quantrs2_sim/
advanced_ml_error_mitigation.rs

1//! Advanced Machine Learning Error Mitigation Techniques
2//!
3//! This module implements state-of-the-art machine learning approaches for quantum error mitigation,
4//! going beyond traditional ZNE and virtual distillation. It includes deep learning models,
5//! reinforcement learning agents, transfer learning capabilities, and ensemble methods for
6//! robust quantum error mitigation across different hardware platforms and noise models.
7//!
8//! Key features:
9//! - Deep neural networks for complex noise pattern learning
10//! - Reinforcement learning for optimal mitigation strategy selection
11//! - Transfer learning for cross-device mitigation optimization
12//! - Adversarial training for robustness against unknown noise
13//! - Ensemble methods combining multiple mitigation strategies
14//! - Online learning for real-time adaptation to drifting noise
15//! - Graph neural networks for circuit structure-aware mitigation
16//! - Attention mechanisms for long-range error correlations
17
18use scirs2_core::ndarray::{Array1, Array2, Array3};
19use scirs2_core::random::{thread_rng, Rng};
20use serde::{Deserialize, Serialize};
21use std::collections::{HashMap, VecDeque};
22
23use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
24use crate::error::{Result, SimulatorError};
25use scirs2_core::random::prelude::*;
26
27/// Advanced ML error mitigation configuration
28#[derive(Debug, Clone)]
29pub struct AdvancedMLMitigationConfig {
30    /// Enable deep learning models
31    pub enable_deep_learning: bool,
32    /// Enable reinforcement learning
33    pub enable_reinforcement_learning: bool,
34    /// Enable transfer learning
35    pub enable_transfer_learning: bool,
36    /// Enable adversarial training
37    pub enable_adversarial_training: bool,
38    /// Enable ensemble methods
39    pub enable_ensemble_methods: bool,
40    /// Enable online learning
41    pub enable_online_learning: bool,
42    /// Learning rate for adaptive methods
43    pub learning_rate: f64,
44    /// Batch size for training
45    pub batch_size: usize,
46    /// Memory size for experience replay
47    pub memory_size: usize,
48    /// Exploration rate for RL
49    pub exploration_rate: f64,
50    /// Transfer learning alpha
51    pub transfer_alpha: f64,
52    /// Ensemble size
53    pub ensemble_size: usize,
54}
55
56impl Default for AdvancedMLMitigationConfig {
57    fn default() -> Self {
58        Self {
59            enable_deep_learning: true,
60            enable_reinforcement_learning: true,
61            enable_transfer_learning: false,
62            enable_adversarial_training: false,
63            enable_ensemble_methods: true,
64            enable_online_learning: true,
65            learning_rate: 0.001,
66            batch_size: 64,
67            memory_size: 10_000,
68            exploration_rate: 0.1,
69            transfer_alpha: 0.5,
70            ensemble_size: 5,
71        }
72    }
73}
74
75/// Deep learning model for error mitigation
76#[derive(Debug, Clone)]
77pub struct DeepMitigationNetwork {
78    /// Network architecture
79    pub layers: Vec<usize>,
80    /// Weights for each layer
81    pub weights: Vec<Array2<f64>>,
82    /// Biases for each layer
83    pub biases: Vec<Array1<f64>>,
84    /// Activation function
85    pub activation: ActivationFunction,
86    /// Loss history
87    pub loss_history: Vec<f64>,
88}
89
90/// Activation functions for neural networks
91#[derive(Debug, Clone, Copy, PartialEq, Eq)]
92pub enum ActivationFunction {
93    ReLU,
94    Sigmoid,
95    Tanh,
96    Swish,
97    GELU,
98}
99
100/// Reinforcement learning agent for mitigation strategy selection
101#[derive(Debug, Clone)]
102pub struct QLearningMitigationAgent {
103    /// Q-table for state-action values
104    pub q_table: HashMap<String, HashMap<MitigationAction, f64>>,
105    /// Learning rate
106    pub learning_rate: f64,
107    /// Discount factor
108    pub discount_factor: f64,
109    /// Exploration rate
110    pub exploration_rate: f64,
111    /// Experience replay buffer
112    pub experience_buffer: VecDeque<Experience>,
113    /// Training statistics
114    pub stats: RLTrainingStats,
115}
116
117/// Mitigation actions for reinforcement learning
118#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
119pub enum MitigationAction {
120    ZeroNoiseExtrapolation,
121    VirtualDistillation,
122    SymmetryVerification,
123    PauliTwirling,
124    RandomizedCompiling,
125    ClusterExpansion,
126    MachineLearningPrediction,
127    EnsembleMitigation,
128}
129
130/// Experience for reinforcement learning
131#[derive(Debug, Clone)]
132pub struct Experience {
133    /// State representation
134    pub state: Array1<f64>,
135    /// Action taken
136    pub action: MitigationAction,
137    /// Reward received
138    pub reward: f64,
139    /// Next state
140    pub next_state: Array1<f64>,
141    /// Whether episode terminated
142    pub done: bool,
143}
144
145/// Reinforcement learning training statistics
146#[derive(Debug, Clone, Default)]
147pub struct RLTrainingStats {
148    /// Total episodes
149    pub episodes: usize,
150    /// Average reward per episode
151    pub avg_reward: f64,
152    /// Success rate
153    pub success_rate: f64,
154    /// Exploration rate decay
155    pub exploration_decay: f64,
156    /// Loss convergence
157    pub loss_convergence: Vec<f64>,
158}
159
160/// Transfer learning model for cross-device mitigation
161#[derive(Debug, Clone)]
162pub struct TransferLearningModel {
163    /// Source device characteristics
164    pub source_device: DeviceCharacteristics,
165    /// Target device characteristics
166    pub target_device: DeviceCharacteristics,
167    /// Shared feature extractor
168    pub feature_extractor: DeepMitigationNetwork,
169    /// Device-specific heads
170    pub device_heads: HashMap<String, DeepMitigationNetwork>,
171    /// Transfer learning alpha
172    pub transfer_alpha: f64,
173    /// Adaptation statistics
174    pub adaptation_stats: TransferStats,
175}
176
177/// Device characteristics for transfer learning
178#[derive(Debug, Clone)]
179pub struct DeviceCharacteristics {
180    /// Device identifier
181    pub device_id: String,
182    /// Gate error rates
183    pub gate_errors: HashMap<String, f64>,
184    /// Coherence times
185    pub coherence_times: HashMap<String, f64>,
186    /// Connectivity graph
187    pub connectivity: Array2<bool>,
188    /// Noise correlations
189    pub noise_correlations: Array2<f64>,
190}
191
192/// Transfer learning statistics
193#[derive(Debug, Clone, Default)]
194pub struct TransferStats {
195    /// Adaptation loss
196    pub adaptation_loss: f64,
197    /// Source domain performance
198    pub source_performance: f64,
199    /// Target domain performance
200    pub target_performance: f64,
201    /// Transfer efficiency
202    pub transfer_efficiency: f64,
203}
204
205/// Ensemble mitigation combining multiple strategies
206pub struct EnsembleMitigation {
207    /// Individual mitigation models
208    pub models: Vec<Box<dyn MitigationModel>>,
209    /// Model weights
210    pub weights: Array1<f64>,
211    /// Combination strategy
212    pub combination_strategy: EnsembleStrategy,
213    /// Performance history
214    pub performance_history: Vec<f64>,
215}
216
217/// Ensemble combination strategies
218#[derive(Debug, Clone, Copy, PartialEq, Eq)]
219pub enum EnsembleStrategy {
220    /// Weighted average
221    WeightedAverage,
222    /// Majority voting
223    MajorityVoting,
224    /// Stacking with meta-learner
225    Stacking,
226    /// Dynamic selection
227    DynamicSelection,
228    /// Bayesian model averaging
229    BayesianAveraging,
230}
231
232/// Trait for mitigation models
233pub trait MitigationModel: Send + Sync {
234    /// Apply mitigation to measurement results
235    fn mitigate(&self, measurements: &Array1<f64>, circuit: &InterfaceCircuit) -> Result<f64>;
236
237    /// Update model with new data
238    fn update(&mut self, training_data: &[(Array1<f64>, f64)]) -> Result<()>;
239
240    /// Get model confidence
241    fn confidence(&self) -> f64;
242
243    /// Get model name
244    fn name(&self) -> String;
245}
246
247/// Advanced ML error mitigation result
248#[derive(Debug, Clone, Serialize, Deserialize)]
249pub struct AdvancedMLMitigationResult {
250    /// Mitigated expectation value
251    pub mitigated_value: f64,
252    /// Confidence in mitigation
253    pub confidence: f64,
254    /// Model used for mitigation
255    pub model_used: String,
256    /// Raw measurements
257    pub raw_measurements: Vec<f64>,
258    /// Mitigation overhead
259    pub overhead: f64,
260    /// Error reduction estimate
261    pub error_reduction: f64,
262    /// Model performance metrics
263    pub performance_metrics: PerformanceMetrics,
264}
265
266/// Performance metrics for mitigation models
267#[derive(Debug, Clone, Default, Serialize, Deserialize)]
268pub struct PerformanceMetrics {
269    /// Mean absolute error
270    pub mae: f64,
271    /// Root mean square error
272    pub rmse: f64,
273    /// R-squared coefficient
274    pub r_squared: f64,
275    /// Bias
276    pub bias: f64,
277    /// Variance
278    pub variance: f64,
279    /// Computational time
280    pub computation_time_ms: f64,
281}
282
283/// Graph Neural Network for circuit-aware mitigation
284#[derive(Debug, Clone)]
285pub struct GraphMitigationNetwork {
286    /// Node features (gates)
287    pub node_features: Array2<f64>,
288    /// Edge features (connections)
289    pub edge_features: Array3<f64>,
290    /// Attention weights
291    pub attention_weights: Array2<f64>,
292    /// Graph convolution layers
293    pub conv_layers: Vec<GraphConvLayer>,
294    /// Global pooling method
295    pub pooling: GraphPooling,
296}
297
298/// Graph convolution layer
299#[derive(Debug, Clone)]
300pub struct GraphConvLayer {
301    /// Weight matrix
302    pub weights: Array2<f64>,
303    /// Bias vector
304    pub bias: Array1<f64>,
305    /// Activation function
306    pub activation: ActivationFunction,
307}
308
309/// Graph pooling methods
310#[derive(Debug, Clone, Copy, PartialEq, Eq)]
311pub enum GraphPooling {
312    Mean,
313    Max,
314    Sum,
315    Attention,
316    Set2Set,
317}
318
319/// Main advanced ML error mitigation system
320pub struct AdvancedMLErrorMitigator {
321    /// Configuration
322    config: AdvancedMLMitigationConfig,
323    /// Deep learning model
324    deep_model: Option<DeepMitigationNetwork>,
325    /// Reinforcement learning agent
326    rl_agent: Option<QLearningMitigationAgent>,
327    /// Transfer learning model
328    transfer_model: Option<TransferLearningModel>,
329    /// Ensemble model
330    ensemble: Option<EnsembleMitigation>,
331    /// Graph neural network
332    graph_model: Option<GraphMitigationNetwork>,
333    /// Training data history
334    training_history: VecDeque<(Array1<f64>, f64)>,
335    /// Performance tracker
336    performance_tracker: PerformanceTracker,
337}
338
339/// Performance tracking for mitigation models
340#[derive(Debug, Clone, Default)]
341pub struct PerformanceTracker {
342    /// Model accuracies over time
343    pub accuracy_history: HashMap<String, Vec<f64>>,
344    /// Computational costs
345    pub cost_history: HashMap<String, Vec<f64>>,
346    /// Error reduction achieved
347    pub error_reduction_history: Vec<f64>,
348    /// Best performing model per task
349    pub best_models: HashMap<String, String>,
350}
351
352impl AdvancedMLErrorMitigator {
353    /// Create new advanced ML error mitigator
354    pub fn new(config: AdvancedMLMitigationConfig) -> Result<Self> {
355        let mut mitigator = Self {
356            config: config.clone(),
357            deep_model: None,
358            rl_agent: None,
359            transfer_model: None,
360            ensemble: None,
361            graph_model: None,
362            training_history: VecDeque::with_capacity(config.memory_size),
363            performance_tracker: PerformanceTracker::default(),
364        };
365
366        // Initialize enabled models
367        if config.enable_deep_learning {
368            mitigator.deep_model = Some(mitigator.create_deep_model()?);
369        }
370
371        if config.enable_reinforcement_learning {
372            mitigator.rl_agent = Some(mitigator.create_rl_agent()?);
373        }
374
375        if config.enable_ensemble_methods {
376            mitigator.ensemble = Some(mitigator.create_ensemble()?);
377        }
378
379        Ok(mitigator)
380    }
381
382    /// Apply advanced ML error mitigation
383    pub fn mitigate_errors(
384        &mut self,
385        measurements: &Array1<f64>,
386        circuit: &InterfaceCircuit,
387    ) -> Result<AdvancedMLMitigationResult> {
388        let start_time = std::time::Instant::now();
389
390        // Extract features from circuit and measurements
391        let features = self.extract_features(circuit, measurements)?;
392
393        // Select best mitigation strategy
394        let strategy = self.select_mitigation_strategy(&features)?;
395
396        // Apply selected mitigation
397        let mitigated_value = match strategy {
398            MitigationAction::MachineLearningPrediction => {
399                self.apply_deep_learning_mitigation(&features, measurements)?
400            }
401            MitigationAction::EnsembleMitigation => {
402                self.apply_ensemble_mitigation(&features, measurements, circuit)?
403            }
404            _ => {
405                // Fall back to traditional methods
406                self.apply_traditional_mitigation(strategy, measurements, circuit)?
407            }
408        };
409
410        // Calculate confidence and performance metrics
411        let confidence = self.calculate_confidence(&features, mitigated_value)?;
412        let error_reduction = self.estimate_error_reduction(measurements, mitigated_value)?;
413
414        let computation_time = start_time.elapsed().as_millis() as f64;
415
416        // Update models with new data
417        self.update_models(&features, mitigated_value)?;
418
419        Ok(AdvancedMLMitigationResult {
420            mitigated_value,
421            confidence,
422            model_used: format!("{strategy:?}"),
423            raw_measurements: measurements.to_vec(),
424            overhead: computation_time / 1000.0, // Convert to seconds
425            error_reduction,
426            performance_metrics: PerformanceMetrics {
427                computation_time_ms: computation_time,
428                ..Default::default()
429            },
430        })
431    }
432
433    /// Create deep learning model
434    pub fn create_deep_model(&self) -> Result<DeepMitigationNetwork> {
435        let layers = vec![18, 128, 64, 32, 1]; // Architecture for error prediction
436        let mut weights = Vec::new();
437        let mut biases = Vec::new();
438
439        // Initialize weights and biases with Xavier initialization
440        for i in 0..layers.len() - 1 {
441            let fan_in = layers[i];
442            let fan_out = layers[i + 1];
443            let limit = (6.0 / (fan_in + fan_out) as f64).sqrt();
444
445            let w =
446                Array2::from_shape_fn((fan_out, fan_in), |_| thread_rng().gen_range(-limit..limit));
447            let b = Array1::zeros(fan_out);
448
449            weights.push(w);
450            biases.push(b);
451        }
452
453        Ok(DeepMitigationNetwork {
454            layers,
455            weights,
456            biases,
457            activation: ActivationFunction::ReLU,
458            loss_history: Vec::new(),
459        })
460    }
461
462    /// Create reinforcement learning agent
463    pub fn create_rl_agent(&self) -> Result<QLearningMitigationAgent> {
464        Ok(QLearningMitigationAgent {
465            q_table: HashMap::new(),
466            learning_rate: self.config.learning_rate,
467            discount_factor: 0.95,
468            exploration_rate: self.config.exploration_rate,
469            experience_buffer: VecDeque::with_capacity(self.config.memory_size),
470            stats: RLTrainingStats::default(),
471        })
472    }
473
474    /// Create ensemble model
475    fn create_ensemble(&self) -> Result<EnsembleMitigation> {
476        let models: Vec<Box<dyn MitigationModel>> = Vec::new();
477        let weights = Array1::ones(self.config.ensemble_size) / self.config.ensemble_size as f64;
478
479        Ok(EnsembleMitigation {
480            models,
481            weights,
482            combination_strategy: EnsembleStrategy::WeightedAverage,
483            performance_history: Vec::new(),
484        })
485    }
486
487    /// Extract features from circuit and measurements
488    pub fn extract_features(
489        &self,
490        circuit: &InterfaceCircuit,
491        measurements: &Array1<f64>,
492    ) -> Result<Array1<f64>> {
493        let mut features = Vec::new();
494
495        // Circuit features
496        features.push(circuit.gates.len() as f64); // Circuit depth
497        features.push(circuit.num_qubits as f64); // Number of qubits
498
499        // Gate type distribution
500        let mut gate_counts = HashMap::new();
501        for gate in &circuit.gates {
502            *gate_counts
503                .entry(format!("{:?}", gate.gate_type))
504                .or_insert(0) += 1;
505        }
506
507        // Add normalized gate counts (top 10 most common gates)
508        let total_gates = circuit.gates.len() as f64;
509        for gate_type in [
510            "PauliX", "PauliY", "PauliZ", "Hadamard", "CNOT", "CZ", "RX", "RY", "RZ", "Phase",
511        ] {
512            let count = gate_counts.get(gate_type).unwrap_or(&0);
513            features.push(f64::from(*count) / total_gates);
514        }
515
516        // Measurement statistics
517        features.push(measurements.mean().unwrap_or(0.0));
518        features.push(measurements.std(0.0));
519        features.push(measurements.var(0.0));
520        features.push(measurements.len() as f64);
521
522        // Circuit topology features
523        features.push(self.calculate_circuit_connectivity(circuit)?);
524        features.push(self.calculate_entanglement_estimate(circuit)?);
525
526        Ok(Array1::from_vec(features))
527    }
528
529    /// Select optimal mitigation strategy using RL agent
530    pub fn select_mitigation_strategy(
531        &mut self,
532        features: &Array1<f64>,
533    ) -> Result<MitigationAction> {
534        if let Some(ref mut agent) = self.rl_agent {
535            let state_key = Self::features_to_state_key(features);
536
537            // Epsilon-greedy action selection
538            if thread_rng().gen::<f64>() < agent.exploration_rate {
539                // Random exploration
540                let actions = [
541                    MitigationAction::ZeroNoiseExtrapolation,
542                    MitigationAction::VirtualDistillation,
543                    MitigationAction::MachineLearningPrediction,
544                    MitigationAction::EnsembleMitigation,
545                ];
546                Ok(actions[thread_rng().gen_range(0..actions.len())])
547            } else {
548                // Greedy exploitation
549                let q_values = agent.q_table.get(&state_key).cloned().unwrap_or_default();
550
551                let best_action = q_values
552                    .iter()
553                    .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
554                    .map_or(
555                        MitigationAction::MachineLearningPrediction,
556                        |(action, _)| *action,
557                    );
558
559                Ok(best_action)
560            }
561        } else {
562            // Default strategy if no RL agent
563            Ok(MitigationAction::MachineLearningPrediction)
564        }
565    }
566
567    /// Apply deep learning based mitigation
568    fn apply_deep_learning_mitigation(
569        &self,
570        features: &Array1<f64>,
571        measurements: &Array1<f64>,
572    ) -> Result<f64> {
573        if let Some(ref model) = self.deep_model {
574            let prediction = Self::forward_pass_static(model, features)?;
575
576            // Use prediction to correct measurements
577            let correction_factor = prediction[0];
578            let mitigated_value = measurements.mean().unwrap_or(0.0) * (1.0 + correction_factor);
579
580            Ok(mitigated_value)
581        } else {
582            Err(SimulatorError::InvalidConfiguration(
583                "Deep learning model not initialized".to_string(),
584            ))
585        }
586    }
587
588    /// Apply ensemble mitigation
589    fn apply_ensemble_mitigation(
590        &self,
591        features: &Array1<f64>,
592        measurements: &Array1<f64>,
593        circuit: &InterfaceCircuit,
594    ) -> Result<f64> {
595        if let Some(ref ensemble) = self.ensemble {
596            let mut predictions = Vec::new();
597
598            // Collect predictions from all models
599            for model in &ensemble.models {
600                let prediction = model.mitigate(measurements, circuit)?;
601                predictions.push(prediction);
602            }
603
604            // Combine predictions using ensemble strategy
605            let mitigated_value = match ensemble.combination_strategy {
606                EnsembleStrategy::WeightedAverage => {
607                    let weighted_sum: f64 = predictions
608                        .iter()
609                        .zip(ensemble.weights.iter())
610                        .map(|(pred, weight)| pred * weight)
611                        .sum();
612                    weighted_sum
613                }
614                EnsembleStrategy::MajorityVoting => {
615                    // For regression, use median
616                    let mut sorted_predictions = predictions.clone();
617                    sorted_predictions
618                        .sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
619                    sorted_predictions[sorted_predictions.len() / 2]
620                }
621                _ => {
622                    // Default to simple average
623                    predictions.iter().sum::<f64>() / predictions.len() as f64
624                }
625            };
626
627            Ok(mitigated_value)
628        } else {
629            // Fallback to simple measurement average
630            Ok(measurements.mean().unwrap_or(0.0))
631        }
632    }
633
634    /// Apply traditional mitigation methods
635    pub fn apply_traditional_mitigation(
636        &self,
637        strategy: MitigationAction,
638        measurements: &Array1<f64>,
639        _circuit: &InterfaceCircuit,
640    ) -> Result<f64> {
641        match strategy {
642            MitigationAction::ZeroNoiseExtrapolation => {
643                // Simple linear extrapolation for demonstration
644                let noise_factors = [1.0, 1.5, 2.0];
645                let values: Vec<f64> = noise_factors
646                    .iter()
647                    .zip(measurements.iter())
648                    .map(|(factor, &val)| val / factor)
649                    .collect();
650
651                // Linear extrapolation to zero noise
652                let extrapolated = 2.0f64.mul_add(values[0], -values[1]);
653                Ok(extrapolated)
654            }
655            MitigationAction::VirtualDistillation => {
656                // Simple virtual distillation approximation
657                let mean_val = measurements.mean().unwrap_or(0.0);
658                let variance = measurements.var(0.0);
659                let corrected = mean_val + variance * 0.1; // Simple correction
660                Ok(corrected)
661            }
662            _ => {
663                // Default to measurement average
664                Ok(measurements.mean().unwrap_or(0.0))
665            }
666        }
667    }
668
669    /// Forward pass through neural network (static)
670    fn forward_pass_static(
671        model: &DeepMitigationNetwork,
672        input: &Array1<f64>,
673    ) -> Result<Array1<f64>> {
674        let mut current = input.clone();
675
676        for (weights, bias) in model.weights.iter().zip(model.biases.iter()) {
677            // Linear transformation: Wx + b
678            current = weights.dot(&current) + bias;
679
680            // Apply activation function
681            current.mapv_inplace(|x| Self::apply_activation_static(x, model.activation));
682        }
683
684        Ok(current)
685    }
686
687    /// Apply activation function (static version)
688    fn apply_activation_static(x: f64, activation: ActivationFunction) -> f64 {
689        match activation {
690            ActivationFunction::ReLU => x.max(0.0),
691            ActivationFunction::Sigmoid => 1.0 / (1.0 + (-x).exp()),
692            ActivationFunction::Tanh => x.tanh(),
693            ActivationFunction::Swish => x * (1.0 / (1.0 + (-x).exp())),
694            ActivationFunction::GELU => {
695                0.5 * x
696                    * (1.0
697                        + ((2.0 / std::f64::consts::PI).sqrt()
698                            * 0.044_715f64.mul_add(x.powi(3), x))
699                        .tanh())
700            }
701        }
702    }
703
704    /// Apply activation function
705    #[must_use]
706    pub fn apply_activation(&self, x: f64, activation: ActivationFunction) -> f64 {
707        Self::apply_activation_static(x, activation)
708    }
709
710    /// Public wrapper for forward pass (for testing)
711    pub fn forward_pass(
712        &self,
713        model: &DeepMitigationNetwork,
714        input: &Array1<f64>,
715    ) -> Result<Array1<f64>> {
716        Self::forward_pass_static(model, input)
717    }
718
719    /// Calculate circuit connectivity measure
720    fn calculate_circuit_connectivity(&self, circuit: &InterfaceCircuit) -> Result<f64> {
721        if circuit.num_qubits == 0 {
722            return Ok(0.0);
723        }
724
725        let mut connectivity_sum = 0.0;
726        let total_possible_connections = (circuit.num_qubits * (circuit.num_qubits - 1)) / 2;
727
728        for gate in &circuit.gates {
729            if gate.qubits.len() > 1 {
730                connectivity_sum += 1.0;
731            }
732        }
733
734        Ok(connectivity_sum / total_possible_connections as f64)
735    }
736
737    /// Estimate entanglement in circuit
738    fn calculate_entanglement_estimate(&self, circuit: &InterfaceCircuit) -> Result<f64> {
739        let mut entangling_gates = 0;
740
741        for gate in &circuit.gates {
742            match gate.gate_type {
743                InterfaceGateType::CNOT
744                | InterfaceGateType::CZ
745                | InterfaceGateType::CY
746                | InterfaceGateType::SWAP
747                | InterfaceGateType::ISwap
748                | InterfaceGateType::Toffoli => {
749                    entangling_gates += 1;
750                }
751                _ => {}
752            }
753        }
754
755        Ok(f64::from(entangling_gates) / circuit.gates.len() as f64)
756    }
757
758    /// Convert features to state key for Q-learning
759    fn features_to_state_key(features: &Array1<f64>) -> String {
760        // Discretize features for state representation
761        let discretized: Vec<i32> = features
762            .iter()
763            .map(|&x| (x * 10.0).round() as i32)
764            .collect();
765        format!("{discretized:?}")
766    }
767
768    /// Calculate confidence in mitigation result
769    fn calculate_confidence(&self, features: &Array1<f64>, _mitigated_value: f64) -> Result<f64> {
770        // Simple confidence calculation based on feature consistency
771        let feature_variance = features.var(0.0);
772        let confidence = 1.0 / (1.0 + feature_variance);
773        Ok(confidence.clamp(0.0, 1.0))
774    }
775
776    /// Estimate error reduction achieved
777    fn estimate_error_reduction(&self, original: &Array1<f64>, mitigated: f64) -> Result<f64> {
778        let original_mean = original.mean().unwrap_or(0.0);
779        let original_variance = original.var(0.0);
780
781        // Estimate error reduction based on variance reduction
782        let estimated_improvement = (original_variance.sqrt() - (mitigated - original_mean).abs())
783            / original_variance.sqrt();
784        Ok(estimated_improvement.clamp(0.0, 1.0))
785    }
786
787    /// Update models with new training data
788    fn update_models(&mut self, features: &Array1<f64>, target: f64) -> Result<()> {
789        // Add to training history
790        if self.training_history.len() >= self.config.memory_size {
791            self.training_history.pop_front();
792        }
793        self.training_history.push_back((features.clone(), target));
794
795        // Update deep learning model if enough data
796        if self.training_history.len() >= self.config.batch_size {
797            self.update_deep_model()?;
798        }
799
800        // Update RL agent
801        self.update_rl_agent(features, target)?;
802
803        Ok(())
804    }
805
806    /// Update deep learning model with recent training data
807    fn update_deep_model(&mut self) -> Result<()> {
808        if let Some(ref mut model) = self.deep_model {
809            // Simple gradient descent update (simplified for demonstration)
810            // In practice, would implement proper backpropagation
811
812            let batch_size = self.config.batch_size.min(self.training_history.len());
813            let batch: Vec<_> = self
814                .training_history
815                .iter()
816                .rev()
817                .take(batch_size)
818                .collect();
819
820            let mut total_loss = 0.0;
821
822            for (features, target) in batch {
823                let prediction = Self::forward_pass_static(model, features)?;
824                let loss = (prediction[0] - target).powi(2);
825                total_loss += loss;
826            }
827
828            let avg_loss = total_loss / batch_size as f64;
829            model.loss_history.push(avg_loss);
830        }
831
832        Ok(())
833    }
834
835    /// Update reinforcement learning agent
836    fn update_rl_agent(&mut self, features: &Array1<f64>, reward: f64) -> Result<()> {
837        if let Some(ref mut agent) = self.rl_agent {
838            let state_key = Self::features_to_state_key(features);
839
840            // Simple Q-learning update
841            // In practice, would implement more sophisticated RL algorithms
842
843            agent.stats.episodes += 1;
844            agent.stats.avg_reward = agent
845                .stats
846                .avg_reward
847                .mul_add((agent.stats.episodes - 1) as f64, reward)
848                / agent.stats.episodes as f64;
849
850            // Decay exploration rate
851            agent.exploration_rate *= 0.995;
852            agent.exploration_rate = agent.exploration_rate.max(0.01);
853        }
854
855        Ok(())
856    }
857}
858
859/// Benchmark function for advanced ML error mitigation
860pub fn benchmark_advanced_ml_error_mitigation() -> Result<()> {
861    println!("Benchmarking Advanced ML Error Mitigation...");
862
863    let config = AdvancedMLMitigationConfig::default();
864    let mut mitigator = AdvancedMLErrorMitigator::new(config)?;
865
866    // Create test circuit
867    let mut circuit = InterfaceCircuit::new(4, 0);
868    circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![0]));
869    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]));
870    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(0.5), vec![2]));
871
872    // Simulate noisy measurements
873    let noisy_measurements = Array1::from_vec(vec![0.48, 0.52, 0.47, 0.53, 0.49]);
874
875    let start_time = std::time::Instant::now();
876
877    // Apply advanced ML mitigation
878    let result = mitigator.mitigate_errors(&noisy_measurements, &circuit)?;
879
880    let duration = start_time.elapsed();
881
882    println!("✅ Advanced ML Error Mitigation Results:");
883    println!("   Mitigated Value: {:.6}", result.mitigated_value);
884    println!("   Confidence: {:.4}", result.confidence);
885    println!("   Model Used: {}", result.model_used);
886    println!("   Error Reduction: {:.4}", result.error_reduction);
887    println!("   Computation Time: {:.2}ms", duration.as_millis());
888
889    Ok(())
890}
891
892#[cfg(test)]
893mod tests {
894    use super::*;
895
896    #[test]
897    fn test_advanced_ml_mitigator_creation() {
898        let config = AdvancedMLMitigationConfig::default();
899        let mitigator = AdvancedMLErrorMitigator::new(config);
900        assert!(mitigator.is_ok());
901    }
902
903    #[test]
904    fn test_feature_extraction() {
905        let config = AdvancedMLMitigationConfig::default();
906        let mitigator = AdvancedMLErrorMitigator::new(config).expect("Failed to create mitigator");
907
908        let mut circuit = InterfaceCircuit::new(2, 0);
909        circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![0]));
910        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]));
911
912        let measurements = Array1::from_vec(vec![0.5, 0.5, 0.5]);
913        let features = mitigator.extract_features(&circuit, &measurements);
914
915        assert!(features.is_ok());
916        let features = features.expect("Failed to extract features");
917        assert!(!features.is_empty());
918    }
919
920    #[test]
921    fn test_activation_functions() {
922        let config = AdvancedMLMitigationConfig::default();
923        let mitigator = AdvancedMLErrorMitigator::new(config).expect("Failed to create mitigator");
924
925        // Test ReLU
926        assert_eq!(
927            mitigator.apply_activation(-1.0, ActivationFunction::ReLU),
928            0.0
929        );
930        assert_eq!(
931            mitigator.apply_activation(1.0, ActivationFunction::ReLU),
932            1.0
933        );
934
935        // Test Sigmoid
936        let sigmoid_result = mitigator.apply_activation(0.0, ActivationFunction::Sigmoid);
937        assert!((sigmoid_result - 0.5).abs() < 1e-10);
938    }
939
940    #[test]
941    fn test_mitigation_strategy_selection() {
942        let config = AdvancedMLMitigationConfig::default();
943        let mut mitigator =
944            AdvancedMLErrorMitigator::new(config).expect("Failed to create mitigator");
945
946        let features = Array1::from_vec(vec![1.0, 2.0, 3.0]);
947        let strategy = mitigator.select_mitigation_strategy(&features);
948
949        assert!(strategy.is_ok());
950    }
951
952    #[test]
953    fn test_traditional_mitigation() {
954        let config = AdvancedMLMitigationConfig::default();
955        let mitigator = AdvancedMLErrorMitigator::new(config).expect("Failed to create mitigator");
956
957        let measurements = Array1::from_vec(vec![0.48, 0.52, 0.49]);
958        let circuit = InterfaceCircuit::new(2, 0);
959
960        let result = mitigator.apply_traditional_mitigation(
961            MitigationAction::ZeroNoiseExtrapolation,
962            &measurements,
963            &circuit,
964        );
965
966        assert!(result.is_ok());
967    }
968}