quantrs2_sim/
parallel_tensor_optimization.rs

1//! Parallel Tensor Network Optimization
2//!
3//! This module provides advanced parallel processing strategies for tensor network
4//! contractions, optimizing for modern multi-core and distributed architectures.
5
6use crate::prelude::SimulatorError;
7use scirs2_core::ndarray::{ArrayD, Dimension, IxDyn};
8use scirs2_core::parallel_ops::{
9    current_num_threads, IndexedParallelIterator, ParallelIterator, ThreadPool, ThreadPoolBuilder,
10};
11use scirs2_core::Complex64;
12use std::collections::{HashMap, HashSet, VecDeque};
13use std::sync::{Arc, Mutex, RwLock};
14use std::thread;
15use std::time::{Duration, Instant};
16
17use crate::error::Result;
18
19/// Parallel processing configuration for tensor networks
20#[derive(Debug, Clone)]
21pub struct ParallelTensorConfig {
22    /// Number of worker threads
23    pub num_threads: usize,
24    /// Chunk size for parallel operations
25    pub chunk_size: usize,
26    /// Enable work-stealing between threads
27    pub enable_work_stealing: bool,
28    /// Memory threshold for switching to parallel mode
29    pub parallel_threshold_bytes: usize,
30    /// Load balancing strategy
31    pub load_balancing: LoadBalancingStrategy,
32    /// Enable NUMA-aware scheduling
33    pub numa_aware: bool,
34    /// Thread affinity settings
35    pub thread_affinity: ThreadAffinityConfig,
36}
37
38impl Default for ParallelTensorConfig {
39    fn default() -> Self {
40        Self {
41            num_threads: current_num_threads(), // SciRS2 POLICY compliant
42            chunk_size: 1024,
43            enable_work_stealing: true,
44            parallel_threshold_bytes: 1024 * 1024, // 1MB
45            load_balancing: LoadBalancingStrategy::DynamicWorkStealing,
46            numa_aware: true,
47            thread_affinity: ThreadAffinityConfig::default(),
48        }
49    }
50}
51
52/// Load balancing strategies for parallel tensor operations
53#[derive(Debug, Clone, Copy, PartialEq, Eq)]
54pub enum LoadBalancingStrategy {
55    /// Static round-robin distribution
56    RoundRobin,
57    /// Dynamic work-stealing
58    DynamicWorkStealing,
59    /// NUMA-aware distribution
60    NumaAware,
61    /// Cost-based distribution
62    CostBased,
63    /// Adaptive strategy selection
64    Adaptive,
65}
66
67/// Thread affinity configuration
68#[derive(Debug, Clone, Default)]
69pub struct ThreadAffinityConfig {
70    /// Enable CPU affinity
71    pub enable_affinity: bool,
72    /// CPU core mapping
73    pub core_mapping: Vec<usize>,
74    /// NUMA node preferences
75    pub numa_preferences: HashMap<usize, usize>,
76}
77
78/// Work unit for parallel tensor contraction
79#[derive(Debug, Clone)]
80pub struct TensorWorkUnit {
81    /// Unique identifier for the work unit
82    pub id: usize,
83    /// Input tensor indices
84    pub input_tensors: Vec<usize>,
85    /// Output tensor index
86    pub output_tensor: usize,
87    /// Contraction indices
88    pub contraction_indices: Vec<Vec<usize>>,
89    /// Estimated computational cost
90    pub estimated_cost: f64,
91    /// Memory requirement
92    pub memory_requirement: usize,
93    /// Dependencies (must complete before this unit)
94    pub dependencies: HashSet<usize>,
95    /// Priority level
96    pub priority: i32,
97}
98
99/// Work queue for managing parallel tensor operations
100#[derive(Debug)]
101pub struct TensorWorkQueue {
102    /// Pending work units
103    pending: Mutex<VecDeque<TensorWorkUnit>>,
104    /// Completed work units
105    completed: RwLock<HashSet<usize>>,
106    /// Work units in progress
107    in_progress: RwLock<HashMap<usize, Instant>>,
108    /// Total work units
109    total_units: usize,
110    /// Configuration
111    config: ParallelTensorConfig,
112}
113
114impl TensorWorkQueue {
115    /// Create new work queue
116    #[must_use]
117    pub fn new(work_units: Vec<TensorWorkUnit>, config: ParallelTensorConfig) -> Self {
118        let total_units = work_units.len();
119        let mut pending = VecDeque::from(work_units);
120
121        // Sort by priority and dependencies
122        pending.make_contiguous().sort_by(|a, b| {
123            b.priority
124                .cmp(&a.priority)
125                .then_with(|| a.dependencies.len().cmp(&b.dependencies.len()))
126        });
127
128        Self {
129            pending: Mutex::new(pending),
130            completed: RwLock::new(HashSet::new()),
131            in_progress: RwLock::new(HashMap::new()),
132            total_units,
133            config,
134        }
135    }
136
137    /// Get next available work unit
138    pub fn get_work(&self) -> Option<TensorWorkUnit> {
139        // Use expect() for lock poisoning - if locks are poisoned, we have a bigger problem
140        let mut pending = self
141            .pending
142            .lock()
143            .expect("pending lock should not be poisoned");
144        let completed = self
145            .completed
146            .read()
147            .expect("completed lock should not be poisoned");
148
149        // Find a work unit whose dependencies are satisfied
150        for i in 0..pending.len() {
151            let work_unit = &pending[i];
152            let dependencies_satisfied = work_unit
153                .dependencies
154                .iter()
155                .all(|dep| completed.contains(dep));
156
157            if dependencies_satisfied {
158                // Safety: i is always within bounds (from for loop condition)
159                let work_unit = pending
160                    .remove(i)
161                    .expect("index i is guaranteed to be within bounds");
162
163                // Mark as in progress
164                drop(completed);
165                let mut in_progress = self
166                    .in_progress
167                    .write()
168                    .expect("in_progress lock should not be poisoned");
169                in_progress.insert(work_unit.id, Instant::now());
170
171                return Some(work_unit);
172            }
173        }
174
175        None
176    }
177
178    /// Mark work unit as completed
179    pub fn complete_work(&self, work_id: usize) {
180        let mut completed = self
181            .completed
182            .write()
183            .expect("completed lock should not be poisoned");
184        completed.insert(work_id);
185
186        let mut in_progress = self
187            .in_progress
188            .write()
189            .expect("in_progress lock should not be poisoned");
190        in_progress.remove(&work_id);
191    }
192
193    /// Check if all work is completed
194    pub fn is_complete(&self) -> bool {
195        let completed = self
196            .completed
197            .read()
198            .expect("completed lock should not be poisoned");
199        completed.len() == self.total_units
200    }
201
202    /// Get progress statistics
203    pub fn get_progress(&self) -> (usize, usize, usize) {
204        let completed = self
205            .completed
206            .read()
207            .expect("completed lock should not be poisoned")
208            .len();
209        let in_progress = self
210            .in_progress
211            .read()
212            .expect("in_progress lock should not be poisoned")
213            .len();
214        let pending = self
215            .pending
216            .lock()
217            .expect("pending lock should not be poisoned")
218            .len();
219        (completed, in_progress, pending)
220    }
221}
222
223/// Parallel tensor contraction engine
224pub struct ParallelTensorEngine {
225    /// Configuration
226    config: ParallelTensorConfig,
227    /// Worker thread pool
228    thread_pool: ThreadPool, // SciRS2 POLICY compliant
229    /// Performance statistics
230    stats: Arc<Mutex<ParallelTensorStats>>,
231}
232
233/// Performance statistics for parallel tensor operations
234#[derive(Debug, Clone, Default)]
235pub struct ParallelTensorStats {
236    /// Total contractions performed
237    pub total_contractions: u64,
238    /// Total computation time
239    pub total_computation_time: Duration,
240    /// Total parallel efficiency (0.0 to 1.0)
241    pub parallel_efficiency: f64,
242    /// Memory usage statistics
243    pub peak_memory_usage: usize,
244    /// Thread utilization statistics
245    pub thread_utilization: Vec<f64>,
246    /// Load balancing effectiveness
247    pub load_balance_factor: f64,
248    /// Cache hit rate for intermediate results
249    pub cache_hit_rate: f64,
250}
251
252impl ParallelTensorEngine {
253    /// Create new parallel tensor engine
254    pub fn new(config: ParallelTensorConfig) -> Result<Self> {
255        let thread_pool = ThreadPoolBuilder::new() // SciRS2 POLICY compliant
256            .num_threads(config.num_threads)
257            .build()
258            .map_err(|e| {
259                SimulatorError::InitializationFailed(format!("Thread pool creation failed: {e}"))
260            })?;
261
262        Ok(Self {
263            config,
264            thread_pool,
265            stats: Arc::new(Mutex::new(ParallelTensorStats::default())),
266        })
267    }
268
269    /// Perform parallel tensor network contraction
270    pub fn contract_network(
271        &self,
272        tensors: &[ArrayD<Complex64>],
273        contraction_sequence: &[ContractionPair],
274    ) -> Result<ArrayD<Complex64>> {
275        let start_time = Instant::now();
276
277        // Create work units from contraction sequence
278        let work_units = self.create_work_units(tensors, contraction_sequence)?;
279
280        // Create work queue
281        let work_queue = Arc::new(TensorWorkQueue::new(work_units, self.config.clone()));
282
283        // Storage for intermediate results
284        let intermediate_results =
285            Arc::new(RwLock::new(HashMap::<usize, ArrayD<Complex64>>::new()));
286
287        // Initialize with input tensors
288        {
289            let mut results = intermediate_results
290                .write()
291                .expect("intermediate_results lock should not be poisoned");
292            for (i, tensor) in tensors.iter().enumerate() {
293                results.insert(i, tensor.clone());
294            }
295        }
296
297        // Execute contractions in parallel
298        let final_result = self.execute_parallel_contractions(work_queue, intermediate_results)?;
299
300        // Update statistics
301        let elapsed = start_time.elapsed();
302        let mut stats = self
303            .stats
304            .lock()
305            .expect("stats lock should not be poisoned");
306        stats.total_contractions += contraction_sequence.len() as u64;
307        stats.total_computation_time += elapsed;
308
309        // Calculate parallel efficiency (simplified)
310        let sequential_estimate = self.estimate_sequential_time(contraction_sequence);
311        stats.parallel_efficiency = sequential_estimate.as_secs_f64() / elapsed.as_secs_f64();
312
313        Ok(final_result)
314    }
315
316    /// Create work units from contraction sequence
317    fn create_work_units(
318        &self,
319        tensors: &[ArrayD<Complex64>],
320        contraction_sequence: &[ContractionPair],
321    ) -> Result<Vec<TensorWorkUnit>> {
322        let mut work_units: Vec<TensorWorkUnit> = Vec::new();
323        let mut next_tensor_id = tensors.len();
324
325        for (i, contraction) in contraction_sequence.iter().enumerate() {
326            let estimated_cost = self.estimate_contraction_cost(contraction, tensors)?;
327            let memory_requirement = self.estimate_memory_requirement(contraction, tensors)?;
328
329            // Determine dependencies
330            let mut dependencies = HashSet::new();
331            for &input_id in &[contraction.tensor1_id, contraction.tensor2_id] {
332                if input_id >= tensors.len() {
333                    // This is an intermediate result, find which work unit produces it
334                    for prev_unit in &work_units {
335                        if prev_unit.output_tensor == input_id {
336                            dependencies.insert(prev_unit.id);
337                            break;
338                        }
339                    }
340                }
341            }
342
343            let work_unit = TensorWorkUnit {
344                id: i,
345                input_tensors: vec![contraction.tensor1_id, contraction.tensor2_id],
346                output_tensor: next_tensor_id,
347                contraction_indices: vec![
348                    contraction.tensor1_indices.clone(),
349                    contraction.tensor2_indices.clone(),
350                ],
351                estimated_cost,
352                memory_requirement,
353                dependencies,
354                priority: self.calculate_priority(estimated_cost, memory_requirement),
355            };
356
357            work_units.push(work_unit);
358            next_tensor_id += 1;
359        }
360
361        Ok(work_units)
362    }
363
364    /// Execute parallel contractions using work queue
365    fn execute_parallel_contractions(
366        &self,
367        work_queue: Arc<TensorWorkQueue>,
368        intermediate_results: Arc<RwLock<HashMap<usize, ArrayD<Complex64>>>>,
369    ) -> Result<ArrayD<Complex64>> {
370        let num_threads = self.config.num_threads;
371        let mut handles = Vec::new();
372
373        // Spawn worker threads
374        for thread_id in 0..num_threads {
375            let work_queue = work_queue.clone();
376            let intermediate_results = intermediate_results.clone();
377            let config = self.config.clone();
378
379            let handle = thread::spawn(move || {
380                Self::worker_thread(thread_id, work_queue, intermediate_results, config)
381            });
382            handles.push(handle);
383        }
384
385        // Wait for all threads to complete
386        for handle in handles {
387            handle.join().map_err(|e| {
388                SimulatorError::ComputationError(format!("Thread join failed: {e:?}"))
389            })??;
390        }
391
392        // Find the final result (tensor with highest ID)
393        let results = intermediate_results
394            .read()
395            .expect("intermediate_results lock should not be poisoned");
396        let max_id = results.keys().max().copied().unwrap_or(0);
397        Ok(results[&max_id].clone())
398    }
399
400    /// Worker thread function
401    fn worker_thread(
402        _thread_id: usize,
403        work_queue: Arc<TensorWorkQueue>,
404        intermediate_results: Arc<RwLock<HashMap<usize, ArrayD<Complex64>>>>,
405        _config: ParallelTensorConfig,
406    ) -> Result<()> {
407        while !work_queue.is_complete() {
408            if let Some(work_unit) = work_queue.get_work() {
409                // Get input tensors
410                let tensor1 = {
411                    let results = intermediate_results
412                        .read()
413                        .expect("intermediate_results lock should not be poisoned");
414                    results[&work_unit.input_tensors[0]].clone()
415                };
416
417                let tensor2 = {
418                    let results = intermediate_results
419                        .read()
420                        .expect("intermediate_results lock should not be poisoned");
421                    results[&work_unit.input_tensors[1]].clone()
422                };
423
424                // Perform contraction
425                let result = Self::perform_tensor_contraction(
426                    &tensor1,
427                    &tensor2,
428                    &work_unit.contraction_indices[0],
429                    &work_unit.contraction_indices[1],
430                )?;
431
432                // Store result
433                {
434                    let mut results = intermediate_results
435                        .write()
436                        .expect("intermediate_results lock should not be poisoned");
437                    results.insert(work_unit.output_tensor, result);
438                }
439
440                // Mark work as completed
441                work_queue.complete_work(work_unit.id);
442            } else {
443                // No work available, wait briefly
444                thread::sleep(Duration::from_millis(1));
445            }
446        }
447
448        Ok(())
449    }
450
451    /// Perform actual tensor contraction
452    fn perform_tensor_contraction(
453        tensor1: &ArrayD<Complex64>,
454        tensor2: &ArrayD<Complex64>,
455        indices1: &[usize],
456        indices2: &[usize],
457    ) -> Result<ArrayD<Complex64>> {
458        // This is a simplified tensor contraction implementation
459        // In practice, this would use optimized BLAS operations
460
461        let shape1 = tensor1.shape();
462        let shape2 = tensor2.shape();
463
464        // Calculate output shape
465        let mut output_shape = Vec::new();
466        for (i, &size) in shape1.iter().enumerate() {
467            if !indices1.contains(&i) {
468                output_shape.push(size);
469            }
470        }
471        for (i, &size) in shape2.iter().enumerate() {
472            if !indices2.contains(&i) {
473                output_shape.push(size);
474            }
475        }
476
477        // Create output tensor
478        let output_dim = IxDyn(&output_shape);
479        let mut output = ArrayD::zeros(output_dim);
480
481        // Simplified contraction (this would be optimized in practice)
482        // For now, just return a placeholder
483        Ok(output)
484    }
485
486    /// Estimate computational cost of a contraction
487    fn estimate_contraction_cost(
488        &self,
489        contraction: &ContractionPair,
490        _tensors: &[ArrayD<Complex64>],
491    ) -> Result<f64> {
492        // Simplified cost estimation based on dimension products
493        let cost = contraction.tensor1_indices.len() as f64
494            * contraction.tensor2_indices.len() as f64
495            * 1000.0; // Base cost factor
496        Ok(cost)
497    }
498
499    /// Estimate memory requirement for a contraction
500    const fn estimate_memory_requirement(
501        &self,
502        _contraction: &ContractionPair,
503        _tensors: &[ArrayD<Complex64>],
504    ) -> Result<usize> {
505        // Simplified memory estimation
506        Ok(1024 * 1024) // 1MB placeholder
507    }
508
509    /// Calculate priority for work unit
510    fn calculate_priority(&self, cost: f64, memory: usize) -> i32 {
511        // Higher cost and lower memory = higher priority
512        let cost_factor = (cost / 1000.0) as i32;
513        let memory_factor = (1_000_000 / (memory + 1)) as i32;
514        cost_factor + memory_factor
515    }
516
517    /// Estimate sequential execution time
518    const fn estimate_sequential_time(&self, contraction_sequence: &[ContractionPair]) -> Duration {
519        let estimated_ops = contraction_sequence.len() as u64 * 1000; // Simplified
520        Duration::from_millis(estimated_ops)
521    }
522
523    /// Get performance statistics
524    #[must_use]
525    pub fn get_stats(&self) -> ParallelTensorStats {
526        self.stats
527            .lock()
528            .expect("stats lock should not be poisoned")
529            .clone()
530    }
531}
532
533/// Contraction pair specification
534#[derive(Debug, Clone)]
535pub struct ContractionPair {
536    /// First tensor ID
537    pub tensor1_id: usize,
538    /// Second tensor ID
539    pub tensor2_id: usize,
540    /// Indices to contract on first tensor
541    pub tensor1_indices: Vec<usize>,
542    /// Indices to contract on second tensor
543    pub tensor2_indices: Vec<usize>,
544}
545
546/// Advanced parallel tensor contraction strategies
547pub mod strategies {
548    use super::{
549        ArrayD, Complex64, ContractionPair, LoadBalancingStrategy, NumaTopology,
550        ParallelTensorConfig, ParallelTensorEngine, Result,
551    };
552
553    /// Work-stealing parallel contraction
554    pub fn work_stealing_contraction(
555        tensors: &[ArrayD<Complex64>],
556        contraction_sequence: &[ContractionPair],
557        num_threads: usize,
558    ) -> Result<ArrayD<Complex64>> {
559        let config = ParallelTensorConfig {
560            num_threads,
561            load_balancing: LoadBalancingStrategy::DynamicWorkStealing,
562            ..Default::default()
563        };
564
565        let engine = ParallelTensorEngine::new(config)?;
566        engine.contract_network(tensors, contraction_sequence)
567    }
568
569    /// NUMA-aware parallel contraction
570    pub fn numa_aware_contraction(
571        tensors: &[ArrayD<Complex64>],
572        contraction_sequence: &[ContractionPair],
573        numa_topology: &NumaTopology,
574    ) -> Result<ArrayD<Complex64>> {
575        let config = ParallelTensorConfig {
576            load_balancing: LoadBalancingStrategy::NumaAware,
577            numa_aware: true,
578            ..Default::default()
579        };
580
581        let engine = ParallelTensorEngine::new(config)?;
582        engine.contract_network(tensors, contraction_sequence)
583    }
584
585    /// Adaptive parallel contraction with dynamic load balancing
586    pub fn adaptive_contraction(
587        tensors: &[ArrayD<Complex64>],
588        contraction_sequence: &[ContractionPair],
589    ) -> Result<ArrayD<Complex64>> {
590        let config = ParallelTensorConfig {
591            load_balancing: LoadBalancingStrategy::Adaptive,
592            enable_work_stealing: true,
593            ..Default::default()
594        };
595
596        let engine = ParallelTensorEngine::new(config)?;
597        engine.contract_network(tensors, contraction_sequence)
598    }
599}
600
601/// NUMA topology information
602#[derive(Debug, Clone)]
603pub struct NumaTopology {
604    /// Number of NUMA nodes
605    pub num_nodes: usize,
606    /// CPU cores per node
607    pub cores_per_node: Vec<usize>,
608    /// Memory per node (bytes)
609    pub memory_per_node: Vec<usize>,
610}
611
612impl Default for NumaTopology {
613    fn default() -> Self {
614        let num_cores = current_num_threads(); // SciRS2 POLICY compliant
615        Self {
616            num_nodes: 1,
617            cores_per_node: vec![num_cores],
618            memory_per_node: vec![8 * 1024 * 1024 * 1024], // 8GB default
619        }
620    }
621}
622
623#[cfg(test)]
624mod tests {
625    use super::*;
626    use scirs2_core::ndarray::Array;
627
628    #[test]
629    fn test_parallel_tensor_engine() {
630        let config = ParallelTensorConfig::default();
631        let engine =
632            ParallelTensorEngine::new(config).expect("should create parallel tensor engine");
633
634        // Create simple test tensors
635        let tensor1 = Array::zeros(IxDyn(&[2, 2]));
636        let tensor2 = Array::zeros(IxDyn(&[2, 2]));
637        let tensors = vec![tensor1, tensor2];
638
639        // Simple contraction sequence
640        let contraction = ContractionPair {
641            tensor1_id: 0,
642            tensor2_id: 1,
643            tensor1_indices: vec![1],
644            tensor2_indices: vec![0],
645        };
646
647        let result = engine.contract_network(&tensors, &[contraction]);
648        assert!(result.is_ok());
649    }
650
651    #[test]
652    fn test_work_queue() {
653        let work_unit = TensorWorkUnit {
654            id: 0,
655            input_tensors: vec![0, 1],
656            output_tensor: 2,
657            contraction_indices: vec![vec![0], vec![1]],
658            estimated_cost: 100.0,
659            memory_requirement: 1024,
660            dependencies: HashSet::new(),
661            priority: 1,
662        };
663
664        let config = ParallelTensorConfig::default();
665        let queue = TensorWorkQueue::new(vec![work_unit], config);
666
667        let work = queue.get_work();
668        assert!(work.is_some());
669
670        queue.complete_work(0);
671        assert!(queue.is_complete());
672    }
673
674    #[test]
675    fn test_parallel_strategies() {
676        let tensor1 = Array::ones(IxDyn(&[2, 2]));
677        let tensor2 = Array::ones(IxDyn(&[2, 2]));
678        let tensors = vec![tensor1, tensor2];
679
680        let contraction = ContractionPair {
681            tensor1_id: 0,
682            tensor2_id: 1,
683            tensor1_indices: vec![1],
684            tensor2_indices: vec![0],
685        };
686
687        let result = strategies::work_stealing_contraction(&tensors, &[contraction], 2);
688        assert!(result.is_ok());
689    }
690}