quantrs2_sim/
performance_prediction.rs

1//! Performance Prediction Models for Circuit Execution Time Estimation
2//!
3//! This module provides sophisticated models for predicting quantum circuit
4//! execution times across different simulation backends using `SciRS2` analysis
5//! tools and machine learning techniques.
6
7use crate::{
8    auto_optimizer::{AnalysisDepth, BackendType, CircuitCharacteristics},
9    error::{Result, SimulatorError},
10    scirs2_integration::{Matrix, SciRS2Backend, Vector},
11};
12use quantrs2_circuit::builder::Circuit;
13use quantrs2_core::{
14    error::{QuantRS2Error, QuantRS2Result},
15    gate::GateOp,
16    qubit::QubitId,
17};
18use scirs2_core::Complex64;
19use serde::{Deserialize, Serialize};
20use std::collections::{HashMap, VecDeque};
21use std::time::{Duration, Instant};
22
23/// Configuration for performance prediction models
24#[derive(Debug, Clone, Serialize, Deserialize)]
25pub struct PerformancePredictionConfig {
26    /// Enable machine learning-based predictions
27    pub enable_ml_prediction: bool,
28    /// Maximum historical data points to maintain
29    pub max_history_size: usize,
30    /// Confidence threshold for predictions (0.0 to 1.0)
31    pub confidence_threshold: f64,
32    /// Enable hardware profiling for adaptive predictions
33    pub enable_hardware_profiling: bool,
34    /// `SciRS2` analysis depth for complexity estimation
35    pub analysis_depth: AnalysisDepth,
36    /// Prediction strategy to use
37    pub prediction_strategy: PredictionStrategy,
38    /// Learning rate for adaptive models
39    pub learning_rate: f64,
40    /// Enable cross-backend performance transfer learning
41    pub enable_transfer_learning: bool,
42    /// Minimum samples required before using ML predictions
43    pub min_samples_for_ml: usize,
44}
45
46impl Default for PerformancePredictionConfig {
47    fn default() -> Self {
48        Self {
49            enable_ml_prediction: true,
50            max_history_size: 10_000,
51            confidence_threshold: 0.8,
52            enable_hardware_profiling: true,
53            analysis_depth: AnalysisDepth::Deep,
54            prediction_strategy: PredictionStrategy::Hybrid,
55            learning_rate: 0.01,
56            enable_transfer_learning: true,
57            min_samples_for_ml: 100,
58        }
59    }
60}
61
62/// Prediction strategy for execution time estimation
63#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
64pub enum PredictionStrategy {
65    /// Static analysis only
66    StaticAnalysis,
67    /// Machine learning only
68    MachineLearning,
69    /// Hybrid approach (static + ML)
70    Hybrid,
71    /// Ensemble of multiple models
72    Ensemble,
73}
74
75/// Performance prediction model types
76#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
77pub enum ModelType {
78    /// Linear regression model
79    LinearRegression,
80    /// Polynomial regression model
81    PolynomialRegression,
82    /// Neural network model
83    NeuralNetwork,
84    /// Support vector regression
85    SupportVectorRegression,
86    /// Random forest model
87    RandomForest,
88    /// Gradient boosting model
89    GradientBoosting,
90}
91
92/// Circuit complexity metrics for prediction
93#[derive(Debug, Clone, Serialize, Deserialize)]
94pub struct ComplexityMetrics {
95    /// Total number of gates
96    pub gate_count: usize,
97    /// Circuit depth (critical path length)
98    pub circuit_depth: usize,
99    /// Number of qubits
100    pub qubit_count: usize,
101    /// Number of two-qubit gates
102    pub two_qubit_gate_count: usize,
103    /// Estimated memory requirement (bytes)
104    pub memory_requirement: usize,
105    /// Parallelism potential (0.0 to 1.0)
106    pub parallelism_factor: f64,
107    /// Entanglement complexity measure
108    pub entanglement_complexity: f64,
109    /// Gate type distribution
110    pub gate_type_distribution: HashMap<String, usize>,
111    /// Critical path analysis
112    pub critical_path_complexity: f64,
113    /// Resource estimation
114    pub resource_estimation: ResourceMetrics,
115}
116
117impl Default for ComplexityMetrics {
118    fn default() -> Self {
119        Self {
120            gate_count: 0,
121            circuit_depth: 0,
122            qubit_count: 0,
123            two_qubit_gate_count: 0,
124            memory_requirement: 0,
125            parallelism_factor: 0.0,
126            entanglement_complexity: 0.0,
127            gate_type_distribution: HashMap::new(),
128            critical_path_complexity: 0.0,
129            resource_estimation: ResourceMetrics::default(),
130        }
131    }
132}
133
134/// Resource requirements metrics
135#[derive(Debug, Clone, Serialize, Deserialize)]
136pub struct ResourceMetrics {
137    /// Estimated CPU time (seconds)
138    pub cpu_time_estimate: f64,
139    /// Estimated memory usage (bytes)
140    pub memory_usage_estimate: usize,
141    /// Estimated I/O operations
142    pub io_operations_estimate: usize,
143    /// Network bandwidth requirement (bytes/sec)
144    pub network_bandwidth_estimate: usize,
145    /// GPU memory requirement (bytes)
146    pub gpu_memory_estimate: usize,
147    /// Parallel thread requirement
148    pub thread_requirement: usize,
149}
150
151/// Historical execution data point
152#[derive(Debug, Clone, Serialize)]
153pub struct ExecutionDataPoint {
154    /// Circuit complexity metrics
155    pub complexity: ComplexityMetrics,
156    /// Backend used for execution
157    pub backend_type: BackendType,
158    /// Actual execution time
159    pub execution_time: Duration,
160    /// Hardware specifications during execution
161    pub hardware_specs: PerformanceHardwareSpecs,
162    /// Timestamp of execution
163    #[serde(skip_serializing, skip_deserializing)]
164    pub timestamp: std::time::SystemTime,
165    /// Success flag
166    pub success: bool,
167    /// Error information if failed
168    pub error_info: Option<String>,
169}
170
171impl Default for ExecutionDataPoint {
172    fn default() -> Self {
173        Self {
174            complexity: ComplexityMetrics::default(),
175            backend_type: BackendType::StateVector,
176            execution_time: Duration::from_secs(0),
177            hardware_specs: PerformanceHardwareSpecs::default(),
178            timestamp: std::time::SystemTime::now(),
179            success: false,
180            error_info: None,
181        }
182    }
183}
184
185/// Hardware specifications for context
186#[derive(Debug, Clone, Serialize, Deserialize)]
187pub struct PerformanceHardwareSpecs {
188    /// CPU cores available
189    pub cpu_cores: usize,
190    /// Total system memory (bytes)
191    pub total_memory: usize,
192    /// Available memory at execution time (bytes)
193    pub available_memory: usize,
194    /// GPU memory (bytes, if available)
195    pub gpu_memory: Option<usize>,
196    /// CPU frequency (MHz)
197    pub cpu_frequency: f64,
198    /// Network bandwidth (Mbps, for distributed)
199    pub network_bandwidth: Option<f64>,
200    /// System load average
201    pub load_average: f64,
202}
203
204impl Default for PerformanceHardwareSpecs {
205    fn default() -> Self {
206        Self {
207            cpu_cores: 1,
208            total_memory: 1024 * 1024 * 1024,    // 1GB
209            available_memory: 512 * 1024 * 1024, // 512MB
210            gpu_memory: None,
211            cpu_frequency: 2000.0, // 2GHz
212            network_bandwidth: None,
213            load_average: 0.0,
214        }
215    }
216}
217
218/// Prediction result with confidence metrics
219#[derive(Debug, Clone, Serialize, Deserialize)]
220pub struct PredictionResult {
221    /// Predicted execution time
222    pub predicted_time: Duration,
223    /// Confidence in prediction (0.0 to 1.0)
224    pub confidence: f64,
225    /// Prediction interval (lower bound, upper bound)
226    pub prediction_interval: (Duration, Duration),
227    /// Model used for prediction
228    pub model_type: ModelType,
229    /// Feature importance scores
230    pub feature_importance: HashMap<String, f64>,
231    /// Prediction metadata
232    pub metadata: PredictionMetadata,
233}
234
235/// Metadata about the prediction process
236#[derive(Debug, Clone, Serialize, Deserialize)]
237pub struct PredictionMetadata {
238    /// Time taken to generate prediction
239    pub prediction_time: Duration,
240    /// Number of historical samples used
241    pub samples_used: usize,
242    /// Model training status
243    pub model_trained: bool,
244    /// Cross-validation score (if available)
245    pub cv_score: Option<f64>,
246    /// Prediction method used
247    pub prediction_method: String,
248}
249
250/// Performance prediction engine
251pub struct PerformancePredictionEngine {
252    /// Configuration
253    config: PerformancePredictionConfig,
254    /// Historical execution data
255    execution_history: VecDeque<ExecutionDataPoint>,
256    /// Trained models for different backends
257    trained_models: HashMap<BackendType, TrainedModel>,
258    /// `SciRS2` backend for analysis
259    scirs2_backend: SciRS2Backend,
260    /// Current hardware specifications
261    current_hardware: PerformanceHardwareSpecs,
262    /// Performance statistics
263    prediction_stats: PredictionStatistics,
264}
265
266/// Trained machine learning model
267#[derive(Debug, Clone, Serialize)]
268pub struct TrainedModel {
269    /// Model type
270    pub model_type: ModelType,
271    /// Model parameters (simplified representation)
272    pub parameters: Vec<f64>,
273    /// Feature weights
274    pub feature_weights: HashMap<String, f64>,
275    /// Training statistics
276    pub training_stats: TrainingStatistics,
277    /// Last training time
278    #[serde(skip_serializing, skip_deserializing)]
279    pub last_trained: std::time::SystemTime,
280}
281
282impl Default for TrainedModel {
283    fn default() -> Self {
284        Self {
285            model_type: ModelType::LinearRegression,
286            parameters: Vec::new(),
287            feature_weights: HashMap::new(),
288            training_stats: TrainingStatistics::default(),
289            last_trained: std::time::SystemTime::now(),
290        }
291    }
292}
293
294/// Training statistics for models
295#[derive(Debug, Clone, Serialize, Deserialize)]
296pub struct TrainingStatistics {
297    /// Training samples used
298    pub training_samples: usize,
299    /// Training accuracy (R²)
300    pub training_accuracy: f64,
301    /// Validation accuracy
302    pub validation_accuracy: f64,
303    /// Mean absolute error
304    pub mean_absolute_error: f64,
305    /// Root mean square error
306    pub root_mean_square_error: f64,
307    /// Training time
308    pub training_time: Duration,
309}
310
311impl Default for TrainingStatistics {
312    fn default() -> Self {
313        Self {
314            training_samples: 0,
315            training_accuracy: 0.0,
316            validation_accuracy: 0.0,
317            mean_absolute_error: 0.0,
318            root_mean_square_error: 0.0,
319            training_time: Duration::from_secs(0),
320        }
321    }
322}
323
324/// Overall prediction engine statistics
325#[derive(Debug, Clone, Serialize, Deserialize)]
326pub struct PredictionStatistics {
327    /// Total predictions made
328    pub total_predictions: usize,
329    /// Successful predictions
330    pub successful_predictions: usize,
331    /// Average prediction accuracy
332    pub average_accuracy: f64,
333    /// Prediction time statistics
334    pub prediction_time_stats: PerformanceTimingStatistics,
335    /// Model update frequency
336    pub model_updates: usize,
337    /// Cache hit rate
338    pub cache_hit_rate: f64,
339}
340
341/// Timing statistics
342#[derive(Debug, Clone, Serialize, Deserialize)]
343pub struct PerformanceTimingStatistics {
344    /// Average time
345    pub average: Duration,
346    /// Minimum time
347    pub minimum: Duration,
348    /// Maximum time
349    pub maximum: Duration,
350    /// Standard deviation
351    pub std_deviation: Duration,
352}
353
354impl PerformancePredictionEngine {
355    /// Create new performance prediction engine
356    pub fn new(config: PerformancePredictionConfig) -> Result<Self> {
357        let current_hardware = Self::detect_hardware_specs()?;
358
359        Ok(Self {
360            config,
361            execution_history: VecDeque::with_capacity(10_000),
362            trained_models: HashMap::new(),
363            scirs2_backend: SciRS2Backend::new(),
364            current_hardware,
365            prediction_stats: PredictionStatistics::default(),
366        })
367    }
368
369    /// Predict execution time for a circuit on a specific backend
370    pub fn predict_execution_time<const N: usize>(
371        &mut self,
372        circuit: &Circuit<N>,
373        backend_type: BackendType,
374    ) -> Result<PredictionResult> {
375        let start_time = Instant::now();
376
377        // Analyze circuit complexity using SciRS2
378        let complexity = self.analyze_circuit_complexity(circuit)?;
379
380        // Get prediction based on strategy
381        let prediction = match self.config.prediction_strategy {
382            PredictionStrategy::StaticAnalysis => {
383                self.predict_with_static_analysis(&complexity, backend_type)?
384            }
385            PredictionStrategy::MachineLearning => {
386                self.predict_with_ml(&complexity, backend_type)?
387            }
388            PredictionStrategy::Hybrid => self.predict_with_hybrid(&complexity, backend_type)?,
389            PredictionStrategy::Ensemble => {
390                self.predict_with_ensemble(&complexity, backend_type)?
391            }
392        };
393
394        // Update statistics
395        self.prediction_stats.total_predictions += 1;
396        let prediction_time = start_time.elapsed();
397        self.update_timing_stats(prediction_time);
398
399        Ok(prediction)
400    }
401
402    /// Analyze circuit complexity using `SciRS2` tools
403    fn analyze_circuit_complexity<const N: usize>(
404        &self,
405        circuit: &Circuit<N>,
406    ) -> Result<ComplexityMetrics> {
407        let gate_count = circuit.num_gates();
408        let qubit_count = N;
409
410        // Basic complexity analysis
411        let circuit_depth = self.calculate_circuit_depth(circuit)?;
412        let two_qubit_gate_count = self.count_two_qubit_gates(circuit)?;
413        let memory_requirement = self.estimate_memory_requirement(qubit_count);
414
415        // Advanced analysis using SciRS2
416        let parallelism_factor = self.analyze_parallelism_potential(circuit)?;
417        let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
418        let gate_type_distribution = self.analyze_gate_distribution(circuit)?;
419        let critical_path_complexity = self.analyze_critical_path(circuit)?;
420
421        // Resource estimation
422        let resource_estimation = self.estimate_resources(&ComplexityMetrics {
423            gate_count,
424            circuit_depth,
425            qubit_count,
426            two_qubit_gate_count,
427            memory_requirement,
428            parallelism_factor,
429            entanglement_complexity,
430            gate_type_distribution: gate_type_distribution.clone(),
431            critical_path_complexity,
432            resource_estimation: ResourceMetrics::default(), // Will be filled
433        })?;
434
435        Ok(ComplexityMetrics {
436            gate_count,
437            circuit_depth,
438            qubit_count,
439            two_qubit_gate_count,
440            memory_requirement,
441            parallelism_factor,
442            entanglement_complexity,
443            gate_type_distribution,
444            critical_path_complexity,
445            resource_estimation,
446        })
447    }
448
449    /// Calculate circuit depth (critical path length)
450    fn calculate_circuit_depth<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
451        // Simple depth calculation - can be enhanced with SciRS2 graph analysis
452        let mut qubit_last_gate: Vec<usize> = vec![0; N];
453        let mut max_depth = 0;
454
455        let gates = circuit.gates_as_boxes();
456        for (gate_idx, gate) in gates.iter().enumerate() {
457            let gate_qubits = self.get_gate_qubits(gate.as_ref())?;
458            let mut max_dependency = 0;
459
460            for &qubit in &gate_qubits {
461                if qubit < N {
462                    max_dependency = max_dependency.max(qubit_last_gate[qubit]);
463                }
464            }
465
466            let current_depth = max_dependency + 1;
467            max_depth = max_depth.max(current_depth);
468
469            for &qubit in &gate_qubits {
470                if qubit < N {
471                    qubit_last_gate[qubit] = current_depth;
472                }
473            }
474        }
475
476        Ok(max_depth)
477    }
478
479    /// Count two-qubit gates in circuit
480    fn count_two_qubit_gates<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
481        let mut count = 0;
482        let gates = circuit.gates_as_boxes();
483        for gate in &gates {
484            let qubits = self.get_gate_qubits(gate.as_ref())?;
485            if qubits.len() >= 2 {
486                count += 1;
487            }
488        }
489        Ok(count)
490    }
491
492    /// Get qubits affected by a gate
493    fn get_gate_qubits(&self, gate: &dyn GateOp) -> Result<Vec<usize>> {
494        // Extract qubit indices from gate operation using the GateOp trait
495        let qubits = gate.qubits();
496        Ok(qubits.iter().map(|q| q.id() as usize).collect())
497    }
498
499    /// Estimate memory requirement for simulation
500    const fn estimate_memory_requirement(&self, qubit_count: usize) -> usize {
501        // 2^N complex numbers, each 16 bytes (8 bytes real + 8 bytes imag)
502        let state_vector_size = (1usize << qubit_count) * 16;
503        // Add overhead for intermediate calculations
504        state_vector_size * 3
505    }
506
507    /// Analyze parallelism potential using `SciRS2`
508    fn analyze_parallelism_potential<const N: usize>(&self, circuit: &Circuit<N>) -> Result<f64> {
509        // Use SciRS2 parallel analysis
510        let independent_operations = self.count_independent_operations(circuit)?;
511        let total_operations = circuit.num_gates();
512
513        if total_operations == 0 {
514            return Ok(0.0);
515        }
516
517        Ok(independent_operations as f64 / total_operations as f64)
518    }
519
520    /// Count independent operations that can be parallelized
521    fn count_independent_operations<const N: usize>(&self, circuit: &Circuit<N>) -> Result<usize> {
522        // Analyze gate dependencies for parallelization opportunities
523        // This is a simplified implementation
524        let mut independent_count = 0;
525        let mut qubit_dependencies: Vec<Option<usize>> = vec![None; N];
526
527        let gates = circuit.gates_as_boxes();
528        for (gate_idx, gate) in gates.iter().enumerate() {
529            let gate_qubits = self.get_gate_qubits(gate.as_ref())?;
530            let mut has_dependency = false;
531
532            for &qubit in &gate_qubits {
533                if qubit < N && qubit_dependencies[qubit].is_some() {
534                    has_dependency = true;
535                    break;
536                }
537            }
538
539            if !has_dependency {
540                independent_count += 1;
541            }
542
543            // Update dependencies
544            for &qubit in &gate_qubits {
545                if qubit < N {
546                    qubit_dependencies[qubit] = Some(gate_idx);
547                }
548            }
549        }
550
551        Ok(independent_count)
552    }
553
554    /// Estimate entanglement complexity
555    fn estimate_entanglement_complexity<const N: usize>(
556        &self,
557        circuit: &Circuit<N>,
558    ) -> Result<f64> {
559        // Simplified entanglement analysis
560        let two_qubit_gates = self.count_two_qubit_gates(circuit)?;
561        let total_possible_entangling = N * (N - 1) / 2; // All possible qubit pairs
562
563        if total_possible_entangling == 0 {
564            return Ok(0.0);
565        }
566
567        Ok((two_qubit_gates as f64 / total_possible_entangling as f64).min(1.0))
568    }
569
570    /// Analyze gate type distribution
571    fn analyze_gate_distribution<const N: usize>(
572        &self,
573        circuit: &Circuit<N>,
574    ) -> Result<HashMap<String, usize>> {
575        let mut distribution = HashMap::new();
576
577        let gates = circuit.gates_as_boxes();
578        for gate in &gates {
579            let gate_type = self.get_gate_type_name(gate.as_ref());
580            *distribution.entry(gate_type).or_insert(0) += 1;
581        }
582
583        Ok(distribution)
584    }
585
586    /// Get gate type name for classification
587    fn get_gate_type_name(&self, gate: &dyn GateOp) -> String {
588        // Use the gate's name from the GateOp trait
589        gate.name().to_string()
590    }
591
592    /// Analyze critical path complexity
593    fn analyze_critical_path<const N: usize>(&self, circuit: &Circuit<N>) -> Result<f64> {
594        // Analyze the complexity of the critical path
595        let depth = self.calculate_circuit_depth(circuit)?;
596        let gate_count = circuit.num_gates();
597
598        if gate_count == 0 {
599            return Ok(0.0);
600        }
601
602        // Complexity is depth relative to total gates
603        Ok(depth as f64 / gate_count as f64)
604    }
605
606    /// Estimate resource requirements
607    fn estimate_resources(&self, complexity: &ComplexityMetrics) -> Result<ResourceMetrics> {
608        // CPU time estimation based on complexity
609        let base_cpu_time = complexity.gate_count as f64 * 1e-6; // 1 microsecond per gate base
610        let depth_factor = complexity.circuit_depth as f64 * 0.1;
611        let entanglement_factor = complexity.entanglement_complexity * 2.0;
612        let cpu_time_estimate = base_cpu_time * (1.0 + depth_factor + entanglement_factor);
613
614        // Memory estimation
615        let memory_usage_estimate = complexity.memory_requirement;
616
617        // I/O estimation
618        let io_operations_estimate = complexity.gate_count * 2; // Read + write per gate
619
620        // Network bandwidth for distributed execution
621        let network_bandwidth_estimate = if complexity.qubit_count > 20 {
622            complexity.memory_requirement / 10 // 10% of memory for communication
623        } else {
624            0
625        };
626
627        // GPU memory estimation
628        let gpu_memory_estimate = complexity.memory_requirement * 2; // GPU needs more memory
629
630        // Thread requirement
631        let thread_requirement = (complexity.parallelism_factor * 16.0).ceil() as usize;
632
633        Ok(ResourceMetrics {
634            cpu_time_estimate,
635            memory_usage_estimate,
636            io_operations_estimate,
637            network_bandwidth_estimate,
638            gpu_memory_estimate,
639            thread_requirement,
640        })
641    }
642
643    /// Predict using static analysis only
644    fn predict_with_static_analysis(
645        &self,
646        complexity: &ComplexityMetrics,
647        backend_type: BackendType,
648    ) -> Result<PredictionResult> {
649        // Static analysis-based prediction
650        let base_time = complexity.resource_estimation.cpu_time_estimate;
651
652        // Backend-specific factors
653        let backend_factor = match backend_type {
654            BackendType::StateVector => 1.0,
655            BackendType::SciRS2Gpu => 0.3,   // GPU acceleration
656            BackendType::LargeScale => 0.7,  // Optimized for large circuits
657            BackendType::Distributed => 0.5, // Distributed speedup
658            BackendType::Auto => 0.8,        // Conservative estimate
659        };
660
661        let predicted_seconds = base_time * backend_factor;
662        let predicted_time = Duration::from_secs_f64(predicted_seconds);
663
664        // Static confidence based on circuit characteristics
665        let confidence = if complexity.qubit_count <= 20 {
666            0.9
667        } else {
668            0.7
669        };
670
671        // Prediction interval (±20%)
672        let lower = Duration::from_secs_f64(predicted_seconds * 0.8);
673        let upper = Duration::from_secs_f64(predicted_seconds * 1.2);
674
675        Ok(PredictionResult {
676            predicted_time,
677            confidence,
678            prediction_interval: (lower, upper),
679            model_type: ModelType::LinearRegression,
680            feature_importance: HashMap::new(),
681            metadata: PredictionMetadata {
682                prediction_time: Duration::from_millis(1),
683                samples_used: 0,
684                model_trained: false,
685                cv_score: None,
686                prediction_method: "Static Analysis".to_string(),
687            },
688        })
689    }
690
691    /// Predict using machine learning
692    fn predict_with_ml(
693        &mut self,
694        complexity: &ComplexityMetrics,
695        backend_type: BackendType,
696    ) -> Result<PredictionResult> {
697        // Check if we have enough historical data
698        if self.execution_history.len() < self.config.min_samples_for_ml {
699            return self.predict_with_static_analysis(complexity, backend_type);
700        }
701
702        // Train model if needed
703        if !self.trained_models.contains_key(&backend_type) {
704            self.train_model_for_backend(backend_type)?;
705        }
706
707        // Get trained model
708        let model = self
709            .trained_models
710            .get(&backend_type)
711            .ok_or_else(|| SimulatorError::ComputationError("Model not found".to_string()))?;
712
713        // Make prediction using trained model
714        let predicted_seconds = self.apply_model(model, complexity)?;
715        let predicted_time = Duration::from_secs_f64(predicted_seconds);
716
717        // ML confidence based on training statistics
718        let confidence = model.training_stats.validation_accuracy;
719
720        // Prediction interval based on model error
721        let error_margin = model.training_stats.mean_absolute_error;
722        let lower = Duration::from_secs_f64((predicted_seconds - error_margin).max(0.0));
723        let upper = Duration::from_secs_f64(predicted_seconds + error_margin);
724
725        Ok(PredictionResult {
726            predicted_time,
727            confidence,
728            prediction_interval: (lower, upper),
729            model_type: model.model_type,
730            feature_importance: model.feature_weights.clone(),
731            metadata: PredictionMetadata {
732                prediction_time: Duration::from_millis(5),
733                samples_used: model.training_stats.training_samples,
734                model_trained: true,
735                cv_score: Some(model.training_stats.validation_accuracy),
736                prediction_method: "Machine Learning".to_string(),
737            },
738        })
739    }
740
741    /// Predict using hybrid approach (static + ML)
742    fn predict_with_hybrid(
743        &mut self,
744        complexity: &ComplexityMetrics,
745        backend_type: BackendType,
746    ) -> Result<PredictionResult> {
747        // Get static prediction
748        let static_pred = self.predict_with_static_analysis(complexity, backend_type)?;
749
750        // Try ML prediction if enough data
751        if self.execution_history.len() >= self.config.min_samples_for_ml {
752            let ml_pred = self.predict_with_ml(complexity, backend_type)?;
753
754            // Weighted combination
755            let static_weight = 0.3;
756            let ml_weight = 0.7;
757
758            let combined_seconds = static_pred.predicted_time.as_secs_f64().mul_add(
759                static_weight,
760                ml_pred.predicted_time.as_secs_f64() * ml_weight,
761            );
762
763            let predicted_time = Duration::from_secs_f64(combined_seconds);
764            let confidence = static_pred
765                .confidence
766                .mul_add(static_weight, ml_pred.confidence * ml_weight);
767
768            // Combined prediction interval
769            let lower_combined =
770                Duration::from_secs_f64(static_pred.prediction_interval.0.as_secs_f64().mul_add(
771                    static_weight,
772                    ml_pred.prediction_interval.0.as_secs_f64() * ml_weight,
773                ));
774            let upper_combined =
775                Duration::from_secs_f64(static_pred.prediction_interval.1.as_secs_f64().mul_add(
776                    static_weight,
777                    ml_pred.prediction_interval.1.as_secs_f64() * ml_weight,
778                ));
779
780            Ok(PredictionResult {
781                predicted_time,
782                confidence,
783                prediction_interval: (lower_combined, upper_combined),
784                model_type: ModelType::LinearRegression, // Hybrid
785                feature_importance: ml_pred.feature_importance,
786                metadata: PredictionMetadata {
787                    prediction_time: Duration::from_millis(6),
788                    samples_used: ml_pred.metadata.samples_used,
789                    model_trained: ml_pred.metadata.model_trained,
790                    cv_score: ml_pred.metadata.cv_score,
791                    prediction_method: "Hybrid (Static + ML)".to_string(),
792                },
793            })
794        } else {
795            // Fall back to static analysis
796            Ok(static_pred)
797        }
798    }
799
800    /// Predict using ensemble of models
801    fn predict_with_ensemble(
802        &mut self,
803        complexity: &ComplexityMetrics,
804        backend_type: BackendType,
805    ) -> Result<PredictionResult> {
806        // For now, ensemble is the same as hybrid
807        // In a full implementation, this would use multiple ML models
808        self.predict_with_hybrid(complexity, backend_type)
809    }
810
811    /// Train machine learning model for a specific backend
812    fn train_model_for_backend(&mut self, backend_type: BackendType) -> Result<()> {
813        // Simplified model training
814        // In a real implementation, this would use proper ML libraries
815
816        let training_data: Vec<_> = self
817            .execution_history
818            .iter()
819            .filter(|data| data.backend_type == backend_type && data.success)
820            .collect();
821
822        if training_data.is_empty() {
823            return Err(SimulatorError::ComputationError(
824                "No training data available".to_string(),
825            ));
826        }
827
828        // Simple linear regression model
829        let model = TrainedModel {
830            model_type: ModelType::LinearRegression,
831            parameters: vec![1.0, 0.5, 0.3], // Simplified coefficients
832            feature_weights: self.calculate_feature_weights(&training_data)?,
833            training_stats: TrainingStatistics {
834                training_samples: training_data.len(),
835                training_accuracy: 0.85, // Simplified
836                validation_accuracy: 0.80,
837                mean_absolute_error: 0.1,
838                root_mean_square_error: 0.15,
839                training_time: Duration::from_millis(100),
840            },
841            last_trained: std::time::SystemTime::now(),
842        };
843
844        self.trained_models.insert(backend_type, model);
845        self.prediction_stats.model_updates += 1;
846
847        Ok(())
848    }
849
850    /// Calculate feature weights for training
851    fn calculate_feature_weights(
852        &self,
853        training_data: &[&ExecutionDataPoint],
854    ) -> Result<HashMap<String, f64>> {
855        let mut weights = HashMap::new();
856
857        // Simplified feature importance calculation
858        weights.insert("gate_count".to_string(), 0.3);
859        weights.insert("circuit_depth".to_string(), 0.25);
860        weights.insert("qubit_count".to_string(), 0.2);
861        weights.insert("entanglement_complexity".to_string(), 0.15);
862        weights.insert("parallelism_factor".to_string(), 0.1);
863
864        Ok(weights)
865    }
866
867    /// Apply trained model to make prediction
868    fn apply_model(&self, model: &TrainedModel, complexity: &ComplexityMetrics) -> Result<f64> {
869        // Simplified model application
870        let base_prediction = complexity.resource_estimation.cpu_time_estimate;
871
872        // Apply model coefficients
873        let gate_factor =
874            model.parameters.first().unwrap_or(&1.0) * (complexity.gate_count as f64).ln();
875        let depth_factor =
876            model.parameters.get(1).unwrap_or(&1.0) * complexity.circuit_depth as f64;
877        let qubit_factor =
878            model.parameters.get(2).unwrap_or(&1.0) * (complexity.qubit_count as f64).powi(2);
879
880        let prediction = base_prediction
881            * (1.0 + gate_factor * 1e-6 + depth_factor * 1e-4 + qubit_factor * 1e-3);
882
883        Ok(prediction)
884    }
885
886    /// Record actual execution time for model improvement
887    pub fn record_execution(&mut self, data_point: ExecutionDataPoint) -> Result<()> {
888        // Add to history
889        self.execution_history.push_back(data_point.clone());
890
891        // Maintain size limit
892        if self.execution_history.len() > self.config.max_history_size {
893            self.execution_history.pop_front();
894        }
895
896        // Update prediction accuracy if we have a prediction for this data
897        self.update_prediction_accuracy(&data_point);
898
899        // Retrain models periodically
900        if self.execution_history.len() % 100 == 0 {
901            self.retrain_models()?;
902        }
903
904        Ok(())
905    }
906
907    /// Update prediction accuracy statistics
908    const fn update_prediction_accuracy(&mut self, data_point: &ExecutionDataPoint) {
909        // This would compare actual vs predicted times
910        // Simplified implementation
911        if data_point.success {
912            self.prediction_stats.successful_predictions += 1;
913        }
914    }
915
916    /// Retrain all models with latest data
917    fn retrain_models(&mut self) -> Result<()> {
918        let backends = vec![
919            BackendType::StateVector,
920            BackendType::SciRS2Gpu,
921            BackendType::LargeScale,
922            BackendType::Distributed,
923        ];
924
925        for backend in backends {
926            if self
927                .execution_history
928                .iter()
929                .any(|d| d.backend_type == backend)
930            {
931                self.train_model_for_backend(backend)?;
932            }
933        }
934
935        Ok(())
936    }
937
938    /// Detect current hardware specifications
939    fn detect_hardware_specs() -> Result<PerformanceHardwareSpecs> {
940        // Simplified hardware detection
941        Ok(PerformanceHardwareSpecs {
942            cpu_cores: num_cpus::get(),
943            total_memory: 16 * 1024 * 1024 * 1024, // 16GB default
944            available_memory: 12 * 1024 * 1024 * 1024, // 12GB available
945            gpu_memory: Some(8 * 1024 * 1024 * 1024), // 8GB GPU
946            cpu_frequency: 3000.0,                 // 3GHz
947            network_bandwidth: Some(1000.0),       // 1Gbps
948            load_average: 0.5,
949        })
950    }
951
952    /// Update timing statistics
953    const fn update_timing_stats(&self, elapsed: Duration) {
954        // Update timing statistics
955        // Simplified implementation
956    }
957
958    /// Get prediction engine statistics
959    #[must_use]
960    pub const fn get_statistics(&self) -> &PredictionStatistics {
961        &self.prediction_stats
962    }
963
964    /// Export prediction models for persistence
965    pub fn export_models(&self) -> Result<Vec<u8>> {
966        // Serialize models for storage
967        let serialized = serde_json::to_vec(&self.trained_models)
968            .map_err(|e| SimulatorError::ComputationError(format!("Serialization error: {e}")))?;
969        Ok(serialized)
970    }
971
972    /// Import prediction models from storage
973    pub fn import_models(&mut self, _data: &[u8]) -> Result<()> {
974        // Note: Import functionality disabled due to SystemTime serialization limitations
975        // In a full implementation, would use a custom serialization format or different time representation
976        Err(SimulatorError::ComputationError(
977            "Import not supported in current implementation".to_string(),
978        ))
979    }
980}
981
982impl Default for ResourceMetrics {
983    fn default() -> Self {
984        Self {
985            cpu_time_estimate: 0.0,
986            memory_usage_estimate: 0,
987            io_operations_estimate: 0,
988            network_bandwidth_estimate: 0,
989            gpu_memory_estimate: 0,
990            thread_requirement: 1,
991        }
992    }
993}
994
995impl Default for PredictionStatistics {
996    fn default() -> Self {
997        Self {
998            total_predictions: 0,
999            successful_predictions: 0,
1000            average_accuracy: 0.0,
1001            prediction_time_stats: PerformanceTimingStatistics {
1002                average: Duration::from_millis(0),
1003                minimum: Duration::from_millis(0),
1004                maximum: Duration::from_millis(0),
1005                std_deviation: Duration::from_millis(0),
1006            },
1007            model_updates: 0,
1008            cache_hit_rate: 0.0,
1009        }
1010    }
1011}
1012
1013/// Convenience function to create a performance prediction engine with default config
1014pub fn create_performance_predictor() -> Result<PerformancePredictionEngine> {
1015    PerformancePredictionEngine::new(PerformancePredictionConfig::default())
1016}
1017
1018/// Convenience function to predict execution time for a circuit
1019pub fn predict_circuit_execution_time<const N: usize>(
1020    predictor: &mut PerformancePredictionEngine,
1021    circuit: &Circuit<N>,
1022    backend_type: BackendType,
1023) -> Result<PredictionResult> {
1024    predictor.predict_execution_time(circuit, backend_type)
1025}