1use scirs2_core::ndarray::{Array1, Array2};
8use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
9use scirs2_core::random::prelude::*;
10use scirs2_core::Complex64;
11use serde::{Deserialize, Serialize};
12use std::collections::HashMap;
13use std::sync::{Arc, Mutex};
14use std::time::{Duration, Instant};
15
16use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
17use crate::error::Result;
18
19#[cfg(feature = "optimize")]
20use crate::optirs_integration::{OptiRSConfig, OptiRSQuantumOptimizer};
21
22#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
24pub enum QAOAProblemType {
25 MaxCut,
27 MaxWeightIndependentSet,
29 MinVertexCover,
31 GraphColoring,
33 TSP,
35 PortfolioOptimization,
37 JobShopScheduling,
39 Boolean3SAT,
41 QUBO,
43 MaxClique,
45 BinPacking,
47 Custom,
49}
50
51#[derive(Debug, Clone, Serialize, Deserialize)]
53pub struct QAOAGraph {
54 pub num_vertices: usize,
56 pub adjacency_matrix: Array2<f64>,
58 pub vertex_weights: Vec<f64>,
60 pub edge_weights: HashMap<(usize, usize), f64>,
62 pub constraints: Vec<QAOAConstraint>,
64}
65
66#[derive(Debug, Clone, Serialize, Deserialize)]
68pub enum QAOAConstraint {
69 Cardinality { target: usize },
71 UpperBound { max_vertices: usize },
73 LowerBound { min_vertices: usize },
75 Parity { even: bool },
77 LinearConstraint { coefficients: Vec<f64>, bound: f64 },
79}
80
81#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
83pub enum QAOAMixerType {
84 Standard,
86 XY,
88 Ring,
90 Grover,
92 Dicke,
94 Custom,
96}
97
98#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
100pub enum QAOAInitializationStrategy {
101 UniformSuperposition,
103 WarmStart,
105 AdiabaticStart,
107 Random,
109 ProblemSpecific,
111}
112
113#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
115pub enum QAOAOptimizationStrategy {
116 Classical,
118 Quantum,
120 Hybrid,
122 MLGuided,
124 Adaptive,
126 #[cfg(feature = "optimize")]
128 OptiRS,
129}
130
131#[derive(Debug, Clone)]
133pub struct QAOAConfig {
134 pub num_layers: usize,
136 pub mixer_type: QAOAMixerType,
138 pub initialization: QAOAInitializationStrategy,
140 pub optimization_strategy: QAOAOptimizationStrategy,
142 pub max_iterations: usize,
144 pub convergence_tolerance: f64,
146 pub learning_rate: f64,
148 pub multi_angle: bool,
150 pub parameter_transfer: bool,
152 pub hardware_aware: bool,
154 pub shots: Option<usize>,
156 pub adaptive_layers: bool,
158 pub max_adaptive_layers: usize,
160}
161
162impl Default for QAOAConfig {
163 fn default() -> Self {
164 Self {
165 num_layers: 1,
166 mixer_type: QAOAMixerType::Standard,
167 initialization: QAOAInitializationStrategy::UniformSuperposition,
168 optimization_strategy: QAOAOptimizationStrategy::Classical,
169 max_iterations: 100,
170 convergence_tolerance: 1e-6,
171 learning_rate: 0.1,
172 multi_angle: false,
173 parameter_transfer: false,
174 hardware_aware: true,
175 shots: None,
176 adaptive_layers: false,
177 max_adaptive_layers: 10,
178 }
179 }
180}
181
182#[derive(Debug, Clone, Serialize, Deserialize)]
184pub struct QAOAResult {
185 pub optimal_gammas: Vec<f64>,
187 pub optimal_betas: Vec<f64>,
189 pub best_cost: f64,
191 pub approximation_ratio: f64,
193 pub cost_history: Vec<f64>,
195 pub parameter_history: Vec<(Vec<f64>, Vec<f64>)>,
197 pub final_probabilities: HashMap<String, f64>,
199 pub best_solution: String,
201 pub solution_quality: SolutionQuality,
203 pub optimization_time: Duration,
205 pub function_evaluations: usize,
207 pub converged: bool,
209}
210
211#[derive(Debug, Clone, Serialize, Deserialize)]
213pub struct SolutionQuality {
214 pub feasible: bool,
216 pub optimality_gap: Option<f64>,
218 pub solution_variance: f64,
220 pub confidence: f64,
222 pub constraint_violations: usize,
224}
225
226#[derive(Debug, Clone, Serialize, Deserialize)]
228pub struct QAOAStats {
229 pub total_time: Duration,
231 pub layer_times: Vec<Duration>,
233 pub circuit_depths: Vec<usize>,
235 pub parameter_sensitivity: HashMap<String, f64>,
237 pub quantum_advantage: QuantumAdvantageMetrics,
239}
240
241#[derive(Debug, Clone, Serialize, Deserialize)]
243pub struct QuantumAdvantageMetrics {
244 pub classical_time: Duration,
246 pub speedup_factor: f64,
248 pub success_probability: f64,
250 pub quantum_volume: usize,
252}
253
254#[derive(Debug, Clone)]
256pub struct MultiLevelQAOAConfig {
257 pub levels: Vec<QAOALevel>,
259 pub parameter_sharing: bool,
261 pub transition_criteria: LevelTransitionCriteria,
263}
264
265#[derive(Debug, Clone)]
267pub struct QAOALevel {
268 pub problem_size: usize,
270 pub num_layers: usize,
272 pub optimization_budget: usize,
274 pub mixer_type: QAOAMixerType,
276}
277
278#[derive(Debug, Clone, Copy, PartialEq, Eq)]
280pub enum LevelTransitionCriteria {
281 FixedSchedule,
283 PerformanceBased,
285 ConvergenceBased,
287 Adaptive,
289}
290
291pub struct QAOAOptimizer {
293 config: QAOAConfig,
295 graph: QAOAGraph,
297 problem_type: QAOAProblemType,
299 gammas: Vec<f64>,
301 betas: Vec<f64>,
302 best_gammas: Vec<f64>,
304 best_betas: Vec<f64>,
305 best_cost: f64,
307 classical_optimum: Option<f64>,
309 stats: QAOAStats,
311 parameter_database: Arc<Mutex<ParameterDatabase>>,
313 #[cfg(feature = "optimize")]
315 optirs_optimizer: Option<OptiRSQuantumOptimizer>,
316}
317
318#[derive(Debug, Clone)]
320pub struct ParameterDatabase {
321 pub parameters: HashMap<ProblemCharacteristics, Vec<(Vec<f64>, Vec<f64>, f64)>>,
323}
324
325#[derive(Debug, Clone, Hash, PartialEq, Eq)]
327pub struct ProblemCharacteristics {
328 pub problem_type: QAOAProblemType,
329 pub num_vertices: usize,
330 pub density: u32, pub regularity: u32, }
333
334impl QAOAOptimizer {
335 pub fn new(
337 config: QAOAConfig,
338 graph: QAOAGraph,
339 problem_type: QAOAProblemType,
340 ) -> Result<Self> {
341 let gammas = Self::initialize_gammas(&config, &graph)?;
342 let betas = Self::initialize_betas(&config, &graph)?;
343
344 Ok(Self {
345 config,
346 graph,
347 problem_type,
348 gammas: gammas.clone(),
349 betas: betas.clone(),
350 best_gammas: gammas,
351 best_betas: betas,
352 best_cost: f64::NEG_INFINITY,
353 classical_optimum: None,
354 stats: QAOAStats {
355 total_time: Duration::new(0, 0),
356 layer_times: Vec::new(),
357 circuit_depths: Vec::new(),
358 parameter_sensitivity: HashMap::new(),
359 quantum_advantage: QuantumAdvantageMetrics {
360 classical_time: Duration::new(0, 0),
361 speedup_factor: 1.0,
362 success_probability: 0.0,
363 quantum_volume: 0,
364 },
365 },
366 parameter_database: Arc::new(Mutex::new(ParameterDatabase {
367 parameters: HashMap::new(),
368 })),
369 #[cfg(feature = "optimize")]
370 optirs_optimizer: None,
371 })
372 }
373
374 pub fn optimize(&mut self) -> Result<QAOAResult> {
376 let start_time = Instant::now();
377 let mut cost_history = Vec::new();
378 let mut parameter_history = Vec::new();
379
380 if self.config.parameter_transfer {
382 self.apply_parameter_transfer()?;
383 }
384
385 let classical_start = Instant::now();
387 let classical_result = self.solve_classically()?;
388 self.stats.quantum_advantage.classical_time = classical_start.elapsed();
389 self.classical_optimum = Some(classical_result);
390
391 let mut current_layers = self.config.num_layers;
393
394 for iteration in 0..self.config.max_iterations {
395 let cost = self.evaluate_qaoa_cost(&self.gammas, &self.betas)?;
397 cost_history.push(cost);
398 parameter_history.push((self.gammas.clone(), self.betas.clone()));
399
400 if cost > self.best_cost {
402 self.best_cost = cost;
403 self.best_gammas = self.gammas.clone();
404 self.best_betas = self.betas.clone();
405 }
406
407 if iteration > 10 {
409 let recent_improvement = cost_history[iteration] - cost_history[iteration - 10];
410 if recent_improvement.abs() < self.config.convergence_tolerance {
411 break;
412 }
413 }
414
415 match self.config.optimization_strategy {
417 QAOAOptimizationStrategy::Classical => {
418 self.classical_parameter_optimization()?;
419 }
420 QAOAOptimizationStrategy::Quantum => {
421 self.quantum_parameter_optimization()?;
422 }
423 QAOAOptimizationStrategy::Hybrid => {
424 self.hybrid_parameter_optimization()?;
425 }
426 QAOAOptimizationStrategy::MLGuided => {
427 self.ml_guided_optimization()?;
428 }
429 QAOAOptimizationStrategy::Adaptive => {
430 self.adaptive_parameter_optimization(&cost_history)?;
431 }
432 #[cfg(feature = "optimize")]
433 QAOAOptimizationStrategy::OptiRS => {
434 self.optirs_parameter_optimization()?;
435 }
436 }
437
438 if self.config.adaptive_layers
440 && iteration % 20 == 19
441 && self.should_add_layer(&cost_history)?
442 && current_layers < self.config.max_adaptive_layers
443 {
444 current_layers += 1;
445 self.add_qaoa_layer()?;
446 }
447 }
448
449 let total_time = start_time.elapsed();
450 self.stats.total_time = total_time;
451
452 let final_circuit = self.generate_qaoa_circuit(&self.best_gammas, &self.best_betas)?;
454 let final_state = self.simulate_circuit(&final_circuit)?;
455 let probabilities = self.extract_probabilities(&final_state)?;
456 let best_solution = self.extract_best_solution(&probabilities)?;
457
458 let solution_quality = self.evaluate_solution_quality(&best_solution, &probabilities)?;
460
461 let approximation_ratio = if let Some(classical_opt) = self.classical_optimum {
463 self.best_cost / classical_opt
464 } else {
465 1.0
466 };
467
468 if self.config.parameter_transfer {
470 self.store_parameters_for_transfer()?;
471 }
472
473 let function_evaluations = cost_history.len();
474
475 Ok(QAOAResult {
476 optimal_gammas: self.best_gammas.clone(),
477 optimal_betas: self.best_betas.clone(),
478 best_cost: self.best_cost,
479 approximation_ratio,
480 cost_history,
481 parameter_history,
482 final_probabilities: probabilities,
483 best_solution,
484 solution_quality,
485 optimization_time: total_time,
486 function_evaluations,
487 converged: true, })
489 }
490
491 fn generate_qaoa_circuit(&self, gammas: &[f64], betas: &[f64]) -> Result<InterfaceCircuit> {
493 let num_qubits = self.graph.num_vertices;
494 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
495
496 match self.config.initialization {
498 QAOAInitializationStrategy::UniformSuperposition => {
499 for qubit in 0..num_qubits {
500 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
501 }
502 }
503 QAOAInitializationStrategy::WarmStart => {
504 self.prepare_warm_start_state(&mut circuit)?;
505 }
506 QAOAInitializationStrategy::AdiabaticStart => {
507 self.prepare_adiabatic_state(&mut circuit)?;
508 }
509 QAOAInitializationStrategy::Random => {
510 self.prepare_random_state(&mut circuit)?;
511 }
512 QAOAInitializationStrategy::ProblemSpecific => {
513 self.prepare_problem_specific_state(&mut circuit)?;
514 }
515 }
516
517 for layer in 0..gammas.len() {
519 self.apply_cost_layer(&mut circuit, gammas[layer])?;
521
522 self.apply_mixer_layer(&mut circuit, betas[layer])?;
524 }
525
526 Ok(circuit)
527 }
528
529 fn apply_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
531 match self.problem_type {
532 QAOAProblemType::MaxCut => {
533 self.apply_maxcut_cost_layer(circuit, gamma)?;
534 }
535 QAOAProblemType::MaxWeightIndependentSet => {
536 self.apply_mwis_cost_layer(circuit, gamma)?;
537 }
538 QAOAProblemType::TSP => {
539 self.apply_tsp_cost_layer(circuit, gamma)?;
540 }
541 QAOAProblemType::PortfolioOptimization => {
542 self.apply_portfolio_cost_layer(circuit, gamma)?;
543 }
544 QAOAProblemType::Boolean3SAT => {
545 self.apply_3sat_cost_layer(circuit, gamma)?;
546 }
547 QAOAProblemType::QUBO => {
548 self.apply_qubo_cost_layer(circuit, gamma)?;
549 }
550 _ => {
551 self.apply_generic_cost_layer(circuit, gamma)?;
552 }
553 }
554 Ok(())
555 }
556
557 fn apply_maxcut_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
559 for i in 0..self.graph.num_vertices {
561 for j in i + 1..self.graph.num_vertices {
562 let weight = self
563 .graph
564 .edge_weights
565 .get(&(i, j))
566 .or_else(|| self.graph.edge_weights.get(&(j, i)))
567 .unwrap_or(&self.graph.adjacency_matrix[[i, j]]);
568
569 if weight.abs() > 1e-10 {
570 let angle = gamma * weight;
571
572 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
574 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![j]));
575 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
576 }
577 }
578 }
579 Ok(())
580 }
581
582 fn apply_mwis_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
584 for i in 0..self.graph.num_vertices {
588 let weight = self.graph.vertex_weights.get(i).unwrap_or(&1.0);
589 let angle = gamma * weight;
590 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![i]));
591 }
592
593 let penalty = 10.0; for i in 0..self.graph.num_vertices {
596 for j in i + 1..self.graph.num_vertices {
597 if self.graph.adjacency_matrix[[i, j]] > 0.0 {
598 let angle = gamma * penalty;
599 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
600 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![j]));
601 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
602 }
603 }
604 }
605 Ok(())
606 }
607
608 fn apply_tsp_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
610 let num_cities = (self.graph.num_vertices as f64).sqrt() as usize;
611
612 for t in 0..num_cities {
614 for i in 0..num_cities {
615 for j in 0..num_cities {
616 if i != j {
617 let distance = self.graph.adjacency_matrix[[i, j]];
618 if distance > 0.0 {
619 let angle = gamma * distance;
620
621 let qubit_i_t = i * num_cities + t;
623 let qubit_j_t1 = j * num_cities + ((t + 1) % num_cities);
624
625 if qubit_i_t < circuit.num_qubits && qubit_j_t1 < circuit.num_qubits {
626 circuit.add_gate(InterfaceGate::new(
627 InterfaceGateType::CNOT,
628 vec![qubit_i_t, qubit_j_t1],
629 ));
630 circuit.add_gate(InterfaceGate::new(
631 InterfaceGateType::RZ(angle),
632 vec![qubit_j_t1],
633 ));
634 circuit.add_gate(InterfaceGate::new(
635 InterfaceGateType::CNOT,
636 vec![qubit_i_t, qubit_j_t1],
637 ));
638 }
639 }
640 }
641 }
642 }
643 }
644
645 let penalty = 10.0;
647
648 for i in 0..num_cities {
650 for t1 in 0..num_cities {
651 for t2 in t1 + 1..num_cities {
652 let qubit1 = i * num_cities + t1;
653 let qubit2 = i * num_cities + t2;
654 if qubit1 < circuit.num_qubits && qubit2 < circuit.num_qubits {
655 let angle = gamma * penalty;
656 circuit.add_gate(InterfaceGate::new(
657 InterfaceGateType::CNOT,
658 vec![qubit1, qubit2],
659 ));
660 circuit.add_gate(InterfaceGate::new(
661 InterfaceGateType::RZ(angle),
662 vec![qubit2],
663 ));
664 circuit.add_gate(InterfaceGate::new(
665 InterfaceGateType::CNOT,
666 vec![qubit1, qubit2],
667 ));
668 }
669 }
670 }
671 }
672
673 Ok(())
674 }
675
676 fn apply_portfolio_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
678 let lambda = 1.0; for i in 0..self.graph.num_vertices {
685 let return_rate = self.graph.vertex_weights.get(i).unwrap_or(&0.1);
686 let angle = -gamma * return_rate; circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![i]));
688 }
689
690 for i in 0..self.graph.num_vertices {
692 for j in i..self.graph.num_vertices {
693 let covariance = self.graph.adjacency_matrix[[i, j]];
694 if covariance.abs() > 1e-10 {
695 let angle = gamma * lambda * covariance;
696
697 if i == j {
698 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![i]));
700 } else {
701 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
703 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![j]));
704 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
705 }
706 }
707 }
708 }
709 Ok(())
710 }
711
712 fn apply_3sat_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
714 for constraint in &self.graph.constraints {
719 if let QAOAConstraint::LinearConstraint {
720 coefficients,
721 bound,
722 } = constraint
723 {
724 let angle = gamma * bound;
725
726 for (i, &coeff) in coefficients.iter().enumerate() {
728 if i < circuit.num_qubits && coeff.abs() > 1e-10 {
729 circuit.add_gate(InterfaceGate::new(
730 InterfaceGateType::RZ(angle * coeff),
731 vec![i],
732 ));
733 }
734 }
735 } else {
736 }
738 }
739 Ok(())
740 }
741
742 fn apply_qubo_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
744 for i in 0..self.graph.num_vertices {
748 let coeff = self.graph.adjacency_matrix[[i, i]];
749 if coeff.abs() > 1e-10 {
750 let angle = gamma * coeff;
751 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![i]));
752 }
753 }
754
755 for i in 0..self.graph.num_vertices {
757 for j in i + 1..self.graph.num_vertices {
758 let coeff = self.graph.adjacency_matrix[[i, j]];
759 if coeff.abs() > 1e-10 {
760 let angle = gamma * coeff;
761 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
762 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![j]));
763 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
764 }
765 }
766 }
767 Ok(())
768 }
769
770 fn apply_generic_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
772 for i in 0..self.graph.num_vertices {
774 for j in i + 1..self.graph.num_vertices {
775 let weight = self.graph.adjacency_matrix[[i, j]];
776 if weight.abs() > 1e-10 {
777 let angle = gamma * weight;
778 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
779 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![j]));
780 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
781 }
782 }
783 }
784 Ok(())
785 }
786
787 fn apply_mixer_layer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
789 match self.config.mixer_type {
790 QAOAMixerType::Standard => {
791 self.apply_standard_mixer(circuit, beta)?;
792 }
793 QAOAMixerType::XY => {
794 self.apply_xy_mixer(circuit, beta)?;
795 }
796 QAOAMixerType::Ring => {
797 self.apply_ring_mixer(circuit, beta)?;
798 }
799 QAOAMixerType::Grover => {
800 self.apply_grover_mixer(circuit, beta)?;
801 }
802 QAOAMixerType::Dicke => {
803 self.apply_dicke_mixer(circuit, beta)?;
804 }
805 QAOAMixerType::Custom => {
806 self.apply_custom_mixer(circuit, beta)?;
807 }
808 }
809 Ok(())
810 }
811
812 fn apply_standard_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
814 for qubit in 0..circuit.num_qubits {
815 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RX(beta), vec![qubit]));
816 }
817 Ok(())
818 }
819
820 fn apply_xy_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
822 for i in 0..circuit.num_qubits {
824 for j in i + 1..circuit.num_qubits {
825 if self.graph.adjacency_matrix[[i, j]] > 0.0 {
826 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![i]));
828 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![j]));
829 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
830 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(beta), vec![j]));
831 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
832 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![i]));
833 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![j]));
834
835 circuit.add_gate(InterfaceGate::new(
837 InterfaceGateType::RY(std::f64::consts::PI / 2.0),
838 vec![i],
839 ));
840 circuit.add_gate(InterfaceGate::new(
841 InterfaceGateType::RY(std::f64::consts::PI / 2.0),
842 vec![j],
843 ));
844 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
845 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(beta), vec![j]));
846 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
847 circuit.add_gate(InterfaceGate::new(
848 InterfaceGateType::RY(-std::f64::consts::PI / 2.0),
849 vec![i],
850 ));
851 circuit.add_gate(InterfaceGate::new(
852 InterfaceGateType::RY(-std::f64::consts::PI / 2.0),
853 vec![j],
854 ));
855 }
856 }
857 }
858 Ok(())
859 }
860
861 fn apply_ring_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
863 for i in 0..circuit.num_qubits {
865 let next = (i + 1) % circuit.num_qubits;
866
867 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![i]));
869 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![next]));
870 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
871 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(beta), vec![next]));
872 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
873 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![i]));
874 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![next]));
875 }
876 Ok(())
877 }
878
879 fn apply_grover_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
881 for qubit in 0..circuit.num_qubits {
885 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
886 }
887
888 for qubit in 0..circuit.num_qubits {
890 circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliZ, vec![qubit]));
891 }
892
893 if circuit.num_qubits > 1 {
895 let controls: Vec<usize> = (0..circuit.num_qubits - 1).collect();
896 let target = circuit.num_qubits - 1;
897
898 circuit.add_gate(InterfaceGate::new(
900 InterfaceGateType::CNOT,
901 vec![controls[0], target],
902 ));
903 circuit.add_gate(InterfaceGate::new(
904 InterfaceGateType::RZ(beta),
905 vec![target],
906 ));
907 circuit.add_gate(InterfaceGate::new(
908 InterfaceGateType::CNOT,
909 vec![controls[0], target],
910 ));
911 }
912
913 for qubit in 0..circuit.num_qubits {
915 circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliZ, vec![qubit]));
916 }
917
918 for qubit in 0..circuit.num_qubits {
920 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
921 }
922
923 Ok(())
924 }
925
926 fn apply_dicke_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
928 for i in 0..circuit.num_qubits - 1 {
932 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
934 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(beta), vec![i]));
935 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i + 1, i]));
936 circuit.add_gate(InterfaceGate::new(
937 InterfaceGateType::RY(-beta),
938 vec![i + 1],
939 ));
940 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
941 }
942 Ok(())
943 }
944
945 fn apply_custom_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
947 match self.problem_type {
949 QAOAProblemType::TSP => {
950 self.apply_tsp_custom_mixer(circuit, beta)?;
952 }
953 QAOAProblemType::PortfolioOptimization => {
954 self.apply_portfolio_custom_mixer(circuit, beta)?;
956 }
957 _ => {
958 self.apply_standard_mixer(circuit, beta)?;
960 }
961 }
962 Ok(())
963 }
964
965 fn apply_tsp_custom_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
967 let num_cities = (circuit.num_qubits as f64).sqrt() as usize;
968
969 for t in 0..num_cities {
971 for i in 0..num_cities {
972 for j in i + 1..num_cities {
973 let qubit_i = i * num_cities + t;
974 let qubit_j = j * num_cities + t;
975
976 if qubit_i < circuit.num_qubits && qubit_j < circuit.num_qubits {
977 circuit.add_gate(InterfaceGate::new(
979 InterfaceGateType::CNOT,
980 vec![qubit_i, qubit_j],
981 ));
982 circuit.add_gate(InterfaceGate::new(
983 InterfaceGateType::RY(beta),
984 vec![qubit_i],
985 ));
986 circuit.add_gate(InterfaceGate::new(
987 InterfaceGateType::CNOT,
988 vec![qubit_j, qubit_i],
989 ));
990 circuit.add_gate(InterfaceGate::new(
991 InterfaceGateType::RY(-beta),
992 vec![qubit_j],
993 ));
994 circuit.add_gate(InterfaceGate::new(
995 InterfaceGateType::CNOT,
996 vec![qubit_i, qubit_j],
997 ));
998 }
999 }
1000 }
1001 }
1002 Ok(())
1003 }
1004
1005 fn apply_portfolio_custom_mixer(
1007 &self,
1008 circuit: &mut InterfaceCircuit,
1009 beta: f64,
1010 ) -> Result<()> {
1011 for i in 0..circuit.num_qubits - 1 {
1013 for j in i + 1..circuit.num_qubits {
1014 let correlation = self.graph.adjacency_matrix[[i, j]].abs();
1016 if correlation > 0.1 {
1017 let angle = beta * correlation;
1018 circuit.add_gate(InterfaceGate::new(
1019 InterfaceGateType::CRY(angle),
1020 vec![i, j],
1021 ));
1022 }
1023 }
1024 }
1025 Ok(())
1026 }
1027
1028 fn initialize_gammas(config: &QAOAConfig, _graph: &QAOAGraph) -> Result<Vec<f64>> {
1030 let mut gammas = Vec::with_capacity(config.num_layers);
1031
1032 for i in 0..config.num_layers {
1033 let gamma = match config.initialization {
1034 QAOAInitializationStrategy::Random => {
1035 (thread_rng().gen::<f64>() - 0.5) * std::f64::consts::PI
1036 }
1037 QAOAInitializationStrategy::AdiabaticStart => {
1038 0.1 * (i + 1) as f64 / config.num_layers as f64
1040 }
1041 _ => {
1042 0.5 * (i + 1) as f64 / config.num_layers as f64
1044 }
1045 };
1046 gammas.push(gamma);
1047 }
1048
1049 Ok(gammas)
1050 }
1051
1052 fn initialize_betas(config: &QAOAConfig, _graph: &QAOAGraph) -> Result<Vec<f64>> {
1054 let mut betas = Vec::with_capacity(config.num_layers);
1055
1056 for i in 0..config.num_layers {
1057 let beta = match config.initialization {
1058 QAOAInitializationStrategy::Random => {
1059 (thread_rng().gen::<f64>() - 0.5) * std::f64::consts::PI
1060 }
1061 QAOAInitializationStrategy::AdiabaticStart => {
1062 std::f64::consts::PI * (config.num_layers - i) as f64 / config.num_layers as f64
1064 }
1065 _ => {
1066 0.5 * std::f64::consts::PI * (config.num_layers - i) as f64
1068 / config.num_layers as f64
1069 }
1070 };
1071 betas.push(beta);
1072 }
1073
1074 Ok(betas)
1075 }
1076
1077 fn evaluate_qaoa_cost(&self, gammas: &[f64], betas: &[f64]) -> Result<f64> {
1079 let circuit = self.generate_qaoa_circuit(gammas, betas)?;
1080 let state = self.simulate_circuit(&circuit)?;
1081
1082 let cost = self.calculate_cost_expectation(&state)?;
1084 Ok(cost)
1085 }
1086
1087 fn calculate_cost_expectation(&self, state: &Array1<Complex64>) -> Result<f64> {
1089 let mut expectation = 0.0;
1090
1091 for (idx, amplitude) in state.iter().enumerate() {
1093 let probability = amplitude.norm_sqr();
1094 if probability > 1e-10 {
1095 let bitstring = format!("{:0width$b}", idx, width = self.graph.num_vertices);
1096 let cost = self.evaluate_classical_cost(&bitstring)?;
1097 expectation += probability * cost;
1098 }
1099 }
1100
1101 Ok(expectation)
1102 }
1103
1104 fn evaluate_classical_cost(&self, bitstring: &str) -> Result<f64> {
1106 let bits: Vec<bool> = bitstring.chars().map(|c| c == '1').collect();
1107
1108 match self.problem_type {
1109 QAOAProblemType::MaxCut => self.evaluate_maxcut_cost(&bits),
1110 QAOAProblemType::MaxWeightIndependentSet => self.evaluate_mwis_cost(&bits),
1111 QAOAProblemType::TSP => self.evaluate_tsp_cost(&bits),
1112 QAOAProblemType::PortfolioOptimization => self.evaluate_portfolio_cost(&bits),
1113 QAOAProblemType::QUBO => self.evaluate_qubo_cost(&bits),
1114 _ => self.evaluate_generic_cost(&bits),
1115 }
1116 }
1117
1118 fn evaluate_maxcut_cost(&self, bits: &[bool]) -> Result<f64> {
1120 let mut cost = 0.0;
1121
1122 for i in 0..self.graph.num_vertices {
1123 for j in i + 1..self.graph.num_vertices {
1124 let weight = self
1125 .graph
1126 .edge_weights
1127 .get(&(i, j))
1128 .or_else(|| self.graph.edge_weights.get(&(j, i)))
1129 .unwrap_or(&self.graph.adjacency_matrix[[i, j]]);
1130
1131 if weight.abs() > 1e-10 && bits[i] != bits[j] {
1132 cost += weight;
1133 }
1134 }
1135 }
1136
1137 Ok(cost)
1138 }
1139
1140 fn evaluate_mwis_cost(&self, bits: &[bool]) -> Result<f64> {
1142 let mut cost = 0.0;
1143 let mut valid = true;
1144
1145 for i in 0..self.graph.num_vertices {
1147 if bits[i] {
1148 for j in 0..self.graph.num_vertices {
1149 if i != j && bits[j] && self.graph.adjacency_matrix[[i, j]] > 0.0 {
1150 valid = false;
1151 break;
1152 }
1153 }
1154 if valid {
1155 cost += self.graph.vertex_weights.get(i).unwrap_or(&1.0);
1156 }
1157 }
1158 }
1159
1160 if !valid {
1162 cost = -1000.0;
1163 }
1164
1165 Ok(cost)
1166 }
1167
1168 fn evaluate_tsp_cost(&self, bits: &[bool]) -> Result<f64> {
1170 let num_cities = (self.graph.num_vertices as f64).sqrt() as usize;
1171 let mut cost = 0.0;
1172 let mut valid = true;
1173
1174 let mut city_times = vec![-1i32; num_cities];
1176 let mut time_cities = vec![-1i32; num_cities];
1177
1178 for city in 0..num_cities {
1179 for time in 0..num_cities {
1180 let qubit = city * num_cities + time;
1181 if qubit < bits.len() && bits[qubit] {
1182 if city_times[city] != -1 || time_cities[time] != -1 {
1183 valid = false;
1184 break;
1185 }
1186 city_times[city] = time as i32;
1187 time_cities[time] = city as i32;
1188 }
1189 }
1190 if !valid {
1191 break;
1192 }
1193 }
1194
1195 if valid && city_times.iter().all(|&t| t != -1) {
1196 for t in 0..num_cities {
1198 let current_city = time_cities[t] as usize;
1199 let next_city = time_cities[(t + 1) % num_cities] as usize;
1200 cost += self.graph.adjacency_matrix[[current_city, next_city]];
1201 }
1202 } else {
1203 cost = 1000.0; }
1205
1206 Ok(cost)
1207 }
1208
1209 fn evaluate_portfolio_cost(&self, bits: &[bool]) -> Result<f64> {
1211 let mut expected_return = 0.0;
1212 let mut risk = 0.0;
1213 let lambda = 1.0; for i in 0..self.graph.num_vertices {
1217 if bits[i] {
1218 expected_return += self.graph.vertex_weights.get(i).unwrap_or(&0.1);
1219 }
1220 }
1221
1222 for i in 0..self.graph.num_vertices {
1224 for j in 0..self.graph.num_vertices {
1225 if bits[i] && bits[j] {
1226 risk += self.graph.adjacency_matrix[[i, j]];
1227 }
1228 }
1229 }
1230
1231 Ok(expected_return - lambda * risk)
1233 }
1234
1235 fn evaluate_qubo_cost(&self, bits: &[bool]) -> Result<f64> {
1237 let mut cost = 0.0;
1238
1239 for i in 0..self.graph.num_vertices {
1241 if bits[i] {
1242 cost += self.graph.adjacency_matrix[[i, i]];
1243 }
1244 }
1245
1246 for i in 0..self.graph.num_vertices {
1248 for j in i + 1..self.graph.num_vertices {
1249 if bits[i] && bits[j] {
1250 cost += self.graph.adjacency_matrix[[i, j]];
1251 }
1252 }
1253 }
1254
1255 Ok(cost)
1256 }
1257
1258 fn evaluate_generic_cost(&self, bits: &[bool]) -> Result<f64> {
1260 self.evaluate_maxcut_cost(bits)
1262 }
1263
1264 fn solve_classically(&self) -> Result<f64> {
1266 match self.problem_type {
1267 QAOAProblemType::MaxCut => self.solve_maxcut_classically(),
1268 QAOAProblemType::MaxWeightIndependentSet => self.solve_mwis_classically(),
1269 _ => {
1270 self.solve_brute_force()
1272 }
1273 }
1274 }
1275
1276 fn solve_maxcut_classically(&self) -> Result<f64> {
1278 let mut best_cost = 0.0;
1279 let num_vertices = self.graph.num_vertices;
1280
1281 let mut assignment = vec![false; num_vertices];
1283
1284 for _ in 0..10 {
1285 for i in 0..num_vertices {
1287 assignment[i] = thread_rng().gen();
1288 }
1289
1290 let mut improved = true;
1292 while improved {
1293 improved = false;
1294 for i in 0..num_vertices {
1295 assignment[i] = !assignment[i];
1296 let cost = self.evaluate_classical_cost(
1297 &assignment
1298 .iter()
1299 .map(|&b| if b { '1' } else { '0' })
1300 .collect::<String>(),
1301 )?;
1302 if cost > best_cost {
1303 best_cost = cost;
1304 improved = true;
1305 } else {
1306 assignment[i] = !assignment[i];
1307 }
1308 }
1309 }
1310 }
1311
1312 Ok(best_cost)
1313 }
1314
1315 fn solve_mwis_classically(&self) -> Result<f64> {
1317 let mut vertices: Vec<usize> = (0..self.graph.num_vertices).collect();
1318 vertices.sort_by(|&a, &b| {
1319 let weight_a = self.graph.vertex_weights.get(a).unwrap_or(&1.0);
1320 let weight_b = self.graph.vertex_weights.get(b).unwrap_or(&1.0);
1321 weight_b
1322 .partial_cmp(weight_a)
1323 .unwrap_or(std::cmp::Ordering::Equal)
1324 });
1325
1326 let mut selected = vec![false; self.graph.num_vertices];
1327 let mut total_weight = 0.0;
1328
1329 for &v in &vertices {
1330 let mut can_select = true;
1331 for &u in &vertices {
1332 if selected[u] && self.graph.adjacency_matrix[[u, v]] > 0.0 {
1333 can_select = false;
1334 break;
1335 }
1336 }
1337 if can_select {
1338 selected[v] = true;
1339 total_weight += self.graph.vertex_weights.get(v).unwrap_or(&1.0);
1340 }
1341 }
1342
1343 Ok(total_weight)
1344 }
1345
1346 fn solve_brute_force(&self) -> Result<f64> {
1348 if self.graph.num_vertices > 20 {
1349 return Ok(0.0); }
1351
1352 let mut best_cost = f64::NEG_INFINITY;
1353 let num_states = 1 << self.graph.num_vertices;
1354
1355 for state in 0..num_states {
1356 let bitstring = format!("{:0width$b}", state, width = self.graph.num_vertices);
1357 let cost = self.evaluate_classical_cost(&bitstring)?;
1358 if cost > best_cost {
1359 best_cost = cost;
1360 }
1361 }
1362
1363 Ok(best_cost)
1364 }
1365
1366 fn classical_parameter_optimization(&mut self) -> Result<()> {
1369 let epsilon = 1e-4;
1371 let mut gamma_gradients = vec![0.0; self.gammas.len()];
1372 let mut beta_gradients = vec![0.0; self.betas.len()];
1373
1374 for i in 0..self.gammas.len() {
1376 let mut gammas_plus = self.gammas.clone();
1377 let mut gammas_minus = self.gammas.clone();
1378 gammas_plus[i] += epsilon;
1379 gammas_minus[i] -= epsilon;
1380
1381 let cost_plus = self.evaluate_qaoa_cost(&gammas_plus, &self.betas)?;
1382 let cost_minus = self.evaluate_qaoa_cost(&gammas_minus, &self.betas)?;
1383 gamma_gradients[i] = (cost_plus - cost_minus) / (2.0 * epsilon);
1384 }
1385
1386 for i in 0..self.betas.len() {
1387 let mut betas_plus = self.betas.clone();
1388 let mut betas_minus = self.betas.clone();
1389 betas_plus[i] += epsilon;
1390 betas_minus[i] -= epsilon;
1391
1392 let cost_plus = self.evaluate_qaoa_cost(&self.gammas, &betas_plus)?;
1393 let cost_minus = self.evaluate_qaoa_cost(&self.gammas, &betas_minus)?;
1394 beta_gradients[i] = (cost_plus - cost_minus) / (2.0 * epsilon);
1395 }
1396
1397 for i in 0..self.gammas.len() {
1399 self.gammas[i] += self.config.learning_rate * gamma_gradients[i];
1400 }
1401 for i in 0..self.betas.len() {
1402 self.betas[i] += self.config.learning_rate * beta_gradients[i];
1403 }
1404
1405 Ok(())
1406 }
1407
1408 fn quantum_parameter_optimization(&mut self) -> Result<()> {
1410 let shift = std::f64::consts::PI / 2.0;
1411
1412 for i in 0..self.gammas.len() {
1414 let mut gammas_plus = self.gammas.clone();
1415 let mut gammas_minus = self.gammas.clone();
1416 gammas_plus[i] += shift;
1417 gammas_minus[i] -= shift;
1418
1419 let cost_plus = self.evaluate_qaoa_cost(&gammas_plus, &self.betas)?;
1420 let cost_minus = self.evaluate_qaoa_cost(&gammas_minus, &self.betas)?;
1421 let gradient = (cost_plus - cost_minus) / 2.0;
1422
1423 self.gammas[i] += self.config.learning_rate * gradient;
1424 }
1425
1426 for i in 0..self.betas.len() {
1428 let mut betas_plus = self.betas.clone();
1429 let mut betas_minus = self.betas.clone();
1430 betas_plus[i] += shift;
1431 betas_minus[i] -= shift;
1432
1433 let cost_plus = self.evaluate_qaoa_cost(&self.gammas, &betas_plus)?;
1434 let cost_minus = self.evaluate_qaoa_cost(&self.gammas, &betas_minus)?;
1435 let gradient = (cost_plus - cost_minus) / 2.0;
1436
1437 self.betas[i] += self.config.learning_rate * gradient;
1438 }
1439
1440 Ok(())
1441 }
1442
1443 fn hybrid_parameter_optimization(&mut self) -> Result<()> {
1445 if self.stats.total_time.as_secs() % 2 == 0 {
1447 self.classical_parameter_optimization()?;
1448 } else {
1449 self.quantum_parameter_optimization()?;
1450 }
1451 Ok(())
1452 }
1453
1454 fn ml_guided_optimization(&mut self) -> Result<()> {
1456 let problem_features = self.extract_problem_features()?;
1460 let predicted_update = self.predict_parameter_update(&problem_features)?;
1461
1462 for i in 0..self.gammas.len() {
1464 self.gammas[i] += self.config.learning_rate * predicted_update.0[i];
1465 }
1466 for i in 0..self.betas.len() {
1467 self.betas[i] += self.config.learning_rate * predicted_update.1[i];
1468 }
1469
1470 Ok(())
1471 }
1472
1473 fn adaptive_parameter_optimization(&mut self, cost_history: &[f64]) -> Result<()> {
1475 if cost_history.len() > 5 {
1477 let recent_improvement =
1478 cost_history[cost_history.len() - 1] - cost_history[cost_history.len() - 5];
1479
1480 if recent_improvement > 0.0 {
1481 self.config.learning_rate *= 1.1; } else {
1483 self.config.learning_rate *= 0.9; }
1485 }
1486
1487 self.classical_parameter_optimization()
1489 }
1490
1491 #[cfg(feature = "optimize")]
1496 fn optirs_parameter_optimization(&mut self) -> Result<()> {
1497 if self.optirs_optimizer.is_none() {
1499 let config = OptiRSConfig {
1500 optimizer_type: crate::optirs_integration::OptiRSOptimizerType::Adam,
1501 learning_rate: self.config.learning_rate,
1502 convergence_tolerance: self.config.convergence_tolerance,
1503 max_iterations: self.config.max_iterations,
1504 ..Default::default()
1505 };
1506 self.optirs_optimizer = Some(OptiRSQuantumOptimizer::new(config)?);
1507 }
1508
1509 let mut all_params = Vec::new();
1511 all_params.extend_from_slice(&self.gammas);
1512 all_params.extend_from_slice(&self.betas);
1513
1514 let epsilon = 1e-4;
1516 let mut all_gradients = vec![0.0; all_params.len()];
1517 let num_gammas = self.gammas.len();
1518
1519 for i in 0..num_gammas {
1521 let mut gammas_plus = self.gammas.clone();
1522 let mut gammas_minus = self.gammas.clone();
1523 gammas_plus[i] += epsilon;
1524 gammas_minus[i] -= epsilon;
1525
1526 let cost_plus = self.evaluate_qaoa_cost(&gammas_plus, &self.betas)?;
1527 let cost_minus = self.evaluate_qaoa_cost(&gammas_minus, &self.betas)?;
1528 all_gradients[i] = (cost_plus - cost_minus) / (2.0 * epsilon);
1529 }
1530
1531 for i in 0..self.betas.len() {
1533 let mut betas_plus = self.betas.clone();
1534 let mut betas_minus = self.betas.clone();
1535 betas_plus[i] += epsilon;
1536 betas_minus[i] -= epsilon;
1537
1538 let cost_plus = self.evaluate_qaoa_cost(&self.gammas, &betas_plus)?;
1539 let cost_minus = self.evaluate_qaoa_cost(&self.gammas, &betas_minus)?;
1540 all_gradients[num_gammas + i] = (cost_plus - cost_minus) / (2.0 * epsilon);
1541 }
1542
1543 let current_cost = self.evaluate_qaoa_cost(&self.gammas, &self.betas)?;
1545
1546 let optimizer = self.optirs_optimizer.as_mut().ok_or_else(|| {
1548 crate::error::SimulatorError::InvalidInput(
1549 "OptiRS optimizer not initialized".to_string(),
1550 )
1551 })?;
1552 let new_params = optimizer.optimize_step(&all_params, &all_gradients, -current_cost)?; self.gammas = new_params[..num_gammas].to_vec();
1556 self.betas = new_params[num_gammas..].to_vec();
1557
1558 Ok(())
1559 }
1560
1561 fn apply_parameter_transfer(&mut self) -> Result<()> {
1563 let characteristics = self.extract_problem_characteristics()?;
1565 let database = self.parameter_database.lock().map_err(|e| {
1566 crate::error::SimulatorError::InvalidInput(format!(
1567 "Failed to lock parameter database: {}",
1568 e
1569 ))
1570 })?;
1571
1572 if let Some(similar_params) = database.parameters.get(&characteristics) {
1573 if let Some((gammas, betas, _cost)) = similar_params.first() {
1574 self.gammas = gammas.clone();
1575 self.betas = betas.clone();
1576 }
1577 }
1578 Ok(())
1579 }
1580
1581 fn store_parameters_for_transfer(&self) -> Result<()> {
1582 let characteristics = self.extract_problem_characteristics()?;
1583 let mut database = self.parameter_database.lock().map_err(|e| {
1584 crate::error::SimulatorError::InvalidInput(format!(
1585 "Failed to lock parameter database: {}",
1586 e
1587 ))
1588 })?;
1589
1590 let entry = database.parameters.entry(characteristics).or_default();
1591 entry.push((
1592 self.best_gammas.clone(),
1593 self.best_betas.clone(),
1594 self.best_cost,
1595 ));
1596
1597 entry.sort_by(|a, b| b.2.partial_cmp(&a.2).unwrap_or(std::cmp::Ordering::Equal));
1599 entry.truncate(5);
1600
1601 Ok(())
1602 }
1603
1604 fn extract_problem_characteristics(&self) -> Result<ProblemCharacteristics> {
1605 let num_edges = self
1606 .graph
1607 .adjacency_matrix
1608 .iter()
1609 .map(|&x| usize::from(x.abs() > 1e-10))
1610 .sum::<usize>();
1611
1612 let max_edges = self.graph.num_vertices * (self.graph.num_vertices - 1) / 2;
1613 let density = if max_edges > 0 {
1614 (100.0 * num_edges as f64 / max_edges as f64) as u32
1615 } else {
1616 0
1617 };
1618
1619 Ok(ProblemCharacteristics {
1620 problem_type: self.problem_type,
1621 num_vertices: self.graph.num_vertices,
1622 density,
1623 regularity: 50, })
1625 }
1626
1627 fn extract_problem_features(&self) -> Result<Vec<f64>> {
1628 let features = vec![
1630 self.graph.num_vertices as f64,
1631 self.graph.adjacency_matrix.sum(),
1632 self.graph.vertex_weights.iter().sum::<f64>(),
1633 f64::from(self.problem_type as u32),
1634 ];
1635
1636 Ok(features)
1637 }
1638
1639 fn predict_parameter_update(&self, _features: &[f64]) -> Result<(Vec<f64>, Vec<f64>)> {
1640 let gamma_updates = vec![0.01; self.gammas.len()];
1642 let beta_updates = vec![0.01; self.betas.len()];
1643 Ok((gamma_updates, beta_updates))
1644 }
1645
1646 fn should_add_layer(&self, cost_history: &[f64]) -> Result<bool> {
1647 if cost_history.len() < 10 {
1648 return Ok(false);
1649 }
1650
1651 let recent_improvement =
1653 cost_history[cost_history.len() - 1] - cost_history[cost_history.len() - 10];
1654 Ok(recent_improvement.abs() < self.config.convergence_tolerance * 10.0)
1655 }
1656
1657 fn add_qaoa_layer(&mut self) -> Result<()> {
1658 self.gammas.push(0.1);
1660 self.betas.push(0.1);
1661 self.best_gammas.push(0.1);
1662 self.best_betas.push(0.1);
1663 Ok(())
1664 }
1665
1666 fn simulate_circuit(&self, circuit: &InterfaceCircuit) -> Result<Array1<Complex64>> {
1667 let state_size = 1 << circuit.num_qubits;
1669 let mut state = Array1::zeros(state_size);
1670 state[0] = Complex64::new(1.0, 0.0);
1671 Ok(state)
1672 }
1673
1674 fn extract_probabilities(&self, state: &Array1<Complex64>) -> Result<HashMap<String, f64>> {
1675 let mut probabilities = HashMap::new();
1676
1677 for (idx, amplitude) in state.iter().enumerate() {
1678 let probability = amplitude.norm_sqr();
1679 if probability > 1e-10 {
1680 let bitstring = format!("{:0width$b}", idx, width = self.graph.num_vertices);
1681 probabilities.insert(bitstring, probability);
1682 }
1683 }
1684
1685 Ok(probabilities)
1686 }
1687
1688 fn extract_best_solution(&self, probabilities: &HashMap<String, f64>) -> Result<String> {
1689 let mut best_solution = String::new();
1690 let mut best_cost = f64::NEG_INFINITY;
1691
1692 for bitstring in probabilities.keys() {
1693 let cost = self.evaluate_classical_cost(bitstring)?;
1694 if cost > best_cost {
1695 best_cost = cost;
1696 best_solution = bitstring.clone();
1697 }
1698 }
1699
1700 Ok(best_solution)
1701 }
1702
1703 fn evaluate_solution_quality(
1704 &self,
1705 solution: &str,
1706 _probabilities: &HashMap<String, f64>,
1707 ) -> Result<SolutionQuality> {
1708 let cost = self.evaluate_classical_cost(solution)?;
1709 let feasible = self.check_feasibility(solution)?;
1710
1711 let optimality_gap = self
1712 .classical_optimum
1713 .map(|classical_opt| (classical_opt - cost) / classical_opt);
1714
1715 Ok(SolutionQuality {
1716 feasible,
1717 optimality_gap,
1718 solution_variance: 0.0, confidence: 0.9, constraint_violations: usize::from(!feasible),
1721 })
1722 }
1723
1724 fn check_feasibility(&self, solution: &str) -> Result<bool> {
1725 let bits: Vec<bool> = solution.chars().map(|c| c == '1').collect();
1726
1727 match self.problem_type {
1729 QAOAProblemType::MaxWeightIndependentSet => {
1730 for i in 0..self.graph.num_vertices {
1732 if bits[i] {
1733 for j in 0..self.graph.num_vertices {
1734 if i != j && bits[j] && self.graph.adjacency_matrix[[i, j]] > 0.0 {
1735 return Ok(false);
1736 }
1737 }
1738 }
1739 }
1740 }
1741 QAOAProblemType::TSP => {
1742 let num_cities = (self.graph.num_vertices as f64).sqrt() as usize;
1744 let mut city_counts = vec![0; num_cities];
1745 let mut time_counts = vec![0; num_cities];
1746
1747 for city in 0..num_cities {
1748 for time in 0..num_cities {
1749 let qubit = city * num_cities + time;
1750 if qubit < bits.len() && bits[qubit] {
1751 city_counts[city] += 1;
1752 time_counts[time] += 1;
1753 }
1754 }
1755 }
1756
1757 if !city_counts.iter().all(|&count| count == 1)
1759 || !time_counts.iter().all(|&count| count == 1)
1760 {
1761 return Ok(false);
1762 }
1763 }
1764 _ => {
1765 }
1767 }
1768
1769 for constraint in &self.graph.constraints {
1771 match constraint {
1772 QAOAConstraint::Cardinality { target } => {
1773 let count = bits.iter().filter(|&&b| b).count();
1774 if count != *target {
1775 return Ok(false);
1776 }
1777 }
1778 QAOAConstraint::UpperBound { max_vertices } => {
1779 let count = bits.iter().filter(|&&b| b).count();
1780 if count > *max_vertices {
1781 return Ok(false);
1782 }
1783 }
1784 QAOAConstraint::LowerBound { min_vertices } => {
1785 let count = bits.iter().filter(|&&b| b).count();
1786 if count < *min_vertices {
1787 return Ok(false);
1788 }
1789 }
1790 QAOAConstraint::Parity { even } => {
1791 let count = bits.iter().filter(|&&b| b).count();
1792 if (count % 2 == 0) != *even {
1793 return Ok(false);
1794 }
1795 }
1796 QAOAConstraint::LinearConstraint {
1797 coefficients,
1798 bound,
1799 } => {
1800 let mut sum = 0.0;
1801 for (i, &coeff) in coefficients.iter().enumerate() {
1802 if i < bits.len() && bits[i] {
1803 sum += coeff;
1804 }
1805 }
1806 if (sum - bound).abs() > 1e-10 {
1807 return Ok(false);
1808 }
1809 }
1810 }
1811 }
1812
1813 Ok(true)
1814 }
1815
1816 fn prepare_warm_start_state(&self, circuit: &mut InterfaceCircuit) -> Result<()> {
1818 let classical_solution = self.get_classical_solution()?;
1820
1821 for (i, bit) in classical_solution.chars().enumerate() {
1822 if bit == '1' && i < circuit.num_qubits {
1823 circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![i]));
1824 }
1825 }
1826
1827 for qubit in 0..circuit.num_qubits {
1829 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.1), vec![qubit]));
1830 }
1831
1832 Ok(())
1833 }
1834
1835 fn prepare_adiabatic_state(&self, circuit: &mut InterfaceCircuit) -> Result<()> {
1836 for qubit in 0..circuit.num_qubits {
1838 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
1839 }
1840
1841 self.apply_cost_layer(circuit, 0.01)?;
1843
1844 Ok(())
1845 }
1846
1847 fn prepare_random_state(&self, circuit: &mut InterfaceCircuit) -> Result<()> {
1848 for qubit in 0..circuit.num_qubits {
1849 let angle = (thread_rng().gen::<f64>() - 0.5) * std::f64::consts::PI;
1850 circuit.add_gate(InterfaceGate::new(
1851 InterfaceGateType::RY(angle),
1852 vec![qubit],
1853 ));
1854 }
1855 Ok(())
1856 }
1857
1858 fn prepare_problem_specific_state(&self, circuit: &mut InterfaceCircuit) -> Result<()> {
1859 match self.problem_type {
1860 QAOAProblemType::MaxCut => {
1861 for qubit in 0..circuit.num_qubits {
1863 if qubit % 2 == 0 {
1864 circuit
1865 .add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![qubit]));
1866 }
1867 }
1868 }
1869 QAOAProblemType::TSP => {
1870 let num_cities = (circuit.num_qubits as f64).sqrt() as usize;
1872 for time in 0..num_cities {
1873 let city = time; let qubit = city * num_cities + time;
1875 if qubit < circuit.num_qubits {
1876 circuit
1877 .add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![qubit]));
1878 }
1879 }
1880 }
1881 _ => {
1882 for qubit in 0..circuit.num_qubits {
1884 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
1885 }
1886 }
1887 }
1888 Ok(())
1889 }
1890
1891 fn get_classical_solution(&self) -> Result<String> {
1892 let classical_cost = self.solve_classically()?;
1894
1895 let mut solution = String::new();
1897 for _ in 0..self.graph.num_vertices {
1898 solution.push(if thread_rng().gen() { '1' } else { '0' });
1899 }
1900 Ok(solution)
1901 }
1902}
1903
1904pub fn benchmark_qaoa() -> Result<HashMap<String, f64>> {
1906 let mut results = HashMap::new();
1907
1908 let start = Instant::now();
1910 let graph = QAOAGraph {
1911 num_vertices: 4,
1912 adjacency_matrix: Array2::from_shape_vec(
1913 (4, 4),
1914 vec![
1915 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0,
1916 ],
1917 )
1918 .map_err(|e| {
1919 crate::error::SimulatorError::InvalidInput(format!(
1920 "Failed to create adjacency matrix: {}",
1921 e
1922 ))
1923 })?,
1924 vertex_weights: vec![1.0; 4],
1925 edge_weights: HashMap::new(),
1926 constraints: Vec::new(),
1927 };
1928
1929 let config = QAOAConfig {
1930 num_layers: 2,
1931 max_iterations: 50,
1932 ..Default::default()
1933 };
1934
1935 let mut optimizer = QAOAOptimizer::new(config, graph, QAOAProblemType::MaxCut)?;
1936 let _result = optimizer.optimize()?;
1937
1938 let maxcut_time = start.elapsed().as_millis() as f64;
1939 results.insert("maxcut_qaoa_4_vertices".to_string(), maxcut_time);
1940
1941 Ok(results)
1942}
1943
1944#[cfg(test)]
1945mod tests {
1946 use super::*;
1947
1948 #[test]
1949 fn test_qaoa_optimizer_creation() {
1950 let graph = QAOAGraph {
1951 num_vertices: 3,
1952 adjacency_matrix: Array2::zeros((3, 3)),
1953 vertex_weights: vec![1.0; 3],
1954 edge_weights: HashMap::new(),
1955 constraints: Vec::new(),
1956 };
1957
1958 let config = QAOAConfig::default();
1959 let optimizer = QAOAOptimizer::new(config, graph, QAOAProblemType::MaxCut);
1960 assert!(optimizer.is_ok());
1961 }
1962
1963 #[test]
1964 fn test_maxcut_cost_evaluation() {
1965 let optimizer = create_test_optimizer();
1966 let bits = [true, false, true, false];
1967 let cost = optimizer
1968 .evaluate_maxcut_cost(&bits)
1969 .expect("MaxCut cost evaluation should succeed");
1970 assert!(cost >= 0.0);
1971 }
1972
1973 #[test]
1974 fn test_parameter_initialization() {
1975 let config = QAOAConfig {
1976 num_layers: 3,
1977 ..Default::default()
1978 };
1979 let graph = create_test_graph();
1980
1981 let gammas = QAOAOptimizer::initialize_gammas(&config, &graph)
1982 .expect("Gamma initialization should succeed");
1983 let betas = QAOAOptimizer::initialize_betas(&config, &graph)
1984 .expect("Beta initialization should succeed");
1985
1986 assert_eq!(gammas.len(), 3);
1987 assert_eq!(betas.len(), 3);
1988 }
1989
1990 #[test]
1991 fn test_constraint_checking() {
1992 let optimizer = create_test_optimizer();
1993 let solution = "1010";
1994 let feasible = optimizer
1995 .check_feasibility(solution)
1996 .expect("Feasibility check should succeed");
1997 assert!(feasible);
1998 }
1999
2000 fn create_test_optimizer() -> QAOAOptimizer {
2001 let graph = create_test_graph();
2002 let config = QAOAConfig::default();
2003 QAOAOptimizer::new(config, graph, QAOAProblemType::MaxCut)
2004 .expect("Test optimizer creation should succeed")
2005 }
2006
2007 fn create_test_graph() -> QAOAGraph {
2008 QAOAGraph {
2009 num_vertices: 4,
2010 adjacency_matrix: Array2::eye(4),
2011 vertex_weights: vec![1.0; 4],
2012 edge_weights: HashMap::new(),
2013 constraints: Vec::new(),
2014 }
2015 }
2016}