1use crate::prelude::{SimulatorError, StateVectorSimulator};
19use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
20use scirs2_core::Complex64;
21use serde::{Deserialize, Serialize};
22use std::collections::HashMap;
23
24use crate::error::Result;
25
26#[derive(Debug, Clone)]
28pub struct OpenCLPlatform {
29 pub platform_id: usize,
31 pub name: String,
33 pub vendor: String,
35 pub version: String,
37 pub extensions: Vec<String>,
39}
40
41#[derive(Debug, Clone)]
43pub struct OpenCLDevice {
44 pub device_id: usize,
46 pub name: String,
48 pub vendor: String,
50 pub device_type: OpenCLDeviceType,
52 pub compute_units: u32,
54 pub max_work_group_size: usize,
56 pub max_work_item_dimensions: u32,
58 pub max_work_item_sizes: Vec<usize>,
60 pub global_memory_size: u64,
62 pub local_memory_size: u64,
64 pub max_constant_buffer_size: u64,
66 pub supports_double: bool,
68 pub extensions: Vec<String>,
70}
71
72#[derive(Debug, Clone, Copy, PartialEq, Eq)]
74pub enum OpenCLDeviceType {
75 GPU,
76 CPU,
77 Accelerator,
78 Custom,
79 All,
80}
81
82#[derive(Debug, Clone)]
84pub struct OpenCLConfig {
85 pub preferred_vendor: Option<String>,
87 pub preferred_device_type: OpenCLDeviceType,
89 pub enable_profiling: bool,
91 pub max_buffer_size: usize,
93 pub work_group_size: usize,
95 pub enable_kernel_cache: bool,
97 pub optimization_level: OptimizationLevel,
99 pub enable_cpu_fallback: bool,
101}
102
103#[derive(Debug, Clone, Copy, PartialEq, Eq)]
105pub enum OptimizationLevel {
106 None,
108 Basic,
110 Standard,
112 Aggressive,
114}
115
116impl Default for OpenCLConfig {
117 fn default() -> Self {
118 Self {
119 preferred_vendor: Some("Advanced Micro Devices".to_string()),
120 preferred_device_type: OpenCLDeviceType::GPU,
121 enable_profiling: true,
122 max_buffer_size: 1 << 30, work_group_size: 256,
124 enable_kernel_cache: true,
125 optimization_level: OptimizationLevel::Standard,
126 enable_cpu_fallback: true,
127 }
128 }
129}
130
131#[derive(Debug, Clone)]
133pub struct OpenCLKernel {
134 pub name: String,
136 pub source: String,
138 pub build_options: String,
140 pub local_memory_usage: usize,
142 pub work_group_size: usize,
144}
145
146pub struct AMDOpenCLSimulator {
148 config: OpenCLConfig,
150 platform: Option<OpenCLPlatform>,
152 device: Option<OpenCLDevice>,
154 context: Option<OpenCLContext>,
156 command_queue: Option<OpenCLCommandQueue>,
158 kernels: HashMap<String, OpenCLKernel>,
160 buffers: HashMap<String, OpenCLBuffer>,
162 stats: OpenCLStats,
164 cpu_fallback: Option<StateVectorSimulator>,
166}
167
168#[derive(Debug, Clone)]
170pub struct OpenCLContext {
171 pub context_id: usize,
173 pub devices: Vec<usize>,
175}
176
177#[derive(Debug, Clone)]
179pub struct OpenCLCommandQueue {
180 pub queue_id: usize,
182 pub context_id: usize,
184 pub device_id: usize,
186 pub profiling_enabled: bool,
188}
189
190#[derive(Debug, Clone)]
192pub struct OpenCLBuffer {
193 pub buffer_id: usize,
195 pub size: usize,
197 pub flags: MemoryFlags,
199 pub host_data: Option<Vec<u8>>,
201}
202
203#[derive(Debug, Clone, Copy, PartialEq, Eq)]
205pub enum MemoryFlags {
206 ReadWrite,
207 ReadOnly,
208 WriteOnly,
209 UseHostPtr,
210 AllocHostPtr,
211 CopyHostPtr,
212}
213
214#[derive(Debug, Clone, Default, Serialize, Deserialize)]
216pub struct OpenCLStats {
217 pub total_kernel_executions: usize,
219 pub total_execution_time: f64,
221 pub avg_kernel_time: f64,
223 pub memory_transfer_time: f64,
225 pub compilation_time: f64,
227 pub gpu_memory_usage: u64,
229 pub gpu_utilization: f64,
231 pub state_vector_operations: usize,
233 pub gate_operations: usize,
235 pub cpu_fallback_count: usize,
237}
238
239impl OpenCLStats {
240 pub fn update_kernel_execution(&mut self, execution_time: f64) {
242 self.total_kernel_executions += 1;
243 self.total_execution_time += execution_time;
244 self.avg_kernel_time = self.total_execution_time / self.total_kernel_executions as f64;
245 }
246
247 #[must_use]
249 pub fn get_performance_metrics(&self) -> HashMap<String, f64> {
250 let mut metrics = HashMap::new();
251 metrics.insert(
252 "kernel_executions_per_second".to_string(),
253 self.total_kernel_executions as f64 / (self.total_execution_time / 1000.0),
254 );
255 metrics.insert(
256 "memory_bandwidth_gb_s".to_string(),
257 self.gpu_memory_usage as f64 / (self.memory_transfer_time / 1000.0) / 1e9,
258 );
259 metrics.insert("gpu_efficiency".to_string(), self.gpu_utilization / 100.0);
260 metrics
261 }
262}
263
264impl AMDOpenCLSimulator {
265 pub fn new(config: OpenCLConfig) -> Result<Self> {
267 let mut simulator = Self {
268 config,
269 platform: None,
270 device: None,
271 context: None,
272 command_queue: None,
273 kernels: HashMap::new(),
274 buffers: HashMap::new(),
275 stats: OpenCLStats::default(),
276 cpu_fallback: None,
277 };
278
279 simulator.initialize_opencl()?;
281
282 simulator.compile_kernels()?;
284
285 if simulator.config.enable_cpu_fallback {
287 simulator.cpu_fallback = Some(StateVectorSimulator::new()); }
289
290 Ok(simulator)
291 }
292
293 fn initialize_opencl(&mut self) -> Result<()> {
295 let platforms = self.discover_platforms()?;
297
298 let selected_platform = self.select_platform(&platforms)?;
300 self.platform = Some(selected_platform);
301
302 let devices = self.discover_devices()?;
304
305 let selected_device = self.select_device(&devices)?;
307 self.device = Some(selected_device);
308
309 let device_id = self
311 .device
312 .as_ref()
313 .ok_or_else(|| {
314 SimulatorError::InitializationError("Device not initialized".to_string())
315 })?
316 .device_id;
317
318 self.context = Some(OpenCLContext {
319 context_id: 1,
320 devices: vec![device_id],
321 });
322
323 self.command_queue = Some(OpenCLCommandQueue {
325 queue_id: 1,
326 context_id: 1,
327 device_id,
328 profiling_enabled: self.config.enable_profiling,
329 });
330
331 Ok(())
332 }
333
334 fn discover_platforms(&self) -> Result<Vec<OpenCLPlatform>> {
336 let platforms = vec![
338 OpenCLPlatform {
339 platform_id: 0,
340 name: "AMD Accelerated Parallel Processing".to_string(),
341 vendor: "Advanced Micro Devices, Inc.".to_string(),
342 version: "OpenCL 2.1 AMD-APP (3444.0)".to_string(),
343 extensions: vec![
344 "cl_khr_icd".to_string(),
345 "cl_khr_d3d10_sharing".to_string(),
346 "cl_khr_d3d11_sharing".to_string(),
347 "cl_khr_dx9_media_sharing".to_string(),
348 "cl_amd_event_callback".to_string(),
349 "cl_amd_offline_devices".to_string(),
350 ],
351 },
352 OpenCLPlatform {
353 platform_id: 1,
354 name: "Intel(R) OpenCL".to_string(),
355 vendor: "Intel(R) Corporation".to_string(),
356 version: "OpenCL 2.1".to_string(),
357 extensions: vec!["cl_khr_icd".to_string()],
358 },
359 ];
360
361 Ok(platforms)
362 }
363
364 fn select_platform(&self, platforms: &[OpenCLPlatform]) -> Result<OpenCLPlatform> {
366 if let Some(preferred_vendor) = &self.config.preferred_vendor {
368 for platform in platforms {
369 if platform.vendor.contains(preferred_vendor) {
370 return Ok(platform.clone());
371 }
372 }
373 }
374
375 platforms.first().cloned().ok_or_else(|| {
377 SimulatorError::InitializationError("No OpenCL platforms found".to_string())
378 })
379 }
380
381 fn discover_devices(&self) -> Result<Vec<OpenCLDevice>> {
383 let devices = vec![
385 OpenCLDevice {
386 device_id: 0,
387 name: "Radeon RX 7900 XTX".to_string(),
388 vendor: "Advanced Micro Devices, Inc.".to_string(),
389 device_type: OpenCLDeviceType::GPU,
390 compute_units: 96,
391 max_work_group_size: 256,
392 max_work_item_dimensions: 3,
393 max_work_item_sizes: vec![256, 256, 256],
394 global_memory_size: 24 * (1 << 30), local_memory_size: 64 * 1024, max_constant_buffer_size: 64 * 1024,
397 supports_double: true,
398 extensions: vec![
399 "cl_khr_fp64".to_string(),
400 "cl_amd_fp64".to_string(),
401 "cl_khr_global_int32_base_atomics".to_string(),
402 ],
403 },
404 OpenCLDevice {
405 device_id: 1,
406 name: "Radeon RX 6800 XT".to_string(),
407 vendor: "Advanced Micro Devices, Inc.".to_string(),
408 device_type: OpenCLDeviceType::GPU,
409 compute_units: 72,
410 max_work_group_size: 256,
411 max_work_item_dimensions: 3,
412 max_work_item_sizes: vec![256, 256, 256],
413 global_memory_size: 16 * (1 << 30), local_memory_size: 64 * 1024,
415 max_constant_buffer_size: 64 * 1024,
416 supports_double: true,
417 extensions: vec!["cl_khr_fp64".to_string(), "cl_amd_fp64".to_string()],
418 },
419 ];
420
421 Ok(devices)
422 }
423
424 fn select_device(&self, devices: &[OpenCLDevice]) -> Result<OpenCLDevice> {
426 let filtered_devices: Vec<&OpenCLDevice> = devices
428 .iter()
429 .filter(|device| device.device_type == self.config.preferred_device_type)
430 .collect();
431
432 if filtered_devices.is_empty() {
433 return Err(SimulatorError::InitializationError(
434 "No suitable devices found".to_string(),
435 ));
436 }
437
438 let best_device = filtered_devices
440 .iter()
441 .max_by_key(|device| device.compute_units)
442 .ok_or_else(|| {
443 SimulatorError::InitializationError("No devices available".to_string())
444 })?;
445
446 Ok((*best_device).clone())
447 }
448
449 fn compile_kernels(&mut self) -> Result<()> {
451 let start_time = std::time::Instant::now();
452
453 let single_qubit_kernel = self.create_single_qubit_kernel();
455 self.kernels
456 .insert("single_qubit_gate".to_string(), single_qubit_kernel);
457
458 let two_qubit_kernel = self.create_two_qubit_kernel();
460 self.kernels
461 .insert("two_qubit_gate".to_string(), two_qubit_kernel);
462
463 let state_vector_kernel = self.create_state_vector_kernel();
465 self.kernels
466 .insert("state_vector_ops".to_string(), state_vector_kernel);
467
468 let measurement_kernel = self.create_measurement_kernel();
470 self.kernels
471 .insert("measurement".to_string(), measurement_kernel);
472
473 let expectation_kernel = self.create_expectation_kernel();
475 self.kernels
476 .insert("expectation_value".to_string(), expectation_kernel);
477
478 self.stats.compilation_time = start_time.elapsed().as_secs_f64() * 1000.0;
479
480 Ok(())
481 }
482
483 fn create_single_qubit_kernel(&self) -> OpenCLKernel {
485 let source = r"
486 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
487
488 typedef double2 complex_t;
489
490 complex_t complex_mul(complex_t a, complex_t b) {
491 return (complex_t)(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
492 }
493
494 complex_t complex_add(complex_t a, complex_t b) {
495 return (complex_t)(a.x + b.x, a.y + b.y);
496 }
497
498 __kernel void single_qubit_gate(
499 __global complex_t* state,
500 __global const double* gate_matrix,
501 const int target_qubit,
502 const int num_qubits
503 ) {
504 const int global_id = get_global_id(0);
505 const int total_states = 1 << num_qubits;
506
507 if (global_id >= total_states / 2) return;
508
509 const int target_mask = 1 << target_qubit;
510 const int i = global_id;
511 const int j = i | target_mask;
512
513 if ((i & target_mask) == 0) {
514 // Extract gate matrix elements
515 complex_t gate_00 = (complex_t)(gate_matrix[0], gate_matrix[1]);
516 complex_t gate_01 = (complex_t)(gate_matrix[2], gate_matrix[3]);
517 complex_t gate_10 = (complex_t)(gate_matrix[4], gate_matrix[5]);
518 complex_t gate_11 = (complex_t)(gate_matrix[6], gate_matrix[7]);
519
520 complex_t state_i = state[i];
521 complex_t state_j = state[j];
522
523 state[i] = complex_add(complex_mul(gate_00, state_i), complex_mul(gate_01, state_j));
524 state[j] = complex_add(complex_mul(gate_10, state_i), complex_mul(gate_11, state_j));
525 }
526 }
527 ";
528
529 OpenCLKernel {
530 name: "single_qubit_gate".to_string(),
531 source: source.to_string(),
532 build_options: self.get_build_options(),
533 local_memory_usage: 0,
534 work_group_size: self.config.work_group_size,
535 }
536 }
537
538 fn create_two_qubit_kernel(&self) -> OpenCLKernel {
540 let source = r"
541 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
542
543 typedef double2 complex_t;
544
545 complex_t complex_mul(complex_t a, complex_t b) {
546 return (complex_t)(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
547 }
548
549 complex_t complex_add(complex_t a, complex_t b) {
550 return (complex_t)(a.x + b.x, a.y + b.y);
551 }
552
553 __kernel void two_qubit_gate(
554 __global complex_t* state,
555 __global const double* gate_matrix,
556 const int control_qubit,
557 const int target_qubit,
558 const int num_qubits
559 ) {
560 const int global_id = get_global_id(0);
561 const int total_states = 1 << num_qubits;
562
563 if (global_id >= total_states / 4) return;
564
565 const int control_mask = 1 << control_qubit;
566 const int target_mask = 1 << target_qubit;
567 const int both_mask = control_mask | target_mask;
568
569 int base = global_id;
570 // Remove bits at control and target positions
571 if (global_id & (target_mask - 1)) base = (base & ~(target_mask - 1)) << 1 | (base & (target_mask - 1));
572 if (base & (control_mask - 1)) base = (base & ~(control_mask - 1)) << 1 | (base & (control_mask - 1));
573
574 int state_00 = base;
575 int state_01 = base | target_mask;
576 int state_10 = base | control_mask;
577 int state_11 = base | both_mask;
578
579 // Load gate matrix (16 elements for 4x4 matrix)
580 complex_t gate[4][4];
581 for (int i = 0; i < 4; i++) {
582 for (int j = 0; j < 4; j++) {
583 gate[i][j] = (complex_t)(gate_matrix[(i*4+j)*2], gate_matrix[(i*4+j)*2+1]);
584 }
585 }
586
587 complex_t old_states[4];
588 old_states[0] = state[state_00];
589 old_states[1] = state[state_01];
590 old_states[2] = state[state_10];
591 old_states[3] = state[state_11];
592
593 // Apply gate matrix
594 complex_t new_states[4] = {0};
595 for (int i = 0; i < 4; i++) {
596 for (int j = 0; j < 4; j++) {
597 new_states[i] = complex_add(new_states[i], complex_mul(gate[i][j], old_states[j]));
598 }
599 }
600
601 state[state_00] = new_states[0];
602 state[state_01] = new_states[1];
603 state[state_10] = new_states[2];
604 state[state_11] = new_states[3];
605 }
606 ";
607
608 OpenCLKernel {
609 name: "two_qubit_gate".to_string(),
610 source: source.to_string(),
611 build_options: self.get_build_options(),
612 local_memory_usage: 128, work_group_size: self.config.work_group_size,
614 }
615 }
616
617 fn create_state_vector_kernel(&self) -> OpenCLKernel {
619 let source = r"
620 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
621
622 typedef double2 complex_t;
623
624 __kernel void normalize_state(
625 __global complex_t* state,
626 const int num_states,
627 const double norm_factor
628 ) {
629 const int global_id = get_global_id(0);
630
631 if (global_id >= num_states) return;
632
633 state[global_id].x *= norm_factor;
634 state[global_id].y *= norm_factor;
635 }
636
637 __kernel void compute_probabilities(
638 __global const complex_t* state,
639 __global double* probabilities,
640 const int num_states
641 ) {
642 const int global_id = get_global_id(0);
643
644 if (global_id >= num_states) return;
645
646 complex_t amplitude = state[global_id];
647 probabilities[global_id] = amplitude.x * amplitude.x + amplitude.y * amplitude.y;
648 }
649
650 __kernel void inner_product(
651 __global const complex_t* state1,
652 __global const complex_t* state2,
653 __global complex_t* partial_results,
654 __local complex_t* local_data,
655 const int num_states
656 ) {
657 const int global_id = get_global_id(0);
658 const int local_id = get_local_id(0);
659 const int local_size = get_local_size(0);
660 const int group_id = get_group_id(0);
661
662 // Initialize local memory
663 if (global_id < num_states) {
664 complex_t a = state1[global_id];
665 complex_t b = state2[global_id];
666 // Conjugate of a times b
667 local_data[local_id] = (complex_t)(a.x * b.x + a.y * b.y, a.x * b.y - a.y * b.x);
668 } else {
669 local_data[local_id] = (complex_t)(0.0, 0.0);
670 }
671
672 barrier(CLK_LOCAL_MEM_FENCE);
673
674 // Reduction
675 for (int stride = local_size / 2; stride > 0; stride /= 2) {
676 if (local_id < stride) {
677 local_data[local_id].x += local_data[local_id + stride].x;
678 local_data[local_id].y += local_data[local_id + stride].y;
679 }
680 barrier(CLK_LOCAL_MEM_FENCE);
681 }
682
683 if (local_id == 0) {
684 partial_results[group_id] = local_data[0];
685 }
686 }
687 ";
688
689 OpenCLKernel {
690 name: "state_vector_ops".to_string(),
691 source: source.to_string(),
692 build_options: self.get_build_options(),
693 local_memory_usage: self.config.work_group_size * 16, work_group_size: self.config.work_group_size,
695 }
696 }
697
698 fn create_measurement_kernel(&self) -> OpenCLKernel {
700 let source = r"
701 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
702
703 typedef double2 complex_t;
704
705 __kernel void measure_qubit(
706 __global complex_t* state,
707 __global double* probabilities,
708 const int target_qubit,
709 const int num_qubits,
710 const int measurement_result
711 ) {
712 const int global_id = get_global_id(0);
713 const int total_states = 1 << num_qubits;
714
715 if (global_id >= total_states) return;
716
717 const int target_mask = 1 << target_qubit;
718 const int qubit_value = (global_id & target_mask) ? 1 : 0;
719
720 if (qubit_value != measurement_result) {
721 // Set amplitude to zero for inconsistent measurement
722 state[global_id] = (complex_t)(0.0, 0.0);
723 }
724 }
725
726 __kernel void compute_measurement_probabilities(
727 __global const complex_t* state,
728 __global double* prob_0,
729 __global double* prob_1,
730 __local double* local_data,
731 const int target_qubit,
732 const int num_qubits
733 ) {
734 const int global_id = get_global_id(0);
735 const int local_id = get_local_id(0);
736 const int local_size = get_local_size(0);
737 const int group_id = get_group_id(0);
738 const int total_states = 1 << num_qubits;
739
740 double local_prob_0 = 0.0;
741 double local_prob_1 = 0.0;
742
743 if (global_id < total_states) {
744 const int target_mask = 1 << target_qubit;
745 complex_t amplitude = state[global_id];
746 double prob = amplitude.x * amplitude.x + amplitude.y * amplitude.y;
747
748 if (global_id & target_mask) {
749 local_prob_1 = prob;
750 } else {
751 local_prob_0 = prob;
752 }
753 }
754
755 local_data[local_id * 2] = local_prob_0;
756 local_data[local_id * 2 + 1] = local_prob_1;
757
758 barrier(CLK_LOCAL_MEM_FENCE);
759
760 // Reduction
761 for (int stride = local_size / 2; stride > 0; stride /= 2) {
762 if (local_id < stride) {
763 local_data[local_id * 2] += local_data[(local_id + stride) * 2];
764 local_data[local_id * 2 + 1] += local_data[(local_id + stride) * 2 + 1];
765 }
766 barrier(CLK_LOCAL_MEM_FENCE);
767 }
768
769 if (local_id == 0) {
770 prob_0[group_id] = local_data[0];
771 prob_1[group_id] = local_data[1];
772 }
773 }
774 ";
775
776 OpenCLKernel {
777 name: "measurement".to_string(),
778 source: source.to_string(),
779 build_options: self.get_build_options(),
780 local_memory_usage: self.config.work_group_size * 16, work_group_size: self.config.work_group_size,
782 }
783 }
784
785 fn create_expectation_kernel(&self) -> OpenCLKernel {
787 let source = r"
788 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
789
790 typedef double2 complex_t;
791
792 complex_t complex_mul(complex_t a, complex_t b) {
793 return (complex_t)(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
794 }
795
796 __kernel void expectation_value_pauli(
797 __global const complex_t* state,
798 __global double* partial_results,
799 __local double* local_data,
800 const int pauli_string,
801 const int num_qubits
802 ) {
803 const int global_id = get_global_id(0);
804 const int local_id = get_local_id(0);
805 const int local_size = get_local_size(0);
806 const int group_id = get_group_id(0);
807 const int total_states = 1 << num_qubits;
808
809 double local_expectation = 0.0;
810
811 if (global_id < total_states) {
812 complex_t amplitude = state[global_id];
813
814 // Apply Pauli operators
815 int target_state = global_id;
816 complex_t result_amplitude = amplitude;
817 double sign = 1.0;
818
819 // Process each Pauli operator in the string
820 for (int qubit = 0; qubit < num_qubits; qubit++) {
821 int pauli_op = (pauli_string >> (2 * qubit)) & 3;
822 int qubit_mask = 1 << qubit;
823
824 switch (pauli_op) {
825 case 0: // I (identity)
826 break;
827 case 1: // X (bit flip)
828 target_state ^= qubit_mask;
829 break;
830 case 2: // Y (bit and phase flip)
831 target_state ^= qubit_mask;
832 if (global_id & qubit_mask) sign *= -1.0;
833 else result_amplitude = (complex_t)(-result_amplitude.y, result_amplitude.x);
834 break;
835 case 3: // Z (phase flip)
836 if (global_id & qubit_mask) sign *= -1.0;
837 break;
838 }
839 }
840
841 if (target_state == global_id) {
842 // Diagonal element
843 local_expectation = sign * (amplitude.x * amplitude.x + amplitude.y * amplitude.y);
844 }
845 }
846
847 local_data[local_id] = local_expectation;
848 barrier(CLK_LOCAL_MEM_FENCE);
849
850 // Reduction
851 for (int stride = local_size / 2; stride > 0; stride /= 2) {
852 if (local_id < stride) {
853 local_data[local_id] += local_data[local_id + stride];
854 }
855 barrier(CLK_LOCAL_MEM_FENCE);
856 }
857
858 if (local_id == 0) {
859 partial_results[group_id] = local_data[0];
860 }
861 }
862 ";
863
864 OpenCLKernel {
865 name: "expectation_value".to_string(),
866 source: source.to_string(),
867 build_options: self.get_build_options(),
868 local_memory_usage: self.config.work_group_size * 8, work_group_size: self.config.work_group_size,
870 }
871 }
872
873 fn get_build_options(&self) -> String {
875 let mut options = Vec::new();
876
877 match self.config.optimization_level {
878 OptimizationLevel::None => options.push("-O0"),
879 OptimizationLevel::Basic => options.push("-O1"),
880 OptimizationLevel::Standard => options.push("-O2"),
881 OptimizationLevel::Aggressive => options.push("-O3"),
882 }
883
884 options.push("-cl-mad-enable");
886 options.push("-cl-fast-relaxed-math");
887
888 if let Some(device) = &self.device {
890 if device.supports_double {
891 options.push("-cl-fp64");
892 }
893 }
894
895 options.join(" ")
896 }
897
898 pub fn create_buffer(&mut self, name: &str, size: usize, flags: MemoryFlags) -> Result<()> {
900 if size > self.config.max_buffer_size {
901 return Err(SimulatorError::MemoryError(format!(
902 "Buffer size {} exceeds maximum {}",
903 size, self.config.max_buffer_size
904 )));
905 }
906
907 let buffer = OpenCLBuffer {
908 buffer_id: self.buffers.len(),
909 size,
910 flags,
911 host_data: Some(vec![0u8; size]),
912 };
913
914 self.buffers.insert(name.to_string(), buffer);
915 self.stats.gpu_memory_usage += size as u64;
916
917 Ok(())
918 }
919
920 pub fn execute_kernel(
922 &mut self,
923 kernel_name: &str,
924 global_work_size: &[usize],
925 local_work_size: Option<&[usize]>,
926 args: &[KernelArg],
927 ) -> Result<f64> {
928 let start_time = std::time::Instant::now();
929
930 if !self.kernels.contains_key(kernel_name) {
931 return Err(SimulatorError::InvalidInput(format!(
932 "Kernel {kernel_name} not found"
933 )));
934 }
935
936 let execution_time = self.simulate_kernel_execution(kernel_name, global_work_size, args)?;
938
939 let total_time = start_time.elapsed().as_secs_f64() * 1000.0;
940 self.stats.update_kernel_execution(total_time);
941
942 match kernel_name {
943 "single_qubit_gate" | "two_qubit_gate" => {
944 self.stats.gate_operations += 1;
945 }
946 "state_vector_ops" | "normalize_state" | "compute_probabilities" => {
947 self.stats.state_vector_operations += 1;
948 }
949 _ => {}
950 }
951
952 Ok(execution_time)
953 }
954
955 fn simulate_kernel_execution(
957 &self,
958 kernel_name: &str,
959 global_work_size: &[usize],
960 _args: &[KernelArg],
961 ) -> Result<f64> {
962 let total_work_items: usize = global_work_size.iter().product();
963
964 let device = self
966 .device
967 .as_ref()
968 .ok_or_else(|| SimulatorError::InvalidState("Device not initialized".to_string()))?;
969 let work_groups = total_work_items.div_ceil(self.config.work_group_size);
970 let parallel_work_groups = device.compute_units as usize;
971
972 let execution_cycles = work_groups.div_ceil(parallel_work_groups);
973
974 let base_time_per_cycle = match kernel_name {
976 "single_qubit_gate" => 1.0,
977 "two_qubit_gate" => 2.5,
978 "state_vector_ops" => 0.5,
979 "measurement" => 1.5,
980 "expectation_value" => 2.0,
981 _ => 1.0,
982 };
983
984 let execution_time = execution_cycles as f64 * base_time_per_cycle;
985
986 let variation = fastrand::f64().mul_add(0.2, 0.9); Ok(execution_time * variation)
989 }
990
991 pub fn apply_single_qubit_gate_opencl(
993 &mut self,
994 gate_matrix: &[Complex64; 4],
995 target_qubit: usize,
996 num_qubits: usize,
997 ) -> Result<f64> {
998 let mut gate_real = [0.0; 8];
1000 for (i, &complex_val) in gate_matrix.iter().enumerate() {
1001 gate_real[i * 2] = complex_val.re;
1002 gate_real[i * 2 + 1] = complex_val.im;
1003 }
1004
1005 let total_states = 1 << num_qubits;
1006 let global_work_size = vec![total_states / 2];
1007
1008 let args = vec![
1009 KernelArg::Buffer("state".to_string()),
1010 KernelArg::ConstantBuffer("gate_matrix".to_string()),
1011 KernelArg::Int(target_qubit as i32),
1012 KernelArg::Int(num_qubits as i32),
1013 ];
1014
1015 self.execute_kernel("single_qubit_gate", &global_work_size, None, &args)
1016 }
1017
1018 pub fn apply_two_qubit_gate_opencl(
1020 &mut self,
1021 gate_matrix: &[Complex64; 16],
1022 control_qubit: usize,
1023 target_qubit: usize,
1024 num_qubits: usize,
1025 ) -> Result<f64> {
1026 let mut gate_real = [0.0; 32];
1028 for (i, &complex_val) in gate_matrix.iter().enumerate() {
1029 gate_real[i * 2] = complex_val.re;
1030 gate_real[i * 2 + 1] = complex_val.im;
1031 }
1032
1033 let total_states = 1 << num_qubits;
1034 let global_work_size = vec![total_states / 4];
1035
1036 let args = vec![
1037 KernelArg::Buffer("state".to_string()),
1038 KernelArg::ConstantBuffer("gate_matrix".to_string()),
1039 KernelArg::Int(control_qubit as i32),
1040 KernelArg::Int(target_qubit as i32),
1041 KernelArg::Int(num_qubits as i32),
1042 ];
1043
1044 self.execute_kernel("two_qubit_gate", &global_work_size, None, &args)
1045 }
1046
1047 pub fn compute_expectation_value_opencl(
1049 &mut self,
1050 pauli_string: u32,
1051 num_qubits: usize,
1052 ) -> Result<(f64, f64)> {
1053 let total_states = 1 << num_qubits;
1054 let global_work_size = vec![total_states];
1055
1056 let args = vec![
1057 KernelArg::Buffer("state".to_string()),
1058 KernelArg::Buffer("partial_results".to_string()),
1059 KernelArg::LocalMemory(self.config.work_group_size * 8),
1060 KernelArg::Int(pauli_string as i32),
1061 KernelArg::Int(num_qubits as i32),
1062 ];
1063
1064 let execution_time = self.execute_kernel(
1065 "expectation_value",
1066 &global_work_size,
1067 Some(&[self.config.work_group_size]),
1068 &args,
1069 )?;
1070
1071 let expectation_value = fastrand::f64().mul_add(2.0, -1.0); Ok((expectation_value, execution_time))
1075 }
1076
1077 pub const fn get_device_info(&self) -> Option<&OpenCLDevice> {
1079 self.device.as_ref()
1080 }
1081
1082 pub const fn get_stats(&self) -> &OpenCLStats {
1084 &self.stats
1085 }
1086
1087 pub fn reset_stats(&mut self) {
1089 self.stats = OpenCLStats::default();
1090 }
1091
1092 pub const fn is_opencl_available(&self) -> bool {
1094 self.context.is_some() && self.device.is_some()
1095 }
1096
1097 pub fn fallback_to_cpu(&mut self, num_qubits: usize) -> Result<()> {
1099 if self.config.enable_cpu_fallback {
1100 self.cpu_fallback = Some(StateVectorSimulator::new());
1101 self.stats.cpu_fallback_count += 1;
1102 Ok(())
1103 } else {
1104 Err(SimulatorError::OperationNotSupported(
1105 "CPU fallback disabled".to_string(),
1106 ))
1107 }
1108 }
1109}
1110
1111#[derive(Debug, Clone)]
1113pub enum KernelArg {
1114 Buffer(String),
1115 ConstantBuffer(String),
1116 Int(i32),
1117 Float(f32),
1118 Double(f64),
1119 LocalMemory(usize),
1120}
1121
1122pub fn benchmark_amd_opencl_backend() -> Result<HashMap<String, f64>> {
1124 let mut results = HashMap::new();
1125
1126 let configs = vec![
1128 OpenCLConfig {
1129 work_group_size: 64,
1130 optimization_level: OptimizationLevel::Standard,
1131 ..Default::default()
1132 },
1133 OpenCLConfig {
1134 work_group_size: 128,
1135 optimization_level: OptimizationLevel::Aggressive,
1136 ..Default::default()
1137 },
1138 OpenCLConfig {
1139 work_group_size: 256,
1140 optimization_level: OptimizationLevel::Aggressive,
1141 ..Default::default()
1142 },
1143 ];
1144
1145 for (i, config) in configs.into_iter().enumerate() {
1146 let start = std::time::Instant::now();
1147
1148 let mut simulator = AMDOpenCLSimulator::new(config)?;
1149
1150 let single_qubit_matrix = [
1152 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1153 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1154 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1155 Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
1156 ];
1157
1158 for num_qubits in [10, 15, 20] {
1159 simulator.create_buffer("state", (1 << num_qubits) * 16, MemoryFlags::ReadWrite)?;
1160
1161 for qubit in 0..num_qubits.min(5) {
1162 let _time = simulator.apply_single_qubit_gate_opencl(
1163 &single_qubit_matrix,
1164 qubit,
1165 num_qubits,
1166 )?;
1167 }
1168 }
1169
1170 let cnot_matrix = [
1172 Complex64::new(1.0, 0.0),
1173 Complex64::new(0.0, 0.0),
1174 Complex64::new(0.0, 0.0),
1175 Complex64::new(0.0, 0.0),
1176 Complex64::new(0.0, 0.0),
1177 Complex64::new(1.0, 0.0),
1178 Complex64::new(0.0, 0.0),
1179 Complex64::new(0.0, 0.0),
1180 Complex64::new(0.0, 0.0),
1181 Complex64::new(0.0, 0.0),
1182 Complex64::new(0.0, 0.0),
1183 Complex64::new(1.0, 0.0),
1184 Complex64::new(0.0, 0.0),
1185 Complex64::new(0.0, 0.0),
1186 Complex64::new(1.0, 0.0),
1187 Complex64::new(0.0, 0.0),
1188 ];
1189
1190 for num_qubits in [10usize, 15, 20] {
1191 for pair in 0..num_qubits.saturating_sub(1).min(3) {
1192 let _time = simulator.apply_two_qubit_gate_opencl(
1193 &cnot_matrix,
1194 pair,
1195 pair + 1,
1196 num_qubits,
1197 )?;
1198 }
1199 }
1200
1201 for num_qubits in [10, 15, 20] {
1203 let _result = simulator.compute_expectation_value_opencl(0b1010, num_qubits)?;
1204 }
1205
1206 let time = start.elapsed().as_secs_f64() * 1000.0;
1207 results.insert(format!("config_{i}"), time);
1208
1209 let stats = simulator.get_stats();
1211 results.insert(format!("config_{i}_gate_ops"), stats.gate_operations as f64);
1212 results.insert(format!("config_{i}_avg_kernel_time"), stats.avg_kernel_time);
1213 results.insert(format!("config_{i}_gpu_utilization"), stats.gpu_utilization);
1214 }
1215
1216 Ok(results)
1217}
1218
1219#[cfg(test)]
1220mod tests {
1221 use super::*;
1222 use approx::assert_abs_diff_eq;
1223
1224 #[test]
1225 fn test_opencl_simulator_creation() {
1226 let config = OpenCLConfig::default();
1227 let simulator = AMDOpenCLSimulator::new(config);
1228 assert!(simulator.is_ok());
1229 }
1230
1231 #[test]
1232 fn test_platform_discovery() {
1233 let config = OpenCLConfig::default();
1234 let simulator =
1235 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1236 let platforms = simulator
1237 .discover_platforms()
1238 .expect("Platform discovery should succeed");
1239
1240 assert!(!platforms.is_empty());
1241 assert!(platforms
1242 .iter()
1243 .any(|p| p.vendor.contains("Advanced Micro Devices")));
1244 }
1245
1246 #[test]
1247 fn test_device_discovery() {
1248 let config = OpenCLConfig::default();
1249 let simulator =
1250 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1251 let devices = simulator
1252 .discover_devices()
1253 .expect("Device discovery should succeed");
1254
1255 assert!(!devices.is_empty());
1256 assert!(devices
1257 .iter()
1258 .any(|d| d.device_type == OpenCLDeviceType::GPU));
1259 }
1260
1261 #[test]
1262 fn test_kernel_creation() {
1263 let config = OpenCLConfig::default();
1264 let simulator =
1265 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1266
1267 assert!(simulator.kernels.contains_key("single_qubit_gate"));
1268 assert!(simulator.kernels.contains_key("two_qubit_gate"));
1269 assert!(simulator.kernels.contains_key("state_vector_ops"));
1270 assert!(simulator.kernels.contains_key("measurement"));
1271 assert!(simulator.kernels.contains_key("expectation_value"));
1272 }
1273
1274 #[test]
1275 fn test_buffer_creation() {
1276 let config = OpenCLConfig::default();
1277 let mut simulator =
1278 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1279
1280 let result = simulator.create_buffer("test_buffer", 1024, MemoryFlags::ReadWrite);
1281 assert!(result.is_ok());
1282 assert!(simulator.buffers.contains_key("test_buffer"));
1283 assert_eq!(simulator.stats.gpu_memory_usage, 1024);
1284 }
1285
1286 #[test]
1287 fn test_buffer_size_limit() {
1288 let config = OpenCLConfig {
1289 max_buffer_size: 512,
1290 ..Default::default()
1291 };
1292 let mut simulator =
1293 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1294
1295 let result = simulator.create_buffer("large_buffer", 1024, MemoryFlags::ReadWrite);
1296 assert!(result.is_err());
1297 }
1298
1299 #[test]
1300 fn test_kernel_execution() {
1301 let config = OpenCLConfig::default();
1302 let mut simulator =
1303 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1304
1305 let global_work_size = vec![256];
1306 let args = vec![
1307 KernelArg::Buffer("state".to_string()),
1308 KernelArg::Int(0),
1309 KernelArg::Int(8),
1310 ];
1311
1312 let result = simulator.execute_kernel("single_qubit_gate", &global_work_size, None, &args);
1313 assert!(result.is_ok());
1314
1315 let execution_time = result.expect("Kernel execution should succeed");
1316 assert!(execution_time > 0.0);
1317 }
1318
1319 #[test]
1320 fn test_single_qubit_gate_application() {
1321 let config = OpenCLConfig::default();
1322 let mut simulator =
1323 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1324
1325 let hadamard_matrix = [
1326 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1327 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1328 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1329 Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
1330 ];
1331
1332 simulator
1333 .create_buffer("state", 1024 * 16, MemoryFlags::ReadWrite)
1334 .expect("Buffer creation should succeed");
1335
1336 let result = simulator.apply_single_qubit_gate_opencl(&hadamard_matrix, 0, 8);
1337 assert!(result.is_ok());
1338
1339 let execution_time = result.expect("Single qubit gate application should succeed");
1340 assert!(execution_time > 0.0);
1341 }
1342
1343 #[test]
1344 fn test_two_qubit_gate_application() {
1345 let config = OpenCLConfig::default();
1346 let mut simulator =
1347 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1348
1349 let cnot_matrix = [
1350 Complex64::new(1.0, 0.0),
1351 Complex64::new(0.0, 0.0),
1352 Complex64::new(0.0, 0.0),
1353 Complex64::new(0.0, 0.0),
1354 Complex64::new(0.0, 0.0),
1355 Complex64::new(1.0, 0.0),
1356 Complex64::new(0.0, 0.0),
1357 Complex64::new(0.0, 0.0),
1358 Complex64::new(0.0, 0.0),
1359 Complex64::new(0.0, 0.0),
1360 Complex64::new(0.0, 0.0),
1361 Complex64::new(1.0, 0.0),
1362 Complex64::new(0.0, 0.0),
1363 Complex64::new(0.0, 0.0),
1364 Complex64::new(1.0, 0.0),
1365 Complex64::new(0.0, 0.0),
1366 ];
1367
1368 simulator
1369 .create_buffer("state", 1024 * 16, MemoryFlags::ReadWrite)
1370 .expect("Buffer creation should succeed");
1371
1372 let result = simulator.apply_two_qubit_gate_opencl(&cnot_matrix, 0, 1, 8);
1373 assert!(result.is_ok());
1374
1375 let execution_time = result.expect("Two qubit gate application should succeed");
1376 assert!(execution_time > 0.0);
1377 }
1378
1379 #[test]
1380 fn test_expectation_value_computation() {
1381 let config = OpenCLConfig::default();
1382 let mut simulator =
1383 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1384
1385 simulator
1386 .create_buffer("state", 1024 * 16, MemoryFlags::ReadWrite)
1387 .expect("State buffer creation should succeed");
1388 simulator
1389 .create_buffer("partial_results", 64 * 8, MemoryFlags::ReadWrite)
1390 .expect("Partial results buffer creation should succeed");
1391
1392 let result = simulator.compute_expectation_value_opencl(0b1010, 8);
1393 assert!(result.is_ok());
1394
1395 let (expectation, execution_time) =
1396 result.expect("Expectation value computation should succeed");
1397 assert!((-1.0..=1.0).contains(&expectation));
1398 assert!(execution_time > 0.0);
1399 }
1400
1401 #[test]
1402 fn test_build_options() {
1403 let config = OpenCLConfig {
1404 optimization_level: OptimizationLevel::Aggressive,
1405 ..Default::default()
1406 };
1407 let simulator =
1408 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1409
1410 let build_options = simulator.get_build_options();
1411 assert!(build_options.contains("-O3"));
1412 assert!(build_options.contains("-cl-mad-enable"));
1413 assert!(build_options.contains("-cl-fast-relaxed-math"));
1414 }
1415
1416 #[test]
1417 fn test_stats_update() {
1418 let config = OpenCLConfig::default();
1419 let mut simulator =
1420 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1421
1422 simulator.stats.update_kernel_execution(10.0);
1423 simulator.stats.update_kernel_execution(20.0);
1424
1425 assert_eq!(simulator.stats.total_kernel_executions, 2);
1426 assert_abs_diff_eq!(simulator.stats.total_execution_time, 30.0, epsilon = 1e-10);
1427 assert_abs_diff_eq!(simulator.stats.avg_kernel_time, 15.0, epsilon = 1e-10);
1428 }
1429
1430 #[test]
1431 fn test_performance_metrics() {
1432 let config = OpenCLConfig::default();
1433 let mut simulator =
1434 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1435
1436 simulator.stats.total_kernel_executions = 100;
1437 simulator.stats.total_execution_time = 1000.0; simulator.stats.gpu_memory_usage = 1_000_000_000; simulator.stats.memory_transfer_time = 100.0; simulator.stats.gpu_utilization = 85.0;
1441
1442 let metrics = simulator.stats.get_performance_metrics();
1443
1444 assert!(metrics.contains_key("kernel_executions_per_second"));
1445 assert!(metrics.contains_key("memory_bandwidth_gb_s"));
1446 assert!(metrics.contains_key("gpu_efficiency"));
1447
1448 assert_abs_diff_eq!(
1449 metrics["kernel_executions_per_second"],
1450 100.0,
1451 epsilon = 1e-10
1452 );
1453 assert_abs_diff_eq!(metrics["gpu_efficiency"], 0.85, epsilon = 1e-10);
1454 }
1455
1456 #[test]
1457 fn test_cpu_fallback() {
1458 let config = OpenCLConfig {
1459 enable_cpu_fallback: true,
1460 ..Default::default()
1461 };
1462 let mut simulator =
1463 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1464
1465 let result = simulator.fallback_to_cpu(10);
1466 assert!(result.is_ok());
1467 assert_eq!(simulator.stats.cpu_fallback_count, 1);
1468 assert!(simulator.cpu_fallback.is_some());
1469 }
1470
1471 #[test]
1472 fn test_device_selection() {
1473 let config = OpenCLConfig {
1474 preferred_device_type: OpenCLDeviceType::GPU,
1475 ..Default::default()
1476 };
1477 let simulator =
1478 AMDOpenCLSimulator::new(config).expect("OpenCL simulator should be created");
1479
1480 let device_info = simulator
1481 .get_device_info()
1482 .expect("Device info should be available");
1483 assert_eq!(device_info.device_type, OpenCLDeviceType::GPU);
1484 assert!(device_info.name.contains("Radeon"));
1485 assert_eq!(device_info.vendor, "Advanced Micro Devices, Inc.");
1486 }
1487}