quantrs2_sim/mixed_precision_impl/
analysis.rs

1//! Precision analysis and performance metrics for mixed-precision simulation.
2//!
3//! This module provides tools for analyzing numerical precision requirements,
4//! performance characteristics, and optimal precision selection strategies.
5
6use serde::{Deserialize, Serialize};
7use std::collections::HashMap;
8use std::time::Instant;
9
10use super::config::QuantumPrecision;
11
12/// Precision analysis result
13#[derive(Debug, Clone, Serialize, Deserialize)]
14pub struct PrecisionAnalysis {
15    /// Recommended precision for each operation type
16    pub recommended_precisions: HashMap<String, QuantumPrecision>,
17    /// Estimated numerical error for each precision
18    pub error_estimates: HashMap<QuantumPrecision, f64>,
19    /// Performance metrics for each precision
20    pub performance_metrics: HashMap<QuantumPrecision, PerformanceMetrics>,
21    /// Final precision selection rationale
22    pub selection_rationale: String,
23    /// Quality score (0-1, higher is better)
24    pub quality_score: f64,
25}
26
27/// Performance metrics for a specific precision
28#[derive(Debug, Clone, Serialize, Deserialize)]
29pub struct PerformanceMetrics {
30    /// Execution time in milliseconds
31    pub execution_time_ms: f64,
32    /// Memory usage in bytes
33    pub memory_usage_bytes: usize,
34    /// Throughput in operations per second
35    pub throughput_ops_per_sec: f64,
36    /// Energy efficiency score (operations per joule)
37    pub energy_efficiency: f64,
38}
39
40/// Precision analyzer for quantum operations
41pub struct PrecisionAnalyzer {
42    /// Current analysis state
43    analysis_state: AnalysisState,
44    /// Benchmark results for different precisions
45    benchmark_cache: HashMap<QuantumPrecision, PerformanceMetrics>,
46    /// Error tracking history
47    error_history: Vec<ErrorSample>,
48}
49
50/// Internal analysis state
51#[derive(Debug, Clone)]
52struct AnalysisState {
53    /// Number of operations analyzed
54    operations_count: usize,
55    /// Total analysis time
56    total_time: f64,
57    /// Current precision being analyzed
58    current_precision: QuantumPrecision,
59}
60
61/// Error sample for tracking numerical accuracy
62#[derive(Debug, Clone)]
63struct ErrorSample {
64    /// Precision level used
65    precision: QuantumPrecision,
66    /// Estimated numerical error
67    error: f64,
68    /// Operation type
69    operation_type: String,
70    /// Timestamp
71    timestamp: Instant,
72}
73
74impl PrecisionAnalysis {
75    /// Create a new empty analysis
76    #[must_use]
77    pub fn new() -> Self {
78        Self {
79            recommended_precisions: HashMap::new(),
80            error_estimates: HashMap::new(),
81            performance_metrics: HashMap::new(),
82            selection_rationale: String::new(),
83            quality_score: 0.0,
84        }
85    }
86
87    /// Add a precision recommendation for an operation type
88    pub fn add_recommendation(&mut self, operation: String, precision: QuantumPrecision) {
89        self.recommended_precisions.insert(operation, precision);
90    }
91
92    /// Add an error estimate for a precision level
93    pub fn add_error_estimate(&mut self, precision: QuantumPrecision, error: f64) {
94        self.error_estimates.insert(precision, error);
95    }
96
97    /// Add performance metrics for a precision level
98    pub fn add_performance_metrics(
99        &mut self,
100        precision: QuantumPrecision,
101        metrics: PerformanceMetrics,
102    ) {
103        self.performance_metrics.insert(precision, metrics);
104    }
105
106    /// Set the selection rationale
107    pub fn set_rationale(&mut self, rationale: String) {
108        self.selection_rationale = rationale;
109    }
110
111    /// Calculate and set the quality score
112    pub fn calculate_quality_score(&mut self) {
113        let mut score = 0.0;
114        let mut count = 0;
115
116        // Score based on error estimates (lower error = higher score)
117        for (&precision, &error) in &self.error_estimates {
118            let error_score = 1.0 / error.mul_add(1000.0, 1.0); // Normalize error
119            score += error_score;
120            count += 1;
121        }
122
123        // Score based on performance metrics
124        for (precision, metrics) in &self.performance_metrics {
125            let perf_score = metrics.throughput_ops_per_sec / 1000.0; // Normalize throughput
126            let mem_score = 1.0 / (1.0 + metrics.memory_usage_bytes as f64 / 1e9); // Normalize memory
127            score += f64::midpoint(perf_score, mem_score);
128            count += 1;
129        }
130
131        if count > 0 {
132            self.quality_score = (score / f64::from(count)).min(1.0);
133        }
134    }
135
136    /// Get the best precision for a given operation type
137    #[must_use]
138    pub fn get_best_precision(&self, operation: &str) -> Option<QuantumPrecision> {
139        self.recommended_precisions.get(operation).copied()
140    }
141
142    /// Get overall recommended precision
143    #[must_use]
144    pub fn get_overall_recommendation(&self) -> QuantumPrecision {
145        // Find the most commonly recommended precision
146        let mut precision_counts = HashMap::new();
147        for &precision in self.recommended_precisions.values() {
148            *precision_counts.entry(precision).or_insert(0) += 1;
149        }
150
151        precision_counts
152            .into_iter()
153            .max_by_key(|(_, count)| *count)
154            .map_or(QuantumPrecision::Single, |(precision, _)| precision)
155    }
156
157    /// Check if analysis indicates good quality
158    #[must_use]
159    pub fn is_high_quality(&self) -> bool {
160        self.quality_score > 0.8
161    }
162
163    /// Get summary statistics
164    #[must_use]
165    pub fn get_summary(&self) -> AnalysisSummary {
166        AnalysisSummary {
167            num_operations_analyzed: self.recommended_precisions.len(),
168            overall_precision: self.get_overall_recommendation(),
169            quality_score: self.quality_score,
170            total_error_estimate: self.error_estimates.values().sum(),
171            avg_execution_time: self
172                .performance_metrics
173                .values()
174                .map(|m| m.execution_time_ms)
175                .sum::<f64>()
176                / self.performance_metrics.len().max(1) as f64,
177        }
178    }
179}
180
181/// Summary of precision analysis
182#[derive(Debug, Clone, Serialize, Deserialize)]
183pub struct AnalysisSummary {
184    /// Number of operation types analyzed
185    pub num_operations_analyzed: usize,
186    /// Overall recommended precision
187    pub overall_precision: QuantumPrecision,
188    /// Quality score (0-1)
189    pub quality_score: f64,
190    /// Total estimated numerical error
191    pub total_error_estimate: f64,
192    /// Average execution time across all precisions
193    pub avg_execution_time: f64,
194}
195
196impl PerformanceMetrics {
197    /// Create new performance metrics
198    #[must_use]
199    pub const fn new(
200        execution_time_ms: f64,
201        memory_usage_bytes: usize,
202        throughput_ops_per_sec: f64,
203        energy_efficiency: f64,
204    ) -> Self {
205        Self {
206            execution_time_ms,
207            memory_usage_bytes,
208            throughput_ops_per_sec,
209            energy_efficiency,
210        }
211    }
212
213    /// Create metrics from execution time and memory usage
214    #[must_use]
215    pub fn from_time_and_memory(execution_time_ms: f64, memory_usage_bytes: usize) -> Self {
216        let throughput = if execution_time_ms > 0.0 {
217            1000.0 / execution_time_ms
218        } else {
219            0.0
220        };
221
222        // Estimate energy efficiency (simplified model)
223        let energy_efficiency = throughput / (memory_usage_bytes as f64 / 1e6);
224
225        Self::new(
226            execution_time_ms,
227            memory_usage_bytes,
228            throughput,
229            energy_efficiency,
230        )
231    }
232
233    /// Calculate performance score (0-1, higher is better)
234    #[must_use]
235    pub fn performance_score(&self) -> f64 {
236        let time_score = 1.0 / (1.0 + self.execution_time_ms / 1000.0);
237        let memory_score = 1.0 / (1.0 + self.memory_usage_bytes as f64 / 1e9);
238        let throughput_score = self.throughput_ops_per_sec / 1000.0;
239        let energy_score = self.energy_efficiency / 1000.0;
240
241        (time_score + memory_score + throughput_score + energy_score) / 4.0
242    }
243
244    /// Compare with another metrics instance
245    #[must_use]
246    pub fn is_better_than(&self, other: &Self) -> bool {
247        self.performance_score() > other.performance_score()
248    }
249}
250
251impl PrecisionAnalyzer {
252    /// Create a new precision analyzer
253    #[must_use]
254    pub fn new() -> Self {
255        Self {
256            analysis_state: AnalysisState {
257                operations_count: 0,
258                total_time: 0.0,
259                current_precision: QuantumPrecision::Single,
260            },
261            benchmark_cache: HashMap::new(),
262            error_history: Vec::new(),
263        }
264    }
265
266    /// Analyze optimal precision for a given error tolerance
267    pub fn analyze_for_tolerance(&mut self, tolerance: f64) -> PrecisionAnalysis {
268        let mut analysis = PrecisionAnalysis::new();
269
270        // Test each precision level
271        for &precision in &[
272            QuantumPrecision::Half,
273            QuantumPrecision::Single,
274            QuantumPrecision::Double,
275        ] {
276            let error = precision.typical_error();
277            analysis.add_error_estimate(precision, error);
278
279            // Create synthetic performance metrics
280            let metrics = self.create_synthetic_metrics(precision);
281            analysis.add_performance_metrics(precision, metrics);
282
283            // Add recommendations based on tolerance
284            if precision.is_sufficient_for_tolerance(tolerance) {
285                analysis.add_recommendation("default".to_string(), precision);
286            }
287        }
288
289        // Set rationale
290        let rationale = format!(
291            "Analysis for tolerance {tolerance:.2e}: recommended precision based on error bounds and performance trade-offs"
292        );
293        analysis.set_rationale(rationale);
294
295        // Calculate quality score
296        analysis.calculate_quality_score();
297
298        analysis
299    }
300
301    /// Benchmark a specific precision level
302    pub fn benchmark_precision(&mut self, precision: QuantumPrecision) -> PerformanceMetrics {
303        if let Some(cached) = self.benchmark_cache.get(&precision) {
304            return cached.clone();
305        }
306
307        let start_time = Instant::now();
308
309        // Simulate some work (in real implementation, this would run actual benchmarks)
310        std::thread::sleep(std::time::Duration::from_millis(1));
311
312        let execution_time = start_time.elapsed().as_millis() as f64;
313        let memory_usage = self.estimate_memory_usage(precision);
314
315        let metrics = PerformanceMetrics::from_time_and_memory(execution_time, memory_usage);
316        self.benchmark_cache.insert(precision, metrics.clone());
317
318        metrics
319    }
320
321    /// Add an error sample to the history
322    pub fn record_error(
323        &mut self,
324        precision: QuantumPrecision,
325        error: f64,
326        operation_type: String,
327    ) {
328        self.error_history.push(ErrorSample {
329            precision,
330            error,
331            operation_type,
332            timestamp: Instant::now(),
333        });
334    }
335
336    /// Get average error for a precision level
337    #[must_use]
338    pub fn get_average_error(&self, precision: QuantumPrecision) -> f64 {
339        let errors: Vec<f64> = self
340            .error_history
341            .iter()
342            .filter(|sample| sample.precision == precision)
343            .map(|sample| sample.error)
344            .collect();
345
346        if errors.is_empty() {
347            precision.typical_error()
348        } else {
349            errors.iter().sum::<f64>() / errors.len() as f64
350        }
351    }
352
353    /// Clear the analysis state
354    pub fn reset(&mut self) {
355        self.analysis_state.operations_count = 0;
356        self.analysis_state.total_time = 0.0;
357        self.error_history.clear();
358        self.benchmark_cache.clear();
359    }
360
361    /// Create synthetic performance metrics for testing
362    fn create_synthetic_metrics(&self, precision: QuantumPrecision) -> PerformanceMetrics {
363        let base_time = 100.0; // Base execution time in ms
364        let execution_time = base_time * precision.computation_factor();
365
366        let base_memory = 1024 * 1024; // Base memory usage in bytes
367        let memory_usage = (f64::from(base_memory) * precision.memory_factor()) as usize;
368
369        PerformanceMetrics::from_time_and_memory(execution_time, memory_usage)
370    }
371
372    /// Estimate memory usage for a precision level
373    fn estimate_memory_usage(&self, precision: QuantumPrecision) -> usize {
374        let base_memory = 1024 * 1024; // 1MB base
375        (f64::from(base_memory) * precision.memory_factor()) as usize
376    }
377}
378
379impl Default for PrecisionAnalysis {
380    fn default() -> Self {
381        Self::new()
382    }
383}
384
385impl Default for PrecisionAnalyzer {
386    fn default() -> Self {
387        Self::new()
388    }
389}