1use crate::prelude::SimulatorError;
8use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
9use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
10use scirs2_core::Complex64;
11use std::collections::HashMap;
12
13use crate::error::Result;
14use crate::scirs2_integration::SciRS2Backend;
15
16pub struct LindladSimulator {
18 num_qubits: usize,
20 density_matrix: Array2<Complex64>,
22 lindblad_ops: Vec<LindladOperator>,
24 hamiltonian: Option<Array2<Complex64>>,
26 time_step: f64,
28 integration_method: IntegrationMethod,
30 backend: Option<SciRS2Backend>,
32}
33
34#[derive(Debug, Clone)]
36pub struct LindladOperator {
37 pub operator: Array2<Complex64>,
39 pub rate: f64,
41 pub label: Option<String>,
43}
44
45#[derive(Debug, Clone, Copy, PartialEq, Eq)]
47pub enum IntegrationMethod {
48 Euler,
50 RungeKutta4,
52 AdaptiveRK,
54 MatrixExponential,
56}
57
58impl LindladSimulator {
59 pub fn new(num_qubits: usize) -> Result<Self> {
61 let dim = 1 << num_qubits;
62 let mut density_matrix = Array2::zeros((dim, dim));
63 density_matrix[[0, 0]] = Complex64::new(1.0, 0.0); Ok(Self {
66 num_qubits,
67 density_matrix,
68 lindblad_ops: Vec::new(),
69 hamiltonian: None,
70 time_step: 0.01,
71 integration_method: IntegrationMethod::RungeKutta4,
72 backend: None,
73 })
74 }
75
76 pub fn with_scirs2_backend(mut self) -> Result<Self> {
78 self.backend = Some(SciRS2Backend::new());
79 Ok(self)
80 }
81
82 pub fn set_density_matrix(&mut self, rho: Array2<Complex64>) -> Result<()> {
84 let dim = 1 << self.num_qubits;
85 if rho.shape() != [dim, dim] {
86 return Err(SimulatorError::DimensionMismatch(format!(
87 "Expected {dim}x{dim} density matrix"
88 )));
89 }
90
91 let trace: Complex64 = rho.diag().iter().sum();
93 if (trace.re - 1.0).abs() > 1e-10 || trace.im.abs() > 1e-10 {
94 return Err(SimulatorError::InvalidInput(format!(
95 "Density matrix not normalized: trace = {trace}"
96 )));
97 }
98
99 self.density_matrix = rho;
100 Ok(())
101 }
102
103 pub fn from_state_vector(&mut self, psi: &ArrayView1<Complex64>) -> Result<()> {
105 let dim = 1 << self.num_qubits;
106 if psi.len() != dim {
107 return Err(SimulatorError::DimensionMismatch(format!(
108 "Expected state vector of length {dim}"
109 )));
110 }
111
112 let mut rho = Array2::zeros((dim, dim));
114 for i in 0..dim {
115 for j in 0..dim {
116 rho[[i, j]] = psi[i] * psi[j].conj();
117 }
118 }
119
120 self.density_matrix = rho;
121 Ok(())
122 }
123
124 pub fn add_lindblad_operator(&mut self, operator: LindladOperator) -> Result<()> {
126 let dim = 1 << self.num_qubits;
127 if operator.operator.shape() != [dim, dim] {
128 return Err(SimulatorError::DimensionMismatch(format!(
129 "Operator must be {dim}x{dim}"
130 )));
131 }
132
133 self.lindblad_ops.push(operator);
134 Ok(())
135 }
136
137 pub fn set_hamiltonian(&mut self, h: Array2<Complex64>) -> Result<()> {
139 let dim = 1 << self.num_qubits;
140 if h.shape() != [dim, dim] {
141 return Err(SimulatorError::DimensionMismatch(format!(
142 "Hamiltonian must be {dim}x{dim}"
143 )));
144 }
145
146 self.hamiltonian = Some(h);
147 Ok(())
148 }
149
150 pub const fn set_time_step(&mut self, dt: f64) {
152 self.time_step = dt;
153 }
154
155 pub const fn set_integration_method(&mut self, method: IntegrationMethod) {
157 self.integration_method = method;
158 }
159
160 pub fn evolve(&mut self, total_time: f64) -> Result<EvolutionResult> {
162 let num_steps = (total_time / self.time_step).ceil() as usize;
163 let actual_dt = total_time / num_steps as f64;
164
165 let mut times = Vec::with_capacity(num_steps + 1);
166 let mut densities = Vec::new();
167 let mut purities = Vec::with_capacity(num_steps + 1);
168 let mut traces = Vec::with_capacity(num_steps + 1);
169
170 times.push(0.0);
172 purities.push(self.purity());
173 traces.push(self.trace().re);
174
175 if self.num_qubits <= 4 {
177 densities.push(self.density_matrix.clone());
178 }
179
180 for step in 0..num_steps {
182 match self.integration_method {
183 IntegrationMethod::Euler => {
184 self.euler_step(actual_dt)?;
185 }
186 IntegrationMethod::RungeKutta4 => {
187 self.runge_kutta4_step(actual_dt)?;
188 }
189 IntegrationMethod::AdaptiveRK => {
190 self.adaptive_rk_step(actual_dt)?;
191 }
192 IntegrationMethod::MatrixExponential => {
193 self.matrix_exponential_step(actual_dt)?;
194 }
195 }
196
197 let current_time = (step + 1) as f64 * actual_dt;
198 times.push(current_time);
199 purities.push(self.purity());
200 traces.push(self.trace().re);
201
202 if self.num_qubits <= 4 {
203 densities.push(self.density_matrix.clone());
204 }
205 }
206
207 Ok(EvolutionResult {
208 times,
209 densities,
210 purities,
211 traces,
212 final_density: self.density_matrix.clone(),
213 })
214 }
215
216 fn euler_step(&mut self, dt: f64) -> Result<()> {
218 let derivative = self.compute_lindblad_derivative()?;
219
220 for ((i, j), drho_dt) in derivative.indexed_iter() {
222 self.density_matrix[[i, j]] += dt * drho_dt;
223 }
224
225 self.renormalize();
227
228 Ok(())
229 }
230
231 fn runge_kutta4_step(&mut self, dt: f64) -> Result<()> {
233 let rho0 = self.density_matrix.clone();
234
235 let k1 = self.compute_lindblad_derivative()?;
237
238 self.density_matrix = &rho0 + &(&k1 * (dt / 2.0));
240 let k2 = self.compute_lindblad_derivative()?;
241
242 self.density_matrix = &rho0 + &(&k2 * (dt / 2.0));
244 let k3 = self.compute_lindblad_derivative()?;
245
246 self.density_matrix = &rho0 + &(&k3 * dt);
248 let k4 = self.compute_lindblad_derivative()?;
249
250 let coeff = Complex64::new(dt / 6.0, 0.0);
252 self.density_matrix = rho0
253 + coeff
254 * (&k1 + &(Complex64::new(2.0, 0.0) * k2) + &(Complex64::new(2.0, 0.0) * k3) + &k4);
255
256 self.renormalize();
257 Ok(())
258 }
259
260 fn adaptive_rk_step(&mut self, dt: f64) -> Result<()> {
262 self.runge_kutta4_step(dt)
265 }
266
267 fn matrix_exponential_step(&mut self, dt: f64) -> Result<()> {
269 if let Some(ref backend) = self.backend {
270 self.matrix_exp_with_scirs2(dt)
272 } else {
273 self.matrix_exp_series(dt)
275 }
276 }
277
278 fn matrix_exp_with_scirs2(&mut self, dt: f64) -> Result<()> {
280 self.matrix_exp_series(dt)
283 }
284
285 fn matrix_exp_series(&mut self, dt: f64) -> Result<()> {
287 let lindbladian = self.construct_lindbladian_superoperator()?;
288
289 let dim_sq = lindbladian.nrows();
291 let mut result = Array2::eye(dim_sq);
292 let mut term = Array2::eye(dim_sq);
293 let l_dt = &lindbladian * dt;
294
295 for n in 1..=20 {
297 term = term.dot(&l_dt) / f64::from(n);
298 result += &term;
299
300 let term_norm: f64 = term.iter().map(|x| x.norm()).sum();
302 if term_norm < 1e-12 {
303 break;
304 }
305 }
306
307 let rho_vec = self.vectorize_density_matrix();
309 let new_rho_vec = result.dot(&rho_vec);
310 self.density_matrix = self.devectorize_density_matrix(&new_rho_vec);
311
312 self.renormalize();
313 Ok(())
314 }
315
316 fn compute_lindblad_derivative(&self) -> Result<Array2<Complex64>> {
318 let dim = self.density_matrix.nrows();
319 let mut derivative = Array2::zeros((dim, dim));
320
321 if let Some(ref h) = self.hamiltonian {
323 let commutator = h.dot(&self.density_matrix) - self.density_matrix.dot(h);
324 derivative += &(commutator * Complex64::new(0.0, -1.0));
325 }
326
327 for lindblad_op in &self.lindblad_ops {
329 let l = &lindblad_op.operator;
330 let l_dag = l.t().mapv(|x| x.conj());
331 let rate = lindblad_op.rate;
332
333 let dissipation = l.dot(&self.density_matrix).dot(&l_dag);
335 let anticommutator =
336 l_dag.dot(l).dot(&self.density_matrix) + self.density_matrix.dot(&l_dag.dot(l));
337 let half = Complex64::new(0.5, 0.0);
338
339 derivative += &((dissipation - &anticommutator * half) * rate);
340 }
341
342 Ok(derivative)
343 }
344
345 fn construct_lindbladian_superoperator(&self) -> Result<Array2<Complex64>> {
347 let dim = 1 << self.num_qubits;
348 let super_dim = dim * dim;
349 let mut lindbladian = Array2::zeros((super_dim, super_dim));
350
351 if let Some(ref h) = self.hamiltonian {
353 let eye: Array2<Complex64> = Array2::eye(dim);
354 let h_left = kron(h, &eye);
355 let h_t = h.t().to_owned();
356 let h_right = kron(&eye, &h_t);
357 lindbladian += &((h_left - h_right) * Complex64::new(0.0, -1.0));
358 }
359
360 for lindblad_op in &self.lindblad_ops {
362 let l = &lindblad_op.operator;
363 let l_dag = l.t().mapv(|x| x.conj());
364 let rate = lindblad_op.rate;
365
366 let eye: Array2<Complex64> = Array2::eye(dim);
367 let l_dag_l = l_dag.dot(l);
368
369 let left_term = kron(l, &l.mapv(|x| x.conj()));
371
372 let l_dag_l_t = l_dag_l.t().to_owned();
374 let right_term = kron(&l_dag_l, &eye) + kron(&eye, &l_dag_l_t);
375 let half = Complex64::new(0.5, 0.0);
376
377 lindbladian += &((left_term - &right_term * half) * rate);
378 }
379
380 Ok(lindbladian)
381 }
382
383 fn vectorize_density_matrix(&self) -> Array1<Complex64> {
385 let dim = self.density_matrix.nrows();
386 let mut vec = Array1::zeros(dim * dim);
387
388 for (i, &val) in self.density_matrix.iter().enumerate() {
389 vec[i] = val;
390 }
391
392 vec
393 }
394
395 fn devectorize_density_matrix(&self, vec: &Array1<Complex64>) -> Array2<Complex64> {
397 let dim = (vec.len() as f64).sqrt() as usize;
398 Array2::from_shape_vec((dim, dim), vec.to_vec()).expect(
399 "devectorize_density_matrix: shape mismatch should not occur for valid density matrix",
400 )
401 }
402
403 #[must_use]
405 pub fn purity(&self) -> f64 {
406 let rho_squared = self.density_matrix.dot(&self.density_matrix);
407 rho_squared.diag().iter().map(|x| x.re).sum()
408 }
409
410 #[must_use]
412 pub fn trace(&self) -> Complex64 {
413 self.density_matrix.diag().iter().sum()
414 }
415
416 fn renormalize(&mut self) {
418 let trace = self.trace();
419 if trace.norm() > 1e-12 {
420 self.density_matrix /= trace;
421 }
422 }
423
424 #[must_use]
426 pub const fn get_density_matrix(&self) -> &Array2<Complex64> {
427 &self.density_matrix
428 }
429
430 pub fn expectation_value(&self, observable: &Array2<Complex64>) -> Result<Complex64> {
432 if observable.shape() != self.density_matrix.shape() {
433 return Err(SimulatorError::DimensionMismatch(
434 "Observable and density matrix dimensions must match".to_string(),
435 ));
436 }
437
438 let product = self.density_matrix.dot(observable);
440 Ok(product.diag().iter().sum())
441 }
442}
443
444#[derive(Debug, Clone)]
446pub struct EvolutionResult {
447 pub times: Vec<f64>,
449 pub densities: Vec<Array2<Complex64>>,
451 pub purities: Vec<f64>,
453 pub traces: Vec<f64>,
455 pub final_density: Array2<Complex64>,
457}
458
459#[derive(Debug, Clone)]
461pub struct QuantumChannel {
462 pub kraus_operators: Vec<Array2<Complex64>>,
464 pub name: String,
466}
467
468impl QuantumChannel {
469 #[must_use]
471 pub fn depolarizing(num_qubits: usize, probability: f64) -> Self {
472 let dim = 1 << num_qubits;
473 let mut kraus_ops = Vec::new();
474
475 let sqrt_p0 = (1.0 - probability).sqrt();
477 let eye: Array2<Complex64> = Array2::eye(dim) * Complex64::new(sqrt_p0, 0.0);
478 kraus_ops.push(eye);
479
480 if num_qubits == 1 {
482 let sqrt_p = (probability / 3.0).sqrt();
483
484 let mut pauli_x = Array2::zeros((2, 2));
486 pauli_x[[0, 1]] = Complex64::new(sqrt_p, 0.0);
487 pauli_x[[1, 0]] = Complex64::new(sqrt_p, 0.0);
488 kraus_ops.push(pauli_x);
489
490 let mut pauli_y = Array2::zeros((2, 2));
492 pauli_y[[0, 1]] = Complex64::new(0.0, -sqrt_p);
493 pauli_y[[1, 0]] = Complex64::new(0.0, sqrt_p);
494 kraus_ops.push(pauli_y);
495
496 let mut pauli_z = Array2::zeros((2, 2));
498 pauli_z[[0, 0]] = Complex64::new(sqrt_p, 0.0);
499 pauli_z[[1, 1]] = Complex64::new(-sqrt_p, 0.0);
500 kraus_ops.push(pauli_z);
501 }
502
503 Self {
504 kraus_operators: kraus_ops,
505 name: format!("Depolarizing({probability:.3})"),
506 }
507 }
508
509 #[must_use]
511 pub fn amplitude_damping(gamma: f64) -> Self {
512 let mut kraus_ops = Vec::new();
513
514 let mut k0 = Array2::zeros((2, 2));
516 k0[[0, 0]] = Complex64::new(1.0, 0.0);
517 k0[[1, 1]] = Complex64::new((1.0 - gamma).sqrt(), 0.0);
518 kraus_ops.push(k0);
519
520 let mut k1 = Array2::zeros((2, 2));
522 k1[[0, 1]] = Complex64::new(gamma.sqrt(), 0.0);
523 kraus_ops.push(k1);
524
525 Self {
526 kraus_operators: kraus_ops,
527 name: format!("AmplitudeDamping({gamma:.3})"),
528 }
529 }
530
531 #[must_use]
533 pub fn phase_damping(gamma: f64) -> Self {
534 let mut kraus_ops = Vec::new();
535
536 let mut k0 = Array2::zeros((2, 2));
538 k0[[0, 0]] = Complex64::new(1.0, 0.0);
539 k0[[1, 1]] = Complex64::new((1.0 - gamma).sqrt(), 0.0);
540 kraus_ops.push(k0);
541
542 let mut k1 = Array2::zeros((2, 2));
544 k1[[1, 1]] = Complex64::new(gamma.sqrt(), 0.0);
545 kraus_ops.push(k1);
546
547 Self {
548 kraus_operators: kraus_ops,
549 name: format!("PhaseDamping({gamma:.3})"),
550 }
551 }
552
553 #[must_use]
555 pub fn apply(&self, rho: &Array2<Complex64>) -> Array2<Complex64> {
556 let dim = rho.nrows();
557 let mut result = Array2::zeros((dim, dim));
558
559 for kraus_op in &self.kraus_operators {
560 let k_dag = kraus_op.t().mapv(|x| x.conj());
561 result += &kraus_op.dot(rho).dot(&k_dag);
562 }
563
564 result
565 }
566
567 #[must_use]
569 pub fn is_trace_preserving(&self) -> bool {
570 let dim = self.kraus_operators[0].nrows();
571 let mut sum = Array2::zeros((dim, dim));
572
573 for kraus_op in &self.kraus_operators {
574 let k_dag = kraus_op.t().mapv(|x| x.conj());
575 sum += &k_dag.dot(kraus_op);
576 }
577
578 let eye: Array2<Complex64> = Array2::eye(dim);
580 (&sum - &eye).iter().all(|&x| x.norm() < 1e-10)
581 }
582}
583
584pub struct ProcessTomography {
586 pub input_states: Vec<Array2<Complex64>>,
588 pub output_measurements: Vec<Array2<Complex64>>,
590 pub process_matrix: Option<Array2<Complex64>>,
592}
593
594impl ProcessTomography {
595 #[must_use]
597 pub fn new(num_qubits: usize) -> Self {
598 let mut input_states = Vec::new();
599
600 if num_qubits == 1 {
602 let mut rho_0 = Array2::zeros((2, 2));
604 rho_0[[0, 0]] = Complex64::new(1.0, 0.0);
605 input_states.push(rho_0);
606
607 let mut rho_1 = Array2::zeros((2, 2));
608 rho_1[[1, 1]] = Complex64::new(1.0, 0.0);
609 input_states.push(rho_1);
610
611 let mut rho_plus = Array2::zeros((2, 2));
612 rho_plus[[0, 0]] = Complex64::new(0.5, 0.0);
613 rho_plus[[0, 1]] = Complex64::new(0.5, 0.0);
614 rho_plus[[1, 0]] = Complex64::new(0.5, 0.0);
615 rho_plus[[1, 1]] = Complex64::new(0.5, 0.0);
616 input_states.push(rho_plus);
617
618 let mut rho_plus_i = Array2::zeros((2, 2));
619 rho_plus_i[[0, 0]] = Complex64::new(0.5, 0.0);
620 rho_plus_i[[0, 1]] = Complex64::new(0.0, -0.5);
621 rho_plus_i[[1, 0]] = Complex64::new(0.0, 0.5);
622 rho_plus_i[[1, 1]] = Complex64::new(0.5, 0.0);
623 input_states.push(rho_plus_i);
624 }
625
626 Self {
627 input_states,
628 output_measurements: Vec::new(),
629 process_matrix: None,
630 }
631 }
632
633 pub fn characterize_channel(&mut self, channel: &QuantumChannel) -> Result<()> {
635 self.output_measurements.clear();
636
637 for input_state in &self.input_states {
638 let output = channel.apply(input_state);
639 self.output_measurements.push(output);
640 }
641
642 self.reconstruct_process_matrix()?;
643 Ok(())
644 }
645
646 fn reconstruct_process_matrix(&mut self) -> Result<()> {
648 let dim = self.input_states[0].nrows();
652 let process_dim = dim * dim;
653 let mut chi = Array2::zeros((process_dim, process_dim));
654
655 self.process_matrix = Some(chi);
658
659 Ok(())
660 }
661
662 pub fn process_fidelity(&self, ideal_channel: &QuantumChannel) -> Result<f64> {
664 if self.output_measurements.is_empty() {
665 return Err(SimulatorError::InvalidOperation(
666 "No measurements available for fidelity calculation".to_string(),
667 ));
668 }
669
670 let mut fidelity_sum = 0.0;
671
672 for (i, input_state) in self.input_states.iter().enumerate() {
673 let ideal_output = ideal_channel.apply(input_state);
674 let measured_output = &self.output_measurements[i];
675
676 let fidelity = quantum_fidelity(measured_output, &ideal_output);
678 fidelity_sum += fidelity;
679 }
680
681 Ok(fidelity_sum / self.input_states.len() as f64)
682 }
683}
684
685#[must_use]
687pub fn quantum_fidelity(rho1: &Array2<Complex64>, rho2: &Array2<Complex64>) -> f64 {
688 let trace_distance = (rho1 - rho2).iter().map(|x| x.norm()).sum::<f64>();
694 0.5f64.mul_add(-trace_distance, 1.0).max(0.0)
695}
696
697fn kron(a: &Array2<Complex64>, b: &Array2<Complex64>) -> Array2<Complex64> {
699 let (m1, n1) = a.dim();
700 let (m2, n2) = b.dim();
701 let mut result = Array2::zeros((m1 * m2, n1 * n2));
702
703 for i in 0..m1 {
704 for j in 0..n1 {
705 for k in 0..m2 {
706 for l in 0..n2 {
707 result[[i * m2 + k, j * n2 + l]] = a[[i, j]] * b[[k, l]];
708 }
709 }
710 }
711 }
712
713 result
714}
715
716pub struct NoiseModelBuilder {
718 channels: HashMap<String, QuantumChannel>,
719 application_order: Vec<String>,
720}
721
722impl Default for NoiseModelBuilder {
723 fn default() -> Self {
724 Self::new()
725 }
726}
727
728impl NoiseModelBuilder {
729 #[must_use]
730 pub fn new() -> Self {
731 Self {
732 channels: HashMap::new(),
733 application_order: Vec::new(),
734 }
735 }
736
737 #[must_use]
739 pub fn depolarizing(mut self, name: &str, probability: f64) -> Self {
740 let channel = QuantumChannel::depolarizing(1, probability);
741 self.channels.insert(name.to_string(), channel);
742 self.application_order.push(name.to_string());
743 self
744 }
745
746 #[must_use]
748 pub fn amplitude_damping(mut self, name: &str, gamma: f64) -> Self {
749 let channel = QuantumChannel::amplitude_damping(gamma);
750 self.channels.insert(name.to_string(), channel);
751 self.application_order.push(name.to_string());
752 self
753 }
754
755 #[must_use]
757 pub fn phase_damping(mut self, name: &str, gamma: f64) -> Self {
758 let channel = QuantumChannel::phase_damping(gamma);
759 self.channels.insert(name.to_string(), channel);
760 self.application_order.push(name.to_string());
761 self
762 }
763
764 #[must_use]
766 pub fn build(self) -> CompositeNoiseModel {
767 CompositeNoiseModel {
768 channels: self.channels,
769 application_order: self.application_order,
770 }
771 }
772}
773
774#[derive(Debug, Clone)]
776pub struct CompositeNoiseModel {
777 channels: HashMap<String, QuantumChannel>,
778 application_order: Vec<String>,
779}
780
781impl CompositeNoiseModel {
782 #[must_use]
784 pub fn apply(&self, rho: &Array2<Complex64>) -> Array2<Complex64> {
785 let mut result = rho.clone();
786
787 for channel_name in &self.application_order {
788 if let Some(channel) = self.channels.get(channel_name) {
789 result = channel.apply(&result);
790 }
791 }
792
793 result
794 }
795
796 #[must_use]
798 pub fn get_channel(&self, name: &str) -> Option<&QuantumChannel> {
799 self.channels.get(name)
800 }
801}
802
803#[cfg(test)]
804mod tests {
805 use super::*;
806
807 #[test]
808 fn test_lindblad_simulator_creation() {
809 let sim = LindladSimulator::new(2).expect("should create Lindblad simulator with 2 qubits");
810 assert_eq!(sim.num_qubits, 2);
811 assert_eq!(sim.density_matrix.shape(), [4, 4]);
812 }
813
814 #[test]
815 fn test_depolarizing_channel() {
816 let channel = QuantumChannel::depolarizing(1, 0.1);
817 assert!(channel.is_trace_preserving());
818 assert_eq!(channel.kraus_operators.len(), 4);
819 }
820
821 #[test]
822 fn test_amplitude_damping() {
823 let channel = QuantumChannel::amplitude_damping(0.2);
824 assert!(channel.is_trace_preserving());
825
826 let mut rho_1 = Array2::zeros((2, 2));
828 rho_1[[1, 1]] = Complex64::new(1.0, 0.0);
829
830 let result = channel.apply(&rho_1);
831
832 assert!(result[[0, 0]].re > 0.0);
834 assert!(result[[1, 1]].re < 1.0);
835 }
836
837 #[test]
838 fn test_noise_model_builder() {
839 let noise_model = NoiseModelBuilder::new()
840 .depolarizing("depol", 0.01)
841 .amplitude_damping("amp_damp", 0.02)
842 .build();
843
844 assert!(noise_model.get_channel("depol").is_some());
845 assert!(noise_model.get_channel("amp_damp").is_some());
846 }
847}