quantrs2_sim/
auto_optimizer.rs

1//! `AutoOptimizer` for Automatic Backend Selection based on Problem Characteristics
2//!
3//! This module provides intelligent backend selection for quantum circuit simulation
4//! by analyzing circuit characteristics and automatically choosing the optimal
5//! execution backend using `SciRS2` optimization and analysis tools.
6
7use crate::{
8    automatic_parallelization::{AutoParallelConfig, AutoParallelEngine},
9    circuit_optimization::{CircuitOptimizer, OptimizationConfig},
10    distributed_simulator::{DistributedQuantumSimulator, DistributedSimulatorConfig},
11    error::{Result, SimulatorError},
12    large_scale_simulator::{LargeScaleQuantumSimulator, LargeScaleSimulatorConfig},
13    simulator::SimulatorResult,
14    statevector::StateVectorSimulator,
15};
16use quantrs2_circuit::builder::{Circuit, Simulator};
17use quantrs2_core::{
18    error::{QuantRS2Error, QuantRS2Result},
19    gate::GateOp,
20    qubit::QubitId,
21    register::Register,
22};
23use std::fmt::Write;
24
25#[cfg(all(feature = "gpu", not(target_os = "macos")))]
26use crate::gpu::SciRS2GpuStateVectorSimulator;
27use scirs2_core::parallel_ops::current_num_threads; // SciRS2 POLICY compliant
28use scirs2_core::Complex64;
29use serde::{Deserialize, Serialize};
30use std::collections::HashMap;
31use std::sync::Arc;
32use std::time::{Duration, Instant};
33
34/// Configuration for the `AutoOptimizer`
35#[derive(Debug, Clone, Serialize, Deserialize)]
36pub struct AutoOptimizerConfig {
37    /// Enable performance profiling during backend selection
38    pub enable_profiling: bool,
39    /// Memory budget for simulation (bytes)
40    pub memory_budget: usize,
41    /// CPU utilization threshold (0.0 to 1.0)
42    pub cpu_utilization_threshold: f64,
43    /// GPU availability check timeout
44    pub gpu_check_timeout: Duration,
45    /// Enable distributed simulation for large circuits
46    pub enable_distributed: bool,
47    /// `SciRS2` optimization level
48    pub scirs2_optimization_level: OptimizationLevel,
49    /// Fallback strategy when optimal backend is unavailable
50    pub fallback_strategy: FallbackStrategy,
51    /// Circuit complexity analysis depth
52    pub analysis_depth: AnalysisDepth,
53    /// Performance history cache size
54    pub performance_cache_size: usize,
55    /// Backend preference order
56    pub backend_preferences: Vec<BackendType>,
57}
58
59impl Default for AutoOptimizerConfig {
60    fn default() -> Self {
61        Self {
62            enable_profiling: true,
63            memory_budget: 8 * 1024 * 1024 * 1024, // 8GB
64            cpu_utilization_threshold: 0.8,
65            gpu_check_timeout: Duration::from_millis(1000),
66            enable_distributed: true,
67            scirs2_optimization_level: OptimizationLevel::Aggressive,
68            fallback_strategy: FallbackStrategy::Conservative,
69            analysis_depth: AnalysisDepth::Deep,
70            performance_cache_size: 1000,
71            backend_preferences: vec![
72                BackendType::SciRS2Gpu,
73                BackendType::LargeScale,
74                BackendType::Distributed,
75                BackendType::StateVector,
76            ],
77        }
78    }
79}
80
81/// Available backend types for optimization
82#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
83pub enum BackendType {
84    /// CPU state vector simulator
85    StateVector,
86    /// SciRS2-powered GPU simulator
87    SciRS2Gpu,
88    /// Large-scale optimized simulator
89    LargeScale,
90    /// Distributed cluster simulator
91    Distributed,
92    /// Automatic selection based on characteristics
93    Auto,
94}
95
96/// Optimization levels for `SciRS2` integration
97#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
98pub enum OptimizationLevel {
99    /// No optimization
100    None,
101    /// Basic optimizations
102    Basic,
103    /// Advanced optimizations
104    Advanced,
105    /// Aggressive optimizations with maximum `SciRS2` features
106    Aggressive,
107}
108
109/// Fallback strategies when optimal backend is unavailable
110#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
111pub enum FallbackStrategy {
112    /// Conservative fallback to reliable backends
113    Conservative,
114    /// Aggressive fallback trying more experimental backends
115    Aggressive,
116    /// Fail if optimal backend is unavailable
117    Fail,
118}
119
120/// Circuit analysis depth levels
121#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
122pub enum AnalysisDepth {
123    /// Quick analysis with basic metrics
124    Quick,
125    /// Standard analysis with comprehensive metrics
126    Standard,
127    /// Deep analysis with advanced circuit characterization
128    Deep,
129}
130
131/// Circuit characteristics analysis results
132#[derive(Debug, Clone)]
133pub struct CircuitCharacteristics {
134    /// Number of qubits
135    pub num_qubits: usize,
136    /// Number of gates
137    pub num_gates: usize,
138    /// Circuit depth (longest path)
139    pub circuit_depth: usize,
140    /// Gate type distribution
141    pub gate_distribution: HashMap<String, usize>,
142    /// Parallelism potential (0.0 to 1.0)
143    pub parallelism_potential: f64,
144    /// Memory requirement estimate (bytes)
145    pub memory_requirement: usize,
146    /// Computational complexity score
147    pub complexity_score: f64,
148    /// Two-qubit gate density
149    pub two_qubit_density: f64,
150    /// Connectivity graph properties
151    pub connectivity_properties: ConnectivityProperties,
152    /// Entanglement depth estimate
153    pub entanglement_depth: usize,
154    /// Noise susceptibility score
155    pub noise_susceptibility: f64,
156}
157
158/// Connectivity graph properties of the circuit
159#[derive(Debug, Clone)]
160pub struct ConnectivityProperties {
161    /// Maximum degree of connectivity
162    pub max_degree: usize,
163    /// Average degree of connectivity
164    pub avg_degree: f64,
165    /// Number of connected components
166    pub connected_components: usize,
167    /// Circuit diameter (longest path between any two qubits)
168    pub diameter: usize,
169    /// Clustering coefficient
170    pub clustering_coefficient: f64,
171}
172
173/// Backend recommendation with reasoning
174#[derive(Debug, Clone)]
175pub struct BackendRecommendation {
176    /// Recommended backend type
177    pub backend_type: BackendType,
178    /// Confidence score (0.0 to 1.0)
179    pub confidence: f64,
180    /// Expected performance improvement over baseline
181    pub expected_improvement: f64,
182    /// Estimated execution time
183    pub estimated_execution_time: Duration,
184    /// Estimated memory usage
185    pub estimated_memory_usage: usize,
186    /// Reasoning for the recommendation
187    pub reasoning: String,
188    /// Alternative recommendations
189    pub alternatives: Vec<(BackendType, f64)>,
190    /// Performance prediction model used
191    pub prediction_model: String,
192}
193
194/// Performance metrics for backend selection
195#[derive(Debug, Clone)]
196pub struct PerformanceMetrics {
197    /// Execution time
198    pub execution_time: Duration,
199    /// Memory usage
200    pub memory_usage: usize,
201    /// CPU utilization
202    pub cpu_utilization: f64,
203    /// GPU utilization (if applicable)
204    pub gpu_utilization: Option<f64>,
205    /// Throughput (gates per second)
206    pub throughput: f64,
207    /// Error rate
208    pub error_rate: f64,
209}
210
211/// Performance history entry for caching
212#[derive(Debug, Clone)]
213pub struct PerformanceHistory {
214    /// Circuit characteristics hash
215    pub circuit_hash: u64,
216    /// Backend used
217    pub backend_type: BackendType,
218    /// Performance metrics achieved
219    pub metrics: PerformanceMetrics,
220    /// Timestamp
221    pub timestamp: Instant,
222}
223
224/// `AutoOptimizer` for intelligent backend selection
225pub struct AutoOptimizer {
226    /// Configuration
227    config: AutoOptimizerConfig,
228    /// Circuit optimizer for preprocessing
229    circuit_optimizer: CircuitOptimizer,
230    /// Parallelization engine
231    parallel_engine: AutoParallelEngine,
232    /// Performance history cache
233    performance_cache: Vec<PerformanceHistory>,
234    /// Backend availability cache
235    backend_availability: HashMap<BackendType, bool>,
236    /// `SciRS2` analysis tools integration
237    scirs2_analyzer: SciRS2CircuitAnalyzer,
238}
239
240/// SciRS2-powered circuit analyzer
241struct SciRS2CircuitAnalyzer {
242    /// Enable advanced `SciRS2` features
243    enable_advanced_features: bool,
244}
245
246impl AutoOptimizer {
247    /// Create a new `AutoOptimizer` with default configuration
248    #[must_use]
249    pub fn new() -> Self {
250        Self::with_config(AutoOptimizerConfig::default())
251    }
252
253    /// Create a new `AutoOptimizer` with custom configuration
254    #[must_use]
255    pub fn with_config(config: AutoOptimizerConfig) -> Self {
256        let optimization_config = OptimizationConfig {
257            enable_gate_fusion: true,
258            enable_redundant_elimination: true,
259            enable_commutation_reordering: true,
260            enable_single_qubit_optimization: true,
261            enable_two_qubit_optimization: true,
262            max_passes: 3,
263            enable_depth_reduction: true,
264        };
265
266        let parallel_config = AutoParallelConfig {
267            max_threads: current_num_threads(), // SciRS2 POLICY compliant
268            min_gates_for_parallel: 20,
269            strategy: crate::automatic_parallelization::ParallelizationStrategy::Hybrid,
270            ..Default::default()
271        };
272
273        Self {
274            config,
275            circuit_optimizer: CircuitOptimizer::with_config(optimization_config),
276            parallel_engine: AutoParallelEngine::new(parallel_config),
277            performance_cache: Vec::new(),
278            backend_availability: HashMap::new(),
279            scirs2_analyzer: SciRS2CircuitAnalyzer {
280                enable_advanced_features: true,
281            },
282        }
283    }
284
285    /// Analyze circuit characteristics using `SciRS2` tools
286    pub fn analyze_circuit<const N: usize>(
287        &self,
288        circuit: &Circuit<N>,
289    ) -> QuantRS2Result<CircuitCharacteristics> {
290        let start_time = Instant::now();
291
292        // Basic circuit metrics
293        let num_qubits = circuit.num_qubits();
294        let num_gates = circuit.num_gates();
295        let circuit_depth = self.calculate_circuit_depth(circuit);
296
297        // Gate distribution analysis
298        let gate_distribution = self.analyze_gate_distribution(circuit);
299
300        // Parallelism analysis using SciRS2
301        let parallelism_potential = self.analyze_parallelism_potential(circuit)?;
302
303        // Memory requirement estimation
304        let memory_requirement = self.estimate_memory_requirement(num_qubits, num_gates);
305
306        // Complexity scoring using SciRS2 complexity analysis
307        let complexity_score = self.calculate_complexity_score(circuit)?;
308
309        // Two-qubit gate analysis
310        let two_qubit_density = self.calculate_two_qubit_density(circuit);
311
312        // Connectivity analysis
313        let connectivity_properties = self.analyze_connectivity(circuit)?;
314
315        // Entanglement depth estimation using SciRS2
316        let entanglement_depth = self.estimate_entanglement_depth(circuit)?;
317
318        // Noise susceptibility analysis
319        let noise_susceptibility = self.analyze_noise_susceptibility(circuit);
320
321        let analysis_time = start_time.elapsed();
322        if self.config.enable_profiling {
323            println!("Circuit analysis completed in {analysis_time:?}");
324        }
325
326        Ok(CircuitCharacteristics {
327            num_qubits,
328            num_gates,
329            circuit_depth,
330            gate_distribution,
331            parallelism_potential,
332            memory_requirement,
333            complexity_score,
334            two_qubit_density,
335            connectivity_properties,
336            entanglement_depth,
337            noise_susceptibility,
338        })
339    }
340
341    /// Recommend optimal backend based on circuit characteristics
342    pub fn recommend_backend<const N: usize>(
343        &mut self,
344        circuit: &Circuit<N>,
345    ) -> QuantRS2Result<BackendRecommendation> {
346        // Analyze circuit characteristics
347        let characteristics = self.analyze_circuit(circuit)?;
348
349        // Check backend availability
350        self.update_backend_availability()?;
351
352        // Check performance cache for similar circuits
353        if let Some(cached_result) = self.check_performance_cache(&characteristics) {
354            return Ok(self.build_recommendation_from_cache(cached_result));
355        }
356
357        // Generate recommendations based on characteristics
358        let recommendation = self.generate_backend_recommendation(&characteristics)?;
359
360        Ok(recommendation)
361    }
362
363    /// Execute circuit with automatic backend selection
364    pub fn execute_optimized<const N: usize>(
365        &mut self,
366        circuit: &Circuit<N>,
367    ) -> Result<SimulatorResult<N>> {
368        // Get backend recommendation
369        let recommendation = self
370            .recommend_backend(circuit)
371            .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
372
373        if self.config.enable_profiling {
374            println!(
375                "Using {} backend (confidence: {:.2})",
376                self.backend_type_name(recommendation.backend_type),
377                recommendation.confidence
378            );
379            println!("Reasoning: {}", recommendation.reasoning);
380        }
381
382        // Execute with recommended backend
383        let start_time = Instant::now();
384        let register = self.execute_with_backend(circuit, recommendation.backend_type)?;
385        let execution_time = start_time.elapsed();
386
387        // Convert Register to SimulatorResult
388        let result = self.register_to_simulator_result(register);
389
390        // Record performance metrics
391        if self.config.enable_profiling {
392            self.record_performance_metrics(circuit, recommendation.backend_type, execution_time);
393            println!("Execution completed in {execution_time:?}");
394        }
395
396        Ok(result)
397    }
398
399    /// Calculate circuit depth (critical path length)
400    fn calculate_circuit_depth<const N: usize>(&self, circuit: &Circuit<N>) -> usize {
401        let mut qubit_depths = HashMap::new();
402        let mut max_depth = 0;
403
404        for gate in circuit.gates() {
405            let qubits = gate.qubits();
406
407            // Find maximum depth among input qubits
408            let input_depth = qubits
409                .iter()
410                .map(|&q| qubit_depths.get(&q).copied().unwrap_or(0))
411                .max()
412                .unwrap_or(0);
413
414            let new_depth = input_depth + 1;
415
416            // Update depths for all output qubits
417            for &qubit in &qubits {
418                qubit_depths.insert(qubit, new_depth);
419            }
420
421            max_depth = max_depth.max(new_depth);
422        }
423
424        max_depth
425    }
426
427    /// Analyze gate distribution in the circuit
428    fn analyze_gate_distribution<const N: usize>(
429        &self,
430        circuit: &Circuit<N>,
431    ) -> HashMap<String, usize> {
432        let mut distribution = HashMap::new();
433
434        for gate in circuit.gates() {
435            let gate_name = gate.name().to_string();
436            *distribution.entry(gate_name).or_insert(0) += 1;
437        }
438
439        distribution
440    }
441
442    /// Analyze parallelism potential using `SciRS2` parallel ops
443    fn analyze_parallelism_potential<const N: usize>(
444        &self,
445        circuit: &Circuit<N>,
446    ) -> QuantRS2Result<f64> {
447        // Use SciRS2-powered parallelization analysis
448        let analysis = self.parallel_engine.analyze_circuit(circuit)?;
449        Ok(analysis.efficiency)
450    }
451
452    /// Estimate memory requirement for circuit simulation
453    const fn estimate_memory_requirement(&self, num_qubits: usize, num_gates: usize) -> usize {
454        // State vector memory: 2^n complex numbers
455        let state_vector_size = (1 << num_qubits) * std::mem::size_of::<Complex64>();
456
457        // Additional overhead for gate operations and intermediate results
458        let overhead = num_gates * 64; // Rough estimate
459
460        state_vector_size + overhead
461    }
462
463    /// Calculate circuit complexity score using `SciRS2` complexity analysis
464    fn calculate_complexity_score<const N: usize>(
465        &self,
466        circuit: &Circuit<N>,
467    ) -> QuantRS2Result<f64> {
468        let num_qubits = circuit.num_qubits() as f64;
469        let num_gates = circuit.num_gates() as f64;
470        let depth = self.calculate_circuit_depth(circuit) as f64;
471
472        // SciRS2-inspired complexity scoring
473        let gate_complexity = num_gates * (num_qubits.log2() + 1.0);
474        let depth_complexity = depth * num_qubits;
475        let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
476
477        Ok((gate_complexity + depth_complexity + entanglement_complexity) / 1000.0)
478    }
479
480    /// Estimate entanglement complexity
481    fn estimate_entanglement_complexity<const N: usize>(
482        &self,
483        circuit: &Circuit<N>,
484    ) -> QuantRS2Result<f64> {
485        let mut entanglement_score = 0.0;
486
487        for gate in circuit.gates() {
488            let qubits = gate.qubits();
489            if qubits.len() >= 2 {
490                // Two-qubit gates increase entanglement complexity
491                entanglement_score += qubits.len() as f64 * qubits.len() as f64;
492            }
493        }
494
495        Ok(entanglement_score)
496    }
497
498    /// Calculate two-qubit gate density
499    fn calculate_two_qubit_density<const N: usize>(&self, circuit: &Circuit<N>) -> f64 {
500        let total_gates = circuit.num_gates();
501        if total_gates == 0 {
502            return 0.0;
503        }
504
505        let two_qubit_gates = circuit
506            .gates()
507            .iter()
508            .filter(|gate| gate.qubits().len() >= 2)
509            .count();
510
511        two_qubit_gates as f64 / total_gates as f64
512    }
513
514    /// Analyze circuit connectivity using `SciRS2` graph analysis
515    fn analyze_connectivity<const N: usize>(
516        &self,
517        circuit: &Circuit<N>,
518    ) -> QuantRS2Result<ConnectivityProperties> {
519        let mut qubit_connections: HashMap<QubitId, Vec<QubitId>> = HashMap::new();
520
521        // Build connectivity graph
522        for gate in circuit.gates() {
523            let qubits = gate.qubits();
524            if qubits.len() >= 2 {
525                for i in 0..qubits.len() {
526                    for j in (i + 1)..qubits.len() {
527                        qubit_connections
528                            .entry(qubits[i])
529                            .or_default()
530                            .push(qubits[j]);
531                        qubit_connections
532                            .entry(qubits[j])
533                            .or_default()
534                            .push(qubits[i]);
535                    }
536                }
537            }
538        }
539
540        // Calculate connectivity properties
541        let max_degree = qubit_connections
542            .values()
543            .map(std::vec::Vec::len)
544            .max()
545            .unwrap_or(0);
546
547        let avg_degree = if qubit_connections.is_empty() {
548            0.0
549        } else {
550            qubit_connections
551                .values()
552                .map(std::vec::Vec::len)
553                .sum::<usize>() as f64
554                / qubit_connections.len() as f64
555        };
556
557        // Simplified connected components analysis
558        let connected_components = 1; // Simplified for now
559
560        // Simplified diameter calculation
561        let diameter = circuit.num_qubits().min(6); // Cap at 6 for practical purposes
562
563        // Simplified clustering coefficient
564        let clustering_coefficient = 0.5; // Placeholder
565
566        Ok(ConnectivityProperties {
567            max_degree,
568            avg_degree,
569            connected_components,
570            diameter,
571            clustering_coefficient,
572        })
573    }
574
575    /// Estimate entanglement depth using `SciRS2` analysis
576    fn estimate_entanglement_depth<const N: usize>(
577        &self,
578        circuit: &Circuit<N>,
579    ) -> QuantRS2Result<usize> {
580        // Simplified entanglement depth estimation
581        let two_qubit_gates = circuit
582            .gates()
583            .iter()
584            .filter(|gate| gate.qubits().len() >= 2)
585            .count();
586
587        // Rough estimate based on two-qubit gate count and circuit structure
588        let depth_estimate = (two_qubit_gates as f64).sqrt().ceil() as usize;
589        Ok(depth_estimate.min(circuit.num_qubits()))
590    }
591
592    /// Analyze noise susceptibility
593    fn analyze_noise_susceptibility<const N: usize>(&self, circuit: &Circuit<N>) -> f64 {
594        let depth = self.calculate_circuit_depth(circuit) as f64;
595        let two_qubit_density = self.calculate_two_qubit_density(circuit);
596
597        // Circuits with higher depth and more two-qubit gates are more susceptible to noise
598        (depth / 100.0 + two_qubit_density).min(1.0)
599    }
600
601    /// Update backend availability status
602    fn update_backend_availability(&mut self) -> QuantRS2Result<()> {
603        // Check GPU availability
604        #[cfg(all(feature = "gpu", not(target_os = "macos")))]
605        let gpu_available = SciRS2GpuStateVectorSimulator::is_available();
606        #[cfg(any(not(feature = "gpu"), target_os = "macos"))]
607        let gpu_available = false;
608
609        self.backend_availability
610            .insert(BackendType::SciRS2Gpu, gpu_available);
611
612        // CPU backends are always available
613        self.backend_availability
614            .insert(BackendType::StateVector, true);
615        self.backend_availability
616            .insert(BackendType::LargeScale, true);
617
618        // Distributed availability would require cluster check
619        self.backend_availability
620            .insert(BackendType::Distributed, false);
621
622        Ok(())
623    }
624
625    /// Check performance cache for similar circuits
626    fn check_performance_cache(
627        &self,
628        characteristics: &CircuitCharacteristics,
629    ) -> Option<&PerformanceHistory> {
630        // Simple cache lookup based on circuit characteristics
631        // In practice, would use more sophisticated similarity matching
632        self.performance_cache
633            .iter()
634            .find(|&entry| self.are_characteristics_similar(characteristics, entry))
635            .map(|v| v as _)
636    }
637
638    /// Check if circuit characteristics are similar to cached entry
639    const fn are_characteristics_similar(
640        &self,
641        characteristics: &CircuitCharacteristics,
642        entry: &PerformanceHistory,
643    ) -> bool {
644        // Simplified similarity check - in practice would be more sophisticated
645        false // Always return false for now to avoid cache hits during development
646    }
647
648    /// Build recommendation from cached performance data
649    fn build_recommendation_from_cache(
650        &self,
651        cache_entry: &PerformanceHistory,
652    ) -> BackendRecommendation {
653        BackendRecommendation {
654            backend_type: cache_entry.backend_type,
655            confidence: 0.9, // High confidence for cached results
656            expected_improvement: 0.0,
657            estimated_execution_time: cache_entry.metrics.execution_time,
658            estimated_memory_usage: cache_entry.metrics.memory_usage,
659            reasoning: "Based on cached performance data for similar circuits".to_string(),
660            alternatives: Vec::new(),
661            prediction_model: "Cache-based".to_string(),
662        }
663    }
664
665    /// Generate backend recommendation based on circuit characteristics
666    fn generate_backend_recommendation(
667        &self,
668        characteristics: &CircuitCharacteristics,
669    ) -> QuantRS2Result<BackendRecommendation> {
670        let mut scores: HashMap<BackendType, f64> = HashMap::new();
671        let mut reasoning = String::new();
672
673        // Score different backends based on circuit characteristics
674        for &backend_type in &self.config.backend_preferences {
675            if !self
676                .backend_availability
677                .get(&backend_type)
678                .unwrap_or(&false)
679            {
680                continue;
681            }
682
683            let score = self.score_backend_for_characteristics(backend_type, characteristics);
684            scores.insert(backend_type, score);
685        }
686
687        // Find the best backend
688        let (best_backend, best_score) = scores
689            .into_iter()
690            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
691            .unwrap_or((BackendType::StateVector, 0.5));
692
693        // Generate reasoning
694        reasoning = self.generate_recommendation_reasoning(best_backend, characteristics);
695
696        // Estimate performance
697        let estimated_execution_time = self.estimate_execution_time(best_backend, characteristics);
698        let estimated_memory_usage = characteristics.memory_requirement;
699
700        Ok(BackendRecommendation {
701            backend_type: best_backend,
702            confidence: best_score,
703            expected_improvement: (best_score - 0.5).max(0.0) * 2.0, // Normalize to improvement
704            estimated_execution_time,
705            estimated_memory_usage,
706            reasoning,
707            alternatives: Vec::new(),
708            prediction_model: "SciRS2-guided heuristic".to_string(),
709        })
710    }
711
712    /// Score a backend for given circuit characteristics
713    fn score_backend_for_characteristics(
714        &self,
715        backend_type: BackendType,
716        characteristics: &CircuitCharacteristics,
717    ) -> f64 {
718        let mut score: f64 = 0.5; // Base score
719
720        match backend_type {
721            BackendType::StateVector => {
722                // Good for small circuits
723                if characteristics.num_qubits <= 20 {
724                    score += 0.3;
725                }
726                if characteristics.num_gates <= 1000 {
727                    score += 0.2;
728                }
729            }
730            BackendType::SciRS2Gpu => {
731                // Good for medium to large circuits with high parallelism
732                if characteristics.num_qubits >= 10 && characteristics.num_qubits <= 30 {
733                    score += 0.4;
734                }
735                if characteristics.parallelism_potential > 0.5 {
736                    score += 0.3;
737                }
738                if characteristics.two_qubit_density > 0.3 {
739                    score += 0.2;
740                }
741            }
742            BackendType::LargeScale => {
743                // Good for large circuits
744                if characteristics.num_qubits >= 20 {
745                    score += 0.4;
746                }
747                if characteristics.complexity_score > 0.5 {
748                    score += 0.3;
749                }
750            }
751            BackendType::Distributed => {
752                // Good for very large circuits
753                if characteristics.num_qubits >= 30 {
754                    score += 0.5;
755                }
756                if characteristics.memory_requirement > self.config.memory_budget / 2 {
757                    score += 0.3;
758                }
759            }
760            BackendType::Auto => {
761                // Fallback case
762                score = 0.1;
763            }
764        }
765
766        score.min(1.0)
767    }
768
769    /// Generate recommendation reasoning text
770    fn generate_recommendation_reasoning(
771        &self,
772        backend_type: BackendType,
773        characteristics: &CircuitCharacteristics,
774    ) -> String {
775        match backend_type {
776            BackendType::StateVector => {
777                format!("CPU state vector simulator recommended for {} qubits, {} gates. Suitable for small circuits with straightforward execution.",
778                       characteristics.num_qubits, characteristics.num_gates)
779            }
780            BackendType::SciRS2Gpu => {
781                format!("SciRS2 GPU simulator recommended for {} qubits, {} gates. High parallelism potential ({:.2}) and two-qubit gate density ({:.2}) make GPU acceleration beneficial.",
782                       characteristics.num_qubits, characteristics.num_gates, characteristics.parallelism_potential, characteristics.two_qubit_density)
783            }
784            BackendType::LargeScale => {
785                format!("Large-scale simulator recommended for {} qubits, {} gates. Circuit complexity ({:.2}) and depth ({}) require optimized memory management.",
786                       characteristics.num_qubits, characteristics.num_gates, characteristics.complexity_score, characteristics.circuit_depth)
787            }
788            BackendType::Distributed => {
789                format!("Distributed simulator recommended for {} qubits, {} gates. Memory requirement ({:.1} MB) exceeds single-node capacity.",
790                       characteristics.num_qubits, characteristics.num_gates, characteristics.memory_requirement as f64 / (1024.0 * 1024.0))
791            }
792            BackendType::Auto => "Automatic backend selection".to_string(),
793        }
794    }
795
796    /// Estimate execution time for backend and characteristics
797    fn estimate_execution_time(
798        &self,
799        backend_type: BackendType,
800        characteristics: &CircuitCharacteristics,
801    ) -> Duration {
802        let base_time_ms = match backend_type {
803            BackendType::StateVector => characteristics.num_gates as u64 * 10,
804            BackendType::SciRS2Gpu => characteristics.num_gates as u64 * 2,
805            BackendType::LargeScale => characteristics.num_gates as u64 * 5,
806            BackendType::Distributed => characteristics.num_gates as u64 * 15,
807            BackendType::Auto => characteristics.num_gates as u64 * 10,
808        };
809
810        // Apply complexity factor
811        let complexity_factor = characteristics.complexity_score.mul_add(2.0, 1.0) as u64;
812        Duration::from_millis(base_time_ms * complexity_factor)
813    }
814
815    /// Execute circuit with specified backend
816    fn execute_with_backend<const N: usize>(
817        &self,
818        circuit: &Circuit<N>,
819        backend_type: BackendType,
820    ) -> Result<Register<N>> {
821        match backend_type {
822            BackendType::StateVector => {
823                let simulator = StateVectorSimulator::new();
824                simulator
825                    .run(circuit)
826                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
827                    .and_then(|result| {
828                        Register::with_amplitudes(result.amplitudes().to_vec())
829                            .map_err(|e| SimulatorError::ComputationError(e.to_string()))
830                    })
831            }
832            BackendType::SciRS2Gpu => {
833                #[cfg(all(feature = "gpu", not(target_os = "macos")))]
834                {
835                    let mut simulator = SciRS2GpuStateVectorSimulator::new()
836                        .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
837                    use crate::simulator::Simulator;
838                    simulator
839                        .run(circuit)
840                        .map_err(|e| SimulatorError::ComputationError(e.to_string()))
841                        .and_then(|result| {
842                            Register::with_amplitudes(result.amplitudes().to_vec())
843                                .map_err(|e| SimulatorError::ComputationError(e.to_string()))
844                        })
845                }
846                #[cfg(any(not(feature = "gpu"), target_os = "macos"))]
847                {
848                    // Fallback to state vector if GPU not available
849                    let simulator = StateVectorSimulator::new();
850                    simulator
851                        .run(circuit)
852                        .map_err(|e| SimulatorError::ComputationError(e.to_string()))
853                        .and_then(|result| {
854                            Register::with_amplitudes(result.amplitudes().to_vec())
855                                .map_err(|e| SimulatorError::ComputationError(e.to_string()))
856                        })
857                }
858            }
859            BackendType::LargeScale => {
860                // Create large-scale simulator with optimized configuration
861                let config = LargeScaleSimulatorConfig::default();
862                let simulator = LargeScaleQuantumSimulator::new(config)
863                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
864                simulator
865                    .run(circuit)
866                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
867            }
868            BackendType::Distributed => {
869                // Fallback to large-scale for now
870                let config = LargeScaleSimulatorConfig::default();
871                let simulator = LargeScaleQuantumSimulator::new(config)
872                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
873                simulator
874                    .run(circuit)
875                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
876            }
877            BackendType::Auto => {
878                // This should not happen, but fallback to state vector
879                let simulator = StateVectorSimulator::new();
880                simulator
881                    .run(circuit)
882                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
883            }
884        }
885    }
886
887    /// Convert Register to `SimulatorResult`
888    fn register_to_simulator_result<const N: usize>(
889        &self,
890        register: Register<N>,
891    ) -> SimulatorResult<N> {
892        // Extract amplitudes from register
893        let amplitudes = register.amplitudes().to_vec();
894
895        SimulatorResult {
896            amplitudes,
897            num_qubits: N,
898        }
899    }
900
901    /// Record performance metrics for future optimization
902    fn record_performance_metrics<const N: usize>(
903        &mut self,
904        circuit: &Circuit<N>,
905        backend_type: BackendType,
906        execution_time: Duration,
907    ) {
908        let metrics = PerformanceMetrics {
909            execution_time,
910            memory_usage: 0,      // Would be measured in practice
911            cpu_utilization: 0.0, // Would be measured in practice
912            gpu_utilization: None,
913            throughput: circuit.num_gates() as f64 / execution_time.as_secs_f64(),
914            error_rate: 0.0,
915        };
916
917        let history_entry = PerformanceHistory {
918            circuit_hash: self.compute_circuit_hash(circuit),
919            backend_type,
920            metrics,
921            timestamp: Instant::now(),
922        };
923
924        self.performance_cache.push(history_entry);
925
926        // Maintain cache size limit
927        if self.performance_cache.len() > self.config.performance_cache_size {
928            self.performance_cache.remove(0);
929        }
930    }
931
932    /// Compute hash for circuit caching
933    fn compute_circuit_hash<const N: usize>(&self, circuit: &Circuit<N>) -> u64 {
934        use std::collections::hash_map::DefaultHasher;
935        use std::hash::{Hash, Hasher};
936
937        let mut hasher = DefaultHasher::new();
938        circuit.num_gates().hash(&mut hasher);
939        circuit.num_qubits().hash(&mut hasher);
940
941        for gate in circuit.gates() {
942            gate.name().hash(&mut hasher);
943            gate.qubits().len().hash(&mut hasher);
944        }
945
946        hasher.finish()
947    }
948
949    /// Get human-readable backend type name
950    const fn backend_type_name(&self, backend_type: BackendType) -> &'static str {
951        match backend_type {
952            BackendType::StateVector => "CPU StateVector",
953            BackendType::SciRS2Gpu => "SciRS2 GPU",
954            BackendType::LargeScale => "Large-Scale",
955            BackendType::Distributed => "Distributed",
956            BackendType::Auto => "Auto",
957        }
958    }
959
960    /// Get optimization statistics
961    #[must_use]
962    pub fn get_performance_summary(&self) -> String {
963        let total_circuits = self.performance_cache.len();
964        if total_circuits == 0 {
965            return "No performance data available".to_string();
966        }
967
968        let avg_execution_time = self
969            .performance_cache
970            .iter()
971            .map(|entry| entry.metrics.execution_time.as_millis())
972            .sum::<u128>()
973            / total_circuits as u128;
974
975        let backend_usage: HashMap<BackendType, usize> =
976            self.performance_cache
977                .iter()
978                .fold(HashMap::new(), |mut acc, entry| {
979                    *acc.entry(entry.backend_type).or_insert(0) += 1;
980                    acc
981                });
982
983        let mut summary = "AutoOptimizer Performance Summary\n".to_string();
984        writeln!(summary, "Total circuits processed: {total_circuits}")
985            .expect("Writing to String should never fail");
986        writeln!(summary, "Average execution time: {avg_execution_time}ms")
987            .expect("Writing to String should never fail");
988        summary.push_str("Backend usage:\n");
989
990        for (backend, count) in backend_usage {
991            let percentage = (count as f64 / total_circuits as f64) * 100.0;
992            writeln!(
993                summary,
994                "  {}: {} ({:.1}%)",
995                self.backend_type_name(backend),
996                count,
997                percentage
998            )
999            .expect("Writing to String should never fail");
1000        }
1001
1002        summary
1003    }
1004}
1005
1006impl Default for AutoOptimizer {
1007    fn default() -> Self {
1008        Self::new()
1009    }
1010}
1011
1012impl SciRS2CircuitAnalyzer {
1013    /// Analyze circuit using `SciRS2` tools (placeholder for future `SciRS2` integration)
1014    const fn analyze_circuit_with_scirs2<const N: usize>(
1015        &self,
1016        _circuit: &Circuit<N>,
1017    ) -> QuantRS2Result<f64> {
1018        // Placeholder for SciRS2-specific circuit analysis
1019        // Would use scirs2_core analysis tools when available
1020        Ok(0.7) // Mock analysis result
1021    }
1022}
1023
1024/// Convenience function to execute a circuit with automatic optimization
1025pub fn execute_with_auto_optimization<const N: usize>(
1026    circuit: &Circuit<N>,
1027) -> Result<SimulatorResult<N>> {
1028    let mut optimizer = AutoOptimizer::new();
1029    optimizer.execute_optimized(circuit)
1030}
1031
1032/// Convenience function to get backend recommendation for a circuit
1033pub fn recommend_backend_for_circuit<const N: usize>(
1034    circuit: &Circuit<N>,
1035) -> QuantRS2Result<BackendRecommendation> {
1036    let mut optimizer = AutoOptimizer::new();
1037    optimizer.recommend_backend(circuit)
1038}
1039
1040#[cfg(test)]
1041mod tests {
1042    use super::*;
1043    use quantrs2_circuit::builder::CircuitBuilder;
1044
1045    #[test]
1046    fn test_auto_optimizer_creation() {
1047        let optimizer = AutoOptimizer::new();
1048        assert!(optimizer.config.enable_profiling);
1049    }
1050
1051    #[test]
1052    fn test_circuit_characteristics_analysis() {
1053        let optimizer = AutoOptimizer::new();
1054
1055        // Create a simple test circuit
1056        let mut builder = CircuitBuilder::<4>::new();
1057        let _ = builder.h(0);
1058        let _ = builder.cnot(0, 1);
1059        let _ = builder.h(2);
1060        let _ = builder.cnot(2, 3);
1061        let circuit = builder.build();
1062
1063        let characteristics = optimizer
1064            .analyze_circuit(&circuit)
1065            .expect("Failed to analyze circuit characteristics");
1066
1067        assert_eq!(characteristics.num_qubits, 4);
1068        assert_eq!(characteristics.num_gates, 4);
1069        assert!(characteristics.circuit_depth > 0);
1070        assert!(characteristics.two_qubit_density > 0.0);
1071    }
1072
1073    #[test]
1074    fn test_backend_recommendation() {
1075        let mut optimizer = AutoOptimizer::new();
1076
1077        // Create a small circuit
1078        let mut builder = CircuitBuilder::<2>::new();
1079        let _ = builder.h(0);
1080        let _ = builder.cnot(0, 1);
1081        let circuit = builder.build();
1082
1083        let recommendation = optimizer
1084            .recommend_backend(&circuit)
1085            .expect("Failed to get backend recommendation");
1086
1087        assert!(recommendation.confidence > 0.0);
1088        assert!(!recommendation.reasoning.is_empty());
1089    }
1090
1091    #[test]
1092    fn test_execute_with_optimization() {
1093        let mut optimizer = AutoOptimizer::new();
1094
1095        // Create a simple circuit
1096        let mut builder = CircuitBuilder::<2>::new();
1097        let _ = builder.h(0);
1098        let _ = builder.cnot(0, 1);
1099        let circuit = builder.build();
1100
1101        let result = optimizer.execute_optimized(&circuit);
1102        assert!(result.is_ok());
1103
1104        if let Ok(sim_result) = result {
1105            assert_eq!(sim_result.num_qubits, 2);
1106            assert_eq!(sim_result.amplitudes.len(), 4);
1107        }
1108    }
1109
1110    #[test]
1111    fn test_convenience_functions() {
1112        // Create a simple circuit
1113        let mut builder = CircuitBuilder::<2>::new();
1114        let _ = builder.h(0);
1115        let _ = builder.cnot(0, 1);
1116        let circuit = builder.build();
1117
1118        // Test recommendation function
1119        let recommendation = recommend_backend_for_circuit(&circuit);
1120        assert!(recommendation.is_ok());
1121
1122        // Test execution function
1123        let result = execute_with_auto_optimization(&circuit);
1124        assert!(result.is_ok());
1125    }
1126}