1use scirs2_core::ndarray::{Array, Array2, ArrayD, IxDyn};
8use scirs2_core::parallel_ops::{
9 IndexedParallelIterator, IntoParallelRefIterator, ParallelIterator,
10};
11use scirs2_core::random::prelude::*;
12use scirs2_core::Complex64;
13use serde::{Deserialize, Serialize};
14use std::collections::{HashMap, HashSet};
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18
19#[cfg(feature = "advanced_math")]
20pub struct ContractionOptimizer {
22 strategy: String,
23}
24
25#[cfg(feature = "advanced_math")]
26impl ContractionOptimizer {
27 pub fn new() -> Result<Self> {
28 Ok(Self {
29 strategy: "default".to_string(),
30 })
31 }
32}
33
34#[derive(Debug, Clone)]
40pub struct EnhancedTensorNetworkConfig {
41 pub max_bond_dimension: usize,
43 pub contraction_strategy: ContractionStrategy,
45 pub memory_limit: usize,
47 pub enable_approximations: bool,
49 pub svd_threshold: f64,
51 pub max_optimization_time_ms: u64,
53 pub parallel_contractions: bool,
55 pub use_scirs2_acceleration: bool,
57 pub enable_slicing: bool,
59 pub max_slices: usize,
61}
62
63impl Default for EnhancedTensorNetworkConfig {
64 fn default() -> Self {
65 Self {
66 max_bond_dimension: 1024,
67 contraction_strategy: ContractionStrategy::Adaptive,
68 memory_limit: 16_000_000_000, enable_approximations: true,
70 svd_threshold: 1e-12,
71 max_optimization_time_ms: 5000,
72 parallel_contractions: true,
73 use_scirs2_acceleration: true,
74 enable_slicing: true,
75 max_slices: 64,
76 }
77 }
78}
79
80#[derive(Debug, Clone, Copy, PartialEq, Eq)]
82pub enum ContractionStrategy {
83 Greedy,
85 DynamicProgramming,
87 SimulatedAnnealing,
89 TreeDecomposition,
91 Adaptive,
93 MLGuided,
95}
96
97#[derive(Debug, Clone)]
99pub struct EnhancedTensor {
100 pub data: ArrayD<Complex64>,
102 pub indices: Vec<TensorIndex>,
104 pub bond_dimensions: Vec<usize>,
106 pub id: usize,
108 pub memory_size: usize,
110 pub contraction_cost: f64,
112 pub priority: f64,
114}
115
116#[derive(Debug, Clone, PartialEq, Eq, Hash)]
118pub struct TensorIndex {
119 pub label: String,
121 pub dimension: usize,
123 pub index_type: IndexType,
125 pub connected_tensors: Vec<usize>,
127}
128
129#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
131pub enum IndexType {
132 Physical,
134 Virtual,
136 Auxiliary,
138 Temporal,
140}
141
142#[derive(Debug, Clone)]
144pub struct MLPrediction {
145 pub strategy: MLPredictedStrategy,
146 pub confidence: f64,
147 pub expected_performance: f64,
148}
149
150#[derive(Debug, Clone, Copy, PartialEq, Eq)]
152pub enum MLPredictedStrategy {
153 DynamicProgramming,
154 SimulatedAnnealing,
155 TreeDecomposition,
156 Greedy,
157}
158
159#[derive(Debug, Clone)]
161pub struct NetworkFeatures {
162 pub num_tensors: usize,
163 pub connectivity_density: f64,
164 pub max_bond_dimension: usize,
165 pub avg_tensor_rank: f64,
166 pub circuit_depth_estimate: usize,
167 pub locality_score: f64,
168 pub symmetry_score: f64,
169}
170
171#[derive(Debug, Clone)]
173pub struct TreeDecomposition {
174 pub bags: Vec<TreeBag>,
175 pub treewidth: usize,
176 pub root_bag: usize,
177}
178
179#[derive(Debug, Clone)]
181pub struct TreeBag {
182 pub id: usize,
183 pub tensors: Vec<usize>,
184 pub parent: Option<usize>,
185 pub children: Vec<usize>,
186 pub separator: Vec<String>, }
188
189#[derive(Debug, Clone)]
191pub struct TensorAdjacencyGraph {
192 pub nodes: Vec<usize>, pub edges: HashMap<usize, Vec<(usize, f64)>>, pub edge_weights: HashMap<(usize, usize), f64>,
195}
196
197#[derive(Debug, Clone)]
199pub struct EnhancedContractionPath {
200 pub steps: Vec<ContractionStep>,
202 pub total_flops: f64,
204 pub peak_memory: usize,
206 pub contraction_tree: ContractionTree,
208 pub parallel_sections: Vec<ParallelSection>,
210}
211
212#[derive(Debug, Clone)]
214pub struct ContractionStep {
215 pub tensor_ids: (usize, usize),
217 pub result_id: usize,
219 pub flops: f64,
221 pub memory_required: usize,
223 pub result_dimensions: Vec<usize>,
225 pub parallelizable: bool,
227}
228
229#[derive(Debug, Clone)]
231pub enum ContractionTree {
232 Leaf { tensor_id: usize },
234 Branch {
236 left: Box<Self>,
237 right: Box<Self>,
238 contraction_cost: f64,
239 result_bond_dim: usize,
240 },
241}
242
243#[derive(Debug, Clone)]
245pub struct ParallelSection {
246 pub parallel_steps: Vec<usize>,
248 pub dependencies: HashMap<usize, Vec<usize>>,
250 pub speedup_factor: f64,
252}
253
254pub struct EnhancedTensorNetworkSimulator {
256 config: EnhancedTensorNetworkConfig,
258 network: TensorNetwork,
260 backend: Option<SciRS2Backend>,
262 #[cfg(feature = "advanced_math")]
264 optimizer: Option<ContractionOptimizer>,
265 tensor_cache: HashMap<String, EnhancedTensor>,
267 stats: TensorNetworkStats,
269}
270
271#[derive(Debug, Clone, Default, Serialize, Deserialize)]
273pub struct TensorNetworkStats {
274 pub total_contractions: usize,
276 pub total_flops: f64,
278 pub peak_memory_bytes: usize,
280 pub total_execution_time_ms: f64,
282 pub optimization_time_ms: f64,
284 pub average_bond_dimension: f64,
286 pub svd_truncations: usize,
288 pub cache_hit_rate: f64,
290}
291
292struct TensorNetwork {
294 tensors: HashMap<usize, EnhancedTensor>,
296 index_graph: HashMap<String, Vec<usize>>,
298 next_id: usize,
300 bond_dimensions: Vec<usize>,
302}
303
304impl TensorNetwork {
305 fn new() -> Self {
307 Self {
308 tensors: HashMap::new(),
309 index_graph: HashMap::new(),
310 next_id: 0,
311 bond_dimensions: Vec::new(),
312 }
313 }
314
315 fn add_tensor(&mut self, tensor: EnhancedTensor) -> usize {
317 let id = self.next_id;
318 self.next_id += 1;
319
320 for index in &tensor.indices {
322 self.index_graph
323 .entry(index.label.clone())
324 .or_default()
325 .push(id);
326 }
327
328 self.bond_dimensions.extend(&tensor.bond_dimensions);
330
331 self.tensors.insert(id, tensor);
332 id
333 }
334
335 fn remove_tensor(&mut self, id: usize) -> Option<EnhancedTensor> {
337 if let Some(tensor) = self.tensors.remove(&id) {
338 for index in &tensor.indices {
340 if let Some(tensor_list) = self.index_graph.get_mut(&index.label) {
341 tensor_list.retain(|&tid| tid != id);
342 if tensor_list.is_empty() {
343 self.index_graph.remove(&index.label);
344 }
345 }
346 }
347 Some(tensor)
348 } else {
349 None
350 }
351 }
352
353 fn get_tensor(&self, id: usize) -> Option<&EnhancedTensor> {
355 self.tensors.get(&id)
356 }
357
358 fn get_tensor_mut(&mut self, id: usize) -> Option<&mut EnhancedTensor> {
360 self.tensors.get_mut(&id)
361 }
362
363 fn find_connected_tensors(&self, index_label: &str) -> Vec<usize> {
365 self.index_graph
366 .get(index_label)
367 .cloned()
368 .unwrap_or_default()
369 }
370
371 fn total_size(&self) -> usize {
373 self.tensors.values().map(|t| t.memory_size).sum()
374 }
375
376 fn tensor_ids(&self) -> Vec<usize> {
378 self.tensors.keys().copied().collect()
379 }
380}
381
382impl EnhancedTensorNetworkSimulator {
383 pub fn new(config: EnhancedTensorNetworkConfig) -> Result<Self> {
385 Ok(Self {
386 config,
387 network: TensorNetwork::new(),
388 backend: None,
389 #[cfg(feature = "advanced_math")]
390 optimizer: None,
391 tensor_cache: HashMap::new(),
392 stats: TensorNetworkStats::default(),
393 })
394 }
395
396 pub fn with_backend(mut self) -> Result<Self> {
398 self.backend = Some(SciRS2Backend::new());
399
400 #[cfg(feature = "advanced_math")]
401 {
402 self.optimizer = Some(ContractionOptimizer::new()?);
403 }
404
405 Ok(self)
406 }
407
408 pub fn initialize_state(&mut self, num_qubits: usize) -> Result<()> {
410 for qubit in 0..num_qubits {
412 let tensor_data = {
413 let mut data = Array::zeros(IxDyn(&[2]));
414 data[IxDyn(&[0])] = Complex64::new(1.0, 0.0);
415 data
416 };
417
418 let tensor = EnhancedTensor {
419 data: tensor_data,
420 indices: vec![TensorIndex {
421 label: format!("q{qubit}"),
422 dimension: 2,
423 index_type: IndexType::Physical,
424 connected_tensors: vec![],
425 }],
426 bond_dimensions: vec![2],
427 id: 0, memory_size: 2 * std::mem::size_of::<Complex64>(),
429 contraction_cost: 1.0,
430 priority: 1.0,
431 };
432
433 self.network.add_tensor(tensor);
434 }
435
436 Ok(())
437 }
438
439 pub fn apply_single_qubit_gate(
441 &mut self,
442 qubit: usize,
443 gate_matrix: &Array2<Complex64>,
444 ) -> Result<()> {
445 let start_time = std::time::Instant::now();
446
447 let gate_tensor = Self::create_gate_tensor(gate_matrix, vec![qubit], None)?;
449 let gate_id = self.network.add_tensor(gate_tensor);
450
451 let qubit_label = format!("q{qubit}");
453 let connected_tensors = self.network.find_connected_tensors(&qubit_label);
454
455 if let Some(&qubit_tensor_id) = connected_tensors.first() {
456 self.contract_tensors(gate_id, qubit_tensor_id)?;
458 }
459
460 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
461 Ok(())
462 }
463
464 pub fn apply_two_qubit_gate(
466 &mut self,
467 control: usize,
468 target: usize,
469 gate_matrix: &Array2<Complex64>,
470 ) -> Result<()> {
471 let start_time = std::time::Instant::now();
472
473 let gate_tensor = Self::create_gate_tensor(gate_matrix, vec![control, target], None)?;
475 let gate_id = self.network.add_tensor(gate_tensor);
476
477 let control_label = format!("q{control}");
479 let target_label = format!("q{target}");
480
481 let control_tensors = self.network.find_connected_tensors(&control_label);
482 let target_tensors = self.network.find_connected_tensors(&target_label);
483
484 let contraction_path =
486 self.optimize_contraction_path(&[gate_id], &control_tensors, &target_tensors)?;
487
488 self.execute_contraction_path(&contraction_path)?;
490
491 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
492 Ok(())
493 }
494
495 pub fn contract_tensors(&mut self, id1: usize, id2: usize) -> Result<usize> {
497 let start_time = std::time::Instant::now();
498
499 let tensor1 = self
501 .network
502 .get_tensor(id1)
503 .ok_or_else(|| SimulatorError::InvalidInput(format!("Tensor {id1} not found")))?
504 .clone();
505
506 let tensor2 = self
507 .network
508 .get_tensor(id2)
509 .ok_or_else(|| SimulatorError::InvalidInput(format!("Tensor {id2} not found")))?
510 .clone();
511
512 let common_indices = Self::find_common_indices(&tensor1, &tensor2);
514
515 let cost_estimate = Self::estimate_contraction_cost(&tensor1, &tensor2, &common_indices);
517
518 let result = if cost_estimate > 1e9 && self.config.enable_slicing {
520 self.contract_tensors_sliced(&tensor1, &tensor2, &common_indices)?
521 } else {
522 self.contract_tensors_direct(&tensor1, &tensor2, &common_indices)?
523 };
524
525 self.network.remove_tensor(id1);
527 self.network.remove_tensor(id2);
528 let result_id = self.network.add_tensor(result);
529
530 self.stats.total_contractions += 1;
532 self.stats.total_flops += cost_estimate;
533 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
534
535 Ok(result_id)
536 }
537
538 pub fn optimize_contraction_path(
540 &self,
541 tensor_ids1: &[usize],
542 tensor_ids2: &[usize],
543 tensor_ids3: &[usize],
544 ) -> Result<EnhancedContractionPath> {
545 let start_time = std::time::Instant::now();
546
547 #[cfg(feature = "advanced_math")]
548 {
549 if let Some(ref optimizer) = self.optimizer {
550 return self.optimize_path_scirs2(tensor_ids1, tensor_ids2, tensor_ids3, optimizer);
551 }
552 }
553
554 let all_ids: Vec<usize> = tensor_ids1
556 .iter()
557 .chain(tensor_ids2.iter())
558 .chain(tensor_ids3.iter())
559 .copied()
560 .collect();
561
562 let path = match self.config.contraction_strategy {
563 ContractionStrategy::Greedy => self.optimize_path_greedy(&all_ids)?,
564 ContractionStrategy::DynamicProgramming => self.optimize_path_dp(&all_ids)?,
565 ContractionStrategy::SimulatedAnnealing => self.optimize_path_sa(&all_ids)?,
566 ContractionStrategy::TreeDecomposition => self.optimize_path_tree(&all_ids)?,
567 ContractionStrategy::Adaptive => self.optimize_path_adaptive(&all_ids)?,
568 ContractionStrategy::MLGuided => self.optimize_path_ml(&all_ids)?,
569 };
570
571 let optimization_time = start_time.elapsed().as_secs_f64() * 1000.0;
572 Ok(path)
576 }
577
578 pub fn execute_contraction_path(&mut self, path: &EnhancedContractionPath) -> Result<()> {
580 let start_time = std::time::Instant::now();
581
582 if self.config.parallel_contractions {
583 self.execute_path_parallel(path)?;
584 } else {
585 self.execute_path_sequential(path)?;
586 }
587
588 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
589 Ok(())
590 }
591
592 pub fn get_result_tensor(&self) -> Result<ArrayD<Complex64>> {
594 if self.network.tensors.len() != 1 {
595 return Err(SimulatorError::InvalidInput(format!(
596 "Expected single result tensor, found {}",
597 self.network.tensors.len()
598 )));
599 }
600
601 let result_tensor = self
602 .network
603 .tensors
604 .values()
605 .next()
606 .ok_or_else(|| SimulatorError::InvalidInput("No tensors in network".to_string()))?;
607 Ok(result_tensor.data.clone())
608 }
609
610 #[must_use]
612 pub const fn get_stats(&self) -> &TensorNetworkStats {
613 &self.stats
614 }
615
616 fn create_gate_tensor(
618 gate_matrix: &Array2<Complex64>,
619 qubits: Vec<usize>,
620 aux_indices: Option<Vec<TensorIndex>>,
621 ) -> Result<EnhancedTensor> {
622 let num_qubits = qubits.len();
623 let matrix_size = 1 << num_qubits;
624
625 if gate_matrix.nrows() != matrix_size || gate_matrix.ncols() != matrix_size {
626 return Err(SimulatorError::DimensionMismatch(
627 "Gate matrix size doesn't match number of qubits".to_string(),
628 ));
629 }
630
631 let tensor_shape = vec![2; 2 * num_qubits]; let tensor_data = gate_matrix
634 .clone()
635 .into_shape(IxDyn(&tensor_shape))
636 .map_err(|e| {
637 SimulatorError::DimensionMismatch(format!("Failed to reshape gate matrix: {e}"))
638 })?;
639
640 let mut indices = Vec::new();
642
643 for &qubit in &qubits {
645 indices.push(TensorIndex {
646 label: format!("q{qubit}_in"),
647 dimension: 2,
648 index_type: IndexType::Physical,
649 connected_tensors: vec![],
650 });
651 }
652
653 for &qubit in &qubits {
655 indices.push(TensorIndex {
656 label: format!("q{qubit}_out"),
657 dimension: 2,
658 index_type: IndexType::Physical,
659 connected_tensors: vec![],
660 });
661 }
662
663 if let Some(aux) = aux_indices {
665 indices.extend(aux);
666 }
667
668 let memory_size = tensor_data.len() * std::mem::size_of::<Complex64>();
669 let contraction_cost = (matrix_size as f64).powi(3); Ok(EnhancedTensor {
672 data: tensor_data,
673 indices,
674 bond_dimensions: vec![2; 2 * num_qubits],
675 id: 0, memory_size,
677 contraction_cost,
678 priority: 1.0,
679 })
680 }
681
682 fn find_common_indices(tensor1: &EnhancedTensor, tensor2: &EnhancedTensor) -> Vec<String> {
683 let indices1: HashSet<_> = tensor1.indices.iter().map(|i| &i.label).collect();
684 let indices2: HashSet<_> = tensor2.indices.iter().map(|i| &i.label).collect();
685
686 indices1.intersection(&indices2).copied().cloned().collect()
687 }
688
689 fn estimate_contraction_cost(
690 tensor1: &EnhancedTensor,
691 tensor2: &EnhancedTensor,
692 common_indices: &[String],
693 ) -> f64 {
694 let size1: usize = tensor1.bond_dimensions.iter().product();
696 let size2: usize = tensor2.bond_dimensions.iter().product();
697 let common_size: usize = common_indices.len();
698
699 (size1 as f64) * (size2 as f64) * (common_size as f64)
701 }
702
703 #[cfg(feature = "advanced_math")]
704 fn contract_tensors_scirs2(
705 &self,
706 tensor1: &EnhancedTensor,
707 tensor2: &EnhancedTensor,
708 common_indices: &[String],
709 ) -> Result<EnhancedTensor> {
710 if let Some(ref backend) = self.backend {
712 return self.contract_with_scirs2_backend(tensor1, tensor2, common_indices, backend);
714 }
715
716 self.contract_tensors_optimized(tensor1, tensor2, common_indices)
718 }
719
720 #[cfg(feature = "advanced_math")]
721 fn contract_with_scirs2_backend(
722 &self,
723 tensor1: &EnhancedTensor,
724 tensor2: &EnhancedTensor,
725 common_indices: &[String],
726 backend: &SciRS2Backend,
727 ) -> Result<EnhancedTensor> {
728 let scirs2_tensor1 = Self::convert_to_scirs2_tensor(tensor1)?;
730 let scirs2_tensor2 = Self::convert_to_scirs2_tensor(tensor2)?;
731
732 let contraction_indices =
734 Self::prepare_contraction_indices(tensor1, tensor2, common_indices)?;
735
736 let result_scirs2 =
738 backend.einsum_contract(&scirs2_tensor1, &scirs2_tensor2, &contraction_indices)?;
739
740 self.convert_from_scirs2_tensor(&result_scirs2, tensor1, tensor2, common_indices)
742 }
743
744 fn contract_tensors_optimized(
745 &self,
746 tensor1: &EnhancedTensor,
747 tensor2: &EnhancedTensor,
748 common_indices: &[String],
749 ) -> Result<EnhancedTensor> {
750 let contraction_size = Self::estimate_contraction_size(tensor1, tensor2, common_indices);
752
753 if contraction_size > 1e6 {
754 self.contract_tensors_blocked(tensor1, tensor2, common_indices)
756 } else if common_indices.len() > 4 {
757 self.contract_tensors_multi_index(tensor1, tensor2, common_indices)
759 } else {
760 self.contract_tensors_direct_optimized(tensor1, tensor2, common_indices)
762 }
763 }
764
765 fn contract_tensors_blocked(
766 &self,
767 tensor1: &EnhancedTensor,
768 tensor2: &EnhancedTensor,
769 common_indices: &[String],
770 ) -> Result<EnhancedTensor> {
771 let block_size = self.config.memory_limit / (8 * std::mem::size_of::<Complex64>());
773 let num_blocks = ((tensor1.data.len() + tensor2.data.len()) / block_size).max(1);
774
775 let result_indices = Self::calculate_result_indices(tensor1, tensor2, common_indices);
776 let result_shape = Self::calculate_result_shape(&result_indices)?;
777 let mut result_data = ArrayD::zeros(IxDyn(&result_shape));
778
779 for block_idx in 0..num_blocks {
781 let start_idx = block_idx * (tensor1.data.len() / num_blocks);
782 let end_idx =
783 ((block_idx + 1) * (tensor1.data.len() / num_blocks)).min(tensor1.data.len());
784
785 if start_idx < end_idx {
786 let block1 = Self::extract_tensor_block(tensor1, start_idx, end_idx)?;
788 let block2 = Self::extract_tensor_block(tensor2, start_idx, end_idx)?;
789
790 let block_result = Self::contract_tensor_blocks(&block1, &block2, common_indices)?;
792
793 Self::accumulate_block_result(&result_data, &block_result, block_idx)?;
795 }
796 }
797
798 let memory_size = result_data.len() * std::mem::size_of::<Complex64>();
799
800 Ok(EnhancedTensor {
801 data: result_data,
802 indices: result_indices,
803 bond_dimensions: result_shape,
804 id: 0,
805 memory_size,
806 contraction_cost: Self::estimate_contraction_cost(tensor1, tensor2, common_indices),
807 priority: 1.0,
808 })
809 }
810
811 fn contract_tensors_multi_index(
812 &self,
813 tensor1: &EnhancedTensor,
814 tensor2: &EnhancedTensor,
815 common_indices: &[String],
816 ) -> Result<EnhancedTensor> {
817 let optimal_index_order = Self::find_optimal_index_order(tensor1, tensor2, common_indices)?;
819
820 let reordered_tensor1 =
822 Self::reorder_tensor_indices(tensor1, &optimal_index_order.tensor1_order)?;
823 let reordered_tensor2 =
824 Self::reorder_tensor_indices(tensor2, &optimal_index_order.tensor2_order)?;
825
826 self.contract_tensors_direct_optimized(
828 &reordered_tensor1,
829 &reordered_tensor2,
830 common_indices,
831 )
832 }
833
834 fn contract_tensors_direct_optimized(
835 &self,
836 tensor1: &EnhancedTensor,
837 tensor2: &EnhancedTensor,
838 common_indices: &[String],
839 ) -> Result<EnhancedTensor> {
840 let result_indices = Self::calculate_result_indices(tensor1, tensor2, common_indices);
842 let result_shape = Self::calculate_result_shape(&result_indices)?;
843 let mut result_data = ArrayD::zeros(IxDyn(&result_shape));
844
845 let contraction_plan = Self::create_contraction_plan(tensor1, tensor2, common_indices)?;
847
848 result_data.par_mapv_inplace(|_| Complex64::new(0.0, 0.0));
850
851 for op in &contraction_plan.operations {
853 }
856
857 let memory_size = result_data.len() * std::mem::size_of::<Complex64>();
858
859 Ok(EnhancedTensor {
860 data: result_data,
861 indices: result_indices,
862 bond_dimensions: result_shape,
863 id: 0,
864 memory_size,
865 contraction_cost: Self::estimate_contraction_cost(tensor1, tensor2, common_indices),
866 priority: 1.0,
867 })
868 }
869
870 fn estimate_contraction_size(
873 tensor1: &EnhancedTensor,
874 tensor2: &EnhancedTensor,
875 common_indices: &[String],
876 ) -> f64 {
877 let size1 = tensor1.data.len() as f64;
878 let size2 = tensor2.data.len() as f64;
879 let common_size = common_indices.len() as f64;
880 size1 * size2 * common_size
881 }
882
883 fn calculate_result_shape(indices: &[TensorIndex]) -> Result<Vec<usize>> {
884 Ok(indices.iter().map(|idx| idx.dimension).collect())
885 }
886
887 fn extract_tensor_block(
888 tensor: &EnhancedTensor,
889 start_idx: usize,
890 end_idx: usize,
891 ) -> Result<EnhancedTensor> {
892 let block_data = tensor
894 .data
895 .slice(scirs2_core::ndarray::s![start_idx..end_idx])
896 .to_owned();
897
898 Ok(EnhancedTensor {
899 data: block_data.into_dyn(),
900 indices: tensor.indices.clone(),
901 bond_dimensions: tensor.bond_dimensions.clone(),
902 id: tensor.id,
903 memory_size: (end_idx - start_idx) * std::mem::size_of::<Complex64>(),
904 contraction_cost: tensor.contraction_cost,
905 priority: tensor.priority,
906 })
907 }
908
909 fn contract_tensor_blocks(
910 block1: &EnhancedTensor,
911 block2: &EnhancedTensor,
912 common_indices: &[String],
913 ) -> Result<ArrayD<Complex64>> {
914 let result_indices = Self::calculate_result_indices(block1, block2, common_indices);
916 let result_shape = Self::calculate_result_shape(&result_indices)?;
917 Ok(ArrayD::zeros(IxDyn(&result_shape)))
918 }
919
920 const fn accumulate_block_result(
921 _result: &ArrayD<Complex64>,
922 _block_result: &ArrayD<Complex64>,
923 _block_idx: usize,
924 ) -> Result<()> {
925 Ok(())
928 }
929
930 fn find_optimal_index_order(
931 tensor1: &EnhancedTensor,
932 tensor2: &EnhancedTensor,
933 _common_indices: &[String],
934 ) -> Result<OptimalIndexOrder> {
935 Ok(OptimalIndexOrder {
937 tensor1_order: (0..tensor1.indices.len()).collect(),
938 tensor2_order: (0..tensor2.indices.len()).collect(),
939 })
940 }
941
942 fn reorder_tensor_indices(tensor: &EnhancedTensor, _order: &[usize]) -> Result<EnhancedTensor> {
943 Ok(tensor.clone())
945 }
946
947 fn create_contraction_plan(
948 _tensor1: &EnhancedTensor,
949 _tensor2: &EnhancedTensor,
950 _common_indices: &[String],
951 ) -> Result<ContractionPlan> {
952 Ok(ContractionPlan {
953 operations: vec![ContractionOperation {
954 tensor1_indices: vec![0, 1],
955 tensor2_indices: vec![0, 1],
956 result_indices: vec![0],
957 operation_type: ContractionOpType::EinsumContraction,
958 }],
959 })
960 }
961
962 const fn execute_contraction_operation(
963 _op: &ContractionOperation,
964 _tensor1: &EnhancedTensor,
965 _tensor2: &EnhancedTensor,
966 _result: &mut ArrayD<Complex64>,
967 ) {
968 }
971
972 #[cfg(feature = "advanced_math")]
975 fn convert_to_scirs2_tensor(tensor: &EnhancedTensor) -> Result<SciRS2Tensor> {
976 Ok(SciRS2Tensor {
978 data: tensor.data.clone(),
979 shape: tensor.bond_dimensions.clone(),
980 })
981 }
982
983 #[cfg(feature = "advanced_math")]
984 fn convert_from_scirs2_tensor(
985 &self,
986 scirs2_tensor: &SciRS2Tensor,
987 tensor1: &EnhancedTensor,
988 tensor2: &EnhancedTensor,
989 common_indices: &[String],
990 ) -> Result<EnhancedTensor> {
991 let result_indices = Self::calculate_result_indices(tensor1, tensor2, common_indices);
992
993 Ok(EnhancedTensor {
994 data: scirs2_tensor.data.clone(),
995 indices: result_indices,
996 bond_dimensions: scirs2_tensor.shape.clone(),
997 id: 0,
998 memory_size: scirs2_tensor.data.len() * std::mem::size_of::<Complex64>(),
999 contraction_cost: 1.0,
1000 priority: 1.0,
1001 })
1002 }
1003
1004 #[cfg(feature = "advanced_math")]
1005 fn prepare_contraction_indices(
1006 tensor1: &EnhancedTensor,
1007 tensor2: &EnhancedTensor,
1008 common_indices: &[String],
1009 ) -> Result<ContractionIndices> {
1010 Ok(ContractionIndices {
1011 tensor1_indices: tensor1.indices.iter().map(|i| i.label.clone()).collect(),
1012 tensor2_indices: tensor2.indices.iter().map(|i| i.label.clone()).collect(),
1013 common_indices: common_indices.to_vec(),
1014 })
1015 }
1016
1017 fn contract_tensors_direct(
1018 &self,
1019 tensor1: &EnhancedTensor,
1020 tensor2: &EnhancedTensor,
1021 common_indices: &[String],
1022 ) -> Result<EnhancedTensor> {
1023 let result_shape = vec![2, 2]; let result_data = Array::zeros(IxDyn(&result_shape));
1029
1030 let result_indices = Self::calculate_result_indices(tensor1, tensor2, common_indices);
1031 let memory_size = result_data.len() * std::mem::size_of::<Complex64>();
1032
1033 Ok(EnhancedTensor {
1034 data: result_data,
1035 indices: result_indices,
1036 bond_dimensions: vec![2, 2],
1037 id: 0,
1038 memory_size,
1039 contraction_cost: 1.0,
1040 priority: 1.0,
1041 })
1042 }
1043
1044 fn contract_tensors_sliced(
1045 &self,
1046 tensor1: &EnhancedTensor,
1047 tensor2: &EnhancedTensor,
1048 common_indices: &[String],
1049 ) -> Result<EnhancedTensor> {
1050 let num_slices = self.config.max_slices.min(64);
1054 let slice_results: Vec<EnhancedTensor> = Vec::new();
1055
1056 for _slice_idx in 0..num_slices {
1058 }
1062
1063 self.contract_tensors_direct(tensor1, tensor2, common_indices)
1065 }
1066
1067 fn calculate_result_indices(
1068 tensor1: &EnhancedTensor,
1069 tensor2: &EnhancedTensor,
1070 common_indices: &[String],
1071 ) -> Vec<TensorIndex> {
1072 let mut result_indices = Vec::new();
1073
1074 for index in &tensor1.indices {
1076 if !common_indices.contains(&index.label) {
1077 result_indices.push(index.clone());
1078 }
1079 }
1080
1081 for index in &tensor2.indices {
1083 if !common_indices.contains(&index.label) {
1084 result_indices.push(index.clone());
1085 }
1086 }
1087
1088 result_indices
1089 }
1090
1091 fn optimize_path_greedy(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1094 let mut remaining_ids = tensor_ids.to_vec();
1095 let mut steps = Vec::new();
1096 let mut total_flops = 0.0;
1097 let mut peak_memory = 0;
1098
1099 while remaining_ids.len() > 1 {
1100 let (best_i, best_j, cost) = self.find_best_contraction_pair(&remaining_ids)?;
1102
1103 let tensor_i = remaining_ids[best_i];
1104 let tensor_j = remaining_ids[best_j];
1105 let new_id = self.network.next_id;
1106
1107 steps.push(ContractionStep {
1108 tensor_ids: (tensor_i, tensor_j),
1109 result_id: new_id,
1110 flops: cost,
1111 memory_required: 1000, result_dimensions: vec![2, 2], parallelizable: false,
1114 });
1115
1116 total_flops += cost;
1117 peak_memory = peak_memory.max(1000);
1118
1119 remaining_ids.remove(best_j.max(best_i));
1121 remaining_ids.remove(best_i.min(best_j));
1122 remaining_ids.push(new_id);
1123 }
1124
1125 Ok(EnhancedContractionPath {
1126 steps,
1127 total_flops,
1128 peak_memory,
1129 contraction_tree: ContractionTree::Leaf {
1130 tensor_id: remaining_ids[0],
1131 },
1132 parallel_sections: Vec::new(),
1133 })
1134 }
1135
1136 fn optimize_path_dp(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1137 if tensor_ids.len() > 15 {
1141 return self.optimize_path_greedy(tensor_ids);
1143 }
1144
1145 let mut dp_table: HashMap<Vec<usize>, (f64, Vec<ContractionStep>)> = HashMap::new();
1147 let mut memo: HashMap<Vec<usize>, f64> = HashMap::new();
1148
1149 if tensor_ids.len() <= 1 {
1151 return Ok(EnhancedContractionPath {
1152 steps: Vec::new(),
1153 total_flops: 0.0,
1154 peak_memory: 0,
1155 contraction_tree: ContractionTree::Leaf {
1156 tensor_id: tensor_ids.first().copied().unwrap_or(0),
1157 },
1158 parallel_sections: Vec::new(),
1159 });
1160 }
1161
1162 let (optimal_cost, optimal_steps) =
1164 self.dp_optimal_contraction(tensor_ids, &mut memo, &mut dp_table)?;
1165
1166 let contraction_tree = self.build_contraction_tree(&optimal_steps, tensor_ids)?;
1168
1169 let parallel_sections = self.identify_parallel_sections(&optimal_steps)?;
1171
1172 let peak_memory = self.calculate_peak_memory(&optimal_steps)?;
1174
1175 Ok(EnhancedContractionPath {
1176 steps: optimal_steps,
1177 total_flops: optimal_cost,
1178 peak_memory,
1179 contraction_tree,
1180 parallel_sections,
1181 })
1182 }
1183
1184 fn optimize_path_sa(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1185 let mut current_path = self.optimize_path_greedy(tensor_ids)?;
1189 let mut best_path = current_path.clone();
1190 let mut temperature = 1000.0;
1191 let cooling_rate = 0.95;
1192 let min_temperature = 1.0;
1193
1194 while temperature > min_temperature {
1195 let neighbor_path = self.generate_neighbor_path(¤t_path)?;
1197
1198 let cost_diff = neighbor_path.total_flops - current_path.total_flops;
1200
1201 if cost_diff < 0.0 || thread_rng().gen::<f64>() < (-cost_diff / temperature).exp() {
1202 current_path = neighbor_path;
1203
1204 if current_path.total_flops < best_path.total_flops {
1205 best_path = current_path.clone();
1206 }
1207 }
1208
1209 temperature *= cooling_rate;
1210 }
1211
1212 Ok(best_path)
1213 }
1214
1215 fn optimize_path_tree(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1216 let adjacency_graph = self.build_tensor_adjacency_graph(tensor_ids)?;
1221
1222 let tree_decomposition = self.find_tree_decomposition(&adjacency_graph, tensor_ids)?;
1224
1225 let mut steps = Vec::new();
1227 let mut total_flops = 0.0;
1228 let mut peak_memory = 0;
1229
1230 for bag in &tree_decomposition.bags {
1232 let bag_steps = self.optimize_bag_contraction(&bag.tensors)?;
1234
1235 for step in bag_steps {
1236 total_flops += step.flops;
1237 peak_memory = peak_memory.max(step.memory_required);
1238 steps.push(step);
1239 }
1240 }
1241
1242 let contraction_tree = self.build_tree_from_decomposition(&tree_decomposition)?;
1244
1245 let parallel_sections = self.extract_tree_parallelism(&tree_decomposition)?;
1247
1248 Ok(EnhancedContractionPath {
1249 steps,
1250 total_flops,
1251 peak_memory,
1252 contraction_tree,
1253 parallel_sections,
1254 })
1255 }
1256
1257 fn optimize_path_adaptive(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1258 let network_density = self.calculate_network_density(tensor_ids);
1261 let network_size = tensor_ids.len();
1262
1263 if network_size <= 10 {
1264 self.optimize_path_dp(tensor_ids)
1265 } else if network_density > 0.8 {
1266 self.optimize_path_sa(tensor_ids)
1267 } else {
1268 self.optimize_path_greedy(tensor_ids)
1269 }
1270 }
1271
1272 fn optimize_path_ml(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1273 let network_features = self.extract_network_features(tensor_ids)?;
1278
1279 let predicted_strategy = self.ml_predict_strategy(&network_features)?;
1281
1282 let primary_path = match predicted_strategy.strategy {
1284 MLPredictedStrategy::DynamicProgramming => self.optimize_path_dp(tensor_ids)?,
1285 MLPredictedStrategy::SimulatedAnnealing => self.optimize_path_sa(tensor_ids)?,
1286 MLPredictedStrategy::TreeDecomposition => self.optimize_path_tree(tensor_ids)?,
1287 MLPredictedStrategy::Greedy => self.optimize_path_greedy(tensor_ids)?,
1288 };
1289
1290 if predicted_strategy.confidence < 0.8 {
1292 let alternative_strategy = match predicted_strategy.strategy {
1293 MLPredictedStrategy::DynamicProgramming => MLPredictedStrategy::SimulatedAnnealing,
1294 MLPredictedStrategy::SimulatedAnnealing => MLPredictedStrategy::Greedy,
1295 MLPredictedStrategy::TreeDecomposition => MLPredictedStrategy::DynamicProgramming,
1296 MLPredictedStrategy::Greedy => MLPredictedStrategy::SimulatedAnnealing,
1297 };
1298
1299 let alternative_path = match alternative_strategy {
1300 MLPredictedStrategy::DynamicProgramming => self.optimize_path_dp(tensor_ids)?,
1301 MLPredictedStrategy::SimulatedAnnealing => self.optimize_path_sa(tensor_ids)?,
1302 MLPredictedStrategy::TreeDecomposition => self.optimize_path_tree(tensor_ids)?,
1303 MLPredictedStrategy::Greedy => self.optimize_path_greedy(tensor_ids)?,
1304 };
1305
1306 if alternative_path.total_flops < primary_path.total_flops {
1308 return Ok(alternative_path);
1309 }
1310 }
1311
1312 self.update_ml_model(&network_features, &primary_path)?;
1314
1315 Ok(primary_path)
1316 }
1317
1318 #[cfg(feature = "advanced_math")]
1319 fn optimize_path_scirs2(
1320 &self,
1321 tensor_ids1: &[usize],
1322 tensor_ids2: &[usize],
1323 tensor_ids3: &[usize],
1324 optimizer: &ContractionOptimizer,
1325 ) -> Result<EnhancedContractionPath> {
1326 let all_ids: Vec<usize> = tensor_ids1
1330 .iter()
1331 .chain(tensor_ids2.iter())
1332 .chain(tensor_ids3.iter())
1333 .copied()
1334 .collect();
1335
1336 self.optimize_path_adaptive(&all_ids)
1337 }
1338
1339 fn find_best_contraction_pair(&self, tensor_ids: &[usize]) -> Result<(usize, usize, f64)> {
1340 let mut best_cost = f64::INFINITY;
1341 let mut best_pair = (0, 1);
1342
1343 for i in 0..tensor_ids.len() {
1344 for j in i + 1..tensor_ids.len() {
1345 if let (Some(tensor1), Some(tensor2)) = (
1346 self.network.get_tensor(tensor_ids[i]),
1347 self.network.get_tensor(tensor_ids[j]),
1348 ) {
1349 let common_indices = Self::find_common_indices(tensor1, tensor2);
1350 let cost = Self::estimate_contraction_cost(tensor1, tensor2, &common_indices);
1351
1352 if cost < best_cost {
1353 best_cost = cost;
1354 best_pair = (i, j);
1355 }
1356 }
1357 }
1358 }
1359
1360 Ok((best_pair.0, best_pair.1, best_cost))
1361 }
1362
1363 fn generate_neighbor_path(
1364 &self,
1365 path: &EnhancedContractionPath,
1366 ) -> Result<EnhancedContractionPath> {
1367 let mut new_path = path.clone();
1371
1372 if new_path.steps.len() >= 2 {
1373 let i = thread_rng().gen_range(0..new_path.steps.len());
1374 let j = thread_rng().gen_range(0..new_path.steps.len());
1375
1376 if i != j {
1377 new_path.steps.swap(i, j);
1378 new_path.total_flops = new_path.steps.iter().map(|s| s.flops).sum();
1380 }
1381 }
1382
1383 Ok(new_path)
1384 }
1385
1386 fn calculate_network_density(&self, tensor_ids: &[usize]) -> f64 {
1387 let num_tensors = tensor_ids.len();
1389 if num_tensors <= 1 {
1390 return 0.0;
1391 }
1392
1393 let mut total_connections = 0;
1394 let max_connections = num_tensors * (num_tensors - 1) / 2;
1395
1396 for i in 0..tensor_ids.len() {
1397 for j in i + 1..tensor_ids.len() {
1398 if let (Some(tensor1), Some(tensor2)) = (
1399 self.network.get_tensor(tensor_ids[i]),
1400 self.network.get_tensor(tensor_ids[j]),
1401 ) {
1402 if !Self::find_common_indices(tensor1, tensor2).is_empty() {
1403 total_connections += 1;
1404 }
1405 }
1406 }
1407 }
1408
1409 f64::from(total_connections) / max_connections as f64
1410 }
1411
1412 fn execute_path_sequential(&mut self, path: &EnhancedContractionPath) -> Result<()> {
1413 for step in &path.steps {
1414 self.contract_tensors(step.tensor_ids.0, step.tensor_ids.1)?;
1415 }
1416 Ok(())
1417 }
1418
1419 fn execute_path_parallel(&mut self, path: &EnhancedContractionPath) -> Result<()> {
1420 for section in &path.parallel_sections {
1422 let parallel_results: Result<Vec<_>> = section
1424 .parallel_steps
1425 .par_iter()
1426 .map(|&step_idx| {
1427 let step = &path.steps[step_idx];
1428 Ok(())
1430 })
1431 .collect();
1432
1433 parallel_results?;
1434 }
1435
1436 self.execute_path_sequential(path)
1438 }
1439
1440 fn dp_optimal_contraction(
1442 &self,
1443 tensor_ids: &[usize],
1444 memo: &mut HashMap<Vec<usize>, f64>,
1445 dp_table: &mut HashMap<Vec<usize>, (f64, Vec<ContractionStep>)>,
1446 ) -> Result<(f64, Vec<ContractionStep>)> {
1447 let mut sorted_ids = tensor_ids.to_vec();
1448 sorted_ids.sort_unstable();
1449
1450 if let Some((cost, steps)) = dp_table.get(&sorted_ids).cloned() {
1451 return Ok((cost, steps));
1452 }
1453
1454 if sorted_ids.len() <= 1 {
1455 return Ok((0.0, Vec::new()));
1456 }
1457
1458 if sorted_ids.len() == 2 {
1459 let cost = if let (Some(t1), Some(t2)) = (
1460 self.network.get_tensor(sorted_ids[0]),
1461 self.network.get_tensor(sorted_ids[1]),
1462 ) {
1463 let common = Self::find_common_indices(t1, t2);
1464 Self::estimate_contraction_cost(t1, t2, &common)
1465 } else {
1466 1.0
1467 };
1468
1469 let step = ContractionStep {
1470 tensor_ids: (sorted_ids[0], sorted_ids[1]),
1471 result_id: self.network.next_id + 1000,
1472 flops: cost,
1473 memory_required: 1000,
1474 result_dimensions: vec![2, 2],
1475 parallelizable: false,
1476 };
1477
1478 let result = (cost, vec![step]);
1479 dp_table.insert(sorted_ids, result.clone());
1480 return Ok(result);
1481 }
1482
1483 let mut best_cost = f64::INFINITY;
1484 let mut best_steps = Vec::new();
1485
1486 for i in 0..sorted_ids.len() {
1488 for j in i + 1..sorted_ids.len() {
1489 let tensor_a = sorted_ids[i];
1490 let tensor_b = sorted_ids[j];
1491
1492 let mut left_set = vec![tensor_a, tensor_b];
1494 let mut right_set = Vec::new();
1495
1496 for &id in &sorted_ids {
1497 if id != tensor_a && id != tensor_b {
1498 right_set.push(id);
1499 }
1500 }
1501
1502 if right_set.is_empty() {
1503 let cost = if let (Some(t1), Some(t2)) = (
1505 self.network.get_tensor(tensor_a),
1506 self.network.get_tensor(tensor_b),
1507 ) {
1508 let common = Self::find_common_indices(t1, t2);
1509 Self::estimate_contraction_cost(t1, t2, &common)
1510 } else {
1511 1.0
1512 };
1513
1514 if cost < best_cost {
1515 best_cost = cost;
1516 best_steps = vec![ContractionStep {
1517 tensor_ids: (tensor_a, tensor_b),
1518 result_id: self.network.next_id + 2000,
1519 flops: cost,
1520 memory_required: 1000,
1521 result_dimensions: vec![2, 2],
1522 parallelizable: false,
1523 }];
1524 }
1525 } else {
1526 let (left_cost, mut left_steps) =
1528 self.dp_optimal_contraction(&left_set, memo, dp_table)?;
1529 let (right_cost, mut right_steps) =
1530 self.dp_optimal_contraction(&right_set, memo, dp_table)?;
1531
1532 let total_cost = left_cost + right_cost;
1533 if total_cost < best_cost {
1534 best_cost = total_cost;
1535 best_steps = Vec::new();
1536 best_steps.append(&mut left_steps);
1537 best_steps.append(&mut right_steps);
1538 }
1539 }
1540 }
1541 }
1542
1543 let result = (best_cost, best_steps);
1544 dp_table.insert(sorted_ids, result.clone());
1545 Ok(result)
1546 }
1547
1548 fn build_contraction_tree(
1549 &self,
1550 steps: &[ContractionStep],
1551 tensor_ids: &[usize],
1552 ) -> Result<ContractionTree> {
1553 if steps.is_empty() {
1554 return Ok(ContractionTree::Leaf {
1555 tensor_id: tensor_ids.first().copied().unwrap_or(0),
1556 });
1557 }
1558
1559 let first_step = &steps[0];
1561 let left = Box::new(ContractionTree::Leaf {
1562 tensor_id: first_step.tensor_ids.0,
1563 });
1564 let right = Box::new(ContractionTree::Leaf {
1565 tensor_id: first_step.tensor_ids.1,
1566 });
1567
1568 Ok(ContractionTree::Branch {
1569 left,
1570 right,
1571 contraction_cost: first_step.flops,
1572 result_bond_dim: first_step.result_dimensions.iter().product(),
1573 })
1574 }
1575
1576 fn identify_parallel_sections(
1577 &self,
1578 steps: &[ContractionStep],
1579 ) -> Result<Vec<ParallelSection>> {
1580 let mut parallel_sections = Vec::new();
1581 let mut dependencies: HashMap<usize, Vec<usize>> = HashMap::new();
1582
1583 for (i, step) in steps.iter().enumerate() {
1585 let mut deps = Vec::new();
1586
1587 for (j, prev_step) in steps.iter().enumerate().take(i) {
1589 if step.tensor_ids.0 == prev_step.result_id
1590 || step.tensor_ids.1 == prev_step.result_id
1591 {
1592 deps.push(j);
1593 }
1594 }
1595
1596 dependencies.insert(i, deps);
1597 }
1598
1599 let mut current_section = Vec::new();
1601 let mut completed_steps = HashSet::new();
1602
1603 let empty_deps: Vec<usize> = Vec::new();
1604 for (i, _) in steps.iter().enumerate() {
1605 let deps = dependencies.get(&i).unwrap_or(&empty_deps);
1606 let ready = deps.iter().all(|&dep| completed_steps.contains(&dep));
1607
1608 if ready {
1609 current_section.push(i);
1610 } else if !current_section.is_empty() {
1611 parallel_sections.push(ParallelSection {
1612 parallel_steps: current_section.clone(),
1613 dependencies: dependencies.clone(),
1614 speedup_factor: (current_section.len() as f64).min(4.0), });
1616 current_section.clear();
1617 current_section.push(i);
1618 }
1619
1620 completed_steps.insert(i);
1621 }
1622
1623 if !current_section.is_empty() {
1624 parallel_sections.push(ParallelSection {
1625 parallel_steps: current_section,
1626 dependencies,
1627 speedup_factor: 1.0,
1628 });
1629 }
1630
1631 Ok(parallel_sections)
1632 }
1633
1634 fn calculate_peak_memory(&self, steps: &[ContractionStep]) -> Result<usize> {
1635 let mut peak = 0;
1636 let mut current = 0;
1637
1638 for step in steps {
1639 current += step.memory_required;
1640 peak = peak.max(current);
1641 current = (current as f64 * 0.8) as usize;
1643 }
1644
1645 Ok(peak)
1646 }
1647
1648 fn build_tensor_adjacency_graph(&self, tensor_ids: &[usize]) -> Result<TensorAdjacencyGraph> {
1649 let mut edges = HashMap::new();
1650 let mut edge_weights = HashMap::new();
1651
1652 for &id1 in tensor_ids {
1653 let mut neighbors = Vec::new();
1654
1655 for &id2 in tensor_ids {
1656 if id1 != id2 {
1657 if let (Some(t1), Some(t2)) =
1658 (self.network.get_tensor(id1), self.network.get_tensor(id2))
1659 {
1660 let common = Self::find_common_indices(t1, t2);
1661 if !common.is_empty() {
1662 let weight = common.len() as f64; neighbors.push((id2, weight));
1664 edge_weights.insert((id1.min(id2), id1.max(id2)), weight);
1665 }
1666 }
1667 }
1668 }
1669
1670 edges.insert(id1, neighbors);
1671 }
1672
1673 Ok(TensorAdjacencyGraph {
1674 nodes: tensor_ids.to_vec(),
1675 edges,
1676 edge_weights,
1677 })
1678 }
1679
1680 fn find_tree_decomposition(
1681 &self,
1682 graph: &TensorAdjacencyGraph,
1683 tensor_ids: &[usize],
1684 ) -> Result<TreeDecomposition> {
1685 let mut bags = Vec::new();
1687 let mut treewidth = 0;
1688
1689 if tensor_ids.len() <= 4 {
1691 for (i, &tensor_id) in tensor_ids.iter().enumerate() {
1692 let bag = TreeBag {
1693 id: i,
1694 tensors: vec![tensor_id],
1695 parent: if i > 0 { Some(i - 1) } else { None },
1696 children: if i < tensor_ids.len() - 1 {
1697 vec![i + 1]
1698 } else {
1699 Vec::new()
1700 },
1701 separator: Vec::new(),
1702 };
1703 bags.push(bag);
1704 treewidth = treewidth.max(1);
1705 }
1706 } else {
1707 let bag_size = (tensor_ids.len() as f64).sqrt().ceil() as usize;
1709
1710 for chunk in tensor_ids.chunks(bag_size) {
1711 let bag_id = bags.len();
1712 let bag = TreeBag {
1713 id: bag_id,
1714 tensors: chunk.to_vec(),
1715 parent: if bag_id > 0 { Some(bag_id - 1) } else { None },
1716 children: if bag_id < tensor_ids.len().div_ceil(bag_size) - 1 {
1717 vec![bag_id + 1]
1718 } else {
1719 Vec::new()
1720 },
1721 separator: Vec::new(),
1722 };
1723 treewidth = treewidth.max(chunk.len());
1724 bags.push(bag);
1725 }
1726 }
1727
1728 Ok(TreeDecomposition {
1729 bags,
1730 treewidth,
1731 root_bag: 0,
1732 })
1733 }
1734
1735 fn optimize_bag_contraction(&self, tensor_ids: &[usize]) -> Result<Vec<ContractionStep>> {
1736 if tensor_ids.len() <= 1 {
1738 return Ok(Vec::new());
1739 }
1740
1741 let mut steps = Vec::new();
1742 let mut remaining = tensor_ids.to_vec();
1743
1744 while remaining.len() > 1 {
1745 let (best_i, best_j, cost) = self.find_best_contraction_pair(&remaining)?;
1746
1747 steps.push(ContractionStep {
1748 tensor_ids: (remaining[best_i], remaining[best_j]),
1749 result_id: self.network.next_id + steps.len() + 3000,
1750 flops: cost,
1751 memory_required: 1000,
1752 result_dimensions: vec![2, 2],
1753 parallelizable: false,
1754 });
1755
1756 remaining.remove(best_j.max(best_i));
1758 remaining.remove(best_i.min(best_j));
1759
1760 if !remaining.is_empty() {
1761 remaining.push(self.network.next_id + steps.len() + 3000);
1762 }
1763 }
1764
1765 Ok(steps)
1766 }
1767
1768 fn build_tree_from_decomposition(
1769 &self,
1770 decomposition: &TreeDecomposition,
1771 ) -> Result<ContractionTree> {
1772 if decomposition.bags.is_empty() {
1773 return Ok(ContractionTree::Leaf { tensor_id: 0 });
1774 }
1775
1776 let root_bag = &decomposition.bags[decomposition.root_bag];
1778
1779 if root_bag.tensors.len() == 1 {
1780 Ok(ContractionTree::Leaf {
1781 tensor_id: root_bag.tensors[0],
1782 })
1783 } else {
1784 Ok(ContractionTree::Branch {
1785 left: Box::new(ContractionTree::Leaf {
1786 tensor_id: root_bag.tensors[0],
1787 }),
1788 right: Box::new(ContractionTree::Leaf {
1789 tensor_id: root_bag.tensors.get(1).copied().unwrap_or(0),
1790 }),
1791 contraction_cost: 100.0,
1792 result_bond_dim: 4,
1793 })
1794 }
1795 }
1796
1797 fn extract_tree_parallelism(
1798 &self,
1799 decomposition: &TreeDecomposition,
1800 ) -> Result<Vec<ParallelSection>> {
1801 let mut parallel_sections = Vec::new();
1802
1803 let levels = self.compute_tree_levels(decomposition);
1805
1806 for level_bags in levels {
1807 if level_bags.len() > 1 {
1808 let speedup_factor = (level_bags.len() as f64).min(4.0);
1809 parallel_sections.push(ParallelSection {
1810 parallel_steps: level_bags,
1811 dependencies: HashMap::new(),
1812 speedup_factor,
1813 });
1814 }
1815 }
1816
1817 Ok(parallel_sections)
1818 }
1819
1820 fn compute_tree_levels(&self, decomposition: &TreeDecomposition) -> Vec<Vec<usize>> {
1821 let mut levels = Vec::new();
1822 let mut current_level = vec![decomposition.root_bag];
1823 let mut visited = HashSet::new();
1824 visited.insert(decomposition.root_bag);
1825
1826 while !current_level.is_empty() {
1827 levels.push(current_level.clone());
1828 let mut next_level = Vec::new();
1829
1830 for &bag_id in ¤t_level {
1831 if let Some(bag) = decomposition.bags.get(bag_id) {
1832 for &child_id in &bag.children {
1833 if visited.insert(child_id) {
1834 next_level.push(child_id);
1835 }
1836 }
1837 }
1838 }
1839
1840 current_level = next_level;
1841 }
1842
1843 levels
1844 }
1845
1846 fn extract_network_features(&self, tensor_ids: &[usize]) -> Result<NetworkFeatures> {
1847 let num_tensors = tensor_ids.len();
1848 let connectivity_density = self.calculate_network_density(tensor_ids);
1849
1850 let mut max_bond_dimension = 0;
1851 let mut total_rank = 0;
1852
1853 for &id in tensor_ids {
1854 if let Some(tensor) = self.network.get_tensor(id) {
1855 max_bond_dimension = max_bond_dimension
1856 .max(tensor.bond_dimensions.iter().max().copied().unwrap_or(0));
1857 total_rank += tensor.indices.len();
1858 }
1859 }
1860
1861 let avg_tensor_rank = if num_tensors > 0 {
1862 total_rank as f64 / num_tensors as f64
1863 } else {
1864 0.0
1865 };
1866
1867 let circuit_depth_estimate = (num_tensors as f64).log2().ceil() as usize;
1869
1870 let locality_score = if connectivity_density > 0.5 { 0.8 } else { 0.3 };
1872
1873 let symmetry_score = if num_tensors % 2 == 0 { 0.6 } else { 0.4 };
1875
1876 Ok(NetworkFeatures {
1877 num_tensors,
1878 connectivity_density,
1879 max_bond_dimension,
1880 avg_tensor_rank,
1881 circuit_depth_estimate,
1882 locality_score,
1883 symmetry_score,
1884 })
1885 }
1886
1887 fn ml_predict_strategy(&self, features: &NetworkFeatures) -> Result<MLPrediction> {
1888 let (strategy, confidence) = if features.num_tensors <= 10 {
1890 (MLPredictedStrategy::DynamicProgramming, 0.9)
1891 } else if features.connectivity_density < 0.3 {
1892 (MLPredictedStrategy::TreeDecomposition, 0.8)
1893 } else if features.max_bond_dimension > 64 {
1894 (MLPredictedStrategy::SimulatedAnnealing, 0.7)
1895 } else {
1896 (MLPredictedStrategy::Greedy, 0.6)
1897 };
1898
1899 let expected_performance = match strategy {
1900 MLPredictedStrategy::DynamicProgramming => 0.95,
1901 MLPredictedStrategy::TreeDecomposition => 0.85,
1902 MLPredictedStrategy::SimulatedAnnealing => 0.75,
1903 MLPredictedStrategy::Greedy => 0.6,
1904 };
1905
1906 Ok(MLPrediction {
1907 strategy,
1908 confidence,
1909 expected_performance,
1910 })
1911 }
1912
1913 const fn update_ml_model(
1914 &self,
1915 _features: &NetworkFeatures,
1916 _path: &EnhancedContractionPath,
1917 ) -> Result<()> {
1918 Ok(())
1921 }
1922}
1923
1924#[derive(Debug, Clone)]
1927struct OptimalIndexOrder {
1928 tensor1_order: Vec<usize>,
1929 tensor2_order: Vec<usize>,
1930}
1931
1932#[derive(Debug, Clone)]
1933struct ContractionPlan {
1934 operations: Vec<ContractionOperation>,
1935}
1936
1937#[derive(Debug, Clone)]
1938struct ContractionOperation {
1939 tensor1_indices: Vec<usize>,
1940 tensor2_indices: Vec<usize>,
1941 result_indices: Vec<usize>,
1942 operation_type: ContractionOpType,
1943}
1944
1945#[derive(Debug, Clone)]
1946enum ContractionOpType {
1947 EinsumContraction,
1948 OuterProduct,
1949 TraceOperation,
1950}
1951
1952#[cfg(feature = "advanced_math")]
1953#[derive(Debug, Clone)]
1954struct SciRS2Tensor {
1955 data: ArrayD<Complex64>,
1956 shape: Vec<usize>,
1957}
1958
1959#[cfg(feature = "advanced_math")]
1960#[derive(Debug, Clone)]
1961struct ContractionIndices {
1962 tensor1_indices: Vec<String>,
1963 tensor2_indices: Vec<String>,
1964 common_indices: Vec<String>,
1965}
1966
1967#[cfg(feature = "advanced_math")]
1968impl SciRS2Backend {
1969 fn einsum_contract(
1970 &self,
1971 _tensor1: &SciRS2Tensor,
1972 _tensor2: &SciRS2Tensor,
1973 _indices: &ContractionIndices,
1974 ) -> Result<SciRS2Tensor> {
1975 Ok(SciRS2Tensor {
1977 data: ArrayD::zeros(IxDyn(&[2, 2])),
1978 shape: vec![2, 2],
1979 })
1980 }
1981}
1982
1983pub struct EnhancedTensorNetworkUtils;
1985
1986impl EnhancedTensorNetworkUtils {
1987 #[must_use]
1989 pub const fn estimate_memory_requirements(
1990 num_qubits: usize,
1991 circuit_depth: usize,
1992 max_bond_dimension: usize,
1993 ) -> usize {
1994 let avg_tensors = num_qubits + circuit_depth;
1996 let avg_tensor_size = max_bond_dimension.pow(3);
1997 let memory_per_element = std::mem::size_of::<Complex64>();
1998
1999 avg_tensors * avg_tensor_size * memory_per_element
2000 }
2001
2002 pub fn benchmark_contraction_strategies(
2004 num_qubits: usize,
2005 strategies: &[ContractionStrategy],
2006 ) -> Result<HashMap<String, f64>> {
2007 let mut results = HashMap::new();
2008
2009 for &strategy in strategies {
2010 let config = EnhancedTensorNetworkConfig {
2011 contraction_strategy: strategy,
2012 max_bond_dimension: 64,
2013 ..Default::default()
2014 };
2015
2016 let start_time = std::time::Instant::now();
2017
2018 let mut simulator = EnhancedTensorNetworkSimulator::new(config)?;
2020 simulator.initialize_state(num_qubits)?;
2021
2022 for i in 0..num_qubits.min(5) {
2024 let identity = Array2::eye(2);
2025 simulator.apply_single_qubit_gate(i, &identity)?;
2026 }
2027
2028 let execution_time = start_time.elapsed().as_secs_f64();
2029 results.insert(format!("{strategy:?}"), execution_time);
2030 }
2031
2032 Ok(results)
2033 }
2034
2035 #[must_use]
2037 pub fn analyze_contraction_complexity(
2038 num_qubits: usize,
2039 gate_structure: &[Vec<usize>], ) -> (f64, usize) {
2041 let mut total_flops = 0.0;
2043 let mut peak_memory = 0;
2044
2045 for gate_qubits in gate_structure {
2046 let gate_size = 1 << gate_qubits.len();
2047 total_flops += (gate_size as f64).powi(3);
2048 peak_memory = peak_memory.max(gate_size * std::mem::size_of::<Complex64>());
2049 }
2050
2051 (total_flops, peak_memory)
2052 }
2053}
2054
2055#[cfg(test)]
2056mod tests {
2057 use super::*;
2058 use approx::assert_abs_diff_eq;
2059
2060 #[test]
2061 fn test_enhanced_tensor_network_config() {
2062 let config = EnhancedTensorNetworkConfig::default();
2063 assert_eq!(config.max_bond_dimension, 1024);
2064 assert_eq!(config.contraction_strategy, ContractionStrategy::Adaptive);
2065 assert!(config.enable_approximations);
2066 }
2067
2068 #[test]
2069 fn test_tensor_index_creation() {
2070 let index = TensorIndex {
2071 label: "q0".to_string(),
2072 dimension: 2,
2073 index_type: IndexType::Physical,
2074 connected_tensors: vec![],
2075 };
2076
2077 assert_eq!(index.label, "q0");
2078 assert_eq!(index.dimension, 2);
2079 assert_eq!(index.index_type, IndexType::Physical);
2080 }
2081
2082 #[test]
2083 fn test_tensor_network_creation() {
2084 let mut network = TensorNetwork::new();
2085 assert_eq!(network.tensor_ids().len(), 0);
2086 assert_eq!(network.total_size(), 0);
2087 }
2088
2089 #[test]
2090 fn test_enhanced_tensor_creation() {
2091 let data = Array::zeros(IxDyn(&[2, 2]));
2092 let indices = vec![
2093 TensorIndex {
2094 label: "i0".to_string(),
2095 dimension: 2,
2096 index_type: IndexType::Physical,
2097 connected_tensors: vec![],
2098 },
2099 TensorIndex {
2100 label: "i1".to_string(),
2101 dimension: 2,
2102 index_type: IndexType::Physical,
2103 connected_tensors: vec![],
2104 },
2105 ];
2106
2107 let tensor = EnhancedTensor {
2108 data,
2109 indices,
2110 bond_dimensions: vec![2, 2],
2111 id: 0,
2112 memory_size: 4 * std::mem::size_of::<Complex64>(),
2113 contraction_cost: 8.0,
2114 priority: 1.0,
2115 };
2116
2117 assert_eq!(tensor.bond_dimensions, vec![2, 2]);
2118 assert_abs_diff_eq!(tensor.contraction_cost, 8.0, epsilon = 1e-10);
2119 }
2120
2121 #[test]
2122 fn test_enhanced_tensor_network_simulator() {
2123 let config = EnhancedTensorNetworkConfig::default();
2124 let mut simulator =
2125 EnhancedTensorNetworkSimulator::new(config).expect("simulator creation should succeed");
2126
2127 simulator
2128 .initialize_state(3)
2129 .expect("state initialization should succeed");
2130 assert_eq!(simulator.network.tensors.len(), 3);
2131 }
2132
2133 #[test]
2134 fn test_contraction_step() {
2135 let step = ContractionStep {
2136 tensor_ids: (1, 2),
2137 result_id: 3,
2138 flops: 1000.0,
2139 memory_required: 2048,
2140 result_dimensions: vec![2, 2],
2141 parallelizable: true,
2142 };
2143
2144 assert_eq!(step.tensor_ids, (1, 2));
2145 assert_eq!(step.result_id, 3);
2146 assert_abs_diff_eq!(step.flops, 1000.0, epsilon = 1e-10);
2147 assert!(step.parallelizable);
2148 }
2149
2150 #[test]
2151 fn test_memory_estimation() {
2152 let memory = EnhancedTensorNetworkUtils::estimate_memory_requirements(10, 20, 64);
2153 assert!(memory > 0);
2154 }
2155
2156 #[test]
2157 fn test_contraction_complexity_analysis() {
2158 let gate_structure = vec![
2159 vec![0], vec![1], vec![0, 1], ];
2163
2164 let (flops, memory) =
2165 EnhancedTensorNetworkUtils::analyze_contraction_complexity(2, &gate_structure);
2166 assert!(flops > 0.0);
2167 assert!(memory > 0);
2168 }
2169
2170 #[test]
2171 fn test_contraction_strategies() {
2172 let strategies = vec![ContractionStrategy::Greedy, ContractionStrategy::Adaptive];
2173
2174 let result = EnhancedTensorNetworkUtils::benchmark_contraction_strategies(3, &strategies);
2176 assert!(result.is_ok() || result.is_err());
2178 }
2179
2180 #[test]
2181 fn test_enhanced_tensor_network_algorithms() {
2182 let config = EnhancedTensorNetworkConfig::default();
2184 let simulator =
2185 EnhancedTensorNetworkSimulator::new(config).expect("simulator creation should succeed");
2186
2187 let tensor_ids = vec![0, 1, 2];
2188 let dp_result = simulator.optimize_path_dp(&tensor_ids);
2189 assert!(dp_result.is_ok());
2190
2191 let tree_result = simulator.optimize_path_tree(&tensor_ids);
2193 assert!(tree_result.is_ok());
2194
2195 let ml_result = simulator.optimize_path_ml(&tensor_ids);
2197 assert!(ml_result.is_ok());
2198
2199 let features_result = simulator.extract_network_features(&tensor_ids);
2201 assert!(features_result.is_ok());
2202
2203 let features = features_result.expect("features extraction should succeed");
2204 assert_eq!(features.num_tensors, 3);
2205 assert!(features.connectivity_density >= 0.0);
2206
2207 let prediction_result = simulator.ml_predict_strategy(&features);
2209 assert!(prediction_result.is_ok());
2210
2211 let prediction = prediction_result.expect("ML prediction should succeed");
2212 assert!(prediction.confidence >= 0.0 && prediction.confidence <= 1.0);
2213 }
2214}