prelude::*;
20
21/// Types of quantum advantage demonstrations
22#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
23pub enum QuantumAdvantageType {
24    /// Quantum supremacy (computational task impossible for classical computers)
25    QuantumSupremacy,
26    /// Quantum advantage (speedup over best known classical algorithm)
27    ComputationalAdvantage,
28    /// Sample complexity advantage
29    SampleComplexityAdvantage,
30    /// Communication complexity advantage
31    CommunicationAdvantage,
32    /// Query complexity advantage
33    QueryComplexityAdvantage,
34    /// Memory advantage
35    MemoryAdvantage,
36    /// Energy efficiency advantage
37    EnergyAdvantage,
38    /// Noise resilience advantage
39    NoiseResilienceAdvantage,
40}
41
42/// Quantum advantage problem domains
43#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
44pub enum ProblemDomain {
45    /// Random circuit sampling
46    RandomCircuitSampling,
47    /// Boson sampling
48    BosonSampling,
49    /// IQP (Instantaneous Quantum Polynomial-time) circuits
50    IQPCircuits,
51    /// Quantum approximate optimization
52    QAOA,
53    /// Variational quantum algorithms
54    VQE,
55    /// Quantum machine learning
56    QML,
57    /// Quantum simulation
58    QuantumSimulation,
59    /// Quantum cryptography
60    QuantumCryptography,
61    /// Quantum search
62    QuantumSearch,
63    /// Factor decomposition
64    Factoring,
65    /// Discrete logarithm
66    DiscreteLogarithm,
67    /// Graph problems
68    GraphProblems,
69    /// Linear algebra
70    LinearAlgebra,
71    /// Optimization
72    Optimization,
73    /// Custom domain
74    Custom,
75}
76
77/// Classical algorithm types for comparison
78#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
79pub enum ClassicalAlgorithmType {
80    /// Brute force search
81    BruteForce,
82    /// Monte Carlo sampling
83    MonteCarlo,
84    /// Markov chain Monte Carlo
85    MCMC,
86    /// Simulated annealing
87    SimulatedAnnealing,
88    /// Genetic algorithms
89    GeneticAlgorithm,
90    /// Branch and bound
91    BranchAndBound,
92    /// Dynamic programming
93    DynamicProgramming,
94    /// Approximation algorithms
95    Approximation,
96    /// Heuristic algorithms
97    Heuristic,
98    /// Machine learning
99    MachineLearning,
100    /// Tensor network methods
101    TensorNetwork,
102    /// Best known classical algorithm
103    BestKnown,
104}
105
106/// Quantum advantage metrics
107#[derive(Debug, Clone, Serialize, Deserialize)]
108pub struct QuantumAdvantageMetrics {
109    /// Quantum algorithm runtime
110    pub quantum_time: Duration,
111    /// Classical algorithm runtime
112    pub classical_time: Duration,
113    /// Speedup factor (`classical_time` / `quantum_time`)
114    pub speedup_factor: f64,
115    /// Quantum algorithm accuracy/fidelity
116    pub quantum_accuracy: f64,
117    /// Classical algorithm accuracy
118    pub classical_accuracy: f64,
119    /// Quantum resource requirements
120    pub quantum_resources: QuantumResources,
121    /// Classical resource requirements
122    pub classical_resources: ClassicalResources,
123    /// Statistical significance of advantage
124    pub statistical_significance: f64,
125    /// Confidence interval
126    pub confidence_interval: (f64, f64),
127    /// Problem size scaling
128    pub scaling_analysis: ScalingAnalysis,
129}
130
131/// Quantum resource requirements
132#[derive(Debug, Clone, Serialize, Deserialize)]
133pub struct QuantumResources {
134    /// Number of qubits required
135    pub qubits: usize,
136    /// Circuit depth
137    pub depth: usize,
138    /// Number of gates
139    pub gate_count: usize,
140    /// Coherence time required
141    pub coherence_time: Duration,
142    /// Gate fidelity required
143    pub gate_fidelity: f64,
144    /// Measurement shots
145    pub shots: usize,
146    /// Quantum volume required
147    pub quantum_volume: usize,
148}
149
150/// Classical resource requirements
151#[derive(Debug, Clone, Serialize, Deserialize)]
152pub struct ClassicalResources {
153    /// CPU time
154    pub cpu_time: Duration,
155    /// Memory usage (bytes)
156    pub memory_usage: usize,
157    /// Number of cores used
158    pub cores: usize,
159    /// Energy consumption (joules)
160    pub energy_consumption: f64,
161    /// Storage requirements (bytes)
162    pub storage: usize,
163    /// Network bandwidth (if distributed)
164    pub network_bandwidth: f64,
165}
166
167/// Scaling analysis
168#[derive(Debug, Clone, Serialize, Deserialize)]
169pub struct ScalingAnalysis {
170    /// Problem sizes tested
171    pub problem_sizes: Vec<usize>,
172    /// Quantum scaling exponent
173    pub quantum_scaling: f64,
174    /// Classical scaling exponent
175    pub classical_scaling: f64,
176    /// Crossover point where quantum becomes advantageous
177    pub crossover_point: Option<usize>,
178    /// Asymptotic advantage factor
179    pub asymptotic_advantage: f64,
180}
181
182/// Quantum advantage configuration
183#[derive(Debug, Clone)]
184pub struct QuantumAdvantageConfig {
185    /// Type of advantage to demonstrate
186    pub advantage_type: QuantumAdvantageType,
187    /// Problem domain
188    pub domain: ProblemDomain,
189    /// Classical algorithms to compare against
190    pub classical_algorithms: Vec<ClassicalAlgorithmType>,
191    /// Problem sizes to test
192    pub problem_sizes: Vec<usize>,
193    /// Number of trials for statistical analysis
194    pub num_trials: usize,
195    /// Confidence level for statistical tests
196    pub confidence_level: f64,
197    /// Maximum runtime for classical algorithms
198    pub classical_timeout: Duration,
199    /// Hardware specifications
200    pub hardware_specs: HardwareSpecs,
201    /// Enable detailed profiling
202    pub enable_profiling: bool,
203    /// Save intermediate results
204    pub save_results: bool,
205}
206
207/// Hardware specifications
208#[derive(Debug, Clone)]
209pub struct HardwareSpecs {
210    /// Quantum hardware specifications
211    pub quantum_hardware: QuantumHardwareSpecs,
212    /// Classical hardware specifications
213    pub classical_hardware: ClassicalHardwareSpecs,
214}
215
216/// Quantum hardware specifications
217#[derive(Debug, Clone)]
218pub struct QuantumHardwareSpecs {
219    /// Number of available qubits
220    pub num_qubits: usize,
221    /// Gate fidelities
222    pub gate_fidelities: HashMap<String, f64>,
223    /// Coherence times
224    pub coherence_times: HashMap<String, Duration>,
225    /// Connectivity graph
226    pub connectivity: Vec<Vec<bool>>,
227    /// Gate times
228    pub gate_times: HashMap<String, Duration>,
229    /// Readout fidelity
230    pub readout_fidelity: f64,
231}
232
233/// Classical hardware specifications
234#[derive(Debug, Clone)]
235pub struct ClassicalHardwareSpecs {
236    /// Number of CPU cores
237    pub cpu_cores: usize,
238    /// CPU frequency (GHz)
239    pub cpu_frequency: f64,
240    /// RAM size (bytes)
241    pub ram_size: usize,
242    /// Cache sizes
243    pub cache_sizes: Vec<usize>,
244    /// GPU specifications (if available)
245    pub gpu_specs: Option<GPUSpecs>,
246}
247
248/// GPU specifications
249#[derive(Debug, Clone)]
250pub struct GPUSpecs {
251    /// Number of compute units
252    pub compute_units: usize,
253    /// Memory size (bytes)
254    pub memory_size: usize,
255    /// Memory bandwidth (GB/s)
256    pub memory_bandwidth: f64,
257    /// Peak FLOPS
258    pub peak_flops: f64,
259}
260
261/// Quantum advantage demonstration result
262#[derive(Debug, Clone, Serialize, Deserialize)]
263pub struct QuantumAdvantageResult {
264    /// Whether quantum advantage was demonstrated
265    pub advantage_demonstrated: bool,
266    /// Advantage metrics
267    pub metrics: QuantumAdvantageMetrics,
268    /// Detailed results for each problem size
269    pub detailed_results: Vec<DetailedResult>,
270    /// Statistical analysis
271    pub statistical_analysis: StatisticalAnalysis,
272    /// Verification results
273    pub verification: VerificationResult,
274    /// Cost analysis
275    pub cost_analysis: CostAnalysis,
276    /// Future projections
277    pub projections: FutureProjections,
278}
279
280/// Detailed result for a specific problem size
281#[derive(Debug, Clone, Serialize, Deserialize)]
282pub struct DetailedResult {
283    /// Problem size
284    pub problem_size: usize,
285    /// Quantum results
286    pub quantum_results: AlgorithmResult,
287    /// Classical results
288    pub classical_results: Vec<AlgorithmResult>,
289    /// Comparative analysis
290    pub comparison: ComparisonResult,
291}
292
293/// Algorithm execution result
294#[derive(Debug, Clone, Serialize, Deserialize)]
295pub struct AlgorithmResult {
296    /// Algorithm type
297    pub algorithm_type: String,
298    /// Execution time
299    pub execution_time: Duration,
300    /// Solution quality/accuracy
301    pub solution_quality: f64,
302    /// Resource usage
303    pub resource_usage: ResourceUsage,
304    /// Success rate (for probabilistic algorithms)
305    pub success_rate: f64,
306    /// Output distribution (for sampling problems)
307    pub output_distribution: Option<HashMap<String, f64>>,
308}
309
310/// Resource usage tracking
311#[derive(Debug, Clone, Serialize, Deserialize)]
312pub struct ResourceUsage {
313    /// Memory peak usage
314    pub peak_memory: usize,
315    /// Energy consumption
316    pub energy: f64,
317    /// Number of operations
318    pub operations: usize,
319    /// Communication cost (for distributed algorithms)
320    pub communication: f64,
321}
322
323/// Comparison result between quantum and classical
324#[derive(Debug, Clone, Serialize, Deserialize)]
325pub struct ComparisonResult {
326    /// Best classical algorithm
327    pub best_classical: String,
328    /// Speedup vs best classical
329    pub speedup: f64,
330    /// Quality improvement
331    pub quality_improvement: f64,
332    /// Resource efficiency
333    pub resource_efficiency: f64,
334    /// Statistical significance
335    pub significance: f64,
336}
337
338/// Statistical analysis of results
339#[derive(Debug, Clone, Serialize, Deserialize)]
340pub struct StatisticalAnalysis {
341    /// Hypothesis test results
342    pub hypothesis_tests: Vec<HypothesisTest>,
343    /// Confidence intervals
344    pub confidence_intervals: HashMap<String, (f64, f64)>,
345    /// Effect sizes
346    pub effect_sizes: HashMap<String, f64>,
347    /// Power analysis
348    pub power_analysis: PowerAnalysis,
349}
350
351/// Hypothesis test result
352#[derive(Debug, Clone, Serialize, Deserialize)]
353pub struct HypothesisTest {
354    /// Test name
355    pub test_name: String,
356    /// Null hypothesis
357    pub null_hypothesis: String,
358    /// Test statistic
359    pub test_statistic: f64,
360    /// P-value
361    pub p_value: f64,
362    /// Reject null hypothesis
363    pub reject_null: bool,
364}
365
366/// Power analysis for statistical tests
367#[derive(Debug, Clone, Serialize, Deserialize)]
368pub struct PowerAnalysis {
369    /// Statistical power
370    pub power: f64,
371    /// Effect size
372    pub effect_size: f64,
373    /// Sample size required for desired power
374    pub required_sample_size: usize,
375}
376
377/// Verification of quantum advantage claims
378#[derive(Debug, Clone, Serialize, Deserialize)]
379pub struct VerificationResult {
380    /// Classical verification methods used
381    pub verification_methods: Vec<String>,
382    /// Verification success rate
383    pub verification_success_rate: f64,
384    /// Spoofing resistance
385    pub spoofing_resistance: f64,
386    /// Independent verification
387    pub independent_verification: Option<IndependentVerification>,
388}
389
390/// Independent verification by third parties
391#[derive(Debug, Clone, Serialize, Deserialize)]
392pub struct IndependentVerification {
393    /// Verifying institutions
394    pub verifiers: Vec<String>,
395    /// Verification results
396    pub results: Vec<bool>,
397    /// Consensus level
398    pub consensus: f64,
399}
400
401/// Cost analysis of quantum vs classical approaches
402#[derive(Debug, Clone, Serialize, Deserialize)]
403pub struct CostAnalysis {
404    /// Quantum hardware cost
405    pub quantum_hardware_cost: f64,
406    /// Classical hardware cost
407    pub classical_hardware_cost: f64,
408    /// Operational costs
409    pub operational_costs: OperationalCosts,
410    /// Total cost of ownership
411    pub total_cost_ownership: f64,
412    /// Cost per solution
413    pub cost_per_solution: f64,
414}
415
416/// Operational costs breakdown
417#[derive(Debug, Clone, Serialize, Deserialize)]
418pub struct OperationalCosts {
419    /// Energy costs
420    pub energy: f64,
421    /// Maintenance costs
422    pub maintenance: f64,
423    /// Personnel costs
424    pub personnel: f64,
425    /// Infrastructure costs
426    pub infrastructure: f64,
427}
428
429/// Future projections for quantum advantage
430#[derive(Debug, Clone, Serialize, Deserialize)]
431pub struct FutureProjections {
432    /// Projected quantum improvements
433    pub quantum_improvements: TechnologyProjection,
434    /// Projected classical improvements
435    pub classical_improvements: TechnologyProjection,
436    /// Timeline predictions
437    pub timeline: TimelineProjection,
438    /// Market impact assessment
439    pub market_impact: MarketImpact,
440}
441
442/// Technology improvement projections
443#[derive(Debug, Clone, Serialize, Deserialize)]
444pub struct TechnologyProjection {
445    /// Performance improvement factor per year
446    pub performance_improvement: f64,
447    /// Cost reduction factor per year
448    pub cost_reduction: f64,
449    /// Reliability improvement
450    pub reliability_improvement: f64,
451    /// Scalability projections
452    pub scalability: Vec<(usize, f64)>, // (year, capability)
453}
454
455/// Timeline for quantum advantage milestones
456#[derive(Debug, Clone, Serialize, Deserialize)]
457pub struct TimelineProjection {
458    /// Milestones and expected years
459    pub milestones: Vec<(String, usize)>,
460    /// Confidence in projections
461    pub confidence: f64,
462    /// Key uncertainty factors
463    pub uncertainties: Vec<String>,
464}
465
466/// Market impact assessment
467#[derive(Debug, Clone, Serialize, Deserialize)]
468pub struct MarketImpact {
469    /// Industries affected
470    pub affected_industries: Vec<String>,
471    /// Economic impact estimates
472    pub economic_impact: f64,
473    /// Job displacement/creation
474    pub employment_impact: EmploymentImpact,
475    /// Investment projections
476    pub investment_projections: Vec<(usize, f64)>, // (year, investment)
477}
478
479/// Employment impact analysis
480#[derive(Debug, Clone, Serialize, Deserialize)]
481pub struct EmploymentImpact {
482    /// Jobs displaced
483    pub jobs_displaced: usize,
484    /// Jobs created
485    pub jobs_created: usize,
486    /// Reskilling requirements
487    pub reskilling_needed: usize,
488}
489
490/// Main quantum advantage demonstration framework
491pub struct QuantumAdvantageDemonstrator {
492    /// Configuration
493    config: QuantumAdvantageConfig,
494    /// Quantum algorithm implementations
495    quantum_algorithms: HashMap<ProblemDomain, Box<dyn QuantumAlgorithm + Send + Sync>>,
496    /// Classical algorithm implementations
497    classical_algorithms:
498        HashMap<ClassicalAlgorithmType, Box<dyn ClassicalAlgorithm + Send + Sync>>,
499    /// Results database
500    results_database: Arc<Mutex<ResultsDatabase>>,
501    /// Performance profiler
502    profiler: Arc<Mutex<PerformanceProfiler>>,
503}
504
505/// Quantum algorithm trait
506pub trait QuantumAlgorithm: Send + Sync {
507    /// Execute quantum algorithm
508    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult>;
509
510    /// Get resource requirements
511    fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources;
512
513    /// Get theoretical scaling
514    fn get_theoretical_scaling(&self) -> f64;
515
516    /// Algorithm name
517    fn name(&self) -> &str;
518}
519
520/// Classical algorithm trait
521pub trait ClassicalAlgorithm: Send + Sync {
522    /// Execute classical algorithm
523    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult>;
524
525    /// Get resource requirements
526    fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources;
527
528    /// Get theoretical scaling
529    fn get_theoretical_scaling(&self) -> f64;
530
531    /// Algorithm name
532    fn name(&self) -> &str;
533}
534
535/// Problem instance representation
536#[derive(Debug, Clone)]
537pub struct ProblemInstance {
538    /// Problem domain
539    pub domain: ProblemDomain,
540    /// Problem size
541    pub size: usize,
542    /// Problem-specific data
543    pub data: ProblemData,
544    /// Difficulty parameters
545    pub difficulty: DifficultyParameters,
546}
547
548/// Problem-specific data
549#[derive(Debug, Clone)]
550pub enum ProblemData {
551    /// Random circuit sampling data
552    RandomCircuit {
553        circuit: InterfaceCircuit,
554        target_distribution: HashMap<String, f64>,
555    },
556    /// Graph problem data
557    Graph {
558        adjacency_matrix: Array2<f64>,
559        vertex_weights: Vec<f64>,
560        edge_weights: HashMap<(usize, usize), f64>,
561    },
562    /// Optimization problem data
563    Optimization {
564        objective_function: Vec<f64>,
565        constraints: Vec<Vec<f64>>,
566        bounds: Vec<(f64, f64)>,
567    },
568    /// Search problem data
569    Search {
570        search_space: Vec<Vec<f64>>,
571        target_function: Vec<f64>,
572        oracle_queries: usize,
573    },
574    /// Simulation problem data
575    Simulation {
576        hamiltonian: Array2<Complex64>,
577        initial_state: Array1<Complex64>,
578        evolution_time: f64,
579    },
580    /// Custom problem data
581    Custom { data: HashMap<String, Vec<f64>> },
582}
583
584/// Difficulty parameters
585#[derive(Debug, Clone)]
586pub struct DifficultyParameters {
587    /// Instance hardness (0.0 = easy, 1.0 = hard)
588    pub hardness: f64,
589    /// Noise level
590    pub noise_level: f64,
591    /// Time constraints
592    pub time_limit: Option<Duration>,
593    /// Accuracy requirements
594    pub accuracy_threshold: f64,
595}
596
597/// Results database
598#[derive(Debug, Clone)]
599pub struct ResultsDatabase {
600    /// Stored results by configuration
601    pub results: HashMap<String, Vec<QuantumAdvantageResult>>,
602    /// Metadata
603    pub metadata: HashMap<String, String>,
604}
605
606/// Performance profiler
607#[derive(Debug, Clone)]
608pub struct PerformanceProfiler {
609    /// Timing data
610    pub timing_data: HashMap<String, Vec<Duration>>,
611    /// Memory usage data
612    pub memory_data: HashMap<String, Vec<usize>>,
613    /// Energy consumption data
614    pub energy_data: HashMap<String, Vec<f64>>,
615}
616
617impl QuantumAdvantageDemonstrator {
618    /// Create new quantum advantage demonstrator
619    #[must_use]
620    pub fn new(config: QuantumAdvantageConfig) -> Self {
621        let mut demonstrator = Self {
622            config,
623            quantum_algorithms: HashMap::new(),
624            classical_algorithms: HashMap::new(),
625            results_database: Arc::new(Mutex::new(ResultsDatabase {
626                results: HashMap::new(),
627                metadata: HashMap::new(),
628            })),
629            profiler: Arc::new(Mutex::new(PerformanceProfiler {
630                timing_data: HashMap::new(),
631                memory_data: HashMap::new(),
632                energy_data: HashMap::new(),
633            })),
634        };
635
636        // Register default algorithms
637        demonstrator.register_default_algorithms();
638        demonstrator
639    }
640
641    /// Demonstrate quantum advantage
642    pub fn demonstrate_advantage(&mut self) -> Result<QuantumAdvantageResult> {
643        let mut detailed_results = Vec::new();
644        let mut all_speedups = Vec::new();
645        let mut all_accuracies = Vec::new();
646
647        println!(
648            "Starting quantum advantage demonstration for {:?} in {:?} domain",
649            self.config.advantage_type, self.config.domain
650        );
651
652        // Test each problem size
653        let problem_sizes = self.config.problem_sizes.clone();
654        for problem_size in problem_sizes {
655            println!("Testing problem size: {problem_size}");
656
657            let detailed_result = self.test_problem_size(problem_size)?;
658
659            all_speedups.push(detailed_result.comparison.speedup);
660            all_accuracies.push(detailed_result.quantum_results.solution_quality);
661
662            detailed_results.push(detailed_result);
663        }
664
665        // Perform scaling analysis
666        let scaling_analysis = self.analyze_scaling(&detailed_results)?;
667
668        // Statistical analysis
669        let statistical_analysis = self.perform_statistical_analysis(&detailed_results)?;
670
671        // Verification
672        let verification = self.verify_results(&detailed_results)?;
673
674        // Cost analysis
675        let cost_analysis = self.analyze_costs(&detailed_results)?;
676
677        // Future projections
678        let projections = self.generate_projections(&detailed_results)?;
679
680        // Overall metrics
681        let overall_speedup = all_speedups
682            .iter()
683            .fold(1.0, |acc, &x| acc * x)
684            .powf(1.0 / all_speedups.len() as f64);
685        let avg_accuracy = all_accuracies.iter().sum::<f64>() / all_accuracies.len() as f64;
686
687        let quantum_time = detailed_results
688            .iter()
689            .map(|r| r.quantum_results.execution_time)
690            .sum::<Duration>()
691            / detailed_results.len() as u32;
692
693        let best_classical_time = detailed_results
694            .iter()
695            .map(|r| {
696                r.classical_results
697                    .iter()
698                    .map(|c| c.execution_time)
699                    .min()
700                    .unwrap_or(Duration::new(0, 0))
701            })
702            .sum::<Duration>()
703            / detailed_results.len() as u32;
704
705        let metrics = QuantumAdvantageMetrics {
706            quantum_time,
707            classical_time: best_classical_time,
708            speedup_factor: overall_speedup,
709            quantum_accuracy: avg_accuracy,
710            classical_accuracy: detailed_results
711                .iter()
712                .map(|r| {
713                    r.classical_results
714                        .iter()
715                        .map(|c| c.solution_quality)
716                        .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
717                        .unwrap_or(0.0)
718                })
719                .sum::<f64>()
720                / detailed_results.len() as f64,
721            quantum_resources: self.aggregate_quantum_resources(&detailed_results),
722            classical_resources: self.aggregate_classical_resources(&detailed_results),
723            statistical_significance: statistical_analysis
724                .hypothesis_tests
725                .iter()
726                .find(|t| t.test_name == "quantum_advantage")
727                .map_or(0.0, |t| 1.0 - t.p_value),
728            confidence_interval: (overall_speedup * 0.9, overall_speedup * 1.1), // Simplified
729            scaling_analysis,
730        };
731
732        let advantage_demonstrated = overall_speedup > 1.0
733            && statistical_analysis
734                .hypothesis_tests
735                .iter()
736                .any(|t| t.test_name == "quantum_advantage" && t.reject_null);
737
738        let result = QuantumAdvantageResult {
739            advantage_demonstrated,
740            metrics,
741            detailed_results,
742            statistical_analysis,
743            verification,
744            cost_analysis,
745            projections,
746        };
747
748        // Store results
749        self.store_results(&result)?;
750
751        Ok(result)
752    }
753
754    /// Test a specific problem size
755    fn test_problem_size(&self, problem_size: usize) -> Result<DetailedResult> {
756        // Generate problem instance
757        let problem_instance = self.generate_problem_instance(problem_size)?;
758
759        // Execute quantum algorithm
760        let quantum_start = Instant::now();
761        let quantum_algorithm = self
762            .quantum_algorithms
763            .get(&self.config.domain)
764            .ok_or_else(|| {
765                SimulatorError::UnsupportedOperation(format!(
766                    "No quantum algorithm registered for domain {:?}",
767                    self.config.domain
768                ))
769            })?;
770
771        let quantum_results = quantum_algorithm.execute(&problem_instance)?;
772        let quantum_time = quantum_start.elapsed();
773
774        // Execute classical algorithms
775        let mut classical_results = Vec::new();
776        for &classical_type in &self.config.classical_algorithms {
777            if let Some(classical_algorithm) = self.classical_algorithms.get(&classical_type) {
778                let classical_start = Instant::now();
779
780                // Set timeout for classical algorithms
781                let result = if classical_start.elapsed() < self.config.classical_timeout {
782                    classical_algorithm.execute(&problem_instance)?
783                } else {
784                    // Timeout result
785                    AlgorithmResult {
786                        algorithm_type: classical_algorithm.name().to_string(),
787                        execution_time: self.config.classical_timeout,
788                        solution_quality: 0.0,
789                        resource_usage: ResourceUsage {
790                            peak_memory: 0,
791                            energy: 0.0,
792                            operations: 0,
793                            communication: 0.0,
794                        },
795                        success_rate: 0.0,
796                        output_distribution: None,
797                    }
798                };
799
800                classical_results.push(result);
801            }
802        }
803
804        // Compare results
805        let comparison = self.compare_results(&quantum_results, &classical_results)?;
806
807        Ok(DetailedResult {
808            problem_size,
809            quantum_results,
810            classical_results,
811            comparison,
812        })
813    }
814
815    /// Generate problem instance for given size
816    fn generate_problem_instance(&self, size: usize) -> Result<ProblemInstance> {
817        let data = match self.config.domain {
818            ProblemDomain::RandomCircuitSampling => {
819                let circuit = self.generate_random_circuit(size)?;
820                ProblemData::RandomCircuit {
821                    circuit,
822                    target_distribution: HashMap::new(), // Would compute actual distribution
823                }
824            }
825            ProblemDomain::GraphProblems => {
826                let adjacency_matrix = Array2::from_shape_fn((size, size), |(i, j)| {
827                    if i != j && thread_rng().gen::<f64>() < 0.3 {
828                        thread_rng().gen::<f64>()
829                    } else {
830                        0.0
831                    }
832                });
833                ProblemData::Graph {
834                    adjacency_matrix,
835                    vertex_weights: (0..size).map(|_| thread_rng().gen::<f64>()).collect(),
836                    edge_weights: HashMap::new(),
837                }
838            }
839            ProblemDomain::Optimization => {
840                ProblemData::Optimization {
841                    objective_function: (0..size).map(|_| thread_rng().gen::<f64>()).collect(),
842                    constraints: vec![vec![1.0; size]], // Sum constraint
843                    bounds: vec![(0.0, 1.0); size],
844                }
845            }
846            ProblemDomain::QuantumSimulation => {
847                let hamiltonian = Array2::from_shape_fn((1 << size, 1 << size), |(i, j)| {
848                    if i == j {
849                        Complex64::new(thread_rng().gen::<f64>(), 0.0)
850                    } else if (i ^ j).is_power_of_two() {
851                        Complex64::new(thread_rng().gen::<f64>() * 0.1, 0.0)
852                    } else {
853                        Complex64::new(0.0, 0.0)
854                    }
855                });
856                let initial_state = {
857                    let mut state = Array1::zeros(1 << size);
858                    state[0] = Complex64::new(1.0, 0.0);
859                    state
860                };
861                ProblemData::Simulation {
862                    hamiltonian,
863                    initial_state,
864                    evolution_time: 1.0,
865                }
866            }
867            _ => ProblemData::Custom {
868                data: HashMap::new(),
869            },
870        };
871
872        Ok(ProblemInstance {
873            domain: self.config.domain,
874            size,
875            data,
876            difficulty: DifficultyParameters {
877                hardness: 0.5,
878                noise_level: 0.01,
879                time_limit: Some(Duration::from_secs(3600)),
880                accuracy_threshold: 0.95,
881            },
882        })
883    }
884
885    /// Generate random circuit for supremacy testing
886    fn generate_random_circuit(&self, num_qubits: usize) -> Result<InterfaceCircuit> {
887        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
888        let depth = num_qubits * 10; // Scaled depth
889
890        for layer in 0..depth {
891            // Single-qubit gates
892            for qubit in 0..num_qubits {
893                let gate_type = match layer % 3 {
894                    0 => InterfaceGateType::RX(
895                        thread_rng().gen::<f64>() * 2.0 * std::f64::consts::PI,
896                    ),
897                    1 => InterfaceGateType::RY(
898                        thread_rng().gen::<f64>() * 2.0 * std::f64::consts::PI,
899                    ),
900                    _ => InterfaceGateType::RZ(
901                        thread_rng().gen::<f64>() * 2.0 * std::f64::consts::PI,
902                    ),
903                };
904                circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
905            }
906
907            // Two-qubit gates
908            if layer % 2 == 1 {
909                for qubit in 0..num_qubits - 1 {
910                    if thread_rng().gen::<f64>() < 0.5 {
911                        circuit.add_gate(InterfaceGate::new(
912                            InterfaceGateType::CNOT,
913                            vec![qubit, qubit + 1],
914                        ));
915                    }
916                }
917            }
918        }
919
920        Ok(circuit)
921    }
922
923    /// Compare quantum and classical results
924    fn compare_results(
925        &self,
926        quantum: &AlgorithmResult,
927        classical_results: &[AlgorithmResult],
928    ) -> Result<ComparisonResult> {
929        let best_classical = classical_results
930            .iter()
931            .min_by(|a, b| a.execution_time.cmp(&b.execution_time))
932            .ok_or_else(|| SimulatorError::InvalidInput("No classical results".to_string()))?;
933
934        let speedup =
935            best_classical.execution_time.as_secs_f64() / quantum.execution_time.as_secs_f64();
936        let quality_improvement = quantum.solution_quality / best_classical.solution_quality;
937        let resource_efficiency = (best_classical.resource_usage.peak_memory as f64)
938            / (quantum.resource_usage.peak_memory as f64);
939
940        // Simplified statistical significance calculation
941        let significance = if speedup > 1.0 { 0.95 } else { 0.05 };
942
943        Ok(ComparisonResult {
944            best_classical: best_classical.algorithm_type.clone(),
945            speedup,
946            quality_improvement,
947            resource_efficiency,
948            significance,
949        })
950    }
951
952    /// Analyze scaling behavior
953    fn analyze_scaling(&self, results: &[DetailedResult]) -> Result<ScalingAnalysis> {
954        let problem_sizes: Vec<usize> = results.iter().map(|r| r.problem_size).collect();
955        let quantum_times: Vec<f64> = results
956            .iter()
957            .map(|r| r.quantum_results.execution_time.as_secs_f64())
958            .collect();
959        let classical_times: Vec<f64> = results
960            .iter()
961            .map(|r| {
962                r.classical_results
963                    .iter()
964                    .map(|c| c.execution_time.as_secs_f64())
965                    .min_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
966                    .unwrap_or(0.0)
967            })
968            .collect();
969
970        // Fit power law scaling: T = a * n^b
971        let quantum_scaling = self.fit_power_law(&problem_sizes, &quantum_times)?;
972        let classical_scaling = self.fit_power_law(&problem_sizes, &classical_times)?;
973
974        // Find crossover point
975        let crossover_point =
976            self.find_crossover_point(&problem_sizes, &quantum_times, &classical_times);
977
978        // Calculate asymptotic advantage
979        let asymptotic_advantage = if classical_scaling > quantum_scaling {
980            f64::INFINITY
981        } else {
982            classical_scaling / quantum_scaling
983        };
984
985        Ok(ScalingAnalysis {
986            problem_sizes,
987            quantum_scaling,
988            classical_scaling,
989            crossover_point,
990            asymptotic_advantage,
991        })
992    }
993
994    /// Fit power law to data
995    fn fit_power_law(&self, sizes: &[usize], times: &[f64]) -> Result<f64> {
996        if sizes.len() != times.len() || sizes.len() < 2 {
997            return Ok(1.0); // Default scaling
998        }
999
1000        // Linear regression on log-log scale: log(T) = log(a) + b*log(n)
1001        let log_sizes: Vec<f64> = sizes.iter().map(|&s| (s as f64).ln()).collect();
1002        let log_times: Vec<f64> = times.iter().map(|&t| (t.max(1e-10)).ln()).collect();
1003
1004        let n = log_sizes.len() as f64;
1005        let sum_x = log_sizes.iter().sum::<f64>();
1006        let sum_y = log_times.iter().sum::<f64>();
1007        let sum_xy = log_sizes
1008            .iter()
1009            .zip(&log_times)
1010            .map(|(x, y)| x * y)
1011            .sum::<f64>();
1012        let sum_x2 = log_sizes.iter().map(|x| x * x).sum::<f64>();
1013
1014        let slope = n.mul_add(sum_xy, -(sum_x * sum_y)) / n.mul_add(sum_x2, -(sum_x * sum_x));
1015        Ok(slope)
1016    }
1017
1018    /// Find crossover point where quantum becomes faster
1019    fn find_crossover_point(
1020        &self,
1021        sizes: &[usize],
1022        quantum_times: &[f64],
1023        classical_times: &[f64],
1024    ) -> Option<usize> {
1025        for (i, (&size, (&qt, &ct))) in sizes
1026            .iter()
1027            .zip(quantum_times.iter().zip(classical_times.iter()))
1028            .enumerate()
1029        {
1030            if qt < ct {
1031                return Some(size);
1032            }
1033        }
1034        None
1035    }
1036
1037    /// Perform statistical analysis
1038    fn perform_statistical_analysis(
1039        &self,
1040        results: &[DetailedResult],
1041    ) -> Result<StatisticalAnalysis> {
1042        let mut hypothesis_tests = Vec::new();
1043
1044        // Test for quantum advantage (speedup > 1)
1045        let speedups: Vec<f64> = results.iter().map(|r| r.comparison.speedup).collect();
1046        let avg_speedup = speedups.iter().sum::<f64>() / speedups.len() as f64;
1047        let speedup_variance = speedups
1048            .iter()
1049            .map(|s| (s - avg_speedup).powi(2))
1050            .sum::<f64>()
1051            / speedups.len() as f64;
1052
1053        // One-sample t-test for speedup > 1
1054        let t_statistic =
1055            (avg_speedup - 1.0) / (speedup_variance.sqrt() / (speedups.len() as f64).sqrt());
1056        let p_value = self.compute_t_test_p_value(t_statistic, speedups.len() - 1);
1057
1058        hypothesis_tests.push(HypothesisTest {
1059            test_name: "quantum_advantage".to_string(),
1060            null_hypothesis: "No quantum speedup (speedup <= 1)".to_string(),
1061            test_statistic: t_statistic,
1062            p_value,
1063            reject_null: p_value < 0.05,
1064        });
1065
1066        // Confidence intervals
1067        let mut confidence_intervals = HashMap::new();
1068        let margin_of_error = 1.96 * speedup_variance.sqrt() / (speedups.len() as f64).sqrt();
1069        confidence_intervals.insert(
1070            "speedup".to_string(),
1071            (avg_speedup - margin_of_error, avg_speedup + margin_of_error),
1072        );
1073
1074        // Effect sizes
1075        let mut effect_sizes = HashMap::new();
1076        effect_sizes.insert(
1077            "speedup_cohen_d".to_string(),
1078            (avg_speedup - 1.0) / speedup_variance.sqrt(),
1079        );
1080
1081        // Power analysis
1082        let power_analysis = PowerAnalysis {
1083            power: 0.8, // Would calculate actual power
1084            effect_size: (avg_speedup - 1.0) / speedup_variance.sqrt(),
1085            required_sample_size: 30, // Would calculate required N for desired power
1086        };
1087
1088        Ok(StatisticalAnalysis {
1089            hypothesis_tests,
1090            confidence_intervals,
1091            effect_sizes,
1092            power_analysis,
1093        })
1094    }
1095
1096    /// Compute p-value for t-test
1097    fn compute_t_test_p_value(&self, t_statistic: f64, degrees_of_freedom: usize) -> f64 {
1098        // Simplified p-value calculation - would use proper statistical libraries
1099        if t_statistic.abs() > 2.0 {
1100            0.01
1101        } else if t_statistic.abs() > 1.0 {
1102            0.05
1103        } else {
1104            0.5
1105        }
1106    }
1107
1108    /// Verify quantum advantage results
1109    fn verify_results(&self, results: &[DetailedResult]) -> Result<VerificationResult> {
1110        let mut verification_methods = Vec::new();
1111        let mut verification_successes = 0;
1112        let total_verifications = results.len();
1113
1114        for result in results {
1115            // Cross-entropy benchmarking for sampling problems
1116            if matches!(self.config.domain, ProblemDomain::RandomCircuitSampling) {
1117                verification_methods.push("Cross-entropy benchmarking".to_string());
1118                // Simplified verification - would implement actual cross-entropy test
1119                if result.quantum_results.solution_quality > 0.9 {
1120                    verification_successes += 1;
1121                }
1122            }
1123
1124            // Linear XEB (Cross-Entropy Benchmarking)
1125            verification_methods.push("Linear XEB".to_string());
1126            if result.quantum_results.solution_quality > 0.8 {
1127                verification_successes += 1;
1128            }
1129        }
1130
1131        let verification_success_rate =
1132            f64::from(verification_successes) / total_verifications as f64;
1133        let spoofing_resistance = 0.95; // Would calculate based on complexity
1134
1135        Ok(VerificationResult {
1136            verification_methods,
1137            verification_success_rate,
1138            spoofing_resistance,
1139            independent_verification: None, // Would implement if available
1140        })
1141    }
1142
1143    /// Analyze costs
1144    fn analyze_costs(&self, results: &[DetailedResult]) -> Result<CostAnalysis> {
1145        // Simplified cost analysis
1146        let quantum_hardware_cost = 10_000_000.0; // $10M quantum computer
1147        let classical_hardware_cost = 100_000.0; // $100K classical computer
1148
1149        let operational_costs = OperationalCosts {
1150            energy: 1000.0,         // Daily energy cost
1151            maintenance: 5000.0,    // Daily maintenance
1152            personnel: 2000.0,      // Daily personnel cost
1153            infrastructure: 1000.0, // Daily infrastructure
1154        };
1155
1156        let daily_operational_cost = operational_costs.energy
1157            + operational_costs.maintenance
1158            + operational_costs.personnel
1159            + operational_costs.infrastructure;
1160
1161        let total_cost_ownership = daily_operational_cost.mul_add(365.0, quantum_hardware_cost);
1162
1163        let num_solutions = results.len() as f64;
1164        let cost_per_solution = total_cost_ownership / num_solutions;
1165
1166        Ok(CostAnalysis {
1167            quantum_hardware_cost,
1168            classical_hardware_cost,
1169            operational_costs,
1170            total_cost_ownership,
1171            cost_per_solution,
1172        })
1173    }
1174
1175    /// Generate future projections
1176    fn generate_projections(&self, _results: &[DetailedResult]) -> Result<FutureProjections> {
1177        // Quantum technology projections
1178        let quantum_improvements = TechnologyProjection {
1179            performance_improvement: 1.5, // 50% improvement per year
1180            cost_reduction: 0.8,          // 20% cost reduction per year
1181            reliability_improvement: 1.2, // 20% reliability improvement per year
1182            scalability: vec![(2024, 100.0), (2025, 200.0), (2030, 1000.0)],
1183        };
1184
1185        // Classical technology projections
1186        let classical_improvements = TechnologyProjection {
1187            performance_improvement: 1.1, // 10% improvement per year (Moore's law slowing)
1188            cost_reduction: 0.95,         // 5% cost reduction per year
1189            reliability_improvement: 1.05, // 5% reliability improvement per year
1190            scalability: vec![(2024, 1000.0), (2025, 1100.0), (2030, 1500.0)],
1191        };
1192
1193        // Timeline projections
1194        let timeline = TimelineProjection {
1195            milestones: vec![
1196                ("Fault-tolerant quantum computers".to_string(), 2030),
1197                (
1198                    "Practical quantum advantage in optimization".to_string(),
1199                    2026,
1200                ),
1201                ("Quantum supremacy in machine learning".to_string(), 2028),
1202                ("Commercial quantum advantage".to_string(), 2032),
1203            ],
1204            confidence: 0.7,
1205            uncertainties: vec![
1206                "Error correction overhead".to_string(),
1207                "Classical algorithm improvements".to_string(),
1208                "Hardware manufacturing challenges".to_string(),
1209            ],
1210        };
1211
1212        // Market impact
1213        let market_impact = MarketImpact {
1214            affected_industries: vec![
1215                "Finance".to_string(),
1216                "Pharmaceuticals".to_string(),
1217                "Logistics".to_string(),
1218                "Energy".to_string(),
1219                "Cybersecurity".to_string(),
1220            ],
1221            economic_impact: 1_000_000_000_000.0, // $1T by 2035
1222            employment_impact: EmploymentImpact {
1223                jobs_displaced: 100_000,
1224                jobs_created: 500_000,
1225                reskilling_needed: 1_000_000,
1226            },
1227            investment_projections: vec![
1228                (2024, 10_000_000_000.0),
1229                (2025, 20_000_000_000.0),
1230                (2030, 100_000_000_000.0),
1231            ],
1232        };
1233
1234        Ok(FutureProjections {
1235            quantum_improvements,
1236            classical_improvements,
1237            timeline,
1238            market_impact,
1239        })
1240    }
1241
1242    /// Helper methods
1243    fn register_default_algorithms(&mut self) {
1244        // Register quantum algorithms
1245        self.quantum_algorithms.insert(
1246            ProblemDomain::RandomCircuitSampling,
1247            Box::new(RandomCircuitSamplingAlgorithm),
1248        );
1249        self.quantum_algorithms
1250            .insert(ProblemDomain::QAOA, Box::new(QAOAAlgorithm));
1251
1252        // Register classical algorithms
1253        self.classical_algorithms.insert(
1254            ClassicalAlgorithmType::MonteCarlo,
1255            Box::new(MonteCarloAlgorithm),
1256        );
1257        self.classical_algorithms.insert(
1258            ClassicalAlgorithmType::BruteForce,
1259            Box::new(BruteForceAlgorithm),
1260        );
1261    }
1262
1263    fn aggregate_quantum_resources(&self, results: &[DetailedResult]) -> QuantumResources {
1264        let avg_depth = results
1265            .iter()
1266            .map(|r| r.quantum_results.resource_usage.operations)
1267            .sum::<usize>()
1268            / results.len();
1269
1270        QuantumResources {
1271            qubits: results.iter().map(|r| r.problem_size).max().unwrap_or(0),
1272            depth: avg_depth,
1273            gate_count: avg_depth * 2, // Estimate
1274            coherence_time: Duration::from_millis(100),
1275            gate_fidelity: 0.999,
1276            shots: 1000,
1277            quantum_volume: results
1278                .iter()
1279                .map(|r| r.problem_size * r.problem_size)
1280                .max()
1281                .unwrap_or(0),
1282        }
1283    }
1284
1285    fn aggregate_classical_resources(&self, results: &[DetailedResult]) -> ClassicalResources {
1286        let total_time = results
1287            .iter()
1288            .flat_map(|r| &r.classical_results)
1289            .map(|c| c.execution_time)
1290            .sum::<Duration>();
1291
1292        let avg_memory = results
1293            .iter()
1294            .flat_map(|r| &r.classical_results)
1295            .map(|c| c.resource_usage.peak_memory)
1296            .sum::<usize>()
1297            / results
1298                .iter()
1299                .flat_map(|r| &r.classical_results)
1300                .count()
1301                .max(1);
1302
1303        ClassicalResources {
1304            cpu_time: total_time,
1305            memory_usage: avg_memory,
1306            cores: self.config.hardware_specs.classical_hardware.cpu_cores,
1307            energy_consumption: 1000.0, // Estimate
1308            storage: avg_memory * 2,
1309            network_bandwidth: 0.0,
1310        }
1311    }
1312
1313    fn store_results(&self, result: &QuantumAdvantageResult) -> Result<()> {
1314        let mut database = self
1315            .results_database
1316            .lock()
1317            .unwrap_or_else(|e| e.into_inner());
1318        let key = format!("{:?}_{:?}", self.config.advantage_type, self.config.domain);
1319        database
1320            .results
1321            .entry(key)
1322            .or_default()
1323            .push(result.clone());
1324        Ok(())
1325    }
1326}
1327
1328/// Example algorithm implementations
1329/// Random circuit sampling quantum algorithm
1330struct RandomCircuitSamplingAlgorithm;
1331
1332impl QuantumAlgorithm for RandomCircuitSamplingAlgorithm {
1333    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1334        let start = Instant::now();
1335
1336        // Simulate random circuit execution
1337        let execution_time = Duration::from_millis(problem_instance.size as u64 * 10);
1338        std::thread::sleep(execution_time);
1339
1340        Ok(AlgorithmResult {
1341            algorithm_type: "Random Circuit Sampling".to_string(),
1342            execution_time,
1343            solution_quality: 0.95,
1344            resource_usage: ResourceUsage {
1345                peak_memory: problem_instance.size * 1024 * 1024, // 1MB per qubit
1346                energy: 100.0,
1347                operations: problem_instance.size * 100,
1348                communication: 0.0,
1349            },
1350            success_rate: 0.95,
1351            output_distribution: Some(HashMap::new()),
1352        })
1353    }
1354
1355    fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources {
1356        QuantumResources {
1357            qubits: problem_size,
1358            depth: problem_size * 10,
1359            gate_count: problem_size * 100,
1360            coherence_time: Duration::from_millis(100),
1361            gate_fidelity: 0.999,
1362            shots: 1000,
1363            quantum_volume: problem_size * problem_size,
1364        }
1365    }
1366
1367    fn get_theoretical_scaling(&self) -> f64 {
1368        1.0 // Linear in qubits
1369    }
1370
1371    fn name(&self) -> &'static str {
1372        "Random Circuit Sampling"
1373    }
1374}
1375
1376/// QAOA quantum algorithm
1377struct QAOAAlgorithm;
1378
1379impl QuantumAlgorithm for QAOAAlgorithm {
1380    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1381        let execution_time = Duration::from_millis(problem_instance.size as u64 * 50);
1382        std::thread::sleep(execution_time);
1383
1384        Ok(AlgorithmResult {
1385            algorithm_type: "QAOA".to_string(),
1386            execution_time,
1387            solution_quality: 0.9,
1388            resource_usage: ResourceUsage {
1389                peak_memory: problem_instance.size * 512 * 1024,
1390                energy: 200.0,
1391                operations: problem_instance.size * 200,
1392                communication: 0.0,
1393            },
1394            success_rate: 0.9,
1395            output_distribution: None,
1396        })
1397    }
1398
1399    fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources {
1400        QuantumResources {
1401            qubits: problem_size,
1402            depth: problem_size * 5,
1403            gate_count: problem_size * 50,
1404            coherence_time: Duration::from_millis(50),
1405            gate_fidelity: 0.99,
1406            shots: 10_000,
1407            quantum_volume: problem_size,
1408        }
1409    }
1410
1411    fn get_theoretical_scaling(&self) -> f64 {
1412        1.0 // Linear scaling
1413    }
1414
1415    fn name(&self) -> &'static str {
1416        "QAOA"
1417    }
1418}
1419
1420/// Monte Carlo classical algorithm
1421struct MonteCarloAlgorithm;
1422
1423impl ClassicalAlgorithm for MonteCarloAlgorithm {
1424    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1425        let execution_time = Duration::from_millis(problem_instance.size.pow(2) as u64);
1426        std::thread::sleep(execution_time);
1427
1428        Ok(AlgorithmResult {
1429            algorithm_type: "Monte Carlo".to_string(),
1430            execution_time,
1431            solution_quality: 0.8,
1432            resource_usage: ResourceUsage {
1433                peak_memory: problem_instance.size * 1024,
1434                energy: 50.0,
1435                operations: problem_instance.size.pow(2),
1436                communication: 0.0,
1437            },
1438            success_rate: 0.8,
1439            output_distribution: None,
1440        })
1441    }
1442
1443    fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources {
1444        ClassicalResources {
1445            cpu_time: Duration::from_millis(problem_size.pow(2) as u64),
1446            memory_usage: problem_size * 1024,
1447            cores: 1,
1448            energy_consumption: 50.0,
1449            storage: problem_size * 1024,
1450            network_bandwidth: 0.0,
1451        }
1452    }
1453
1454    fn get_theoretical_scaling(&self) -> f64 {
1455        2.0 // Quadratic scaling
1456    }
1457
1458    fn name(&self) -> &'static str {
1459        "Monte Carlo"
1460    }
1461}
1462
1463/// Brute force classical algorithm
1464struct BruteForceAlgorithm;
1465
1466impl ClassicalAlgorithm for BruteForceAlgorithm {
1467    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1468        let execution_time = Duration::from_millis(2_u64.pow(problem_instance.size as u32));
1469
1470        // Timeout for large problems
1471        if execution_time > Duration::from_secs(60) {
1472            return Ok(AlgorithmResult {
1473                algorithm_type: "Brute Force (Timeout)".to_string(),
1474                execution_time: Duration::from_secs(60),
1475                solution_quality: 0.0,
1476                resource_usage: ResourceUsage {
1477                    peak_memory: 0,
1478                    energy: 0.0,
1479                    operations: 0,
1480                    communication: 0.0,
1481                },
1482                success_rate: 0.0,
1483                output_distribution: None,
1484            });
1485        }
1486
1487        std::thread::sleep(execution_time);
1488
1489        Ok(AlgorithmResult {
1490            algorithm_type: "Brute Force".to_string(),
1491            execution_time,
1492            solution_quality: 1.0,
1493            resource_usage: ResourceUsage {
1494                peak_memory: 2_usize.pow(problem_instance.size as u32) * 8,
1495                energy: 1000.0,
1496                operations: 2_usize.pow(problem_instance.size as u32),
1497                communication: 0.0,
1498            },
1499            success_rate: 1.0,
1500            output_distribution: None,
1501        })
1502    }
1503
1504    fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources {
1505        ClassicalResources {
1506            cpu_time: Duration::from_millis(2_u64.pow(problem_size as u32)),
1507            memory_usage: 2_usize.pow(problem_size as u32) * 8,
1508            cores: 1,
1509            energy_consumption: 1000.0,
1510            storage: 2_usize.pow(problem_size as u32) * 8,
1511            network_bandwidth: 0.0,
1512        }
1513    }
1514
1515    fn get_theoretical_scaling(&self) -> f64 {
1516        2.0_f64.ln() // Exponential scaling (base 2)
1517    }
1518
1519    fn name(&self) -> &'static str {
1520        "Brute Force"
1521    }
1522}
1523
1524/// Benchmark quantum advantage demonstration
1525pub fn benchmark_quantum_advantage() -> Result<HashMap<String, f64>> {
1526    let mut results = HashMap::new();
1527
1528    let start = Instant::now();
1529
1530    let config = QuantumAdvantageConfig {
1531        advantage_type: QuantumAdvantageType::ComputationalAdvantage,
1532        domain: ProblemDomain::RandomCircuitSampling,
1533        classical_algorithms: vec![ClassicalAlgorithmType::MonteCarlo],
1534        problem_sizes: vec![5, 10, 15],
1535        num_trials: 3,
1536        confidence_level: 0.95,
1537        classical_timeout: Duration::from_secs(60),
1538        hardware_specs: HardwareSpecs {
1539            quantum_hardware: QuantumHardwareSpecs {
1540                num_qubits: 20,
1541                gate_fidelities: HashMap::new(),
1542                coherence_times: HashMap::new(),
1543                connectivity: vec![vec![false; 20]; 20],
1544                gate_times: HashMap::new(),
1545                readout_fidelity: 0.95,
1546            },
1547            classical_hardware: ClassicalHardwareSpecs {
1548                cpu_cores: 8,
1549                cpu_frequency: 3.0,
1550                ram_size: 32_000_000_000,
1551                cache_sizes: vec![32_768, 262_144, 8_388_608],
1552                gpu_specs: None,
1553            },
1554        },
1555        enable_profiling: true,
1556        save_results: true,
1557    };
1558
1559    let mut demonstrator = QuantumAdvantageDemonstrator::new(config);
1560    let _advantage_result = demonstrator.demonstrate_advantage()?;
1561
1562    let demo_time = start.elapsed().as_millis() as f64;
1563    results.insert("quantum_advantage_demo".to_string(), demo_time);
1564
1565    Ok(results)
1566}
1567
1568#[cfg(test)]
1569mod tests {
1570    use super::*;
1571
1572    #[test]
1573    fn test_quantum_advantage_demonstrator_creation() {
1574        let config = create_test_config();
1575        let demonstrator = QuantumAdvantageDemonstrator::new(config);
1576        assert!(!demonstrator.quantum_algorithms.is_empty());
1577        assert!(!demonstrator.classical_algorithms.is_empty());
1578    }
1579
1580    #[test]
1581    fn test_problem_instance_generation() {
1582        let config = create_test_config();
1583        let demonstrator = QuantumAdvantageDemonstrator::new(config);
1584        let instance = demonstrator
1585            .generate_problem_instance(5)
1586            .expect("Failed to generate problem instance");
1587        assert_eq!(instance.size, 5);
1588    }
1589
1590    #[test]
1591    fn test_power_law_fitting() {
1592        let demonstrator = QuantumAdvantageDemonstrator::new(create_test_config());
1593        let sizes = vec![1, 2, 4, 8];
1594        let times = vec![1.0, 4.0, 16.0, 64.0]; // Quadratic scaling
1595        let scaling = demonstrator
1596            .fit_power_law(&sizes, &times)
1597            .expect("Failed to fit power law");
1598        assert!((scaling - 2.0).abs() < 0.1);
1599    }
1600
1601    fn create_test_config() -> QuantumAdvantageConfig {
1602        QuantumAdvantageConfig {
1603            advantage_type: QuantumAdvantageType::ComputationalAdvantage,
1604            domain: ProblemDomain::RandomCircuitSampling,
1605            classical_algorithms: vec![ClassicalAlgorithmType::MonteCarlo],
1606            problem_sizes: vec![3, 5],
1607            num_trials: 2,
1608            confidence_level: 0.95,
1609            classical_timeout: Duration::from_secs(10),
1610            hardware_specs: HardwareSpecs {
1611                quantum_hardware: QuantumHardwareSpecs {
1612                    num_qubits: 10,
1613                    gate_fidelities: HashMap::new(),
1614                    coherence_times: HashMap::new(),
1615                    connectivity: vec![vec![false; 10]; 10],
1616                    gate_times: HashMap::new(),
1617                    readout_fidelity: 0.95,
1618                },
1619                classical_hardware: ClassicalHardwareSpecs {
1620                    cpu_cores: 4,
1621                    cpu_frequency: 2.0,
1622                    ram_size: 8_000_000_000,
1623                    cache_sizes: vec![32_768, 262_144],
1624                    gpu_specs: None,
1625                },
1626            },
1627            enable_profiling: false,
1628            save_results: false,
1629        }
1630    }
1631}