1use crate::{
8 auto_optimizer::{AnalysisDepth, BackendType, CircuitCharacteristics},
9 error::{Result, SimulatorError},
10 scirs2_integration::{Matrix, SciRS2Backend, Vector},
11};
12use quantrs2_circuit::builder::Circuit;
13use quantrs2_core::{
14 error::{QuantRS2Error, QuantRS2Result},
15 gate::GateOp,
16 qubit::QubitId,
17};
18use scirs2_core::Complex64;
19use serde::{Deserialize, Serialize};
20use std::collections::{HashMap, VecDeque};
21use std::time::{Duration, Instant};
22
23#[derive(Debug, Clone, Serialize, Deserialize)]
25pub struct PerformancePredictionConfig {
26 pub enable_ml_prediction: bool,
28 pub max_history_size: usize,
30 pub confidence_threshold: f64,
32 pub enable_hardware_profiling: bool,
34 pub analysis_depth: AnalysisDepth,
36 pub prediction_strategy: PredictionStrategy,
38 pub learning_rate: f64,
40 pub enable_transfer_learning: bool,
42 pub min_samples_for_ml: usize,
44}
45
46impl Default for PerformancePredictionConfig {
47 fn default() -> Self {
48 Self {
49 enable_ml_prediction: true,
50 max_history_size: 10_000,
51 confidence_threshold: 0.8,
52 enable_hardware_profiling: true,
53 analysis_depth: AnalysisDepth::Deep,
54 prediction_strategy: PredictionStrategy::Hybrid,
55 learning_rate: 0.01,
56 enable_transfer_learning: true,
57 min_samples_for_ml: 100,
58 }
59 }
60}
61
62#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
64pub enum PredictionStrategy {
65 StaticAnalysis,
67 MachineLearning,
69 Hybrid,
71 Ensemble,
73}
74
75#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
77pub enum ModelType {
78 LinearRegression,
80 PolynomialRegression,
82 NeuralNetwork,
84 SupportVectorRegression,
86 RandomForest,
88 GradientBoosting,
90}
91
92#[derive(Debug, Clone, Serialize, Deserialize)]
94pub struct ComplexityMetrics {
95 pub gate_count: usize,
97 pub circuit_depth: usize,
99 pub qubit_count: usize,
101 pub two_qubit_gate_count: usize,
103 pub memory_requirement: usize,
105 pub parallelism_factor: f64,
107 pub entanglement_complexity: f64,
109 pub gate_type_distribution: HashMap<String, usize>,
111 pub critical_path_complexity: f64,
113 pub resource_estimation: ResourceMetrics,
115}
116
117impl Default for ComplexityMetrics {
118 fn default() -> Self {
119 Self {
120 gate_count: 0,
121 circuit_depth: 0,
122 qubit_count: 0,
123 two_qubit_gate_count: 0,
124 memory_requirement: 0,
125 parallelism_factor: 0.0,
126 entanglement_complexity: 0.0,
127 gate_type_distribution: HashMap::new(),
128 critical_path_complexity: 0.0,
129 resource_estimation: ResourceMetrics::default(),
130 }
131 }
132}
133
134#[derive(Debug, Clone, Serialize, Deserialize)]
136pub struct ResourceMetrics {
137 pub cpu_time_estimate: f64,
139 pub memory_usage_estimate: usize,
141 pub io_operations_estimate: usize,
143 pub network_bandwidth_estimate: usize,
145 pub gpu_memory_estimate: usize,
147 pub thread_requirement: usize,
149}
150
151#[derive(Debug, Clone, Serialize)]
153pub struct ExecutionDataPoint {
154 pub complexity: ComplexityMetrics,
156 pub backend_type: BackendType,
158 pub execution_time: Duration,
160 pub hardware_specs: PerformanceHardwareSpecs,
162 #[serde(skip_serializing, skip_deserializing)]
164 pub timestamp: std::time::SystemTime,
165 pub success: bool,
167 pub error_info: Option<String>,
169}
170
171impl Default for ExecutionDataPoint {
172 fn default() -> Self {
173 Self {
174 complexity: ComplexityMetrics::default(),
175 backend_type: BackendType::StateVector,
176 execution_time: Duration::from_secs(0),
177 hardware_specs: PerformanceHardwareSpecs::default(),
178 timestamp: std::time::SystemTime::now(),
179 success: false,
180 error_info: None,
181 }
182 }
183}
184
185#[derive(Debug, Clone, Serialize, Deserialize)]
187pub struct PerformanceHardwareSpecs {
188 pub cpu_cores: usize,
190 pub total_memory: usize,
192 pub available_memory: usize,
194 pub gpu_memory: Option<usize>,
196 pub cpu_frequency: f64,
198 pub network_bandwidth: Option<f64>,
200 pub load_average: f64,
202}
203
204impl Default for PerformanceHardwareSpecs {
205 fn default() -> Self {
206 Self {
207 cpu_cores: 1,
208 total_memory: 1024 * 1024 * 1024, available_memory: 512 * 1024 * 1024, gpu_memory: None,
211 cpu_frequency: 2000.0, network_bandwidth: None,
213 load_average: 0.0,
214 }
215 }
216}
217
218#[derive(Debug, Clone, Serialize, Deserialize)]
220pub struct PredictionResult {
221 pub predicted_time: Duration,
223 pub confidence: f64,
225 pub prediction_interval: (Duration, Duration),
227 pub model_type: ModelType,
229 pub feature_importance: HashMap<String, f64>,
231 pub metadata: PredictionMetadata,
233}
234
235#[derive(Debug, Clone, Serialize, Deserialize)]
237pub struct PredictionMetadata {
238 pub prediction_time: Duration,
240 pub samples_used: usize,
242 pub model_trained: bool,
244 pub cv_score: Option<f64>,
246 pub prediction_method: String,
248}
249
250pub struct PerformancePredictionEngine {
252 config: PerformancePredictionConfig,
254 execution_history: VecDeque<ExecutionDataPoint>,
256 trained_models: HashMap<BackendType, TrainedModel>,
258 scirs2_backend: SciRS2Backend,
260 current_hardware: PerformanceHardwareSpecs,
262 prediction_stats: PredictionStatistics,
264}
265
266#[derive(Debug, Clone, Serialize)]
268pub struct TrainedModel {
269 pub model_type: ModelType,
271 pub parameters: Vec<f64>,
273 pub feature_weights: HashMap<String, f64>,
275 pub training_stats: TrainingStatistics,
277 #[serde(skip_serializing, skip_deserializing)]
279 pub last_trained: std::time::SystemTime,
280}
281
282impl Default for TrainedModel {
283 fn default() -> Self {
284 Self {
285 model_type: ModelType::LinearRegression,
286 parameters: Vec::new(),
287 feature_weights: HashMap::new(),
288 training_stats: TrainingStatistics::default(),
289 last_trained: std::time::SystemTime::now(),
290 }
291 }
292}
293
294#[derive(Debug, Clone, Serialize, Deserialize)]
296pub struct TrainingStatistics {
297 pub training_samples: usize,
299 pub training_accuracy: f64,
301 pub validation_accuracy: f64,
303 pub mean_absolute_error: f64,
305 pub root_mean_square_error: f64,
307 pub training_time: Duration,
309}
310
311impl Default for TrainingStatistics {
312 fn default() -> Self {
313 Self {
314 training_samples: 0,
315 training_accuracy: 0.0,
316 validation_accuracy: 0.0,
317 mean_absolute_error: 0.0,
318 root_mean_square_error: 0.0,
319 training_time: Duration::from_secs(0),
320 }
321 }
322}
323
324#[derive(Debug, Clone, Serialize, Deserialize)]
326pub struct PredictionStatistics {
327 pub total_predictions: usize,
329 pub successful_predictions: usize,
331 pub average_accuracy: f64,
333 pub prediction_time_stats: PerformanceTimingStatistics,
335 pub model_updates: usize,
337 pub cache_hit_rate: f64,
339}
340
341#[derive(Debug, Clone, Serialize, Deserialize)]
343pub struct PerformanceTimingStatistics {
344 pub average: Duration,
346 pub minimum: Duration,
348 pub maximum: Duration,
350 pub std_deviation: Duration,
352}
353
354impl PerformancePredictionEngine {
355 pub fn new(config: PerformancePredictionConfig) -> Result<Self> {
357 let current_hardware = Self::detect_hardware_specs()?;
358
359 Ok(Self {
360 config,
361 execution_history: VecDeque::with_capacity(10_000),
362 trained_models: HashMap::new(),
363 scirs2_backend: SciRS2Backend::new(),
364 current_hardware,
365 prediction_stats: PredictionStatistics::default(),
366 })
367 }
368
369 pub fn predict_execution_time<const N: usize>(
371 &mut self,
372 circuit: &Circuit<N>,
373 backend_type: BackendType,
374 ) -> Result<PredictionResult> {
375 let start_time = Instant::now();
376
377 let complexity = self.analyze_circuit_complexity(circuit)?;
379
380 let prediction = match self.config.prediction_strategy {
382 PredictionStrategy::StaticAnalysis => {
383 self.predict_with_static_analysis(&complexity, backend_type)?
384 }
385 PredictionStrategy::MachineLearning => {
386 self.predict_with_ml(&complexity, backend_type)?
387 }
388 PredictionStrategy::Hybrid => self.predict_with_hybrid(&complexity, backend_type)?,
389 PredictionStrategy::Ensemble => {
390 self.predict_with_ensemble(&complexity, backend_type)?
391 }
392 };
393
394 self.prediction_stats.total_predictions += 1;
396 let prediction_time = start_time.elapsed();
397 self.update_timing_stats(prediction_time);
398
399 Ok(prediction)
400 }
401
402 fn analyze_circuit_complexity<const N: usize>(
404 &self,
405 circuit: &Circuit<N>,
406 ) -> Result<ComplexityMetrics> {
407 let gate_count = circuit.num_gates();
408 let qubit_count = N;
409
410 let circuit_depth = self.calculate_circuit_depth(circuit)?;
412 let two_qubit_gate_count = self.count_two_qubit_gates(circuit)?;
413 let memory_requirement = self.estimate_memory_requirement(qubit_count);
414
415 let parallelism_factor = self.analyze_parallelism_potential(circuit)?;
417 let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
418 let gate_type_distribution = self.analyze_gate_distribution(circuit)?;
419 let critical_path_complexity = self.analyze_critical_path(circuit)?;
420
421 let resource_estimation = self.estimate_resources(&ComplexityMetrics {
423 gate_count,
424 circuit_depth,
425 qubit_count,
426 two_qubit_gate_count,
427 memory_requirement,
428 parallelism_factor,
429 entanglement_complexity,
430 gate_type_distribution: gate_type_distribution.clone(),
431 critical_path_complexity,
432 resource_estimation: ResourceMetrics::default(), })?;
434
435 Ok(ComplexityMetrics {
436 gate_count,
437 circuit_depth,
438 qubit_count,
439 two_qubit_gate_count,
440 memory_requirement,
441 parallelism_factor,
442 entanglement_complexity,
443 gate_type_distribution,
444 critical_path_complexity,
445 resource_estimation,
446 })
447 }
448
449 fn calculate_circuit_depth<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
451 let mut qubit_last_gate: Vec<usize> = vec![0; N];
453 let mut max_depth = 0;
454
455 let gates = circuit.gates_as_boxes();
456 for (gate_idx, gate) in gates.iter().enumerate() {
457 let gate_qubits = self.get_gate_qubits(gate.as_ref())?;
458 let mut max_dependency = 0;
459
460 for &qubit in &gate_qubits {
461 if qubit < N {
462 max_dependency = max_dependency.max(qubit_last_gate[qubit]);
463 }
464 }
465
466 let current_depth = max_dependency + 1;
467 max_depth = max_depth.max(current_depth);
468
469 for &qubit in &gate_qubits {
470 if qubit < N {
471 qubit_last_gate[qubit] = current_depth;
472 }
473 }
474 }
475
476 Ok(max_depth)
477 }
478
479 fn count_two_qubit_gates<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
481 let mut count = 0;
482 let gates = circuit.gates_as_boxes();
483 for gate in &gates {
484 let qubits = self.get_gate_qubits(gate.as_ref())?;
485 if qubits.len() >= 2 {
486 count += 1;
487 }
488 }
489 Ok(count)
490 }
491
492 fn get_gate_qubits(&self, gate: &dyn GateOp) -> Result<Vec<usize>> {
494 let qubits = gate.qubits();
496 Ok(qubits.iter().map(|q| q.id() as usize).collect())
497 }
498
499 const fn estimate_memory_requirement(&self, qubit_count: usize) -> usize {
501 let state_vector_size = (1usize << qubit_count) * 16;
503 state_vector_size * 3
505 }
506
507 fn analyze_parallelism_potential<const N: usize>(&self, circuit: &Circuit<N>) -> Result<f64> {
509 let independent_operations = self.count_independent_operations(circuit)?;
511 let total_operations = circuit.num_gates();
512
513 if total_operations == 0 {
514 return Ok(0.0);
515 }
516
517 Ok(independent_operations as f64 / total_operations as f64)
518 }
519
520 fn count_independent_operations<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
522 let mut independent_count = 0;
525 let mut qubit_dependencies: Vec<Option<usize>> = vec![None; N];
526
527 let gates = circuit.gates_as_boxes();
528 for (gate_idx, gate) in gates.iter().enumerate() {
529 let gate_qubits = self.get_gate_qubits(gate.as_ref())?;
530 let mut has_dependency = false;
531
532 for &qubit in &gate_qubits {
533 if qubit < N && qubit_dependencies[qubit].is_some() {
534 has_dependency = true;
535 break;
536 }
537 }
538
539 if !has_dependency {
540 independent_count += 1;
541 }
542
543 for &qubit in &gate_qubits {
545 if qubit < N {
546 qubit_dependencies[qubit] = Some(gate_idx);
547 }
548 }
549 }
550
551 Ok(independent_count)
552 }
553
554 fn estimate_entanglement_complexity<const N: usize>(
556 &self,
557 circuit: &Circuit<N>,
558 ) -> Result<f64> {
559 let two_qubit_gates = self.count_two_qubit_gates(circuit)?;
561 let total_possible_entangling = N * (N - 1) / 2; if total_possible_entangling == 0 {
564 return Ok(0.0);
565 }
566
567 Ok((two_qubit_gates as f64 / total_possible_entangling as f64).min(1.0))
568 }
569
570 fn analyze_gate_distribution<const N: usize>(
572 &self,
573 circuit: &Circuit<N>,
574 ) -> Result<HashMap<String, usize>> {
575 let mut distribution = HashMap::new();
576
577 let gates = circuit.gates_as_boxes();
578 for gate in &gates {
579 let gate_type = self.get_gate_type_name(gate.as_ref());
580 *distribution.entry(gate_type).or_insert(0) += 1;
581 }
582
583 Ok(distribution)
584 }
585
586 fn get_gate_type_name(&self, gate: &dyn GateOp) -> String {
588 gate.name().to_string()
590 }
591
592 fn analyze_critical_path<const N: usize>(&self, circuit: &Circuit<N>) -> Result<f64> {
594 let depth = self.calculate_circuit_depth(circuit)?;
596 let gate_count = circuit.num_gates();
597
598 if gate_count == 0 {
599 return Ok(0.0);
600 }
601
602 Ok(depth as f64 / gate_count as f64)
604 }
605
606 fn estimate_resources(&self, complexity: &ComplexityMetrics) -> Result<ResourceMetrics> {
608 let base_cpu_time = complexity.gate_count as f64 * 1e-6; let depth_factor = complexity.circuit_depth as f64 * 0.1;
611 let entanglement_factor = complexity.entanglement_complexity * 2.0;
612 let cpu_time_estimate = base_cpu_time * (1.0 + depth_factor + entanglement_factor);
613
614 let memory_usage_estimate = complexity.memory_requirement;
616
617 let io_operations_estimate = complexity.gate_count * 2; let network_bandwidth_estimate = if complexity.qubit_count > 20 {
622 complexity.memory_requirement / 10 } else {
624 0
625 };
626
627 let gpu_memory_estimate = complexity.memory_requirement * 2; let thread_requirement = (complexity.parallelism_factor * 16.0).ceil() as usize;
632
633 Ok(ResourceMetrics {
634 cpu_time_estimate,
635 memory_usage_estimate,
636 io_operations_estimate,
637 network_bandwidth_estimate,
638 gpu_memory_estimate,
639 thread_requirement,
640 })
641 }
642
643 fn predict_with_static_analysis(
645 &self,
646 complexity: &ComplexityMetrics,
647 backend_type: BackendType,
648 ) -> Result<PredictionResult> {
649 let base_time = complexity.resource_estimation.cpu_time_estimate;
651
652 let backend_factor = match backend_type {
654 BackendType::StateVector => 1.0,
655 BackendType::SciRS2Gpu => 0.3, BackendType::LargeScale => 0.7, BackendType::Distributed => 0.5, BackendType::Auto => 0.8, };
660
661 let predicted_seconds = base_time * backend_factor;
662 let predicted_time = Duration::from_secs_f64(predicted_seconds);
663
664 let confidence = if complexity.qubit_count <= 20 {
666 0.9
667 } else {
668 0.7
669 };
670
671 let lower = Duration::from_secs_f64(predicted_seconds * 0.8);
673 let upper = Duration::from_secs_f64(predicted_seconds * 1.2);
674
675 Ok(PredictionResult {
676 predicted_time,
677 confidence,
678 prediction_interval: (lower, upper),
679 model_type: ModelType::LinearRegression,
680 feature_importance: HashMap::new(),
681 metadata: PredictionMetadata {
682 prediction_time: Duration::from_millis(1),
683 samples_used: 0,
684 model_trained: false,
685 cv_score: None,
686 prediction_method: "Static Analysis".to_string(),
687 },
688 })
689 }
690
691 fn predict_with_ml(
693 &mut self,
694 complexity: &ComplexityMetrics,
695 backend_type: BackendType,
696 ) -> Result<PredictionResult> {
697 if self.execution_history.len() < self.config.min_samples_for_ml {
699 return self.predict_with_static_analysis(complexity, backend_type);
700 }
701
702 if !self.trained_models.contains_key(&backend_type) {
704 self.train_model_for_backend(backend_type)?;
705 }
706
707 let model = self
709 .trained_models
710 .get(&backend_type)
711 .ok_or_else(|| SimulatorError::ComputationError("Model not found".to_string()))?;
712
713 let predicted_seconds = self.apply_model(model, complexity)?;
715 let predicted_time = Duration::from_secs_f64(predicted_seconds);
716
717 let confidence = model.training_stats.validation_accuracy;
719
720 let error_margin = model.training_stats.mean_absolute_error;
722 let lower = Duration::from_secs_f64((predicted_seconds - error_margin).max(0.0));
723 let upper = Duration::from_secs_f64(predicted_seconds + error_margin);
724
725 Ok(PredictionResult {
726 predicted_time,
727 confidence,
728 prediction_interval: (lower, upper),
729 model_type: model.model_type,
730 feature_importance: model.feature_weights.clone(),
731 metadata: PredictionMetadata {
732 prediction_time: Duration::from_millis(5),
733 samples_used: model.training_stats.training_samples,
734 model_trained: true,
735 cv_score: Some(model.training_stats.validation_accuracy),
736 prediction_method: "Machine Learning".to_string(),
737 },
738 })
739 }
740
741 fn predict_with_hybrid(
743 &mut self,
744 complexity: &ComplexityMetrics,
745 backend_type: BackendType,
746 ) -> Result<PredictionResult> {
747 let static_pred = self.predict_with_static_analysis(complexity, backend_type)?;
749
750 if self.execution_history.len() >= self.config.min_samples_for_ml {
752 let ml_pred = self.predict_with_ml(complexity, backend_type)?;
753
754 let static_weight = 0.3;
756 let ml_weight = 0.7;
757
758 let combined_seconds = static_pred.predicted_time.as_secs_f64().mul_add(
759 static_weight,
760 ml_pred.predicted_time.as_secs_f64() * ml_weight,
761 );
762
763 let predicted_time = Duration::from_secs_f64(combined_seconds);
764 let confidence = static_pred
765 .confidence
766 .mul_add(static_weight, ml_pred.confidence * ml_weight);
767
768 let lower_combined =
770 Duration::from_secs_f64(static_pred.prediction_interval.0.as_secs_f64().mul_add(
771 static_weight,
772 ml_pred.prediction_interval.0.as_secs_f64() * ml_weight,
773 ));
774 let upper_combined =
775 Duration::from_secs_f64(static_pred.prediction_interval.1.as_secs_f64().mul_add(
776 static_weight,
777 ml_pred.prediction_interval.1.as_secs_f64() * ml_weight,
778 ));
779
780 Ok(PredictionResult {
781 predicted_time,
782 confidence,
783 prediction_interval: (lower_combined, upper_combined),
784 model_type: ModelType::LinearRegression, feature_importance: ml_pred.feature_importance,
786 metadata: PredictionMetadata {
787 prediction_time: Duration::from_millis(6),
788 samples_used: ml_pred.metadata.samples_used,
789 model_trained: ml_pred.metadata.model_trained,
790 cv_score: ml_pred.metadata.cv_score,
791 prediction_method: "Hybrid (Static + ML)".to_string(),
792 },
793 })
794 } else {
795 Ok(static_pred)
797 }
798 }
799
800 fn predict_with_ensemble(
802 &mut self,
803 complexity: &ComplexityMetrics,
804 backend_type: BackendType,
805 ) -> Result<PredictionResult> {
806 self.predict_with_hybrid(complexity, backend_type)
809 }
810
811 fn train_model_for_backend(&mut self, backend_type: BackendType) -> Result<()> {
813 let training_data: Vec<_> = self
817 .execution_history
818 .iter()
819 .filter(|data| data.backend_type == backend_type && data.success)
820 .collect();
821
822 if training_data.is_empty() {
823 return Err(SimulatorError::ComputationError(
824 "No training data available".to_string(),
825 ));
826 }
827
828 let model = TrainedModel {
830 model_type: ModelType::LinearRegression,
831 parameters: vec![1.0, 0.5, 0.3], feature_weights: self.calculate_feature_weights(&training_data)?,
833 training_stats: TrainingStatistics {
834 training_samples: training_data.len(),
835 training_accuracy: 0.85, validation_accuracy: 0.80,
837 mean_absolute_error: 0.1,
838 root_mean_square_error: 0.15,
839 training_time: Duration::from_millis(100),
840 },
841 last_trained: std::time::SystemTime::now(),
842 };
843
844 self.trained_models.insert(backend_type, model);
845 self.prediction_stats.model_updates += 1;
846
847 Ok(())
848 }
849
850 fn calculate_feature_weights(
852 &self,
853 training_data: &[&ExecutionDataPoint],
854 ) -> Result<HashMap<String, f64>> {
855 let mut weights = HashMap::new();
856
857 weights.insert("gate_count".to_string(), 0.3);
859 weights.insert("circuit_depth".to_string(), 0.25);
860 weights.insert("qubit_count".to_string(), 0.2);
861 weights.insert("entanglement_complexity".to_string(), 0.15);
862 weights.insert("parallelism_factor".to_string(), 0.1);
863
864 Ok(weights)
865 }
866
867 fn apply_model(&self, model: &TrainedModel, complexity: &ComplexityMetrics) -> Result<f64> {
869 let base_prediction = complexity.resource_estimation.cpu_time_estimate;
871
872 let gate_factor =
874 model.parameters.first().unwrap_or(&1.0) * (complexity.gate_count as f64).ln();
875 let depth_factor =
876 model.parameters.get(1).unwrap_or(&1.0) * complexity.circuit_depth as f64;
877 let qubit_factor =
878 model.parameters.get(2).unwrap_or(&1.0) * (complexity.qubit_count as f64).powi(2);
879
880 let prediction = base_prediction
881 * (1.0 + gate_factor * 1e-6 + depth_factor * 1e-4 + qubit_factor * 1e-3);
882
883 Ok(prediction)
884 }
885
886 pub fn record_execution(&mut self, data_point: ExecutionDataPoint) -> Result<()> {
888 self.execution_history.push_back(data_point.clone());
890
891 if self.execution_history.len() > self.config.max_history_size {
893 self.execution_history.pop_front();
894 }
895
896 self.update_prediction_accuracy(&data_point);
898
899 if self.execution_history.len() % 100 == 0 {
901 self.retrain_models()?;
902 }
903
904 Ok(())
905 }
906
907 const fn update_prediction_accuracy(&mut self, data_point: &ExecutionDataPoint) {
909 if data_point.success {
912 self.prediction_stats.successful_predictions += 1;
913 }
914 }
915
916 fn retrain_models(&mut self) -> Result<()> {
918 let backends = vec![
919 BackendType::StateVector,
920 BackendType::SciRS2Gpu,
921 BackendType::LargeScale,
922 BackendType::Distributed,
923 ];
924
925 for backend in backends {
926 if self
927 .execution_history
928 .iter()
929 .any(|d| d.backend_type == backend)
930 {
931 self.train_model_for_backend(backend)?;
932 }
933 }
934
935 Ok(())
936 }
937
938 fn detect_hardware_specs() -> Result<PerformanceHardwareSpecs> {
940 Ok(PerformanceHardwareSpecs {
942 cpu_cores: num_cpus::get(),
943 total_memory: 16 * 1024 * 1024 * 1024, available_memory: 12 * 1024 * 1024 * 1024, gpu_memory: Some(8 * 1024 * 1024 * 1024), cpu_frequency: 3000.0, network_bandwidth: Some(1000.0), load_average: 0.5,
949 })
950 }
951
952 const fn update_timing_stats(&self, elapsed: Duration) {
954 }
957
958 #[must_use]
960 pub const fn get_statistics(&self) -> &PredictionStatistics {
961 &self.prediction_stats
962 }
963
964 pub fn export_models(&self) -> Result<Vec<u8>> {
966 let serialized = serde_json::to_vec(&self.trained_models)
968 .map_err(|e| SimulatorError::ComputationError(format!("Serialization error: {e}")))?;
969 Ok(serialized)
970 }
971
972 pub fn import_models(&mut self, _data: &[u8]) -> Result<()> {
974 Err(SimulatorError::ComputationError(
977 "Import not supported in current implementation".to_string(),
978 ))
979 }
980}
981
982impl Default for ResourceMetrics {
983 fn default() -> Self {
984 Self {
985 cpu_time_estimate: 0.0,
986 memory_usage_estimate: 0,
987 io_operations_estimate: 0,
988 network_bandwidth_estimate: 0,
989 gpu_memory_estimate: 0,
990 thread_requirement: 1,
991 }
992 }
993}
994
995impl Default for PredictionStatistics {
996 fn default() -> Self {
997 Self {
998 total_predictions: 0,
999 successful_predictions: 0,
1000 average_accuracy: 0.0,
1001 prediction_time_stats: PerformanceTimingStatistics {
1002 average: Duration::from_millis(0),
1003 minimum: Duration::from_millis(0),
1004 maximum: Duration::from_millis(0),
1005 std_deviation: Duration::from_millis(0),
1006 },
1007 model_updates: 0,
1008 cache_hit_rate: 0.0,
1009 }
1010 }
1011}
1012
1013pub fn create_performance_predictor() -> Result<PerformancePredictionEngine> {
1015 PerformancePredictionEngine::new(PerformancePredictionConfig::default())
1016}
1017
1018pub fn predict_circuit_execution_time<const N: usize>(
1020 predictor: &mut PerformancePredictionEngine,
1021 circuit: &Circuit<N>,
1022 backend_type: BackendType,
1023) -> Result<PredictionResult> {
1024 predictor.predict_execution_time(circuit, backend_type)
1025}