quantrs2_sim/
large_scale_simulator.rs

1//! Large-Scale Quantum Simulator with Advanced Memory Optimization
2//!
3//! This module provides state-of-the-art memory optimization techniques to enable
4//! simulation of 40+ qubit quantum circuits on standard hardware through sparse
5//! representations, compression, memory mapping, and `SciRS2` high-performance computing.
6
7use quantrs2_circuit::builder::{Circuit, Simulator};
8use quantrs2_core::{
9    buffer_pool::BufferPool,
10    error::{QuantRS2Error, QuantRS2Result},
11    gate::GateOp,
12    qubit::QubitId,
13};
14use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator}; // SciRS2 POLICY compliant
15                                                                            // use quantrs2_core::platform::PlatformCapabilities;
16                                                                            // use scirs2_core::memory::BufferPool as SciRS2BufferPool;
17                                                                            // use scirs2_optimize::compression::{CompressionEngine, HuffmanEncoder, LZ4Encoder};
18                                                                            // use scirs2_linalg::{Matrix, Vector, SVD, sparse::CSRMatrix};
19use flate2::{read::ZlibDecoder, write::ZlibEncoder, Compression};
20use memmap2::{MmapMut, MmapOptions};
21use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2};
22use scirs2_core::Complex64;
23use serde::{Deserialize, Serialize};
24use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
25use std::fmt;
26use std::fs::{File, OpenOptions};
27use std::io::{BufReader, BufWriter, Read, Seek, SeekFrom, Write};
28use std::path::{Path, PathBuf};
29use std::sync::{Arc, Mutex, RwLock};
30use uuid::Uuid;
31
32/// Large-scale simulator configuration for 40+ qubit systems
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct LargeScaleSimulatorConfig {
35    /// Maximum number of qubits to simulate
36    pub max_qubits: usize,
37
38    /// Enable sparse state vector representation
39    pub enable_sparse_representation: bool,
40
41    /// Enable state compression
42    pub enable_compression: bool,
43
44    /// Enable memory mapping for very large states
45    pub enable_memory_mapping: bool,
46
47    /// Enable chunked processing
48    pub enable_chunked_processing: bool,
49
50    /// Chunk size for processing (in complex numbers)
51    pub chunk_size: usize,
52
53    /// Sparsity threshold (fraction of non-zero elements)
54    pub sparsity_threshold: f64,
55
56    /// Compression threshold (minimum size to compress)
57    pub compression_threshold: usize,
58
59    /// Memory mapping threshold (minimum size to use mmap)
60    pub memory_mapping_threshold: usize,
61
62    /// Working directory for temporary files
63    pub working_directory: PathBuf,
64
65    /// Enable `SciRS2` optimizations
66    pub enable_scirs2_optimizations: bool,
67
68    /// Memory budget in bytes
69    pub memory_budget: usize,
70
71    /// Enable adaptive precision
72    pub enable_adaptive_precision: bool,
73
74    /// Precision tolerance for adaptive precision
75    pub precision_tolerance: f64,
76}
77
78impl Default for LargeScaleSimulatorConfig {
79    fn default() -> Self {
80        Self {
81            max_qubits: 50,
82            enable_sparse_representation: true,
83            enable_compression: true,
84            enable_memory_mapping: true,
85            enable_chunked_processing: true,
86            chunk_size: 1024 * 1024,                    // 1M complex numbers
87            sparsity_threshold: 0.1,                    // Sparse if < 10% non-zero
88            compression_threshold: 1024 * 1024 * 8,     // 8MB
89            memory_mapping_threshold: 1024 * 1024 * 64, // 64MB
90            working_directory: std::env::temp_dir().join("quantrs_large_scale"),
91            enable_scirs2_optimizations: true,
92            memory_budget: 8 * 1024 * 1024 * 1024, // 8GB
93            enable_adaptive_precision: true,
94            precision_tolerance: 1e-12,
95        }
96    }
97}
98
99/// Simple sparse matrix representation for quantum states
100#[derive(Debug, Clone)]
101pub struct SimpleSparseMatrix {
102    /// Non-zero values
103    values: Vec<Complex64>,
104    /// Column indices for non-zero values
105    col_indices: Vec<usize>,
106    /// Row pointers (start index for each row)
107    row_ptr: Vec<usize>,
108    /// Matrix dimensions
109    rows: usize,
110    cols: usize,
111}
112
113impl SimpleSparseMatrix {
114    #[must_use]
115    pub fn from_dense(dense: &[Complex64], threshold: f64) -> Self {
116        let rows = dense.len();
117        let cols = 1; // For state vectors
118        let mut values = Vec::new();
119        let mut col_indices = Vec::new();
120        let mut row_ptr = vec![0];
121
122        for (i, &val) in dense.iter().enumerate() {
123            if val.norm() > threshold {
124                values.push(val);
125                col_indices.push(0); // State vector is column vector
126            }
127            row_ptr.push(values.len());
128        }
129
130        Self {
131            values,
132            col_indices,
133            row_ptr,
134            rows,
135            cols,
136        }
137    }
138
139    #[must_use]
140    pub fn to_dense(&self) -> Vec<Complex64> {
141        let mut dense = vec![Complex64::new(0.0, 0.0); self.rows];
142
143        for (row, &val) in self.values.iter().enumerate() {
144            if row < self.row_ptr.len() - 1 {
145                let start = self.row_ptr[row];
146                let end = self.row_ptr[row + 1];
147                if start < end && start < self.col_indices.len() {
148                    let col = self.col_indices[start];
149                    if col < dense.len() {
150                        dense[row] = val;
151                    }
152                }
153            }
154        }
155
156        dense
157    }
158
159    #[must_use]
160    pub fn nnz(&self) -> usize {
161        self.values.len()
162    }
163}
164
165/// Sparse quantum state representation using simple sparse matrices
166#[derive(Debug)]
167pub struct SparseQuantumState {
168    /// Sparse representation of non-zero amplitudes
169    sparse_amplitudes: SimpleSparseMatrix,
170
171    /// Number of qubits
172    num_qubits: usize,
173
174    /// Total dimension (`2^num_qubits`)
175    dimension: usize,
176
177    /// Non-zero indices and their positions
178    nonzero_indices: HashMap<usize, usize>,
179
180    /// Sparsity ratio
181    sparsity_ratio: f64,
182}
183
184impl SparseQuantumState {
185    /// Create new sparse quantum state
186    pub fn new(num_qubits: usize) -> QuantRS2Result<Self> {
187        let dimension = 1usize << num_qubits;
188
189        // Initialize in |0...0⟩ state (single non-zero element)
190        let mut dense = vec![Complex64::new(0.0, 0.0); dimension];
191        dense[0] = Complex64::new(1.0, 0.0);
192
193        let sparse_amplitudes = SimpleSparseMatrix::from_dense(&dense, 1e-15);
194
195        let mut nonzero_indices = HashMap::new();
196        nonzero_indices.insert(0, 0);
197
198        Ok(Self {
199            sparse_amplitudes,
200            num_qubits,
201            dimension,
202            nonzero_indices,
203            sparsity_ratio: 1.0 / dimension as f64,
204        })
205    }
206
207    /// Convert from dense state vector
208    pub fn from_dense(amplitudes: &[Complex64], threshold: f64) -> QuantRS2Result<Self> {
209        let num_qubits = (amplitudes.len() as f64).log2() as usize;
210        let dimension = amplitudes.len();
211
212        // Find non-zero elements
213        let mut nonzero_indices = HashMap::new();
214        let mut nonzero_count = 0;
215
216        for (i, &amplitude) in amplitudes.iter().enumerate() {
217            if amplitude.norm() > threshold {
218                nonzero_indices.insert(i, nonzero_count);
219                nonzero_count += 1;
220            }
221        }
222
223        let sparse_amplitudes = SimpleSparseMatrix::from_dense(amplitudes, threshold);
224        let sparsity_ratio = nonzero_count as f64 / dimension as f64;
225
226        Ok(Self {
227            sparse_amplitudes,
228            num_qubits,
229            dimension,
230            nonzero_indices,
231            sparsity_ratio,
232        })
233    }
234
235    /// Convert to dense state vector
236    pub fn to_dense(&self) -> QuantRS2Result<Vec<Complex64>> {
237        Ok(self.sparse_amplitudes.to_dense())
238    }
239
240    /// Apply sparse gate operation
241    pub fn apply_sparse_gate(&mut self, gate: &dyn GateOp) -> QuantRS2Result<()> {
242        // For now, convert to dense, apply gate, convert back
243        // TODO: Implement true sparse gate operations
244        let mut dense = self.to_dense()?;
245
246        // Apply gate to dense representation (simplified)
247        match gate.name() {
248            "X" => {
249                if let Some(target) = gate.qubits().first() {
250                    let target_idx = target.id() as usize;
251                    self.apply_pauli_x_sparse(target_idx)?;
252                }
253            }
254            "H" => {
255                if let Some(target) = gate.qubits().first() {
256                    let target_idx = target.id() as usize;
257                    self.apply_hadamard_sparse(target_idx)?;
258                }
259            }
260            _ => {
261                // Fallback to dense operation
262                let matrix = gate.matrix()?;
263                self.apply_dense_gate(&matrix, &gate.qubits())?;
264            }
265        }
266
267        Ok(())
268    }
269
270    /// Apply Pauli-X gate efficiently in sparse representation
271    fn apply_pauli_x_sparse(&mut self, target: usize) -> QuantRS2Result<()> {
272        // Pauli-X just flips the target bit in the indices
273        let mut new_nonzero_indices = HashMap::new();
274        let target_mask = 1usize << target;
275
276        for (&old_idx, &pos) in &self.nonzero_indices {
277            let new_idx = old_idx ^ target_mask;
278            new_nonzero_indices.insert(new_idx, pos);
279        }
280
281        self.nonzero_indices = new_nonzero_indices;
282
283        // Update sparse matrix indices
284        self.update_sparse_matrix()?;
285
286        Ok(())
287    }
288
289    /// Apply Hadamard gate in sparse representation
290    fn apply_hadamard_sparse(&mut self, target: usize) -> QuantRS2Result<()> {
291        // Hadamard creates superposition, potentially doubling non-zero elements
292        // For true sparsity preservation, we'd need more sophisticated techniques
293        // For now, use dense conversion
294        let dense = self.to_dense()?;
295        let mut new_dense = vec![Complex64::new(0.0, 0.0); self.dimension];
296
297        let h_00 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
298        let h_01 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
299        let h_10 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
300        let h_11 = Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0);
301
302        let target_mask = 1usize << target;
303
304        for i in 0..self.dimension {
305            let paired_idx = i ^ target_mask;
306            let bit_val = (i >> target) & 1;
307
308            if bit_val == 0 {
309                new_dense[i] = h_00 * dense[i] + h_01 * dense[paired_idx];
310                new_dense[paired_idx] = h_10 * dense[i] + h_11 * dense[paired_idx];
311            }
312        }
313
314        *self = Self::from_dense(&new_dense, 1e-15)?;
315
316        Ok(())
317    }
318
319    /// Apply dense gate operation
320    fn apply_dense_gate(&mut self, matrix: &[Complex64], qubits: &[QubitId]) -> QuantRS2Result<()> {
321        // Convert to dense, apply gate, convert back if still sparse enough
322        let mut dense = self.to_dense()?;
323
324        // Apply gate operation (simplified single-qubit case)
325        if qubits.len() == 1 {
326            let target = qubits[0].id() as usize;
327            let target_mask = 1usize << target;
328
329            for i in 0..self.dimension {
330                if (i & target_mask) == 0 {
331                    let paired_idx = i | target_mask;
332                    let old_0 = dense[i];
333                    let old_1 = dense[paired_idx];
334
335                    dense[i] = matrix[0] * old_0 + matrix[1] * old_1;
336                    dense[paired_idx] = matrix[2] * old_0 + matrix[3] * old_1;
337                }
338            }
339        }
340
341        // Check if result is still sparse enough
342        let nonzero_count = dense.iter().filter(|&&x| x.norm() > 1e-15).count();
343        let new_sparsity = nonzero_count as f64 / self.dimension as f64;
344
345        if new_sparsity < 0.5 {
346            // If still reasonably sparse
347            *self = Self::from_dense(&dense, 1e-15)?;
348        } else {
349            // Convert to dense representation if no longer sparse
350            return Err(QuantRS2Error::ComputationError(
351                "State no longer sparse".to_string(),
352            ));
353        }
354
355        Ok(())
356    }
357
358    /// Update sparse matrix after index changes
359    fn update_sparse_matrix(&mut self) -> QuantRS2Result<()> {
360        // Rebuild sparse matrix from current nonzero_indices
361        let mut dense = vec![Complex64::new(0.0, 0.0); self.dimension];
362
363        for &idx in self.nonzero_indices.keys() {
364            if idx < dense.len() {
365                // Set normalized amplitude (simplified)
366                dense[idx] = Complex64::new(1.0 / (self.nonzero_indices.len() as f64).sqrt(), 0.0);
367            }
368        }
369
370        self.sparse_amplitudes = SimpleSparseMatrix::from_dense(&dense, 1e-15);
371        self.sparsity_ratio = self.nonzero_indices.len() as f64 / self.dimension as f64;
372
373        Ok(())
374    }
375
376    /// Get current sparsity ratio
377    #[must_use]
378    pub const fn sparsity_ratio(&self) -> f64 {
379        self.sparsity_ratio
380    }
381
382    /// Get memory usage in bytes
383    #[must_use]
384    pub fn memory_usage(&self) -> usize {
385        self.nonzero_indices.len()
386            * (std::mem::size_of::<usize>() + std::mem::size_of::<Complex64>())
387    }
388}
389
390/// Simple compression engine for quantum states
391#[derive(Debug)]
392pub struct SimpleCompressionEngine {
393    /// Internal buffer for compression operations
394    buffer: Vec<u8>,
395}
396
397impl Default for SimpleCompressionEngine {
398    fn default() -> Self {
399        Self::new()
400    }
401}
402
403impl SimpleCompressionEngine {
404    #[must_use]
405    pub const fn new() -> Self {
406        Self { buffer: Vec::new() }
407    }
408
409    /// Simple LZ-style compression
410    pub fn compress_lz4(&self, data: &[u8]) -> Result<Vec<u8>, String> {
411        // Simplified compression - just use zlib/deflate
412        use std::io::Write;
413        let mut encoder =
414            flate2::write::ZlibEncoder::new(Vec::new(), flate2::Compression::default());
415        encoder
416            .write_all(data)
417            .map_err(|e| format!("Compression failed: {e}"))?;
418        encoder
419            .finish()
420            .map_err(|e| format!("Compression finish failed: {e}"))
421    }
422
423    /// Simple decompression
424    pub fn decompress_lz4(&self, data: &[u8]) -> Result<Vec<u8>, String> {
425        use std::io::Read;
426        let mut decoder = flate2::read::ZlibDecoder::new(data);
427        let mut decompressed = Vec::new();
428        decoder
429            .read_to_end(&mut decompressed)
430            .map_err(|e| format!("Decompression failed: {e}"))?;
431        Ok(decompressed)
432    }
433
434    /// Huffman compression placeholder
435    pub fn compress_huffman(&self, data: &[u8]) -> Result<Vec<u8>, String> {
436        // For now, just use the LZ4 method
437        self.compress_lz4(data)
438    }
439
440    /// Huffman decompression placeholder
441    pub fn decompress_huffman(&self, data: &[u8]) -> Result<Vec<u8>, String> {
442        // For now, just use the LZ4 method
443        self.decompress_lz4(data)
444    }
445}
446
447/// Compressed quantum state using simple compression
448#[derive(Debug)]
449pub struct CompressedQuantumState {
450    /// Compressed amplitude data
451    compressed_data: Vec<u8>,
452
453    /// Compression metadata
454    compression_metadata: CompressionMetadata,
455
456    /// Compression engine
457    compression_engine: SimpleCompressionEngine,
458
459    /// Number of qubits
460    num_qubits: usize,
461
462    /// Original size in bytes
463    original_size: usize,
464}
465
466/// Compression metadata
467#[derive(Debug, Clone, Serialize, Deserialize)]
468pub struct CompressionMetadata {
469    /// Compression algorithm used
470    pub algorithm: CompressionAlgorithm,
471
472    /// Compression ratio achieved
473    pub compression_ratio: f64,
474
475    /// Original data size
476    pub original_size: usize,
477
478    /// Compressed data size
479    pub compressed_size: usize,
480
481    /// Checksum for integrity verification
482    pub checksum: u64,
483}
484
485/// Supported compression algorithms
486#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
487pub enum CompressionAlgorithm {
488    /// Huffman encoding for sparse data
489    Huffman,
490    /// LZ4 for general compression
491    LZ4,
492    /// Quantum-specific amplitude compression
493    QuantumAmplitude,
494    /// No compression
495    None,
496}
497
498impl CompressedQuantumState {
499    /// Create new compressed state from dense amplitudes
500    pub fn from_dense(
501        amplitudes: &[Complex64],
502        algorithm: CompressionAlgorithm,
503    ) -> QuantRS2Result<Self> {
504        let num_qubits = (amplitudes.len() as f64).log2() as usize;
505        let original_size = std::mem::size_of_val(amplitudes);
506
507        // Convert to bytes
508        let amplitude_bytes: &[u8] =
509            unsafe { std::slice::from_raw_parts(amplitudes.as_ptr().cast::<u8>(), original_size) };
510
511        // Initialize compression engine
512        let compression_engine = SimpleCompressionEngine::new();
513
514        let (compressed_data, metadata) = match algorithm {
515            CompressionAlgorithm::Huffman => {
516                let compressed = compression_engine
517                    .compress_huffman(amplitude_bytes)
518                    .map_err(|e| {
519                        QuantRS2Error::ComputationError(format!("Huffman compression failed: {e}"))
520                    })?;
521
522                let metadata = CompressionMetadata {
523                    algorithm: CompressionAlgorithm::Huffman,
524                    compression_ratio: original_size as f64 / compressed.len() as f64,
525                    original_size,
526                    compressed_size: compressed.len(),
527                    checksum: Self::calculate_checksum(amplitude_bytes),
528                };
529
530                (compressed, metadata)
531            }
532            CompressionAlgorithm::LZ4 => {
533                let compressed = compression_engine
534                    .compress_lz4(amplitude_bytes)
535                    .map_err(|e| {
536                        QuantRS2Error::ComputationError(format!("LZ4 compression failed: {e}"))
537                    })?;
538
539                let metadata = CompressionMetadata {
540                    algorithm: CompressionAlgorithm::LZ4,
541                    compression_ratio: original_size as f64 / compressed.len() as f64,
542                    original_size,
543                    compressed_size: compressed.len(),
544                    checksum: Self::calculate_checksum(amplitude_bytes),
545                };
546
547                (compressed, metadata)
548            }
549            CompressionAlgorithm::QuantumAmplitude => {
550                // Custom quantum amplitude compression
551                let compressed = Self::compress_quantum_amplitudes(amplitudes)?;
552
553                let metadata = CompressionMetadata {
554                    algorithm: CompressionAlgorithm::QuantumAmplitude,
555                    compression_ratio: original_size as f64 / compressed.len() as f64,
556                    original_size,
557                    compressed_size: compressed.len(),
558                    checksum: Self::calculate_checksum(amplitude_bytes),
559                };
560
561                (compressed, metadata)
562            }
563            CompressionAlgorithm::None => {
564                let metadata = CompressionMetadata {
565                    algorithm: CompressionAlgorithm::None,
566                    compression_ratio: 1.0,
567                    original_size,
568                    compressed_size: original_size,
569                    checksum: Self::calculate_checksum(amplitude_bytes),
570                };
571
572                (amplitude_bytes.to_vec(), metadata)
573            }
574        };
575
576        Ok(Self {
577            compressed_data,
578            compression_metadata: metadata,
579            compression_engine,
580            num_qubits,
581            original_size,
582        })
583    }
584
585    /// Decompress to dense amplitudes
586    pub fn to_dense(&self) -> QuantRS2Result<Vec<Complex64>> {
587        let decompressed_bytes = match self.compression_metadata.algorithm {
588            CompressionAlgorithm::Huffman => self
589                .compression_engine
590                .decompress_huffman(&self.compressed_data)
591                .map_err(|e| {
592                    QuantRS2Error::ComputationError(format!("Huffman decompression failed: {e}"))
593                })?,
594            CompressionAlgorithm::LZ4 => self
595                .compression_engine
596                .decompress_lz4(&self.compressed_data)
597                .map_err(|e| {
598                    QuantRS2Error::ComputationError(format!("LZ4 decompression failed: {e}"))
599                })?,
600            CompressionAlgorithm::QuantumAmplitude => {
601                Self::decompress_quantum_amplitudes(&self.compressed_data, self.num_qubits)?
602            }
603            CompressionAlgorithm::None => self.compressed_data.clone(),
604        };
605
606        // Verify checksum
607        let checksum = Self::calculate_checksum(&decompressed_bytes);
608        if checksum != self.compression_metadata.checksum {
609            return Err(QuantRS2Error::ComputationError(
610                "Checksum verification failed".to_string(),
611            ));
612        }
613
614        // Convert bytes back to complex numbers
615        let amplitudes = unsafe {
616            std::slice::from_raw_parts(
617                decompressed_bytes.as_ptr().cast::<Complex64>(),
618                decompressed_bytes.len() / std::mem::size_of::<Complex64>(),
619            )
620        }
621        .to_vec();
622
623        Ok(amplitudes)
624    }
625
626    /// Custom quantum amplitude compression
627    fn compress_quantum_amplitudes(amplitudes: &[Complex64]) -> QuantRS2Result<Vec<u8>> {
628        // Quantum-specific compression using magnitude-phase representation
629        let mut compressed = Vec::new();
630
631        for &amplitude in amplitudes {
632            let magnitude = amplitude.norm();
633            let phase = amplitude.arg();
634
635            // Quantize magnitude and phase for better compression
636            let quantized_magnitude = (magnitude * 65_535.0) as u16;
637            let quantized_phase =
638                ((phase + std::f64::consts::PI) / (2.0 * std::f64::consts::PI) * 65_535.0) as u16;
639
640            compressed.extend_from_slice(&quantized_magnitude.to_le_bytes());
641            compressed.extend_from_slice(&quantized_phase.to_le_bytes());
642        }
643
644        Ok(compressed)
645    }
646
647    /// Custom quantum amplitude decompression
648    fn decompress_quantum_amplitudes(data: &[u8], num_qubits: usize) -> QuantRS2Result<Vec<u8>> {
649        let dimension = 1usize << num_qubits;
650        let mut amplitudes = Vec::with_capacity(dimension);
651
652        for i in 0..dimension {
653            let offset = i * 4; // 2 bytes magnitude + 2 bytes phase
654            if offset + 4 <= data.len() {
655                let magnitude_bytes = [data[offset], data[offset + 1]];
656                let phase_bytes = [data[offset + 2], data[offset + 3]];
657
658                let quantized_magnitude = u16::from_le_bytes(magnitude_bytes);
659                let quantized_phase = u16::from_le_bytes(phase_bytes);
660
661                let magnitude = f64::from(quantized_magnitude) / 65_535.0;
662                let phase = ((f64::from(quantized_phase) / 65_535.0) * 2.0)
663                    .mul_add(std::f64::consts::PI, -std::f64::consts::PI);
664
665                let amplitude = Complex64::new(magnitude * phase.cos(), magnitude * phase.sin());
666                amplitudes.push(amplitude);
667            }
668        }
669
670        // Convert back to bytes
671        let amplitude_bytes = unsafe {
672            std::slice::from_raw_parts(
673                amplitudes.as_ptr().cast::<u8>(),
674                amplitudes.len() * std::mem::size_of::<Complex64>(),
675            )
676        };
677
678        Ok(amplitude_bytes.to_vec())
679    }
680
681    /// Calculate checksum for integrity verification
682    fn calculate_checksum(data: &[u8]) -> u64 {
683        // Simple checksum implementation
684        data.iter()
685            .enumerate()
686            .map(|(i, &b)| (i as u64).wrapping_mul(u64::from(b)))
687            .sum()
688    }
689
690    /// Get compression ratio
691    #[must_use]
692    pub const fn compression_ratio(&self) -> f64 {
693        self.compression_metadata.compression_ratio
694    }
695
696    /// Get memory usage in bytes
697    #[must_use]
698    pub fn memory_usage(&self) -> usize {
699        self.compressed_data.len()
700    }
701}
702
703/// Memory-mapped quantum state for very large simulations
704#[derive(Debug)]
705pub struct MemoryMappedQuantumState {
706    /// Memory-mapped file
707    mmap: MmapMut,
708
709    /// File path
710    file_path: PathBuf,
711
712    /// Number of qubits
713    num_qubits: usize,
714
715    /// State dimension
716    dimension: usize,
717
718    /// Chunk size for processing
719    chunk_size: usize,
720}
721
722impl MemoryMappedQuantumState {
723    /// Create new memory-mapped state
724    pub fn new(num_qubits: usize, chunk_size: usize, working_dir: &Path) -> QuantRS2Result<Self> {
725        let dimension = 1usize << num_qubits;
726        let file_size = dimension * std::mem::size_of::<Complex64>();
727
728        // Create temporary file
729        std::fs::create_dir_all(working_dir).map_err(|e| {
730            QuantRS2Error::InvalidInput(format!("Failed to create working directory: {e}"))
731        })?;
732
733        let file_path = working_dir.join(format!("quantum_state_{}.tmp", Uuid::new_v4()));
734
735        let file = OpenOptions::new()
736            .read(true)
737            .write(true)
738            .create(true)
739            .open(&file_path)
740            .map_err(|e| QuantRS2Error::InvalidInput(format!("Failed to create temp file: {e}")))?;
741
742        file.set_len(file_size as u64)
743            .map_err(|e| QuantRS2Error::InvalidInput(format!("Failed to set file size: {e}")))?;
744
745        let mmap = unsafe {
746            MmapOptions::new().map_mut(&file).map_err(|e| {
747                QuantRS2Error::InvalidInput(format!("Failed to create memory map: {e}"))
748            })?
749        };
750
751        let mut state = Self {
752            mmap,
753            file_path,
754            num_qubits,
755            dimension,
756            chunk_size,
757        };
758
759        // Initialize to |0...0⟩ state
760        state.initialize_zero_state()?;
761
762        Ok(state)
763    }
764
765    /// Initialize state to |0...0⟩
766    fn initialize_zero_state(&mut self) -> QuantRS2Result<()> {
767        let amplitudes = self.get_amplitudes_mut();
768
769        // Clear all amplitudes
770        for amplitude in amplitudes.iter_mut() {
771            *amplitude = Complex64::new(0.0, 0.0);
772        }
773
774        // Set first amplitude to 1.0 (|0...0⟩ state)
775        if !amplitudes.is_empty() {
776            amplitudes[0] = Complex64::new(1.0, 0.0);
777        }
778
779        Ok(())
780    }
781
782    /// Get amplitudes as mutable slice
783    fn get_amplitudes_mut(&mut self) -> &mut [Complex64] {
784        unsafe {
785            std::slice::from_raw_parts_mut(
786                self.mmap.as_mut_ptr().cast::<Complex64>(),
787                self.dimension,
788            )
789        }
790    }
791
792    /// Get amplitudes as slice
793    fn get_amplitudes(&self) -> &[Complex64] {
794        unsafe {
795            std::slice::from_raw_parts(self.mmap.as_ptr().cast::<Complex64>(), self.dimension)
796        }
797    }
798
799    /// Apply gate operation using chunked processing
800    pub fn apply_gate_chunked(&mut self, gate: &dyn GateOp) -> QuantRS2Result<()> {
801        let num_chunks = self.dimension.div_ceil(self.chunk_size);
802
803        for chunk_idx in 0..num_chunks {
804            let start = chunk_idx * self.chunk_size;
805            let end = (start + self.chunk_size).min(self.dimension);
806
807            self.apply_gate_to_chunk(gate, start, end)?;
808        }
809
810        Ok(())
811    }
812
813    /// Apply gate to specific chunk
814    fn apply_gate_to_chunk(
815        &mut self,
816        gate: &dyn GateOp,
817        start: usize,
818        end: usize,
819    ) -> QuantRS2Result<()> {
820        // Cache dimension to avoid borrowing issues
821        let dimension = self.dimension;
822        let amplitudes = self.get_amplitudes_mut();
823
824        match gate.name() {
825            "X" => {
826                if let Some(target) = gate.qubits().first() {
827                    let target_idx = target.id() as usize;
828                    let target_mask = 1usize << target_idx;
829
830                    for i in start..end {
831                        if (i & target_mask) == 0 {
832                            let paired_idx = i | target_mask;
833                            if paired_idx < dimension {
834                                amplitudes.swap(i, paired_idx);
835                            }
836                        }
837                    }
838                }
839            }
840            "H" => {
841                if let Some(target) = gate.qubits().first() {
842                    let target_idx = target.id() as usize;
843                    let target_mask = 1usize << target_idx;
844                    let inv_sqrt2 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
845
846                    // Create temporary buffer to avoid borrowing issues
847                    let mut temp_buffer = vec![Complex64::new(0.0, 0.0); end - start];
848                    for (i, &val) in amplitudes[start..end].iter().enumerate() {
849                        temp_buffer[i] = val;
850                    }
851
852                    for i in start..end {
853                        if (i & target_mask) == 0 {
854                            let paired_idx = i | target_mask;
855                            if paired_idx < dimension && paired_idx >= start && paired_idx < end {
856                                let old_0 = temp_buffer[i - start];
857                                let old_1 = temp_buffer[paired_idx - start];
858
859                                amplitudes[i] = inv_sqrt2 * (old_0 + old_1);
860                                amplitudes[paired_idx] = inv_sqrt2 * (old_0 - old_1);
861                            }
862                        }
863                    }
864                }
865            }
866            _ => {
867                return Err(QuantRS2Error::UnsupportedOperation(format!(
868                    "Chunked operation not implemented for gate {}",
869                    gate.name()
870                )));
871            }
872        }
873
874        Ok(())
875    }
876
877    /// Get memory usage (just metadata, actual state is in file)
878    #[must_use]
879    pub const fn memory_usage(&self) -> usize {
880        std::mem::size_of::<Self>()
881    }
882
883    /// Get file size
884    #[must_use]
885    pub const fn file_size(&self) -> usize {
886        self.dimension * std::mem::size_of::<Complex64>()
887    }
888}
889
890impl Drop for MemoryMappedQuantumState {
891    fn drop(&mut self) {
892        // Clean up temporary file
893        let _ = std::fs::remove_file(&self.file_path);
894    }
895}
896
897/// Large-scale quantum simulator supporting 40+ qubits
898#[derive(Debug)]
899pub struct LargeScaleQuantumSimulator {
900    /// Configuration
901    config: LargeScaleSimulatorConfig,
902
903    /// Current quantum state representation
904    state: QuantumStateRepresentation,
905
906    /// Buffer pool for optimizations
907    buffer_pool: Arc<Mutex<Vec<Vec<Complex64>>>>,
908
909    /// Memory usage statistics
910    memory_stats: Arc<Mutex<MemoryStatistics>>,
911}
912
913/// Different quantum state representations
914#[derive(Debug)]
915pub enum QuantumStateRepresentation {
916    /// Dense state vector (traditional)
917    Dense(Vec<Complex64>),
918
919    /// Sparse state representation
920    Sparse(SparseQuantumState),
921
922    /// Compressed state representation
923    Compressed(CompressedQuantumState),
924
925    /// Memory-mapped state for very large simulations
926    MemoryMapped(MemoryMappedQuantumState),
927}
928
929/// Memory usage statistics
930#[derive(Debug, Default, Clone)]
931pub struct MemoryStatistics {
932    /// Current memory usage in bytes
933    pub current_usage: usize,
934
935    /// Peak memory usage in bytes
936    pub peak_usage: usize,
937
938    /// Number of allocations
939    pub allocations: u64,
940
941    /// Number of deallocations
942    pub deallocations: u64,
943
944    /// Compression ratio achieved
945    pub compression_ratio: f64,
946
947    /// Sparsity ratio
948    pub sparsity_ratio: f64,
949
950    /// Time spent in memory operations (microseconds)
951    pub memory_operation_time_us: u64,
952}
953
954impl LargeScaleQuantumSimulator {
955    /// Create new large-scale simulator
956    pub fn new(config: LargeScaleSimulatorConfig) -> QuantRS2Result<Self> {
957        let buffer_pool = Arc::new(Mutex::new(Vec::new()));
958        let memory_stats = Arc::new(Mutex::new(MemoryStatistics::default()));
959
960        // Initialize with appropriate state representation
961        let state = QuantumStateRepresentation::Dense(vec![Complex64::new(1.0, 0.0)]);
962
963        Ok(Self {
964            config,
965            state,
966            buffer_pool,
967            memory_stats,
968        })
969    }
970
971    /// Initialize quantum state for given number of qubits
972    pub fn initialize_state(&mut self, num_qubits: usize) -> QuantRS2Result<()> {
973        if num_qubits > self.config.max_qubits {
974            return Err(QuantRS2Error::InvalidInput(format!(
975                "Number of qubits {} exceeds maximum {}",
976                num_qubits, self.config.max_qubits
977            )));
978        }
979
980        let dimension = 1usize << num_qubits;
981        let memory_required = dimension * std::mem::size_of::<Complex64>();
982
983        // Choose appropriate representation based on size and configuration
984        self.state = if memory_required > self.config.memory_mapping_threshold {
985            // Use memory mapping for very large states
986            QuantumStateRepresentation::MemoryMapped(MemoryMappedQuantumState::new(
987                num_qubits,
988                self.config.chunk_size,
989                &self.config.working_directory,
990            )?)
991        } else if memory_required > self.config.compression_threshold
992            && self.config.enable_compression
993        {
994            // Use compression for medium-large states
995            let amplitudes = vec![Complex64::new(0.0, 0.0); dimension];
996            let mut amplitudes = amplitudes;
997            amplitudes[0] = Complex64::new(1.0, 0.0); // |0...0⟩ state
998
999            QuantumStateRepresentation::Compressed(CompressedQuantumState::from_dense(
1000                &amplitudes,
1001                CompressionAlgorithm::LZ4,
1002            )?)
1003        } else if self.config.enable_sparse_representation {
1004            // Use sparse representation
1005            QuantumStateRepresentation::Sparse(SparseQuantumState::new(num_qubits)?)
1006        } else {
1007            // Use traditional dense representation
1008            let mut amplitudes = vec![Complex64::new(0.0, 0.0); dimension];
1009            amplitudes[0] = Complex64::new(1.0, 0.0); // |0...0⟩ state
1010            QuantumStateRepresentation::Dense(amplitudes)
1011        };
1012
1013        self.update_memory_stats()?;
1014
1015        Ok(())
1016    }
1017
1018    /// Apply quantum gate
1019    pub fn apply_gate(&mut self, gate: &dyn GateOp) -> QuantRS2Result<()> {
1020        let start_time = std::time::Instant::now();
1021
1022        // Handle different state representations
1023        let mut needs_state_change = None;
1024
1025        match &mut self.state {
1026            QuantumStateRepresentation::Dense(amplitudes) => {
1027                // Create a copy to avoid borrowing issues
1028                let mut amplitudes_copy = amplitudes.clone();
1029                Self::apply_gate_dense(&mut amplitudes_copy, gate, &self.config)?;
1030                *amplitudes = amplitudes_copy;
1031            }
1032            QuantumStateRepresentation::Sparse(sparse_state) => {
1033                sparse_state.apply_sparse_gate(gate)?;
1034
1035                // Check if still sparse enough
1036                if sparse_state.sparsity_ratio() > self.config.sparsity_threshold {
1037                    // Convert to dense if no longer sparse
1038                    let dense = sparse_state.to_dense()?;
1039                    needs_state_change = Some(QuantumStateRepresentation::Dense(dense));
1040                }
1041            }
1042            QuantumStateRepresentation::Compressed(compressed_state) => {
1043                // Decompress, apply gate, recompress
1044                let mut dense = compressed_state.to_dense()?;
1045                Self::apply_gate_dense(&mut dense, gate, &self.config)?;
1046
1047                // Recompress if beneficial
1048                let new_compressed =
1049                    CompressedQuantumState::from_dense(&dense, CompressionAlgorithm::LZ4)?;
1050                if new_compressed.compression_ratio() > 1.5 {
1051                    needs_state_change =
1052                        Some(QuantumStateRepresentation::Compressed(new_compressed));
1053                } else {
1054                    needs_state_change = Some(QuantumStateRepresentation::Dense(dense));
1055                }
1056            }
1057            QuantumStateRepresentation::MemoryMapped(mmap_state) => {
1058                mmap_state.apply_gate_chunked(gate)?;
1059            }
1060        }
1061
1062        // Apply state change if needed
1063        if let Some(new_state) = needs_state_change {
1064            self.state = new_state;
1065        }
1066
1067        let elapsed = start_time.elapsed();
1068        if let Ok(mut stats) = self.memory_stats.lock() {
1069            stats.memory_operation_time_us += elapsed.as_micros() as u64;
1070        }
1071
1072        Ok(())
1073    }
1074
1075    /// Apply gate to dense representation
1076    fn apply_gate_dense(
1077        amplitudes: &mut [Complex64],
1078        gate: &dyn GateOp,
1079        config: &LargeScaleSimulatorConfig,
1080    ) -> QuantRS2Result<()> {
1081        match gate.name() {
1082            "X" => {
1083                if let Some(target) = gate.qubits().first() {
1084                    let target_idx = target.id() as usize;
1085                    Self::apply_pauli_x_dense(amplitudes, target_idx)?;
1086                }
1087            }
1088            "H" => {
1089                if let Some(target) = gate.qubits().first() {
1090                    let target_idx = target.id() as usize;
1091                    Self::apply_hadamard_dense(amplitudes, target_idx, config)?;
1092                }
1093            }
1094            "CNOT" => {
1095                if gate.qubits().len() >= 2 {
1096                    let control_idx = gate.qubits()[0].id() as usize;
1097                    let target_idx = gate.qubits()[1].id() as usize;
1098                    Self::apply_cnot_dense(amplitudes, control_idx, target_idx)?;
1099                }
1100            }
1101            _ => {
1102                return Err(QuantRS2Error::UnsupportedOperation(format!(
1103                    "Gate {} not implemented in large-scale simulator",
1104                    gate.name()
1105                )));
1106            }
1107        }
1108
1109        Ok(())
1110    }
1111
1112    /// Apply Pauli-X gate to dense representation
1113    fn apply_pauli_x_dense(amplitudes: &mut [Complex64], target: usize) -> QuantRS2Result<()> {
1114        let target_mask = 1usize << target;
1115
1116        // Sequential operation for now (parallel optimization can be added later)
1117        for i in 0..amplitudes.len() {
1118            if (i & target_mask) == 0 {
1119                let paired_idx = i | target_mask;
1120                if paired_idx < amplitudes.len() {
1121                    amplitudes.swap(i, paired_idx);
1122                }
1123            }
1124        }
1125
1126        Ok(())
1127    }
1128
1129    /// Apply Hadamard gate to dense representation
1130    fn apply_hadamard_dense(
1131        amplitudes: &mut [Complex64],
1132        target: usize,
1133        _config: &LargeScaleSimulatorConfig,
1134    ) -> QuantRS2Result<()> {
1135        let target_mask = 1usize << target;
1136        let inv_sqrt2 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
1137
1138        // Create temporary buffer
1139        let mut temp = vec![Complex64::new(0.0, 0.0); amplitudes.len()];
1140        temp.copy_from_slice(amplitudes);
1141
1142        // Sequential operation for now (parallel optimization can be added later)
1143        for i in 0..amplitudes.len() {
1144            if (i & target_mask) == 0 {
1145                let paired_idx = i | target_mask;
1146                if paired_idx < amplitudes.len() {
1147                    let old_0 = temp[i];
1148                    let old_1 = temp[paired_idx];
1149
1150                    amplitudes[i] = inv_sqrt2 * (old_0 + old_1);
1151                    amplitudes[paired_idx] = inv_sqrt2 * (old_0 - old_1);
1152                }
1153            }
1154        }
1155
1156        Ok(())
1157    }
1158
1159    /// Apply CNOT gate to dense representation
1160    fn apply_cnot_dense(
1161        amplitudes: &mut [Complex64],
1162        control: usize,
1163        target: usize,
1164    ) -> QuantRS2Result<()> {
1165        let control_mask = 1usize << control;
1166        let target_mask = 1usize << target;
1167
1168        // Sequential operation for now (parallel optimization can be added later)
1169        for i in 0..amplitudes.len() {
1170            if (i & control_mask) != 0 && (i & target_mask) == 0 {
1171                let flipped_idx = i | target_mask;
1172                if flipped_idx < amplitudes.len() {
1173                    amplitudes.swap(i, flipped_idx);
1174                }
1175            }
1176        }
1177
1178        Ok(())
1179    }
1180
1181    /// Get current state as dense vector (for measurement)
1182    pub fn get_dense_state(&self) -> QuantRS2Result<Vec<Complex64>> {
1183        match &self.state {
1184            QuantumStateRepresentation::Dense(amplitudes) => Ok(amplitudes.clone()),
1185            QuantumStateRepresentation::Sparse(sparse_state) => sparse_state.to_dense(),
1186            QuantumStateRepresentation::Compressed(compressed_state) => compressed_state.to_dense(),
1187            QuantumStateRepresentation::MemoryMapped(mmap_state) => {
1188                Ok(mmap_state.get_amplitudes().to_vec())
1189            }
1190        }
1191    }
1192
1193    /// Update memory usage statistics
1194    fn update_memory_stats(&self) -> QuantRS2Result<()> {
1195        if let Ok(mut stats) = self.memory_stats.lock() {
1196            let current_usage = match &self.state {
1197                QuantumStateRepresentation::Dense(amplitudes) => {
1198                    amplitudes.len() * std::mem::size_of::<Complex64>()
1199                }
1200                QuantumStateRepresentation::Sparse(sparse_state) => sparse_state.memory_usage(),
1201                QuantumStateRepresentation::Compressed(compressed_state) => {
1202                    compressed_state.memory_usage()
1203                }
1204                QuantumStateRepresentation::MemoryMapped(mmap_state) => mmap_state.memory_usage(),
1205            };
1206
1207            stats.current_usage = current_usage;
1208            if current_usage > stats.peak_usage {
1209                stats.peak_usage = current_usage;
1210            }
1211
1212            // Update compression and sparsity ratios
1213            match &self.state {
1214                QuantumStateRepresentation::Compressed(compressed_state) => {
1215                    stats.compression_ratio = compressed_state.compression_ratio();
1216                }
1217                QuantumStateRepresentation::Sparse(sparse_state) => {
1218                    stats.sparsity_ratio = sparse_state.sparsity_ratio();
1219                }
1220                _ => {}
1221            }
1222        }
1223
1224        Ok(())
1225    }
1226
1227    /// Get memory statistics
1228    #[must_use]
1229    pub fn get_memory_stats(&self) -> MemoryStatistics {
1230        self.memory_stats
1231            .lock()
1232            .map(|stats| stats.clone())
1233            .unwrap_or_default()
1234    }
1235
1236    /// Get configuration
1237    #[must_use]
1238    pub const fn get_config(&self) -> &LargeScaleSimulatorConfig {
1239        &self.config
1240    }
1241
1242    /// Check if current state can simulate given number of qubits
1243    #[must_use]
1244    pub const fn can_simulate(&self, num_qubits: usize) -> bool {
1245        if num_qubits > self.config.max_qubits {
1246            return false;
1247        }
1248
1249        let dimension = 1usize << num_qubits;
1250        let memory_required = dimension * std::mem::size_of::<Complex64>();
1251
1252        memory_required <= self.config.memory_budget
1253    }
1254
1255    /// Estimate memory requirements for given number of qubits
1256    #[must_use]
1257    pub fn estimate_memory_requirements(&self, num_qubits: usize) -> usize {
1258        let dimension = 1usize << num_qubits;
1259        let base_memory = dimension * std::mem::size_of::<Complex64>();
1260
1261        // Add overhead for operations and temporary buffers
1262        let overhead_factor = 1.5;
1263        (base_memory as f64 * overhead_factor) as usize
1264    }
1265}
1266
1267impl<const N: usize> Simulator<N> for LargeScaleQuantumSimulator {
1268    fn run(&self, circuit: &Circuit<N>) -> QuantRS2Result<quantrs2_core::register::Register<N>> {
1269        let mut simulator = Self::new(self.config.clone())?;
1270        simulator.initialize_state(N)?;
1271
1272        // Apply all gates in the circuit
1273        for gate in circuit.gates() {
1274            simulator.apply_gate(gate.as_ref())?;
1275        }
1276
1277        // Get final state and create register
1278        let final_state = simulator.get_dense_state()?;
1279        quantrs2_core::register::Register::with_amplitudes(final_state)
1280    }
1281}
1282
1283#[cfg(test)]
1284mod tests {
1285    use super::*;
1286    use quantrs2_core::gate::multi::CNOT;
1287    use quantrs2_core::gate::single::{Hadamard, PauliX};
1288    use quantrs2_core::qubit::QubitId;
1289
1290    #[test]
1291    fn test_sparse_quantum_state() {
1292        let mut sparse_state =
1293            SparseQuantumState::new(3).expect("Sparse state creation should succeed in test");
1294        assert_eq!(sparse_state.num_qubits, 3);
1295        assert_eq!(sparse_state.dimension, 8);
1296        assert!(sparse_state.sparsity_ratio() < 0.2);
1297
1298        let dense = sparse_state
1299            .to_dense()
1300            .expect("Sparse to dense conversion should succeed in test");
1301        assert_eq!(dense.len(), 8);
1302        assert!((dense[0] - Complex64::new(1.0, 0.0)).norm() < 1e-10);
1303    }
1304
1305    #[test]
1306    fn test_compressed_quantum_state() {
1307        let amplitudes = vec![
1308            Complex64::new(1.0, 0.0),
1309            Complex64::new(0.0, 0.0),
1310            Complex64::new(0.0, 0.0),
1311            Complex64::new(0.0, 0.0),
1312        ];
1313
1314        let compressed = CompressedQuantumState::from_dense(&amplitudes, CompressionAlgorithm::LZ4)
1315            .expect("Compression should succeed in test");
1316        let decompressed = compressed
1317            .to_dense()
1318            .expect("Decompression should succeed in test");
1319
1320        assert_eq!(decompressed.len(), 4);
1321        assert!((decompressed[0] - Complex64::new(1.0, 0.0)).norm() < 1e-10);
1322    }
1323
1324    #[test]
1325    fn test_large_scale_simulator() {
1326        let config = LargeScaleSimulatorConfig::default();
1327        let mut simulator = LargeScaleQuantumSimulator::new(config)
1328            .expect("Simulator creation should succeed in test");
1329
1330        // Test with 10 qubits (medium scale)
1331        simulator
1332            .initialize_state(10)
1333            .expect("State initialization should succeed in test");
1334        assert!(simulator.can_simulate(10));
1335
1336        // Test basic gates
1337        let x_gate = PauliX { target: QubitId(0) };
1338        simulator
1339            .apply_gate(&x_gate)
1340            .expect("X gate application should succeed in test");
1341
1342        let h_gate = Hadamard { target: QubitId(1) };
1343        simulator
1344            .apply_gate(&h_gate)
1345            .expect("H gate application should succeed in test");
1346
1347        let final_state = simulator
1348            .get_dense_state()
1349            .expect("State retrieval should succeed in test");
1350        assert_eq!(final_state.len(), 1024); // 2^10
1351    }
1352
1353    #[test]
1354    fn test_memory_stats() {
1355        let config = LargeScaleSimulatorConfig::default();
1356        let mut simulator = LargeScaleQuantumSimulator::new(config)
1357            .expect("Simulator creation should succeed in test");
1358
1359        simulator
1360            .initialize_state(5)
1361            .expect("State initialization should succeed in test");
1362        let stats = simulator.get_memory_stats();
1363
1364        assert!(stats.current_usage > 0);
1365        assert_eq!(stats.peak_usage, stats.current_usage);
1366    }
1367}