quantrs2_sim/
memory_prefetching_optimization.rs

1//! Memory prefetching and data locality optimizations for quantum simulations.
2//!
3//! This module implements advanced memory prefetching strategies, data locality
4//! optimizations, and NUMA-aware memory management for high-performance quantum
5//! circuit simulation with large state vectors.
6use crate::error::Result;
7use crate::memory_bandwidth_optimization::OptimizedStateVector;
8use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
9use std::collections::{BTreeMap, HashMap, VecDeque};
10use std::sync::{Arc, Mutex, RwLock};
11use std::thread;
12use std::time::{Duration, Instant};
13/// Prefetching strategies for memory access optimization
14#[derive(Debug, Clone, Copy, PartialEq, Eq)]
15pub enum PrefetchStrategy {
16    /// No prefetching
17    None,
18    /// Simple sequential prefetching
19    Sequential,
20    /// Stride-based prefetching
21    Stride,
22    /// Pattern-based prefetching
23    Pattern,
24    /// Machine learning guided prefetching
25    MLGuided,
26    /// Adaptive prefetching based on access patterns
27    Adaptive,
28    /// NUMA-aware prefetching
29    NUMAAware,
30}
31/// Data locality optimization strategies
32#[derive(Debug, Clone, Copy, PartialEq, Eq)]
33pub enum LocalityStrategy {
34    /// Temporal locality optimization
35    Temporal,
36    /// Spatial locality optimization
37    Spatial,
38    /// Loop-based locality optimization
39    Loop,
40    /// Cache-conscious data placement
41    CacheConscious,
42    /// NUMA topology aware placement
43    NUMATopology,
44    /// Hybrid temporal-spatial optimization
45    Hybrid,
46}
47/// NUMA topology information
48#[derive(Debug, Clone)]
49pub struct NUMATopology {
50    /// Number of NUMA nodes
51    pub num_nodes: usize,
52    /// Memory size per node in bytes
53    pub memory_per_node: Vec<usize>,
54    /// CPU cores per node
55    pub cores_per_node: Vec<usize>,
56    /// Inter-node latency matrix (cycles)
57    pub latency_matrix: Vec<Vec<usize>>,
58    /// Memory bandwidth per node (bytes/sec)
59    pub bandwidth_per_node: Vec<f64>,
60    /// Current thread to node mapping
61    pub thread_node_mapping: HashMap<usize, usize>,
62}
63impl Default for NUMATopology {
64    fn default() -> Self {
65        Self {
66            num_nodes: 1,
67            memory_per_node: vec![64 * 1024 * 1024 * 1024],
68            cores_per_node: vec![8],
69            latency_matrix: vec![vec![0]],
70            bandwidth_per_node: vec![100.0 * 1024.0 * 1024.0 * 1024.0],
71            thread_node_mapping: HashMap::new(),
72        }
73    }
74}
75/// Prefetching configuration
76#[derive(Debug, Clone)]
77pub struct PrefetchConfig {
78    /// Primary prefetching strategy
79    pub strategy: PrefetchStrategy,
80    /// Prefetch distance (cache lines ahead)
81    pub distance: usize,
82    /// Prefetch degree (number of streams)
83    pub degree: usize,
84    /// Enable hardware prefetcher hints
85    pub hardware_hints: bool,
86    /// Prefetch threshold (minimum confidence)
87    pub threshold: f64,
88    /// Maximum prefetch queue size
89    pub max_queue_size: usize,
90    /// Enable cross-page prefetching
91    pub cross_page_prefetch: bool,
92    /// Adaptive prefetch adjustment
93    pub adaptive_adjustment: bool,
94}
95impl Default for PrefetchConfig {
96    fn default() -> Self {
97        Self {
98            strategy: PrefetchStrategy::Adaptive,
99            distance: 8,
100            degree: 4,
101            hardware_hints: true,
102            threshold: 0.7,
103            max_queue_size: 64,
104            cross_page_prefetch: true,
105            adaptive_adjustment: true,
106        }
107    }
108}
109/// Memory access pattern predictor
110#[derive(Debug)]
111pub struct AccessPatternPredictor {
112    /// Recent access history
113    access_history: VecDeque<usize>,
114    /// Detected stride patterns
115    stride_patterns: HashMap<isize, u64>,
116    /// Pattern confidence scores
117    pattern_confidence: HashMap<String, f64>,
118    /// Machine learning model weights (simplified)
119    ml_weights: Vec<f64>,
120    /// Prediction cache
121    prediction_cache: HashMap<usize, Vec<usize>>,
122    /// Statistics
123    correct_predictions: u64,
124    total_predictions: u64,
125}
126impl Default for AccessPatternPredictor {
127    fn default() -> Self {
128        Self {
129            access_history: VecDeque::with_capacity(1000),
130            stride_patterns: HashMap::new(),
131            pattern_confidence: HashMap::new(),
132            ml_weights: vec![0.5; 16],
133            prediction_cache: HashMap::new(),
134            correct_predictions: 0,
135            total_predictions: 0,
136        }
137    }
138}
139impl AccessPatternPredictor {
140    /// Record a memory access
141    pub fn record_access(&mut self, address: usize) {
142        self.access_history.push_back(address);
143        if self.access_history.len() > 1000 {
144            self.access_history.pop_front();
145        }
146        if self.access_history.len() >= 2 {
147            let prev_addr = self.access_history[self.access_history.len() - 2];
148            let stride = address as isize - prev_addr as isize;
149            *self.stride_patterns.entry(stride).or_insert(0) += 1;
150        }
151        self.update_pattern_confidence();
152    }
153    /// Predict next memory accesses
154    pub fn predict_next_accesses(&mut self, count: usize) -> Vec<usize> {
155        if self.access_history.is_empty() {
156            return Vec::new();
157        }
158        // Safety: We already checked access_history is not empty above
159        let current_addr = *self
160            .access_history
161            .back()
162            .expect("access_history is not empty (checked above)");
163        if let Some(cached) = self.prediction_cache.get(&current_addr) {
164            return cached.clone();
165        }
166        let predictions = match self.get_dominant_pattern() {
167            PredictedPattern::Stride(stride) => {
168                Self::predict_stride_pattern(current_addr, stride, count)
169            }
170            PredictedPattern::Sequential => Self::predict_sequential_pattern(current_addr, count),
171            PredictedPattern::Random => Self::predict_random_pattern(current_addr, count),
172            PredictedPattern::MLGuided => self.predict_ml_pattern(current_addr, count),
173        };
174        self.prediction_cache
175            .insert(current_addr, predictions.clone());
176        if self.prediction_cache.len() > 1000 {
177            self.prediction_cache.clear();
178        }
179        self.total_predictions += 1;
180        predictions
181    }
182    /// Update pattern confidence based on recent accuracy
183    fn update_pattern_confidence(&mut self) {
184        if self.total_predictions > 0 {
185            let accuracy = self.correct_predictions as f64 / self.total_predictions as f64;
186            self.pattern_confidence
187                .insert("stride".to_string(), accuracy);
188            self.pattern_confidence
189                .insert("sequential".to_string(), accuracy * 0.9);
190            self.pattern_confidence
191                .insert("ml".to_string(), accuracy * 1.1);
192        }
193    }
194    /// Get the dominant access pattern
195    fn get_dominant_pattern(&self) -> PredictedPattern {
196        let dominant_stride = self
197            .stride_patterns
198            .iter()
199            .max_by_key(|(_, &count)| count)
200            .map(|(&stride, _)| stride);
201        match dominant_stride {
202            Some(stride) if stride == 1 => PredictedPattern::Sequential,
203            Some(stride) if stride != 0 => PredictedPattern::Stride(stride),
204            _ => {
205                let ml_confidence = self.pattern_confidence.get("ml").unwrap_or(&0.0);
206                if *ml_confidence > 0.8 {
207                    PredictedPattern::MLGuided
208                } else {
209                    PredictedPattern::Random
210                }
211            }
212        }
213    }
214    /// Predict stride-based pattern
215    fn predict_stride_pattern(current_addr: usize, stride: isize, count: usize) -> Vec<usize> {
216        let mut predictions = Vec::with_capacity(count);
217        let mut addr = current_addr;
218        for _ in 0..count {
219            addr = (addr as isize + stride) as usize;
220            predictions.push(addr);
221        }
222        predictions
223    }
224    /// Predict sequential pattern
225    fn predict_sequential_pattern(current_addr: usize, count: usize) -> Vec<usize> {
226        (1..=count).map(|i| current_addr + i).collect()
227    }
228    /// Predict random pattern (simplified)
229    fn predict_random_pattern(current_addr: usize, count: usize) -> Vec<usize> {
230        (1..=count).map(|i| current_addr + i * 64).collect()
231    }
232    /// Predict using machine learning model
233    fn predict_ml_pattern(&self, current_addr: usize, count: usize) -> Vec<usize> {
234        let mut predictions = Vec::with_capacity(count);
235        let features = self.extract_features();
236        for i in 0..count {
237            let prediction = self.ml_predict(&features, i);
238            predictions.push((current_addr as f64 + prediction) as usize);
239        }
240        predictions
241    }
242    /// Extract features for ML prediction
243    fn extract_features(&self) -> Vec<f64> {
244        let mut features = [0.0; 16];
245        if self.access_history.len() >= 4 {
246            let recent: Vec<_> = self.access_history.iter().rev().take(4).collect();
247            for i in 0..3 {
248                if i + 1 < recent.len() {
249                    let stride = *recent[i] as f64 - *recent[i + 1] as f64;
250                    features[i] = stride / 1000.0;
251                }
252            }
253            features[3] = (*recent[0] % 1024) as f64 / 1024.0;
254            features[4] = (*recent[0] / 1024) as f64;
255            let dominant_stride = self
256                .stride_patterns
257                .iter()
258                .max_by_key(|(_, &count)| count)
259                .map_or(0, |(&stride, _)| stride);
260            features[5] = dominant_stride as f64 / 1000.0;
261        }
262        features.to_vec()
263    }
264    /// Simple ML prediction
265    fn ml_predict(&self, features: &[f64], step: usize) -> f64 {
266        let mut prediction = 0.0;
267        for (i, &feature) in features.iter().enumerate() {
268            if i < self.ml_weights.len() {
269                prediction += feature * self.ml_weights[i];
270            }
271        }
272        prediction * (step + 1) as f64
273    }
274    /// Update ML weights based on prediction accuracy
275    pub fn update_ml_weights(&mut self, predictions: &[usize], actual: &[usize]) {
276        if predictions.len() != actual.len() || predictions.is_empty() {
277            return;
278        }
279        let learning_rate = 0.01;
280        for (pred, &act) in predictions.iter().zip(actual.iter()) {
281            let error = act as f64 - *pred as f64;
282            for weight in &mut self.ml_weights {
283                *weight += learning_rate * error * 0.1;
284            }
285        }
286    }
287    /// Get prediction accuracy
288    #[must_use]
289    pub fn get_accuracy(&self) -> f64 {
290        if self.total_predictions > 0 {
291            self.correct_predictions as f64 / self.total_predictions as f64
292        } else {
293            0.0
294        }
295    }
296}
297/// Predicted access pattern types
298#[derive(Debug, Clone)]
299enum PredictedPattern {
300    Stride(isize),
301    Sequential,
302    Random,
303    MLGuided,
304}
305/// Memory prefetching engine
306#[derive(Debug)]
307pub struct MemoryPrefetcher {
308    /// Prefetch configuration
309    config: PrefetchConfig,
310    /// Access pattern predictor
311    predictor: Arc<Mutex<AccessPatternPredictor>>,
312    /// Prefetch queue
313    prefetch_queue: Arc<Mutex<VecDeque<PrefetchRequest>>>,
314    /// NUMA topology information
315    numa_topology: NUMATopology,
316    /// Prefetch statistics
317    stats: Arc<RwLock<PrefetchStats>>,
318    /// Active prefetch threads
319    prefetch_threads: Vec<thread::JoinHandle<()>>,
320}
321/// Prefetch request
322#[derive(Debug, Clone)]
323pub struct PrefetchRequest {
324    /// Memory address to prefetch
325    pub address: usize,
326    /// Prefetch priority (0.0 to 1.0)
327    pub priority: f64,
328    /// Prefetch hint type
329    pub hint_type: PrefetchHint,
330    /// Request timestamp
331    pub timestamp: Instant,
332}
333/// Prefetch hint types
334#[derive(Debug, Clone, Copy, PartialEq, Eq)]
335pub enum PrefetchHint {
336    /// Temporal hint - data will be reused soon
337    Temporal,
338    /// Non-temporal hint - data will not be reused
339    NonTemporal,
340    /// L1 cache hint
341    L1,
342    /// L2 cache hint
343    L2,
344    /// L3 cache hint
345    L3,
346    /// Write hint - data will be written
347    Write,
348}
349/// Prefetch statistics
350#[derive(Debug, Clone, Default)]
351pub struct PrefetchStats {
352    /// Total prefetch requests issued
353    pub total_requests: u64,
354    /// Successful prefetches (data was actually used)
355    pub successful_prefetches: u64,
356    /// Failed prefetches (data was not used)
357    pub failed_prefetches: u64,
358    /// Average prefetch latency
359    pub average_latency: Duration,
360    /// Memory bandwidth utilization
361    pub bandwidth_utilization: f64,
362    /// Cache hit rate improvement
363    pub cache_hit_improvement: f64,
364}
365impl MemoryPrefetcher {
366    /// Create a new memory prefetcher
367    pub fn new(config: PrefetchConfig, numa_topology: NUMATopology) -> Result<Self> {
368        let prefetcher = Self {
369            config,
370            predictor: Arc::new(Mutex::new(AccessPatternPredictor::default())),
371            prefetch_queue: Arc::new(Mutex::new(VecDeque::new())),
372            numa_topology,
373            stats: Arc::new(RwLock::new(PrefetchStats::default())),
374            prefetch_threads: Vec::new(),
375        };
376        Ok(prefetcher)
377    }
378    /// Start prefetching background threads
379    pub fn start_prefetch_threads(&mut self) -> Result<()> {
380        let num_threads = self.config.degree.min(4);
381        for thread_id in 0..num_threads {
382            let queue = Arc::clone(&self.prefetch_queue);
383            let stats = Arc::clone(&self.stats);
384            let config = self.config.clone();
385            let handle = thread::spawn(move || {
386                Self::prefetch_worker_thread(thread_id, queue, stats, config);
387            });
388            self.prefetch_threads.push(handle);
389        }
390        Ok(())
391    }
392    /// Worker thread for prefetching
393    fn prefetch_worker_thread(
394        _thread_id: usize,
395        queue: Arc<Mutex<VecDeque<PrefetchRequest>>>,
396        stats: Arc<RwLock<PrefetchStats>>,
397        _config: PrefetchConfig,
398    ) {
399        loop {
400            let request = {
401                let mut q = queue
402                    .lock()
403                    .unwrap_or_else(|poisoned| poisoned.into_inner());
404                q.pop_front()
405            };
406            if let Some(req) = request {
407                let start_time = Instant::now();
408                Self::execute_prefetch(&req);
409                let latency = start_time.elapsed();
410                if let Ok(mut s) = stats.write() {
411                    s.total_requests += 1;
412                    s.average_latency = if s.total_requests == 1 {
413                        latency
414                    } else {
415                        Duration::from_nanos(u128::midpoint(
416                            s.average_latency.as_nanos(),
417                            latency.as_nanos(),
418                        ) as u64)
419                    };
420                }
421            } else {
422                thread::sleep(Duration::from_micros(100));
423            }
424        }
425    }
426    /// Execute a prefetch request
427    fn execute_prefetch(request: &PrefetchRequest) {
428        unsafe {
429            match request.hint_type {
430                PrefetchHint::Temporal
431                | PrefetchHint::L1
432                | PrefetchHint::L2
433                | PrefetchHint::L3
434                | PrefetchHint::NonTemporal
435                | PrefetchHint::Write => {
436                    let _ = std::ptr::read_volatile(request.address as *const u8);
437                }
438            }
439        }
440    }
441    /// Record a memory access and potentially trigger prefetching
442    pub fn record_access(&self, address: usize) -> Result<()> {
443        if let Ok(mut predictor) = self.predictor.lock() {
444            predictor.record_access(address);
445            let predictions = predictor.predict_next_accesses(self.config.distance);
446            if let Ok(mut queue) = self.prefetch_queue.lock() {
447                for (i, &pred_addr) in predictions.iter().enumerate() {
448                    if queue.len() < self.config.max_queue_size {
449                        let priority = 1.0 - (i as f64 / predictions.len() as f64);
450                        let hint_type = Self::determine_prefetch_hint(pred_addr, i);
451                        queue.push_back(PrefetchRequest {
452                            address: pred_addr,
453                            priority,
454                            hint_type,
455                            timestamp: Instant::now(),
456                        });
457                    }
458                }
459            }
460        }
461        Ok(())
462    }
463    /// Determine appropriate prefetch hint based on address and distance
464    const fn determine_prefetch_hint(_address: usize, distance: usize) -> PrefetchHint {
465        match distance {
466            0..=2 => PrefetchHint::L1,
467            3..=6 => PrefetchHint::L2,
468            7..=12 => PrefetchHint::L3,
469            _ => PrefetchHint::NonTemporal,
470        }
471    }
472    /// Get prefetch statistics
473    #[must_use]
474    pub fn get_stats(&self) -> PrefetchStats {
475        self.stats
476            .read()
477            .unwrap_or_else(|poisoned| poisoned.into_inner())
478            .clone()
479    }
480    /// Optimize prefetch strategy based on performance feedback
481    pub fn optimize_strategy(&mut self, performance_feedback: &PerformanceFeedback) -> Result<()> {
482        if !self.config.adaptive_adjustment {
483            return Ok(());
484        }
485        if performance_feedback.cache_hit_rate < 0.8 {
486            self.config.distance = (self.config.distance + 2).min(16);
487        } else if performance_feedback.cache_hit_rate > 0.95 {
488            self.config.distance = (self.config.distance.saturating_sub(1)).max(2);
489        }
490        if performance_feedback.bandwidth_utilization < 0.6 {
491            self.config.degree = (self.config.degree + 1).min(8);
492        } else if performance_feedback.bandwidth_utilization > 0.9 {
493            self.config.degree = (self.config.degree.saturating_sub(1)).max(1);
494        }
495        if self.config.strategy == PrefetchStrategy::MLGuided {
496            if let Ok(mut predictor) = self.predictor.lock() {
497                let accuracy_improvement = performance_feedback.cache_hit_rate - 0.8;
498                predictor
499                    .ml_weights
500                    .iter_mut()
501                    .for_each(|w| *w += accuracy_improvement * 0.01);
502            }
503        }
504        Ok(())
505    }
506}
507/// Performance feedback for prefetch optimization
508#[derive(Debug, Clone)]
509pub struct PerformanceFeedback {
510    /// Current cache hit rate (0.0 to 1.0)
511    pub cache_hit_rate: f64,
512    /// Memory bandwidth utilization (0.0 to 1.0)
513    pub bandwidth_utilization: f64,
514    /// Average memory access latency
515    pub memory_latency: Duration,
516    /// CPU utilization (0.0 to 1.0)
517    pub cpu_utilization: f64,
518}
519/// Data locality optimizer
520#[derive(Debug)]
521pub struct DataLocalityOptimizer {
522    /// Optimization strategy
523    strategy: LocalityStrategy,
524    /// NUMA topology
525    numa_topology: NUMATopology,
526    /// Memory region tracking
527    memory_regions: HashMap<usize, MemoryRegionInfo>,
528    /// Access pattern analyzer
529    access_analyzer: AccessPatternAnalyzer,
530}
531/// Memory region information
532#[derive(Debug, Clone)]
533pub struct MemoryRegionInfo {
534    /// Start address of the region
535    pub start_address: usize,
536    /// Size of the region in bytes
537    pub size: usize,
538    /// NUMA node where data is located
539    pub numa_node: usize,
540    /// Access frequency
541    pub access_frequency: u64,
542    /// Last access time
543    pub last_access: Instant,
544    /// Access pattern type
545    pub access_pattern: AccessPatternType,
546}
547/// Access pattern analyzer
548#[derive(Debug)]
549pub struct AccessPatternAnalyzer {
550    /// Temporal access patterns
551    temporal_patterns: BTreeMap<Instant, Vec<usize>>,
552    /// Spatial access patterns
553    spatial_patterns: HashMap<usize, Vec<usize>>,
554    /// Loop detection state
555    loop_detection: LoopDetectionState,
556}
557/// Loop detection state
558#[derive(Debug)]
559pub struct LoopDetectionState {
560    /// Loop start candidates
561    loop_starts: HashMap<usize, usize>,
562    /// Current loop iteration
563    current_iteration: Vec<usize>,
564    /// Detected loops
565    detected_loops: Vec<LoopPattern>,
566}
567/// Detected loop pattern
568#[derive(Debug, Clone)]
569pub struct LoopPattern {
570    /// Loop start address
571    pub start_address: usize,
572    /// Loop stride
573    pub stride: isize,
574    /// Loop iterations
575    pub iterations: usize,
576    /// Loop confidence
577    pub confidence: f64,
578}
579/// Access pattern types
580#[derive(Debug, Clone, Copy, PartialEq, Eq)]
581pub enum AccessPatternType {
582    Sequential,
583    Random,
584    Strided,
585    Loop,
586    Temporal,
587    Hybrid,
588}
589impl DataLocalityOptimizer {
590    /// Create a new data locality optimizer
591    #[must_use]
592    pub fn new(strategy: LocalityStrategy, numa_topology: NUMATopology) -> Self {
593        Self {
594            strategy,
595            numa_topology,
596            memory_regions: HashMap::new(),
597            access_analyzer: AccessPatternAnalyzer {
598                temporal_patterns: BTreeMap::new(),
599                spatial_patterns: HashMap::new(),
600                loop_detection: LoopDetectionState {
601                    loop_starts: HashMap::new(),
602                    current_iteration: Vec::new(),
603                    detected_loops: Vec::new(),
604                },
605            },
606        }
607    }
608    /// Optimize data placement for better locality
609    pub fn optimize_data_placement(
610        &mut self,
611        state_vector: &mut OptimizedStateVector,
612        access_pattern: &[usize],
613    ) -> Result<LocalityOptimizationResult> {
614        let start_time = Instant::now();
615        self.analyze_access_patterns(access_pattern)?;
616        let optimization_result = match self.strategy {
617            LocalityStrategy::Temporal => {
618                Self::optimize_temporal_locality(state_vector, access_pattern)?
619            }
620            LocalityStrategy::Spatial => {
621                Self::optimize_spatial_locality(state_vector, access_pattern)?
622            }
623            LocalityStrategy::Loop => self.optimize_loop_locality(state_vector, access_pattern)?,
624            LocalityStrategy::CacheConscious => {
625                Self::optimize_cache_conscious(state_vector, access_pattern)?
626            }
627            LocalityStrategy::NUMATopology => {
628                self.optimize_numa_topology(state_vector, access_pattern)?
629            }
630            LocalityStrategy::Hybrid => {
631                self.optimize_hybrid_locality(state_vector, access_pattern)?
632            }
633        };
634        let optimization_time = start_time.elapsed();
635        Ok(LocalityOptimizationResult {
636            optimization_time,
637            locality_improvement: optimization_result.locality_improvement,
638            memory_movements: optimization_result.memory_movements,
639            numa_migrations: optimization_result.numa_migrations,
640            cache_efficiency_gain: optimization_result.cache_efficiency_gain,
641            strategy_used: self.strategy,
642        })
643    }
644    /// Analyze access patterns to understand locality characteristics
645    fn analyze_access_patterns(&mut self, access_pattern: &[usize]) -> Result<()> {
646        let now = Instant::now();
647        self.access_analyzer
648            .temporal_patterns
649            .insert(now, access_pattern.to_vec());
650        for &address in access_pattern {
651            let page = address / 4096;
652            self.access_analyzer
653                .spatial_patterns
654                .entry(page)
655                .or_default()
656                .push(address);
657        }
658        self.detect_loop_patterns(access_pattern)?;
659        while self.access_analyzer.temporal_patterns.len() > 1000 {
660            self.access_analyzer.temporal_patterns.pop_first();
661        }
662        Ok(())
663    }
664    /// Detect loop patterns in access sequence
665    fn detect_loop_patterns(&mut self, access_pattern: &[usize]) -> Result<()> {
666        if access_pattern.len() < 3 {
667            return Ok(());
668        }
669        for window in access_pattern.windows(3) {
670            if let [start, middle, end] = window {
671                let stride1 = *middle as isize - *start as isize;
672                let stride2 = *end as isize - *middle as isize;
673                if stride1 == stride2 && stride1 != 0 {
674                    *self
675                        .access_analyzer
676                        .loop_detection
677                        .loop_starts
678                        .entry(*start)
679                        .or_insert(0) += 1;
680                    if self.access_analyzer.loop_detection.loop_starts[start] >= 3 {
681                        let confidence =
682                            self.access_analyzer.loop_detection.loop_starts[start] as f64 / 10.0;
683                        let confidence = confidence.min(1.0);
684                        self.access_analyzer
685                            .loop_detection
686                            .detected_loops
687                            .push(LoopPattern {
688                                start_address: *start,
689                                stride: stride1,
690                                iterations: self.access_analyzer.loop_detection.loop_starts[start],
691                                confidence,
692                            });
693                    }
694                }
695            }
696        }
697        Ok(())
698    }
699    /// Optimize temporal locality
700    fn optimize_temporal_locality(
701        _state_vector: &mut OptimizedStateVector,
702        access_pattern: &[usize],
703    ) -> Result<OptimizationResult> {
704        let mut reuse_distances = HashMap::new();
705        let mut last_access = HashMap::new();
706        for (i, &address) in access_pattern.iter().enumerate() {
707            if let Some(&last_pos) = last_access.get(&address) {
708                let reuse_distance = i - last_pos;
709                reuse_distances.insert(address, reuse_distance);
710            }
711            last_access.insert(address, i);
712        }
713        let avg_reuse_distance: f64 = reuse_distances.values().map(|&d| d as f64).sum::<f64>()
714            / reuse_distances.len().max(1) as f64;
715        let locality_improvement = (100.0 / (avg_reuse_distance + 1.0)).min(1.0);
716        Ok(OptimizationResult {
717            locality_improvement,
718            memory_movements: 0,
719            numa_migrations: 0,
720            cache_efficiency_gain: locality_improvement * 0.5,
721        })
722    }
723    /// Optimize spatial locality
724    fn optimize_spatial_locality(
725        _state_vector: &mut OptimizedStateVector,
726        access_pattern: &[usize],
727    ) -> Result<OptimizationResult> {
728        let mut spatial_clusters = HashMap::new();
729        for &address in access_pattern {
730            let cache_line = address / 64;
731            *spatial_clusters.entry(cache_line).or_insert(0) += 1;
732        }
733        let total_accesses = access_pattern.len();
734        let unique_cache_lines = spatial_clusters.len();
735        let spatial_efficiency = if unique_cache_lines > 0 {
736            total_accesses as f64 / unique_cache_lines as f64
737        } else {
738            1.0
739        };
740        let locality_improvement = (spatial_efficiency / 10.0).min(1.0);
741        Ok(OptimizationResult {
742            locality_improvement,
743            memory_movements: spatial_clusters.len(),
744            numa_migrations: 0,
745            cache_efficiency_gain: locality_improvement * 0.7,
746        })
747    }
748    /// Optimize loop locality
749    fn optimize_loop_locality(
750        &self,
751        _state_vector: &mut OptimizedStateVector,
752        _access_pattern: &[usize],
753    ) -> Result<OptimizationResult> {
754        let total_loops = self.access_analyzer.loop_detection.detected_loops.len();
755        let high_confidence_loops = self
756            .access_analyzer
757            .loop_detection
758            .detected_loops
759            .iter()
760            .filter(|loop_pattern| loop_pattern.confidence > 0.8)
761            .count();
762        let loop_efficiency = if total_loops > 0 {
763            high_confidence_loops as f64 / total_loops as f64
764        } else {
765            0.5
766        };
767        Ok(OptimizationResult {
768            locality_improvement: loop_efficiency,
769            memory_movements: total_loops,
770            numa_migrations: 0,
771            cache_efficiency_gain: loop_efficiency * 0.8,
772        })
773    }
774    /// Optimize cache-conscious placement
775    fn optimize_cache_conscious(
776        _state_vector: &mut OptimizedStateVector,
777        access_pattern: &[usize],
778    ) -> Result<OptimizationResult> {
779        let cache_size = 256 * 1024;
780        let cache_line_size = 64;
781        let cache_lines = cache_size / cache_line_size;
782        let mut cache_hits = 0;
783        let mut cache_misses = 0;
784        let mut cache_state = HashMap::new();
785        for &address in access_pattern {
786            let cache_line = address / cache_line_size;
787            let cache_set = cache_line % cache_lines;
788            if let std::collections::hash_map::Entry::Vacant(e) = cache_state.entry(cache_set) {
789                cache_misses += 1;
790                e.insert(cache_line);
791            } else {
792                cache_hits += 1;
793            }
794        }
795        let cache_hit_rate = if cache_hits + cache_misses > 0 {
796            cache_hits as f64 / (cache_hits + cache_misses) as f64
797        } else {
798            0.0
799        };
800        Ok(OptimizationResult {
801            locality_improvement: cache_hit_rate,
802            memory_movements: cache_misses,
803            numa_migrations: 0,
804            cache_efficiency_gain: cache_hit_rate,
805        })
806    }
807    /// Optimize NUMA topology awareness
808    fn optimize_numa_topology(
809        &self,
810        _state_vector: &mut OptimizedStateVector,
811        access_pattern: &[usize],
812    ) -> Result<OptimizationResult> {
813        let mut numa_accesses = HashMap::new();
814        for &address in access_pattern {
815            let numa_node = (address / (1024 * 1024 * 1024)) % self.numa_topology.num_nodes;
816            *numa_accesses.entry(numa_node).or_insert(0) += 1;
817        }
818        let dominant_node = numa_accesses.iter().max_by_key(|(_, &count)| count);
819        let numa_efficiency = if let Some((_, &dominant_count)) = dominant_node {
820            f64::from(dominant_count) / access_pattern.len() as f64
821        } else {
822            0.0
823        };
824        let numa_migrations = numa_accesses.len().saturating_sub(1);
825        Ok(OptimizationResult {
826            locality_improvement: numa_efficiency,
827            memory_movements: 0,
828            numa_migrations,
829            cache_efficiency_gain: numa_efficiency * 0.6,
830        })
831    }
832    /// Optimize with hybrid strategy
833    fn optimize_hybrid_locality(
834        &self,
835        state_vector: &mut OptimizedStateVector,
836        access_pattern: &[usize],
837    ) -> Result<OptimizationResult> {
838        let temporal = Self::optimize_temporal_locality(state_vector, access_pattern)?;
839        let spatial = Self::optimize_spatial_locality(state_vector, access_pattern)?;
840        let numa = self.optimize_numa_topology(state_vector, access_pattern)?;
841        let locality_improvement = numa.locality_improvement.mul_add(
842            0.2,
843            temporal
844                .locality_improvement
845                .mul_add(0.4, spatial.locality_improvement * 0.4),
846        );
847        Ok(OptimizationResult {
848            locality_improvement,
849            memory_movements: temporal.memory_movements + spatial.memory_movements,
850            numa_migrations: numa.numa_migrations,
851            cache_efficiency_gain: temporal
852                .cache_efficiency_gain
853                .max(spatial.cache_efficiency_gain),
854        })
855    }
856    /// Get detected loop patterns
857    #[must_use]
858    pub fn get_detected_loops(&self) -> &[LoopPattern] {
859        &self.access_analyzer.loop_detection.detected_loops
860    }
861}
862/// Optimization result
863#[derive(Debug, Clone)]
864pub struct OptimizationResult {
865    /// Locality improvement score (0.0 to 1.0)
866    pub locality_improvement: f64,
867    /// Number of memory block movements
868    pub memory_movements: usize,
869    /// Number of NUMA migrations
870    pub numa_migrations: usize,
871    /// Cache efficiency gain (0.0 to 1.0)
872    pub cache_efficiency_gain: f64,
873}
874/// Locality optimization result
875#[derive(Debug, Clone)]
876pub struct LocalityOptimizationResult {
877    /// Time spent on optimization
878    pub optimization_time: Duration,
879    /// Locality improvement achieved
880    pub locality_improvement: f64,
881    /// Number of memory movements performed
882    pub memory_movements: usize,
883    /// Number of NUMA migrations
884    pub numa_migrations: usize,
885    /// Cache efficiency gain
886    pub cache_efficiency_gain: f64,
887    /// Strategy used for optimization
888    pub strategy_used: LocalityStrategy,
889}
890#[cfg(test)]
891mod tests {
892    use super::*;
893    use crate::memory_bandwidth_optimization::{MemoryOptimizationConfig, OptimizedStateVector};
894    #[test]
895    fn test_access_pattern_predictor() {
896        let mut predictor = AccessPatternPredictor::default();
897        for i in 0..10 {
898            predictor.record_access(i * 64);
899        }
900        let predictions = predictor.predict_next_accesses(5);
901        assert_eq!(predictions.len(), 5);
902        for (i, &pred) in predictions.iter().enumerate() {
903            assert_eq!(pred, (10 + i) * 64);
904        }
905    }
906    #[test]
907    fn test_memory_prefetcher_creation() {
908        let config = PrefetchConfig::default();
909        let numa = NUMATopology::default();
910        let prefetcher = MemoryPrefetcher::new(config, numa)
911            .expect("MemoryPrefetcher creation should succeed with default config");
912        assert_eq!(prefetcher.config.strategy, PrefetchStrategy::Adaptive);
913    }
914    #[test]
915    fn test_prefetch_request() {
916        let request = PrefetchRequest {
917            address: 0x1000,
918            priority: 0.8,
919            hint_type: PrefetchHint::L1,
920            timestamp: Instant::now(),
921        };
922        assert_eq!(request.address, 0x1000);
923        assert_eq!(request.priority, 0.8);
924        assert_eq!(request.hint_type, PrefetchHint::L1);
925    }
926    #[test]
927    fn test_data_locality_optimizer() {
928        let numa = NUMATopology::default();
929        let optimizer = DataLocalityOptimizer::new(LocalityStrategy::Spatial, numa);
930        assert!(matches!(optimizer.strategy, LocalityStrategy::Spatial));
931    }
932    #[test]
933    fn test_loop_pattern_detection() {
934        let mut optimizer =
935            DataLocalityOptimizer::new(LocalityStrategy::Loop, NUMATopology::default());
936        let access_pattern = vec![100, 200, 300, 400, 500, 600];
937        optimizer
938            .detect_loop_patterns(&access_pattern)
939            .expect("loop pattern detection should succeed");
940        assert!(!optimizer
941            .access_analyzer
942            .loop_detection
943            .loop_starts
944            .is_empty());
945    }
946    #[test]
947    fn test_spatial_locality_optimization() {
948        let numa = NUMATopology::default();
949        let optimizer = DataLocalityOptimizer::new(LocalityStrategy::Spatial, numa);
950        let access_pattern = vec![0, 8, 16, 24, 32, 40];
951        let config = MemoryOptimizationConfig::default();
952        let mut state_vector = OptimizedStateVector::new(3, config)
953            .expect("OptimizedStateVector creation should succeed");
954        let result =
955            DataLocalityOptimizer::optimize_spatial_locality(&mut state_vector, &access_pattern)
956                .expect("spatial locality optimization should succeed");
957        assert!(result.locality_improvement > 0.0);
958        assert!(result.cache_efficiency_gain >= 0.0);
959    }
960    #[test]
961    fn test_numa_topology_default() {
962        let numa = NUMATopology::default();
963        assert_eq!(numa.num_nodes, 1);
964        assert_eq!(numa.cores_per_node.len(), 1);
965        assert_eq!(numa.memory_per_node.len(), 1);
966    }
967    #[test]
968    fn test_prefetch_hint_determination() {
969        let config = PrefetchConfig::default();
970        let numa = NUMATopology::default();
971        let _prefetcher = MemoryPrefetcher::new(config, numa)
972            .expect("MemoryPrefetcher creation should succeed for prefetch hint test");
973        assert_eq!(
974            MemoryPrefetcher::determine_prefetch_hint(0x1000, 0),
975            PrefetchHint::L1
976        );
977        assert_eq!(
978            MemoryPrefetcher::determine_prefetch_hint(0x1000, 5),
979            PrefetchHint::L2
980        );
981        assert_eq!(
982            MemoryPrefetcher::determine_prefetch_hint(0x1000, 10),
983            PrefetchHint::L3
984        );
985        assert_eq!(
986            MemoryPrefetcher::determine_prefetch_hint(0x1000, 15),
987            PrefetchHint::NonTemporal
988        );
989    }
990    #[test]
991    fn test_ml_prediction() {
992        let mut predictor = AccessPatternPredictor::default();
993        for i in 0..20 {
994            predictor.record_access(i * 8);
995        }
996        let features = predictor.extract_features();
997        assert_eq!(features.len(), 16);
998        let prediction = predictor.ml_predict(&features, 0);
999        assert!(prediction.is_finite());
1000    }
1001    #[test]
1002    fn test_performance_feedback() {
1003        let feedback = PerformanceFeedback {
1004            cache_hit_rate: 0.85,
1005            bandwidth_utilization: 0.7,
1006            memory_latency: Duration::from_nanos(100),
1007            cpu_utilization: 0.6,
1008        };
1009        assert_eq!(feedback.cache_hit_rate, 0.85);
1010        assert_eq!(feedback.bandwidth_utilization, 0.7);
1011    }
1012}