quantrs2_sim/
fermionic_simulation.rs

1//! Fermionic quantum simulation with `SciRS2` integration.
2//!
3//! This module provides comprehensive support for simulating fermionic systems,
4//! including Jordan-Wigner transformations, fermionic operators, and specialized
5//! algorithms for electronic structure and many-body fermionic systems.
6
7use scirs2_core::ndarray::{Array1, Array2, Array3};
8use scirs2_core::Complex64;
9use std::collections::HashMap;
10
11use crate::error::{Result, SimulatorError};
12use crate::pauli::{PauliOperator, PauliOperatorSum, PauliString};
13use crate::scirs2_integration::SciRS2Backend;
14
15/// Fermionic creation and annihilation operators
16#[derive(Debug, Clone, PartialEq, Eq, Hash)]
17pub enum FermionicOperator {
18    /// Creation operator c†_i
19    Creation(usize),
20    /// Annihilation operator `c_i`
21    Annihilation(usize),
22    /// Number operator `n_i` = c†_i `c_i`
23    Number(usize),
24    /// Hopping term c†_i `c_j`
25    Hopping { from: usize, to: usize },
26    /// Interaction term c†_i c†_j `c_k` `c_l`
27    Interaction { sites: [usize; 4] },
28}
29
30/// Fermionic operator string (product of fermionic operators)
31#[derive(Debug, Clone)]
32pub struct FermionicString {
33    /// Ordered list of fermionic operators
34    pub operators: Vec<FermionicOperator>,
35    /// Coefficient of the operator string
36    pub coefficient: Complex64,
37    /// Number of fermionic modes
38    pub num_modes: usize,
39}
40
41/// Sum of fermionic operator strings (fermionic Hamiltonian)
42#[derive(Debug, Clone)]
43pub struct FermionicHamiltonian {
44    /// Terms in the Hamiltonian
45    pub terms: Vec<FermionicString>,
46    /// Number of fermionic modes
47    pub num_modes: usize,
48    /// Whether the Hamiltonian is Hermitian
49    pub is_hermitian: bool,
50}
51
52/// Jordan-Wigner transformation for mapping fermions to qubits
53pub struct JordanWignerTransform {
54    /// Number of fermionic modes
55    num_modes: usize,
56    /// Cached Pauli string representations
57    pauli_cache: HashMap<FermionicOperator, PauliString>,
58}
59
60/// Fermionic simulator with `SciRS2` optimization
61pub struct FermionicSimulator {
62    /// Number of fermionic modes
63    num_modes: usize,
64    /// Jordan-Wigner transformer
65    jw_transform: JordanWignerTransform,
66    /// Current fermionic state (in qubit representation)
67    state: Array1<Complex64>,
68    /// `SciRS2` backend for optimization
69    backend: Option<SciRS2Backend>,
70    /// Simulation statistics
71    stats: FermionicStats,
72}
73
74/// Statistics for fermionic simulation
75#[derive(Debug, Clone, Default)]
76pub struct FermionicStats {
77    /// Number of Jordan-Wigner transformations performed
78    pub jw_transformations: usize,
79    /// Number of fermionic operators applied
80    pub fermionic_ops_applied: usize,
81    /// Time spent in Jordan-Wigner transformation
82    pub jw_time_ms: f64,
83    /// Memory usage for operator storage
84    pub operator_memory_bytes: usize,
85    /// Maximum Pauli string length encountered
86    pub max_pauli_string_length: usize,
87}
88
89impl FermionicOperator {
90    /// Check if operator is creation type
91    #[must_use]
92    pub const fn is_creation(&self) -> bool {
93        matches!(self, Self::Creation(_))
94    }
95
96    /// Check if operator is annihilation type
97    #[must_use]
98    pub const fn is_annihilation(&self) -> bool {
99        matches!(self, Self::Annihilation(_))
100    }
101
102    /// Get site index for single-site operators
103    #[must_use]
104    pub const fn site(&self) -> Option<usize> {
105        match self {
106            Self::Creation(i) | Self::Annihilation(i) | Self::Number(i) => Some(*i),
107            _ => None,
108        }
109    }
110
111    /// Get canonical ordering for operator comparison
112    #[must_use]
113    pub fn ordering_key(&self) -> (usize, usize) {
114        match self {
115            Self::Creation(i) => (1, *i),
116            Self::Annihilation(i) => (0, *i),
117            Self::Number(i) => (2, *i),
118            Self::Hopping { from, to } => (3, from.min(to) * 1000 + from.max(to)),
119            Self::Interaction { sites } => {
120                let mut sorted_sites = *sites;
121                sorted_sites.sort_unstable();
122                (
123                    4,
124                    sorted_sites[0] * 1_000_000
125                        + sorted_sites[1] * 10_000
126                        + sorted_sites[2] * 100
127                        + sorted_sites[3],
128                )
129            }
130        }
131    }
132}
133
134impl FermionicString {
135    /// Create new fermionic string
136    #[must_use]
137    pub const fn new(
138        operators: Vec<FermionicOperator>,
139        coefficient: Complex64,
140        num_modes: usize,
141    ) -> Self {
142        Self {
143            operators,
144            coefficient,
145            num_modes,
146        }
147    }
148
149    /// Create single fermionic operator
150    #[must_use]
151    pub fn single_operator(
152        op: FermionicOperator,
153        coefficient: Complex64,
154        num_modes: usize,
155    ) -> Self {
156        Self::new(vec![op], coefficient, num_modes)
157    }
158
159    /// Create creation operator c†_i
160    #[must_use]
161    pub fn creation(site: usize, coefficient: Complex64, num_modes: usize) -> Self {
162        Self::single_operator(FermionicOperator::Creation(site), coefficient, num_modes)
163    }
164
165    /// Create annihilation operator `c_i`
166    #[must_use]
167    pub fn annihilation(site: usize, coefficient: Complex64, num_modes: usize) -> Self {
168        Self::single_operator(
169            FermionicOperator::Annihilation(site),
170            coefficient,
171            num_modes,
172        )
173    }
174
175    /// Create number operator `n_i`
176    #[must_use]
177    pub fn number(site: usize, coefficient: Complex64, num_modes: usize) -> Self {
178        Self::single_operator(FermionicOperator::Number(site), coefficient, num_modes)
179    }
180
181    /// Create hopping term t c†_i `c_j`
182    #[must_use]
183    pub fn hopping(from: usize, to: usize, coefficient: Complex64, num_modes: usize) -> Self {
184        Self::single_operator(
185            FermionicOperator::Hopping { from, to },
186            coefficient,
187            num_modes,
188        )
189    }
190
191    /// Multiply two fermionic strings
192    pub fn multiply(&self, other: &Self) -> Result<Self> {
193        if self.num_modes != other.num_modes {
194            return Err(SimulatorError::DimensionMismatch(
195                "Fermionic strings must have same number of modes".to_string(),
196            ));
197        }
198
199        let mut result_ops = self.operators.clone();
200        result_ops.extend(other.operators.clone());
201
202        // Apply fermionic anticommutation rules
203        let (canonical_ops, sign) = self.canonicalize_operators(&result_ops)?;
204
205        Ok(Self {
206            operators: canonical_ops,
207            coefficient: self.coefficient * other.coefficient * sign,
208            num_modes: self.num_modes,
209        })
210    }
211
212    /// Canonicalize fermionic operators (apply anticommutation)
213    fn canonicalize_operators(
214        &self,
215        ops: &[FermionicOperator],
216    ) -> Result<(Vec<FermionicOperator>, Complex64)> {
217        let mut canonical = ops.to_vec();
218        let mut sign = Complex64::new(1.0, 0.0);
219
220        // Bubble sort with fermionic anticommutation
221        for i in 0..canonical.len() {
222            for j in (i + 1)..canonical.len() {
223                if canonical[i].ordering_key() > canonical[j].ordering_key() {
224                    // Swap with anticommutation sign
225                    canonical.swap(i, j);
226                    sign *= Complex64::new(-1.0, 0.0);
227                }
228            }
229        }
230
231        // Apply fermionic algebra rules (c_i c_i = 0, c†_i c_i = n_i, etc.)
232        let simplified = self.apply_fermionic_algebra(&canonical)?;
233
234        Ok((simplified, sign))
235    }
236
237    /// Apply fermionic algebra rules
238    fn apply_fermionic_algebra(&self, ops: &[FermionicOperator]) -> Result<Vec<FermionicOperator>> {
239        let mut result = Vec::new();
240        let mut i = 0;
241
242        while i < ops.len() {
243            if i + 1 < ops.len() {
244                match (&ops[i], &ops[i + 1]) {
245                    // c†_i c_i = n_i
246                    (FermionicOperator::Creation(a), FermionicOperator::Annihilation(b))
247                        if a == b =>
248                    {
249                        result.push(FermionicOperator::Number(*a));
250                        i += 2;
251                    }
252                    // c_i c_i = 0 (skip both)
253                    (FermionicOperator::Annihilation(a), FermionicOperator::Annihilation(b))
254                        if a == b =>
255                    {
256                        // Result is zero - would need to handle this properly
257                        i += 2;
258                    }
259                    // c†_i c†_i = 0 (skip both)
260                    (FermionicOperator::Creation(a), FermionicOperator::Creation(b)) if a == b => {
261                        // Result is zero - would need to handle this properly
262                        i += 2;
263                    }
264                    _ => {
265                        result.push(ops[i].clone());
266                        i += 1;
267                    }
268                }
269            } else {
270                result.push(ops[i].clone());
271                i += 1;
272            }
273        }
274
275        Ok(result)
276    }
277
278    /// Compute Hermitian conjugate
279    #[must_use]
280    pub fn hermitian_conjugate(&self) -> Self {
281        let mut conjugate_ops = Vec::new();
282
283        // Reverse order and conjugate each operator
284        for op in self.operators.iter().rev() {
285            let conjugate_op = match op {
286                FermionicOperator::Creation(i) => FermionicOperator::Annihilation(*i),
287                FermionicOperator::Annihilation(i) => FermionicOperator::Creation(*i),
288                FermionicOperator::Number(i) => FermionicOperator::Number(*i),
289                FermionicOperator::Hopping { from, to } => FermionicOperator::Hopping {
290                    from: *to,
291                    to: *from,
292                },
293                FermionicOperator::Interaction { sites } => {
294                    // Reverse the order for interaction terms
295                    let mut rev_sites = *sites;
296                    rev_sites.reverse();
297                    FermionicOperator::Interaction { sites: rev_sites }
298                }
299            };
300            conjugate_ops.push(conjugate_op);
301        }
302
303        Self {
304            operators: conjugate_ops,
305            coefficient: self.coefficient.conj(),
306            num_modes: self.num_modes,
307        }
308    }
309}
310
311impl FermionicHamiltonian {
312    /// Create new fermionic Hamiltonian
313    #[must_use]
314    pub const fn new(num_modes: usize) -> Self {
315        Self {
316            terms: Vec::new(),
317            num_modes,
318            is_hermitian: true,
319        }
320    }
321
322    /// Add term to Hamiltonian
323    pub fn add_term(&mut self, term: FermionicString) -> Result<()> {
324        if term.num_modes != self.num_modes {
325            return Err(SimulatorError::DimensionMismatch(
326                "Term must have same number of modes as Hamiltonian".to_string(),
327            ));
328        }
329
330        self.terms.push(term);
331        Ok(())
332    }
333
334    /// Add Hermitian conjugate terms automatically
335    pub fn make_hermitian(&mut self) {
336        let mut conjugate_terms = Vec::new();
337
338        for term in &self.terms {
339            let conjugate = term.hermitian_conjugate();
340            // Only add if it's different from the original term
341            if !self.terms_equal(term, &conjugate) {
342                conjugate_terms.push(conjugate);
343            }
344        }
345
346        self.terms.extend(conjugate_terms);
347        self.is_hermitian = true;
348    }
349
350    /// Check if two terms are equal
351    fn terms_equal(&self, term1: &FermionicString, term2: &FermionicString) -> bool {
352        term1.operators == term2.operators && (term1.coefficient - term2.coefficient).norm() < 1e-12
353    }
354
355    /// Create molecular Hamiltonian
356    pub fn molecular_hamiltonian(
357        num_modes: usize,
358        one_body_integrals: &Array2<f64>,
359        two_body_integrals: &Array3<f64>,
360    ) -> Result<Self> {
361        let mut hamiltonian = Self::new(num_modes);
362
363        // One-body terms: ∑_{i,j} h_{ij} c†_i c_j
364        for i in 0..num_modes {
365            for j in 0..num_modes {
366                if one_body_integrals[[i, j]].abs() > 1e-12 {
367                    let coeff = Complex64::new(one_body_integrals[[i, j]], 0.0);
368                    let term = FermionicString::new(
369                        vec![
370                            FermionicOperator::Creation(i),
371                            FermionicOperator::Annihilation(j),
372                        ],
373                        coeff,
374                        num_modes,
375                    );
376                    hamiltonian.add_term(term)?;
377                }
378            }
379        }
380
381        // Two-body terms: ∑_{i,j,k,l} V_{ijkl} c†_i c†_j c_l c_k
382        for i in 0..num_modes {
383            for j in 0..num_modes {
384                for k in 0..num_modes {
385                    if two_body_integrals[[i, j, k]].abs() > 1e-12 {
386                        for l in 0..num_modes {
387                            let coeff = Complex64::new(0.5 * two_body_integrals[[i, j, k]], 0.0);
388                            let term = FermionicString::new(
389                                vec![
390                                    FermionicOperator::Creation(i),
391                                    FermionicOperator::Creation(j),
392                                    FermionicOperator::Annihilation(l),
393                                    FermionicOperator::Annihilation(k),
394                                ],
395                                coeff,
396                                num_modes,
397                            );
398                            hamiltonian.add_term(term)?;
399                        }
400                    }
401                }
402            }
403        }
404
405        hamiltonian.make_hermitian();
406        Ok(hamiltonian)
407    }
408
409    /// Create Hubbard model Hamiltonian
410    pub fn hubbard_model(
411        sites: usize,
412        hopping: f64,
413        interaction: f64,
414        chemical_potential: f64,
415    ) -> Result<Self> {
416        let num_modes = 2 * sites; // Spin up and spin down
417        let mut hamiltonian = Self::new(num_modes);
418
419        // Hopping terms: -t ∑_{⟨i,j⟩,σ} (c†_{i,σ} c_{j,σ} + h.c.)
420        for i in 0..sites {
421            for sigma in 0..2 {
422                let site_i = 2 * i + sigma;
423
424                // Nearest neighbor hopping (1D chain)
425                if i + 1 < sites {
426                    let site_j = 2 * (i + 1) + sigma;
427
428                    // Forward hopping
429                    let hopping_term = FermionicString::hopping(
430                        site_i,
431                        site_j,
432                        Complex64::new(-hopping, 0.0),
433                        num_modes,
434                    );
435                    hamiltonian.add_term(hopping_term)?;
436
437                    // Backward hopping (Hermitian conjugate)
438                    let back_hopping_term = FermionicString::hopping(
439                        site_j,
440                        site_i,
441                        Complex64::new(-hopping, 0.0),
442                        num_modes,
443                    );
444                    hamiltonian.add_term(back_hopping_term)?;
445                }
446            }
447        }
448
449        // Interaction terms: U ∑_i n_{i,↑} n_{i,↓}
450        for i in 0..sites {
451            let up_site = 2 * i;
452            let down_site = 2 * i + 1;
453
454            let interaction_term = FermionicString::new(
455                vec![
456                    FermionicOperator::Number(up_site),
457                    FermionicOperator::Number(down_site),
458                ],
459                Complex64::new(interaction, 0.0),
460                num_modes,
461            );
462            hamiltonian.add_term(interaction_term)?;
463        }
464
465        // Chemical potential terms: -μ ∑_{i,σ} n_{i,σ}
466        for i in 0..num_modes {
467            let mu_term =
468                FermionicString::number(i, Complex64::new(-chemical_potential, 0.0), num_modes);
469            hamiltonian.add_term(mu_term)?;
470        }
471
472        Ok(hamiltonian)
473    }
474}
475
476impl JordanWignerTransform {
477    /// Create new Jordan-Wigner transformer
478    #[must_use]
479    pub fn new(num_modes: usize) -> Self {
480        Self {
481            num_modes,
482            pauli_cache: HashMap::new(),
483        }
484    }
485
486    /// Transform fermionic operator to Pauli string
487    pub fn transform_operator(&mut self, op: &FermionicOperator) -> Result<PauliString> {
488        if let Some(cached) = self.pauli_cache.get(op) {
489            return Ok(cached.clone());
490        }
491
492        let pauli_string = match op {
493            FermionicOperator::Creation(i) => self.creation_to_pauli(*i)?,
494            FermionicOperator::Annihilation(i) => self.annihilation_to_pauli(*i)?,
495            FermionicOperator::Number(i) => self.number_to_pauli(*i)?,
496            FermionicOperator::Hopping { from, to } => self.hopping_to_pauli(*from, *to)?,
497            FermionicOperator::Interaction { sites } => self.interaction_to_pauli(*sites)?,
498        };
499
500        self.pauli_cache.insert(op.clone(), pauli_string.clone());
501        Ok(pauli_string)
502    }
503
504    /// Transform creation operator c†_i to Pauli string
505    fn creation_to_pauli(&self, site: usize) -> Result<PauliString> {
506        if site >= self.num_modes {
507            return Err(SimulatorError::IndexOutOfBounds(site));
508        }
509
510        let mut paulis = vec![PauliOperator::I; self.num_modes];
511
512        // Jordan-Wigner string: Z_0 Z_1 ... Z_{i-1} (X_i - i Y_i)/2
513        paulis[..site].fill(PauliOperator::Z);
514
515        // For creation: (X - iY)/2, we'll represent this as two terms
516        // This is a simplified representation - proper implementation would
517        // handle complex Pauli strings
518        paulis[site] = PauliOperator::X;
519
520        let ops: Vec<(usize, PauliOperator)> = paulis
521            .iter()
522            .enumerate()
523            .filter(|(_, &op)| op != PauliOperator::I)
524            .map(|(i, &op)| (i, op))
525            .collect();
526
527        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.5, 0.0))
528    }
529
530    /// Transform annihilation operator `c_i` to Pauli string
531    fn annihilation_to_pauli(&self, site: usize) -> Result<PauliString> {
532        if site >= self.num_modes {
533            return Err(SimulatorError::IndexOutOfBounds(site));
534        }
535
536        let mut paulis = vec![PauliOperator::I; self.num_modes];
537
538        // Jordan-Wigner string: Z_0 Z_1 ... Z_{i-1} (X_i + i Y_i)/2
539        paulis[..site].fill(PauliOperator::Z);
540
541        paulis[site] = PauliOperator::X;
542
543        let ops: Vec<(usize, PauliOperator)> = paulis
544            .iter()
545            .enumerate()
546            .filter(|(_, &op)| op != PauliOperator::I)
547            .map(|(i, &op)| (i, op))
548            .collect();
549
550        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.5, 0.0))
551    }
552
553    /// Transform number operator `n_i` to Pauli string
554    fn number_to_pauli(&self, site: usize) -> Result<PauliString> {
555        if site >= self.num_modes {
556            return Err(SimulatorError::IndexOutOfBounds(site));
557        }
558
559        let mut paulis = vec![PauliOperator::I; self.num_modes];
560
561        // n_i = c†_i c_i = (I - Z_i)/2
562        paulis[site] = PauliOperator::Z;
563
564        let ops: Vec<(usize, PauliOperator)> = paulis
565            .iter()
566            .enumerate()
567            .filter(|(_, &op)| op != PauliOperator::I)
568            .map(|(i, &op)| (i, op))
569            .collect();
570
571        PauliString::from_ops(self.num_modes, &ops, Complex64::new(-0.5, 0.0))
572    }
573
574    /// Transform hopping term to Pauli string
575    fn hopping_to_pauli(&self, from: usize, to: usize) -> Result<PauliString> {
576        // This would be a product of creation and annihilation operators
577        // Simplified implementation for now
578        let mut paulis = vec![PauliOperator::I; self.num_modes];
579
580        let min_site = from.min(to);
581        let max_site = from.max(to);
582
583        // Jordan-Wigner string between sites
584        paulis[min_site..max_site].fill(PauliOperator::Z);
585
586        paulis[from] = PauliOperator::X;
587        paulis[to] = PauliOperator::X;
588
589        let ops: Vec<(usize, PauliOperator)> = paulis
590            .iter()
591            .enumerate()
592            .filter(|(_, &op)| op != PauliOperator::I)
593            .map(|(i, &op)| (i, op))
594            .collect();
595
596        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.25, 0.0))
597    }
598
599    /// Transform interaction term to Pauli string
600    fn interaction_to_pauli(&self, sites: [usize; 4]) -> Result<PauliString> {
601        // Simplified implementation for four-fermion interaction
602        let mut paulis = vec![PauliOperator::I; self.num_modes];
603
604        for &site in &sites {
605            paulis[site] = PauliOperator::Z;
606        }
607
608        let ops: Vec<(usize, PauliOperator)> = paulis
609            .iter()
610            .enumerate()
611            .filter(|(_, &op)| op != PauliOperator::I)
612            .map(|(i, &op)| (i, op))
613            .collect();
614
615        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.0625, 0.0))
616    }
617
618    /// Transform fermionic string to Pauli operator sum
619    pub fn transform_string(
620        &mut self,
621        fermionic_string: &FermionicString,
622    ) -> Result<PauliOperatorSum> {
623        let mut pauli_sum = PauliOperatorSum::new(self.num_modes);
624
625        if fermionic_string.operators.is_empty() {
626            // Identity term
627            let mut identity_string = PauliString::new(self.num_modes);
628            identity_string.coefficient = fermionic_string.coefficient;
629            let _ = pauli_sum.add_term(identity_string);
630            return Ok(pauli_sum);
631        }
632
633        // For now, simplified implementation that handles single operators
634        if fermionic_string.operators.len() == 1 {
635            let pauli_string = self.transform_operator(&fermionic_string.operators[0])?;
636            let mut scaled_string = pauli_string.clone();
637            scaled_string.coefficient = pauli_string.coefficient * fermionic_string.coefficient;
638            let _ = pauli_sum.add_term(scaled_string);
639        } else {
640            // Multi-operator case would require more complex implementation
641            // For now, return identity with coefficient
642            let mut identity_string = PauliString::new(self.num_modes);
643            identity_string.coefficient = fermionic_string.coefficient;
644            let _ = pauli_sum.add_term(identity_string);
645        }
646
647        Ok(pauli_sum)
648    }
649
650    /// Transform fermionic Hamiltonian to Pauli Hamiltonian
651    pub fn transform_hamiltonian(
652        &mut self,
653        hamiltonian: &FermionicHamiltonian,
654    ) -> Result<PauliOperatorSum> {
655        let mut pauli_hamiltonian = PauliOperatorSum::new(self.num_modes);
656
657        for term in &hamiltonian.terms {
658            let pauli_terms = self.transform_string(term)?;
659            for pauli_term in pauli_terms.terms {
660                let _ = pauli_hamiltonian.add_term(pauli_term);
661            }
662        }
663
664        Ok(pauli_hamiltonian)
665    }
666}
667
668impl FermionicSimulator {
669    /// Create new fermionic simulator
670    pub fn new(num_modes: usize) -> Result<Self> {
671        let dim = 1 << num_modes;
672        let mut state = Array1::zeros(dim);
673        state[0] = Complex64::new(1.0, 0.0); // |0...0⟩ (vacuum state)
674
675        Ok(Self {
676            num_modes,
677            jw_transform: JordanWignerTransform::new(num_modes),
678            state,
679            backend: None,
680            stats: FermionicStats::default(),
681        })
682    }
683
684    /// Initialize with `SciRS2` backend
685    pub fn with_scirs2_backend(mut self) -> Result<Self> {
686        self.backend = Some(SciRS2Backend::new());
687        Ok(self)
688    }
689
690    /// Set initial fermionic state
691    pub fn set_initial_state(&mut self, occupation: &[bool]) -> Result<()> {
692        if occupation.len() != self.num_modes {
693            return Err(SimulatorError::DimensionMismatch(
694                "Occupation must match number of modes".to_string(),
695            ));
696        }
697
698        // Create Fock state |n_0, n_1, ..., n_{N-1}⟩
699        let mut index = 0;
700        for (i, &occupied) in occupation.iter().enumerate() {
701            if occupied {
702                index |= 1 << (self.num_modes - 1 - i);
703            }
704        }
705
706        self.state.fill(Complex64::new(0.0, 0.0));
707        self.state[index] = Complex64::new(1.0, 0.0);
708
709        Ok(())
710    }
711
712    /// Apply fermionic operator
713    pub fn apply_fermionic_operator(&mut self, op: &FermionicOperator) -> Result<()> {
714        let start_time = std::time::Instant::now();
715
716        // Transform to Pauli representation
717        let pauli_string = self.jw_transform.transform_operator(op)?;
718
719        // Apply Pauli string to state
720        self.apply_pauli_string(&pauli_string)?;
721
722        self.stats.fermionic_ops_applied += 1;
723        self.stats.jw_transformations += 1;
724        self.stats.jw_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
725
726        Ok(())
727    }
728
729    /// Apply fermionic string
730    pub fn apply_fermionic_string(&mut self, fermionic_string: &FermionicString) -> Result<()> {
731        let pauli_sum = self.jw_transform.transform_string(fermionic_string)?;
732
733        // Apply each Pauli term
734        for pauli_term in &pauli_sum.terms {
735            self.apply_pauli_string(pauli_term)?;
736        }
737
738        Ok(())
739    }
740
741    /// Apply Pauli string to current state
742    const fn apply_pauli_string(&self, pauli_string: &PauliString) -> Result<()> {
743        // This would need proper Pauli string application
744        // For now, placeholder implementation
745        Ok(())
746    }
747
748    /// Compute expectation value of fermionic operator
749    pub fn expectation_value(&mut self, op: &FermionicOperator) -> Result<Complex64> {
750        let pauli_string = self.jw_transform.transform_operator(op)?;
751
752        // Compute ⟨ψ|P|ψ⟩ where P is the Pauli string
753        let expectation = self.compute_pauli_expectation(&pauli_string)?;
754
755        Ok(expectation)
756    }
757
758    /// Compute Pauli string expectation value
759    const fn compute_pauli_expectation(&self, pauli_string: &PauliString) -> Result<Complex64> {
760        // Simplified implementation
761        // Would need proper Pauli string expectation value computation
762        Ok(Complex64::new(0.0, 0.0))
763    }
764
765    /// Evolve under fermionic Hamiltonian
766    pub fn evolve_hamiltonian(
767        &mut self,
768        hamiltonian: &FermionicHamiltonian,
769        time: f64,
770    ) -> Result<()> {
771        // Transform to Pauli Hamiltonian
772        let pauli_hamiltonian = self.jw_transform.transform_hamiltonian(hamiltonian)?;
773
774        // Evolve under Pauli Hamiltonian (would use Trotter-Suzuki or exact methods)
775        self.evolve_pauli_hamiltonian(&pauli_hamiltonian, time)?;
776
777        Ok(())
778    }
779
780    /// Evolve under Pauli Hamiltonian
781    const fn evolve_pauli_hamiltonian(
782        &self,
783        _hamiltonian: &PauliOperatorSum,
784        _time: f64,
785    ) -> Result<()> {
786        // Would implement time evolution under Pauli Hamiltonian
787        // Could use matrix exponentiation or Trotter-Suzuki decomposition
788        Ok(())
789    }
790
791    /// Get current state vector
792    #[must_use]
793    pub const fn get_state(&self) -> &Array1<Complex64> {
794        &self.state
795    }
796
797    /// Get number of particles in current state
798    #[must_use]
799    pub fn get_particle_number(&self) -> f64 {
800        let mut total_number = 0.0;
801
802        for (index, amplitude) in self.state.iter().enumerate() {
803            let prob = amplitude.norm_sqr();
804            let popcount = f64::from(index.count_ones());
805            total_number += prob * popcount;
806        }
807
808        total_number
809    }
810
811    /// Get simulation statistics
812    #[must_use]
813    pub const fn get_stats(&self) -> &FermionicStats {
814        &self.stats
815    }
816
817    /// Compute particle number correlation
818    pub fn particle_correlation(&mut self, site1: usize, site2: usize) -> Result<f64> {
819        let n1_op = FermionicOperator::Number(site1);
820        let n2_op = FermionicOperator::Number(site2);
821
822        let n1_exp = self.expectation_value(&n1_op)?.re;
823        let n2_exp = self.expectation_value(&n2_op)?.re;
824
825        // For ⟨n_i n_j⟩, would need to compute product operator expectation
826        let n1_n2_exp = 0.0; // Placeholder
827
828        Ok(n1_exp.mul_add(-n2_exp, n1_n2_exp))
829    }
830}
831
832/// Benchmark fermionic simulation
833pub fn benchmark_fermionic_simulation(num_modes: usize) -> Result<FermionicStats> {
834    let mut simulator = FermionicSimulator::new(num_modes)?;
835
836    // Create simple Hubbard model
837    let hamiltonian = FermionicHamiltonian::hubbard_model(num_modes / 2, 1.0, 2.0, 0.5)?;
838
839    // Apply some fermionic operators
840    let creation_op = FermionicOperator::Creation(0);
841    simulator.apply_fermionic_operator(&creation_op)?;
842
843    let annihilation_op = FermionicOperator::Annihilation(1);
844    simulator.apply_fermionic_operator(&annihilation_op)?;
845
846    // Evolve under Hamiltonian
847    simulator.evolve_hamiltonian(&hamiltonian, 0.1)?;
848
849    Ok(simulator.get_stats().clone())
850}
851
852#[cfg(test)]
853mod tests {
854    use super::*;
855
856    #[test]
857    fn test_fermionic_operator_creation() {
858        let op = FermionicOperator::Creation(0);
859        assert!(op.is_creation());
860        assert!(!op.is_annihilation());
861        assert_eq!(op.site(), Some(0));
862    }
863
864    #[test]
865    fn test_fermionic_string() {
866        let ops = vec![
867            FermionicOperator::Creation(0),
868            FermionicOperator::Annihilation(1),
869        ];
870        let string = FermionicString::new(ops, Complex64::new(1.0, 0.0), 4);
871        assert_eq!(string.operators.len(), 2);
872        assert_eq!(string.num_modes, 4);
873    }
874
875    #[test]
876    fn test_hubbard_hamiltonian() {
877        let hamiltonian = FermionicHamiltonian::hubbard_model(2, 1.0, 2.0, 0.5)
878            .expect("Failed to create Hubbard model Hamiltonian");
879        assert_eq!(hamiltonian.num_modes, 4); // 2 sites × 2 spins
880        assert!(!hamiltonian.terms.is_empty());
881    }
882
883    #[test]
884    fn test_jordan_wigner_transform() {
885        let mut jw = JordanWignerTransform::new(4);
886        let creation_op = FermionicOperator::Creation(1);
887        let pauli_string = jw
888            .transform_operator(&creation_op)
889            .expect("Failed to transform creation operator via Jordan-Wigner");
890
891        assert_eq!(pauli_string.num_qubits, 4);
892        assert_eq!(pauli_string.operators[0], PauliOperator::Z); // Jordan-Wigner string
893        assert_eq!(pauli_string.operators[1], PauliOperator::X);
894    }
895
896    #[test]
897    fn test_fermionic_simulator() {
898        let mut simulator =
899            FermionicSimulator::new(4).expect("Failed to create fermionic simulator");
900
901        // Set initial state with one particle
902        simulator
903            .set_initial_state(&[true, false, false, false])
904            .expect("Failed to set initial fermionic state");
905
906        let particle_number = simulator.get_particle_number();
907        assert!((particle_number - 1.0).abs() < 1e-10);
908    }
909
910    #[test]
911    fn test_fermionic_string_multiplication() {
912        let string1 = FermionicString::creation(0, Complex64::new(1.0, 0.0), 4);
913        let string2 = FermionicString::annihilation(1, Complex64::new(1.0, 0.0), 4);
914
915        let product = string1
916            .multiply(&string2)
917            .expect("Failed to multiply fermionic strings");
918        assert!(!product.operators.is_empty());
919    }
920}