quantrs2_sim/
adaptive_ml_error_correction.rs

1//! Real-time Adaptive Error Correction with Machine Learning
2//!
3//! This module implements machine learning-driven adaptive error correction that
4//! learns from error patterns in real-time to optimize correction strategies.
5//! The system uses various ML techniques including neural networks, reinforcement
6//! learning, and online learning to continuously improve error correction performance.
7//!
8//! Key features:
9//! - Real-time syndrome pattern recognition using neural networks
10//! - Reinforcement learning for optimal correction strategy selection
11//! - Online learning for adaptive threshold adjustment
12//! - Ensemble methods for robust error prediction
13//! - Temporal pattern analysis for correlated noise
14//! - Hardware-aware correction optimization
15
16use scirs2_core::ndarray::{Array1, Array2, Axis};
17use scirs2_core::Complex64;
18use serde::{Deserialize, Serialize};
19use std::collections::{HashMap, VecDeque};
20use std::sync::{Arc, Mutex};
21
22use crate::circuit_interfaces::CircuitInterface;
23use crate::concatenated_error_correction::ErrorType;
24use crate::error::Result;
25
26/// Machine learning model type for error correction
27#[derive(Debug, Clone, Copy, PartialEq, Eq)]
28pub enum MLModelType {
29    /// Neural network for syndrome classification
30    NeuralNetwork,
31    /// Decision tree for rule-based correction
32    DecisionTree,
33    /// Support vector machine for pattern recognition
34    SVM,
35    /// Reinforcement learning agent
36    ReinforcementLearning,
37    /// Ensemble of multiple models
38    Ensemble,
39}
40
41/// Learning strategy for adaptive correction
42#[derive(Debug, Clone, Copy, PartialEq, Eq)]
43pub enum LearningStrategy {
44    /// Supervised learning with labeled training data
45    Supervised,
46    /// Unsupervised learning for pattern discovery
47    Unsupervised,
48    /// Reinforcement learning with reward signals
49    Reinforcement,
50    /// Online learning with continuous updates
51    Online,
52    /// Transfer learning from pre-trained models
53    Transfer,
54}
55
56/// Adaptive error correction configuration
57#[derive(Debug, Clone)]
58pub struct AdaptiveMLConfig {
59    /// ML model type to use
60    pub model_type: MLModelType,
61    /// Learning strategy
62    pub learning_strategy: LearningStrategy,
63    /// Learning rate for gradient-based methods
64    pub learning_rate: f64,
65    /// Batch size for training
66    pub batch_size: usize,
67    /// Maximum training history to keep
68    pub max_history_size: usize,
69    /// Minimum confidence threshold for corrections
70    pub confidence_threshold: f64,
71    /// Enable real-time learning
72    pub real_time_learning: bool,
73    /// Update frequency for model retraining
74    pub update_frequency: usize,
75    /// Feature extraction method
76    pub feature_extraction: FeatureExtractionMethod,
77    /// Hardware-specific optimizations
78    pub hardware_aware: bool,
79}
80
81/// Feature extraction method for syndrome analysis
82#[derive(Debug, Clone, Copy, PartialEq, Eq)]
83pub enum FeatureExtractionMethod {
84    /// Raw syndrome bits
85    RawSyndrome,
86    /// Fourier transform features
87    FourierTransform,
88    /// Principal component analysis
89    PCA,
90    /// Autoencoder features
91    Autoencoder,
92    /// Temporal convolution features
93    TemporalConvolution,
94}
95
96impl Default for AdaptiveMLConfig {
97    fn default() -> Self {
98        Self {
99            model_type: MLModelType::NeuralNetwork,
100            learning_strategy: LearningStrategy::Online,
101            learning_rate: 0.001,
102            batch_size: 32,
103            max_history_size: 10_000,
104            confidence_threshold: 0.8,
105            real_time_learning: true,
106            update_frequency: 100,
107            feature_extraction: FeatureExtractionMethod::RawSyndrome,
108            hardware_aware: true,
109        }
110    }
111}
112
113/// Neural network for syndrome classification
114#[derive(Debug, Clone)]
115pub struct SyndromeClassificationNetwork {
116    /// Input layer size (syndrome length)
117    input_size: usize,
118    /// Hidden layer sizes
119    hidden_sizes: Vec<usize>,
120    /// Output size (number of error classes)
121    output_size: usize,
122    /// Network weights
123    weights: Vec<Array2<f64>>,
124    /// Network biases
125    biases: Vec<Array1<f64>>,
126    /// Learning rate
127    learning_rate: f64,
128    /// Training history
129    training_history: Vec<(Array1<f64>, Array1<f64>)>,
130}
131
132impl SyndromeClassificationNetwork {
133    /// Create new neural network
134    #[must_use]
135    pub fn new(
136        input_size: usize,
137        hidden_sizes: Vec<usize>,
138        output_size: usize,
139        learning_rate: f64,
140    ) -> Self {
141        let mut layer_sizes = vec![input_size];
142        layer_sizes.extend(&hidden_sizes);
143        layer_sizes.push(output_size);
144
145        let mut weights = Vec::new();
146        let mut biases = Vec::new();
147
148        for i in 0..layer_sizes.len() - 1 {
149            let rows = layer_sizes[i + 1];
150            let cols = layer_sizes[i];
151
152            // Xavier initialization
153            let scale = (2.0 / (rows + cols) as f64).sqrt();
154            let mut weight_matrix = Array2::zeros((rows, cols));
155            for elem in &mut weight_matrix {
156                *elem = (fastrand::f64() - 0.5) * 2.0 * scale;
157            }
158            weights.push(weight_matrix);
159
160            biases.push(Array1::zeros(rows));
161        }
162
163        Self {
164            input_size,
165            hidden_sizes,
166            output_size,
167            weights,
168            biases,
169            learning_rate,
170            training_history: Vec::new(),
171        }
172    }
173
174    /// Forward pass through the network
175    #[must_use]
176    pub fn forward(&self, input: &Array1<f64>) -> Array1<f64> {
177        let mut activation = input.clone();
178
179        // Get reference to last weight for comparison
180        let last_weight = self.weights.last();
181
182        for (weight, bias) in self.weights.iter().zip(self.biases.iter()) {
183            activation = weight.dot(&activation) + bias;
184
185            // Apply ReLU activation (except for output layer)
186            let is_output_layer = last_weight.map_or(false, |last| weight == last);
187            if is_output_layer {
188                // Softmax for output layer
189                let max_val = activation.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
190                activation.mapv_inplace(|x| (x - max_val).exp());
191                let sum = activation.sum();
192                activation.mapv_inplace(|x| x / sum);
193            } else {
194                activation.mapv_inplace(|x| x.max(0.0));
195            }
196        }
197
198        activation
199    }
200
201    /// Train the network with a batch of examples
202    pub fn train_batch(&mut self, inputs: &[Array1<f64>], targets: &[Array1<f64>]) -> f64 {
203        let batch_size = inputs.len();
204        let mut total_loss = 0.0;
205
206        // Accumulate gradients
207        let mut weight_gradients: Vec<Array2<f64>> = self
208            .weights
209            .iter()
210            .map(|w| Array2::zeros(w.raw_dim()))
211            .collect();
212        let mut bias_gradients: Vec<Array1<f64>> = self
213            .biases
214            .iter()
215            .map(|b| Array1::zeros(b.raw_dim()))
216            .collect();
217
218        for (input, target) in inputs.iter().zip(targets.iter()) {
219            let (loss, w_grads, b_grads) = self.backward(input, target);
220            total_loss += loss;
221
222            for (wg_acc, wg) in weight_gradients.iter_mut().zip(w_grads.iter()) {
223                *wg_acc = &*wg_acc + wg;
224            }
225            for (bg_acc, bg) in bias_gradients.iter_mut().zip(b_grads.iter()) {
226                *bg_acc = &*bg_acc + bg;
227            }
228        }
229
230        // Update weights and biases
231        let lr = self.learning_rate / batch_size as f64;
232        for (weight, gradient) in self.weights.iter_mut().zip(weight_gradients.iter()) {
233            *weight = &*weight - &(gradient * lr);
234        }
235        for (bias, gradient) in self.biases.iter_mut().zip(bias_gradients.iter()) {
236            *bias = &*bias - &(gradient * lr);
237        }
238
239        total_loss / batch_size as f64
240    }
241
242    /// Backward pass to compute gradients
243    fn backward(
244        &self,
245        input: &Array1<f64>,
246        target: &Array1<f64>,
247    ) -> (f64, Vec<Array2<f64>>, Vec<Array1<f64>>) {
248        // Forward pass with intermediate activations
249        let mut activations = vec![input.clone()];
250        let mut z_values = Vec::new();
251
252        // Get reference to last weight for comparison
253        let last_weight = self.weights.last();
254
255        for (weight, bias) in self.weights.iter().zip(self.biases.iter()) {
256            // Safety: activations always has at least one element (input)
257            let last_activation = activations
258                .last()
259                .expect("activations should never be empty");
260            let z = weight.dot(last_activation) + bias;
261            z_values.push(z.clone());
262
263            let mut activation = z;
264            let is_output_layer = last_weight.map_or(false, |last| weight == last);
265            if is_output_layer {
266                // Softmax
267                let max_val = activation.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
268                activation.mapv_inplace(|x| (x - max_val).exp());
269                let sum = activation.sum();
270                activation.mapv_inplace(|x| x / sum);
271            } else {
272                activation.mapv_inplace(|x| x.max(0.0)); // ReLU
273            }
274            activations.push(activation);
275        }
276
277        // Calculate loss (cross-entropy)
278        // Safety: activations has at least one element from the loop
279        let output = activations
280            .last()
281            .expect("activations should have output from forward pass");
282        let loss = -target
283            .iter()
284            .zip(output.iter())
285            .map(|(&t, &o)| if t > 0.0 { t * o.ln() } else { 0.0 })
286            .sum::<f64>();
287
288        // Backward pass
289        let mut weight_gradients = Vec::with_capacity(self.weights.len());
290        let mut bias_gradients = Vec::with_capacity(self.biases.len());
291
292        // Output layer gradient
293        let mut delta = output - target;
294
295        for i in (0..self.weights.len()).rev() {
296            // Weight gradient
297            let weight_grad = delta
298                .view()
299                .insert_axis(Axis(1))
300                .dot(&activations[i].view().insert_axis(Axis(0)));
301            weight_gradients.insert(0, weight_grad);
302
303            // Bias gradient
304            bias_gradients.insert(0, delta.clone());
305
306            if i > 0 {
307                // Propagate delta to previous layer
308                delta = self.weights[i].t().dot(&delta);
309
310                // Apply derivative of ReLU
311                for (j, &z) in z_values[i - 1].iter().enumerate() {
312                    if z <= 0.0 {
313                        delta[j] = 0.0;
314                    }
315                }
316            }
317        }
318
319        (loss, weight_gradients, bias_gradients)
320    }
321
322    /// Predict error class from syndrome
323    #[must_use]
324    pub fn predict(&self, syndrome: &Array1<f64>) -> (usize, f64) {
325        let output = self.forward(syndrome);
326        let max_idx = output
327            .iter()
328            .enumerate()
329            .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
330            .map(|(idx, _)| idx)
331            .unwrap_or(0);
332        let confidence = output.get(max_idx).copied().unwrap_or(0.0);
333        (max_idx, confidence)
334    }
335}
336
337/// Reinforcement learning agent for error correction
338#[derive(Debug, Clone)]
339pub struct ErrorCorrectionAgent {
340    /// Q-table for state-action values
341    q_table: HashMap<String, Array1<f64>>,
342    /// Learning rate
343    learning_rate: f64,
344    /// Discount factor
345    discount_factor: f64,
346    /// Exploration rate (epsilon)
347    epsilon: f64,
348    /// Action space size
349    action_space_size: usize,
350    /// Total training steps
351    training_steps: usize,
352    /// Episode rewards history
353    episode_rewards: VecDeque<f64>,
354}
355
356impl ErrorCorrectionAgent {
357    /// Create new RL agent
358    #[must_use]
359    pub fn new(
360        action_space_size: usize,
361        learning_rate: f64,
362        discount_factor: f64,
363        epsilon: f64,
364    ) -> Self {
365        Self {
366            q_table: HashMap::new(),
367            learning_rate,
368            discount_factor,
369            epsilon,
370            action_space_size,
371            training_steps: 0,
372            episode_rewards: VecDeque::with_capacity(1000),
373        }
374    }
375
376    /// Select action using epsilon-greedy policy
377    pub fn select_action(&mut self, state: &str) -> usize {
378        if fastrand::f64() < self.epsilon {
379            // Explore: random action
380            fastrand::usize(0..self.action_space_size)
381        } else {
382            // Exploit: best action
383            let q_values = self
384                .q_table
385                .entry(state.to_string())
386                .or_insert_with(|| Array1::zeros(self.action_space_size));
387
388            q_values
389                .iter()
390                .enumerate()
391                .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
392                .map(|(idx, _)| idx)
393                .unwrap_or(0)
394        }
395    }
396
397    /// Update Q-value using Q-learning
398    pub fn update_q_value(
399        &mut self,
400        state: &str,
401        action: usize,
402        reward: f64,
403        next_state: &str,
404        done: bool,
405    ) {
406        let current_q = self
407            .q_table
408            .entry(state.to_string())
409            .or_insert_with(|| Array1::zeros(self.action_space_size))
410            .clone();
411
412        let next_q_max = if done {
413            0.0
414        } else {
415            let next_q_values = self
416                .q_table
417                .entry(next_state.to_string())
418                .or_insert_with(|| Array1::zeros(self.action_space_size));
419            next_q_values
420                .iter()
421                .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
422        };
423
424        let td_target = self.discount_factor.mul_add(next_q_max, reward);
425        let current_q_action = current_q.get(action).copied().unwrap_or(0.0);
426        let td_error = td_target - current_q_action;
427
428        // Safety: We just inserted this entry above with entry().or_insert_with()
429        if let Some(q_values) = self.q_table.get_mut(state) {
430            if action < q_values.len() {
431                q_values[action] += self.learning_rate * td_error;
432            }
433        }
434
435        self.training_steps += 1;
436
437        // Decay epsilon
438        if self.training_steps % 1000 == 0 {
439            self.epsilon = (self.epsilon * 0.995).max(0.01);
440        }
441    }
442
443    /// Calculate reward based on correction success
444    #[must_use]
445    pub fn calculate_reward(
446        &self,
447        errors_before: usize,
448        errors_after: usize,
449        correction_cost: f64,
450    ) -> f64 {
451        let error_reduction = errors_before as f64 - errors_after as f64;
452        let reward = error_reduction.mul_add(10.0, -correction_cost);
453
454        // Bonus for perfect correction
455        if errors_after == 0 {
456            reward + 5.0
457        } else {
458            reward
459        }
460    }
461}
462
463/// Adaptive ML error correction system
464pub struct AdaptiveMLErrorCorrection {
465    /// Configuration
466    config: AdaptiveMLConfig,
467    /// Neural network for syndrome classification
468    classifier: SyndromeClassificationNetwork,
469    /// Reinforcement learning agent
470    rl_agent: ErrorCorrectionAgent,
471    /// Feature extractor
472    feature_extractor: FeatureExtractor,
473    /// Training data history
474    training_history: Arc<Mutex<VecDeque<TrainingExample>>>,
475    /// Performance metrics
476    metrics: CorrectionMetrics,
477    /// Circuit interface
478    circuit_interface: CircuitInterface,
479    /// Model update counter
480    update_counter: usize,
481}
482
483/// Training example for supervised learning
484#[derive(Debug, Clone)]
485pub struct TrainingExample {
486    /// Input syndrome
487    pub syndrome: Array1<f64>,
488    /// Target error type
489    pub error_type: ErrorType,
490    /// Correction action taken
491    pub action: usize,
492    /// Reward received
493    pub reward: f64,
494    /// Timestamp
495    pub timestamp: f64,
496}
497
498/// Feature extractor for syndrome analysis
499#[derive(Debug, Clone)]
500pub struct FeatureExtractor {
501    /// Extraction method
502    method: FeatureExtractionMethod,
503    /// PCA components (if using PCA)
504    pca_components: Option<Array2<f64>>,
505    /// Autoencoder network (if using autoencoder)
506    autoencoder: Option<SyndromeClassificationNetwork>,
507}
508
509impl FeatureExtractor {
510    /// Create new feature extractor
511    #[must_use]
512    pub const fn new(method: FeatureExtractionMethod) -> Self {
513        Self {
514            method,
515            pca_components: None,
516            autoencoder: None,
517        }
518    }
519
520    /// Extract features from syndrome
521    #[must_use]
522    pub fn extract_features(&self, syndrome: &[bool]) -> Array1<f64> {
523        match self.method {
524            FeatureExtractionMethod::RawSyndrome => {
525                let mut features: Vec<f64> = syndrome
526                    .iter()
527                    .map(|&b| if b { 1.0 } else { 0.0 })
528                    .collect();
529                // Pad to minimum size of 4 for consistency
530                while features.len() < 4 {
531                    features.push(0.0);
532                }
533                Array1::from_vec(features)
534            }
535            FeatureExtractionMethod::FourierTransform => self.fft_features(syndrome),
536            FeatureExtractionMethod::PCA => self.pca_features(syndrome),
537            FeatureExtractionMethod::Autoencoder => self.autoencoder_features(syndrome),
538            FeatureExtractionMethod::TemporalConvolution => self.temporal_conv_features(syndrome),
539        }
540    }
541
542    /// Extract FFT features
543    fn fft_features(&self, syndrome: &[bool]) -> Array1<f64> {
544        let mut signal: Vec<f64> = syndrome
545            .iter()
546            .map(|&b| if b { 1.0 } else { 0.0 })
547            .collect();
548
549        // Pad signal to minimum size of 4 for consistency
550        while signal.len() < 4 {
551            signal.push(0.0);
552        }
553
554        // Simple FFT-like transformation (simplified)
555        let mut features = Vec::new();
556        let n = signal.len();
557
558        for k in 0..n.min(8) {
559            // Take first 8 frequency components
560            let mut real_part = 0.0;
561            let mut imag_part = 0.0;
562
563            for (i, &x) in signal.iter().enumerate() {
564                let angle = -2.0 * std::f64::consts::PI * k as f64 * i as f64 / n as f64;
565                real_part += x * angle.cos();
566                imag_part += x * angle.sin();
567            }
568
569            features.push(real_part);
570            features.push(imag_part);
571        }
572
573        Array1::from_vec(features)
574    }
575
576    /// Extract PCA features
577    fn pca_features(&self, syndrome: &[bool]) -> Array1<f64> {
578        let mut features: Vec<f64> = syndrome
579            .iter()
580            .map(|&b| if b { 1.0 } else { 0.0 })
581            .collect();
582        // Pad to minimum size of 4 for consistency
583        while features.len() < 4 {
584            features.push(0.0);
585        }
586        let raw_features = Array1::from_vec(features);
587
588        if let Some(ref components) = self.pca_components {
589            components.dot(&raw_features)
590        } else {
591            raw_features
592        }
593    }
594
595    /// Extract autoencoder features
596    fn autoencoder_features(&self, syndrome: &[bool]) -> Array1<f64> {
597        let mut features: Vec<f64> = syndrome
598            .iter()
599            .map(|&b| if b { 1.0 } else { 0.0 })
600            .collect();
601        // Pad to minimum size of 4 for consistency
602        while features.len() < 4 {
603            features.push(0.0);
604        }
605        let raw_features = Array1::from_vec(features);
606
607        if let Some(ref encoder) = self.autoencoder {
608            encoder.forward(&raw_features)
609        } else {
610            raw_features
611        }
612    }
613
614    /// Extract temporal convolution features
615    fn temporal_conv_features(&self, syndrome: &[bool]) -> Array1<f64> {
616        let mut signal: Vec<f64> = syndrome
617            .iter()
618            .map(|&b| if b { 1.0 } else { 0.0 })
619            .collect();
620
621        // Pad signal to minimum size of 4 for consistency
622        while signal.len() < 4 {
623            signal.push(0.0);
624        }
625
626        // Simple 1D convolution with learned kernels
627        let kernel_size = 3;
628        let mut features = Vec::new();
629
630        for i in 0..signal.len().saturating_sub(kernel_size - 1) {
631            let mut conv_sum = 0.0;
632            for j in 0..kernel_size {
633                conv_sum += signal[i + j] * (j as f64 + 1.0) / kernel_size as f64;
634                // Simple kernel
635            }
636            features.push(conv_sum);
637        }
638
639        // Ensure at least some features
640        if features.is_empty() {
641            features = signal; // Fall back to raw signal
642        }
643
644        Array1::from_vec(features)
645    }
646}
647
648/// Performance metrics for error correction
649#[derive(Debug, Clone, Default, Serialize, Deserialize)]
650pub struct CorrectionMetrics {
651    /// Total errors corrected
652    pub total_corrections: usize,
653    /// Successful corrections
654    pub successful_corrections: usize,
655    /// False positive corrections
656    pub false_positives: usize,
657    /// False negative missed errors
658    pub false_negatives: usize,
659    /// Average correction confidence
660    pub average_confidence: f64,
661    /// Learning curve (loss over time)
662    pub learning_curve: Vec<f64>,
663    /// Reward history (for RL)
664    pub reward_history: Vec<f64>,
665    /// Processing time per correction
666    pub avg_correction_time_ms: f64,
667}
668
669impl CorrectionMetrics {
670    /// Calculate correction accuracy
671    #[must_use]
672    pub fn accuracy(&self) -> f64 {
673        if self.total_corrections == 0 {
674            return 1.0;
675        }
676        self.successful_corrections as f64 / self.total_corrections as f64
677    }
678
679    /// Calculate precision
680    #[must_use]
681    pub fn precision(&self) -> f64 {
682        let true_positives = self.successful_corrections;
683        let predicted_positives = true_positives + self.false_positives;
684
685        if predicted_positives == 0 {
686            return 1.0;
687        }
688        true_positives as f64 / predicted_positives as f64
689    }
690
691    /// Calculate recall
692    #[must_use]
693    pub fn recall(&self) -> f64 {
694        let true_positives = self.successful_corrections;
695        let actual_positives = true_positives + self.false_negatives;
696
697        if actual_positives == 0 {
698            return 1.0;
699        }
700        true_positives as f64 / actual_positives as f64
701    }
702
703    /// Calculate F1 score
704    #[must_use]
705    pub fn f1_score(&self) -> f64 {
706        let precision = self.precision();
707        let recall = self.recall();
708
709        if precision + recall == 0.0 {
710            return 0.0;
711        }
712        2.0 * precision * recall / (precision + recall)
713    }
714}
715
716impl AdaptiveMLErrorCorrection {
717    /// Create new adaptive ML error correction system
718    pub fn new(config: AdaptiveMLConfig) -> Result<Self> {
719        let circuit_interface = CircuitInterface::new(Default::default())?;
720
721        // Initialize feature extractor first to determine input size
722        let feature_extractor = FeatureExtractor::new(config.feature_extraction);
723
724        // Calculate input size based on feature extraction method
725        // Use a test syndrome to determine the feature vector size
726        let test_syndrome = vec![false, false, false, false]; // 4-bit test syndrome
727        let test_features = feature_extractor.extract_features(&test_syndrome);
728        let input_size = test_features.len();
729
730        // Initialize neural network for syndrome classification
731        let hidden_sizes = vec![input_size * 2, input_size]; // Adaptive hidden sizes
732        let output_size = 4; // I, X, Y, Z errors
733        let classifier = SyndromeClassificationNetwork::new(
734            input_size,
735            hidden_sizes,
736            output_size,
737            config.learning_rate,
738        );
739
740        // Initialize RL agent
741        let action_space_size = 8; // Different correction strategies
742        let rl_agent = ErrorCorrectionAgent::new(
743            action_space_size,
744            config.learning_rate,
745            0.99, // discount factor
746            0.1,  // epsilon
747        );
748
749        let training_history =
750            Arc::new(Mutex::new(VecDeque::with_capacity(config.max_history_size)));
751
752        Ok(Self {
753            config,
754            classifier,
755            rl_agent,
756            feature_extractor,
757            training_history,
758            metrics: CorrectionMetrics::default(),
759            circuit_interface,
760            update_counter: 0,
761        })
762    }
763
764    /// Perform adaptive error correction on quantum state
765    pub fn correct_errors_adaptive(
766        &mut self,
767        state: &mut Array1<Complex64>,
768        syndrome: &[bool],
769    ) -> Result<AdaptiveCorrectionResult> {
770        let start_time = std::time::Instant::now();
771
772        // Extract features from syndrome
773        let features = self.feature_extractor.extract_features(syndrome);
774
775        // Classify error type using neural network
776        let (predicted_error_class, confidence) = self.classifier.predict(&features);
777        let predicted_error_type = self.class_to_error_type(predicted_error_class);
778
779        // Select correction action using RL agent
780        let state_repr = self.syndrome_to_string(syndrome);
781        let action = self.rl_agent.select_action(&state_repr);
782
783        // Count errors before correction
784        let errors_before = self.count_errors(state, syndrome);
785
786        // Apply correction based on ML predictions
787        let correction_applied = if confidence >= self.config.confidence_threshold {
788            self.apply_ml_correction(state, predicted_error_type, action)?;
789            true
790        } else {
791            // Fall back to classical correction if confidence is low
792            self.apply_classical_correction(state, syndrome)?;
793            false
794        };
795
796        // Count errors after correction
797        let errors_after = self.count_errors(state, syndrome);
798
799        // Calculate reward for RL agent
800        let reward = self
801            .rl_agent
802            .calculate_reward(errors_before, errors_after, 1.0);
803
804        // Update RL agent
805        let next_state_repr = self.state_to_string(state);
806        self.rl_agent.update_q_value(
807            &state_repr,
808            action,
809            reward,
810            &next_state_repr,
811            errors_after == 0,
812        );
813
814        // Record training example
815        if self.config.real_time_learning {
816            let training_example = TrainingExample {
817                syndrome: features,
818                error_type: predicted_error_type,
819                action,
820                reward,
821                timestamp: start_time.elapsed().as_secs_f64(),
822            };
823
824            if let Ok(mut history) = self.training_history.lock() {
825                history.push_back(training_example);
826                if history.len() > self.config.max_history_size {
827                    history.pop_front();
828                }
829            }
830        }
831
832        // Update metrics
833        self.update_metrics(errors_before, errors_after, confidence, reward);
834
835        // Periodic model retraining
836        self.update_counter += 1;
837        if self.update_counter % self.config.update_frequency == 0 {
838            self.retrain_models()?;
839        }
840
841        let processing_time = start_time.elapsed().as_secs_f64() * 1000.0;
842
843        Ok(AdaptiveCorrectionResult {
844            predicted_error_type,
845            confidence,
846            correction_applied,
847            errors_corrected: errors_before.saturating_sub(errors_after),
848            reward,
849            processing_time_ms: processing_time,
850            rl_action: action,
851        })
852    }
853
854    /// Apply ML-based correction
855    fn apply_ml_correction(
856        &self,
857        state: &mut Array1<Complex64>,
858        error_type: ErrorType,
859        action: usize,
860    ) -> Result<()> {
861        match action {
862            0 => {
863                // Single qubit correction
864                self.apply_single_qubit_correction(state, error_type, 0)?;
865            }
866            1 => {
867                // Two qubit correction
868                self.apply_two_qubit_correction(state, error_type, 0, 1)?;
869            }
870            2 => {
871                // Syndrome-based correction
872                self.apply_syndrome_based_correction(state, error_type)?;
873            }
874            3 => {
875                // Probabilistic correction
876                self.apply_probabilistic_correction(state, error_type)?;
877            }
878            _ => {
879                // Default correction
880                self.apply_single_qubit_correction(state, error_type, 0)?;
881            }
882        }
883        Ok(())
884    }
885
886    /// Apply single qubit correction
887    fn apply_single_qubit_correction(
888        &self,
889        state: &mut Array1<Complex64>,
890        error_type: ErrorType,
891        qubit: usize,
892    ) -> Result<()> {
893        let n_qubits = (state.len() as f64).log2().ceil() as usize;
894        if qubit >= n_qubits {
895            return Ok(());
896        }
897
898        match error_type {
899            ErrorType::BitFlip => {
900                // Apply X correction
901                for i in 0..state.len() {
902                    if (i >> qubit) & 1 == 0 {
903                        let partner = i | (1 << qubit);
904                        if partner < state.len() {
905                            state.swap(i, partner);
906                        }
907                    }
908                }
909            }
910            ErrorType::PhaseFlip => {
911                // Apply Z correction
912                for i in 0..state.len() {
913                    if (i >> qubit) & 1 == 1 {
914                        state[i] *= -1.0;
915                    }
916                }
917            }
918            ErrorType::BitPhaseFlip => {
919                // Apply Y correction (Z then X)
920                self.apply_single_qubit_correction(state, ErrorType::PhaseFlip, qubit)?;
921                self.apply_single_qubit_correction(state, ErrorType::BitFlip, qubit)?;
922            }
923            ErrorType::Identity => {
924                // No correction needed
925            }
926        }
927
928        Ok(())
929    }
930
931    /// Apply two qubit correction
932    fn apply_two_qubit_correction(
933        &self,
934        state: &mut Array1<Complex64>,
935        error_type: ErrorType,
936        qubit1: usize,
937        qubit2: usize,
938    ) -> Result<()> {
939        // Apply correction to both qubits
940        self.apply_single_qubit_correction(state, error_type, qubit1)?;
941        self.apply_single_qubit_correction(state, error_type, qubit2)?;
942        Ok(())
943    }
944
945    /// Apply syndrome-based correction
946    fn apply_syndrome_based_correction(
947        &self,
948        state: &mut Array1<Complex64>,
949        error_type: ErrorType,
950    ) -> Result<()> {
951        // Apply correction based on error type to most likely qubit
952        let n_qubits = (state.len() as f64).log2().ceil() as usize;
953        let target_qubit = fastrand::usize(0..n_qubits);
954        self.apply_single_qubit_correction(state, error_type, target_qubit)?;
955        Ok(())
956    }
957
958    /// Apply probabilistic correction
959    fn apply_probabilistic_correction(
960        &self,
961        state: &mut Array1<Complex64>,
962        error_type: ErrorType,
963    ) -> Result<()> {
964        let n_qubits = (state.len() as f64).log2().ceil() as usize;
965
966        // Apply correction with probability based on error type
967        for qubit in 0..n_qubits {
968            let prob = match error_type {
969                ErrorType::BitFlip => 0.3,
970                ErrorType::PhaseFlip => 0.2,
971                ErrorType::BitPhaseFlip => 0.1,
972                ErrorType::Identity => 0.0,
973            };
974
975            if fastrand::f64() < prob {
976                self.apply_single_qubit_correction(state, error_type, qubit)?;
977            }
978        }
979
980        Ok(())
981    }
982
983    /// Apply classical error correction as fallback
984    fn apply_classical_correction(
985        &self,
986        state: &mut Array1<Complex64>,
987        syndrome: &[bool],
988    ) -> Result<()> {
989        // Simple classical correction based on syndrome
990        for (i, &has_error) in syndrome.iter().enumerate() {
991            if has_error {
992                self.apply_single_qubit_correction(state, ErrorType::BitFlip, i)?;
993            }
994        }
995        Ok(())
996    }
997
998    /// Count estimated errors in state
999    fn count_errors(&self, _state: &Array1<Complex64>, syndrome: &[bool]) -> usize {
1000        syndrome.iter().map(|&b| usize::from(b)).sum()
1001    }
1002
1003    /// Convert error class to error type
1004    const fn class_to_error_type(&self, class: usize) -> ErrorType {
1005        match class {
1006            0 => ErrorType::Identity,
1007            1 => ErrorType::BitFlip,
1008            2 => ErrorType::PhaseFlip,
1009            3 => ErrorType::BitPhaseFlip,
1010            _ => ErrorType::Identity,
1011        }
1012    }
1013
1014    /// Convert syndrome to string representation
1015    fn syndrome_to_string(&self, syndrome: &[bool]) -> String {
1016        syndrome
1017            .iter()
1018            .map(|&b| if b { '1' } else { '0' })
1019            .collect()
1020    }
1021
1022    /// Convert quantum state to string representation (simplified)
1023    fn state_to_string(&self, state: &Array1<Complex64>) -> String {
1024        let amplitudes: Vec<f64> = state.iter().map(|c| c.norm()).collect();
1025        format!("{amplitudes:.3?}")
1026    }
1027
1028    /// Update performance metrics
1029    fn update_metrics(
1030        &mut self,
1031        errors_before: usize,
1032        errors_after: usize,
1033        confidence: f64,
1034        reward: f64,
1035    ) {
1036        self.metrics.total_corrections += 1;
1037
1038        if errors_after < errors_before {
1039            self.metrics.successful_corrections += 1;
1040        } else if errors_after > errors_before {
1041            self.metrics.false_positives += 1;
1042        }
1043
1044        self.metrics.average_confidence = self
1045            .metrics
1046            .average_confidence
1047            .mul_add((self.metrics.total_corrections - 1) as f64, confidence)
1048            / self.metrics.total_corrections as f64;
1049
1050        self.metrics.reward_history.push(reward);
1051        if self.metrics.reward_history.len() > 1000 {
1052            self.metrics.reward_history.remove(0);
1053        }
1054    }
1055
1056    /// Retrain models with accumulated data
1057    fn retrain_models(&mut self) -> Result<()> {
1058        let history = self.training_history.lock().map_err(|e| {
1059            crate::error::SimulatorError::InvalidOperation(format!("Lock poisoned: {e}"))
1060        })?;
1061        if history.len() < self.config.batch_size {
1062            return Ok(());
1063        }
1064
1065        // Prepare training data
1066        let mut inputs = Vec::new();
1067        let mut targets = Vec::new();
1068
1069        for example in history.iter() {
1070            inputs.push(example.syndrome.clone());
1071
1072            // Create one-hot target
1073            let mut target = Array1::zeros(4);
1074            let error_class = match example.error_type {
1075                ErrorType::Identity => 0,
1076                ErrorType::BitFlip => 1,
1077                ErrorType::PhaseFlip => 2,
1078                ErrorType::BitPhaseFlip => 3,
1079            };
1080            target[error_class] = 1.0;
1081            targets.push(target);
1082        }
1083
1084        // Train neural network
1085        let batch_size = self.config.batch_size.min(inputs.len());
1086        for chunk in inputs.chunks(batch_size).zip(targets.chunks(batch_size)) {
1087            let loss = self.classifier.train_batch(chunk.0, chunk.1);
1088            self.metrics.learning_curve.push(loss);
1089        }
1090
1091        Ok(())
1092    }
1093
1094    /// Get current performance metrics
1095    #[must_use]
1096    pub const fn get_metrics(&self) -> &CorrectionMetrics {
1097        &self.metrics
1098    }
1099
1100    /// Reset metrics and training history
1101    pub fn reset(&mut self) {
1102        self.metrics = CorrectionMetrics::default();
1103        if let Ok(mut history) = self.training_history.lock() {
1104            history.clear();
1105        }
1106        self.update_counter = 0;
1107    }
1108}
1109
1110/// Result of adaptive error correction
1111#[derive(Debug, Clone, Serialize, Deserialize)]
1112pub struct AdaptiveCorrectionResult {
1113    /// Predicted error type
1114    pub predicted_error_type: ErrorType,
1115    /// Prediction confidence
1116    pub confidence: f64,
1117    /// Whether ML correction was applied
1118    pub correction_applied: bool,
1119    /// Number of errors corrected
1120    pub errors_corrected: usize,
1121    /// Reward signal for RL
1122    pub reward: f64,
1123    /// Processing time in milliseconds
1124    pub processing_time_ms: f64,
1125    /// RL action taken
1126    pub rl_action: usize,
1127}
1128
1129/// Benchmark adaptive ML error correction
1130pub fn benchmark_adaptive_ml_error_correction() -> Result<HashMap<String, f64>> {
1131    let mut results = HashMap::new();
1132
1133    // Test different ML configurations
1134    let configs = vec![
1135        AdaptiveMLConfig {
1136            model_type: MLModelType::NeuralNetwork,
1137            learning_strategy: LearningStrategy::Online,
1138            ..Default::default()
1139        },
1140        AdaptiveMLConfig {
1141            model_type: MLModelType::ReinforcementLearning,
1142            learning_strategy: LearningStrategy::Reinforcement,
1143            ..Default::default()
1144        },
1145    ];
1146
1147    for (i, config) in configs.into_iter().enumerate() {
1148        let start = std::time::Instant::now();
1149
1150        let mut adaptive_ec = AdaptiveMLErrorCorrection::new(config)?;
1151
1152        // Simulate error correction on test data
1153        for _ in 0..100 {
1154            let mut test_state = Array1::from_vec(vec![
1155                Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1156                Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1157                Complex64::new(0.0, 0.0),
1158                Complex64::new(0.0, 0.0),
1159            ]);
1160
1161            let syndrome = vec![true, false, true, false]; // Example syndrome
1162            let _result = adaptive_ec.correct_errors_adaptive(&mut test_state, &syndrome)?;
1163        }
1164
1165        let time = start.elapsed().as_secs_f64() * 1000.0;
1166        results.insert(format!("config_{i}"), time);
1167    }
1168
1169    Ok(results)
1170}
1171
1172#[cfg(test)]
1173mod tests {
1174    use super::*;
1175    use approx::assert_abs_diff_eq;
1176
1177    #[test]
1178    fn test_neural_network_creation() {
1179        let nn = SyndromeClassificationNetwork::new(4, vec![8, 4], 2, 0.01);
1180        assert_eq!(nn.input_size, 4);
1181        assert_eq!(nn.output_size, 2);
1182        assert_eq!(nn.weights.len(), 3); // input->hidden1, hidden1->hidden2, hidden2->output
1183    }
1184
1185    #[test]
1186    fn test_neural_network_forward() {
1187        let nn = SyndromeClassificationNetwork::new(3, vec![4], 2, 0.01);
1188        let input = Array1::from_vec(vec![1.0, 0.0, 1.0]);
1189        let output = nn.forward(&input);
1190
1191        assert_eq!(output.len(), 2);
1192        assert_abs_diff_eq!(output.sum(), 1.0, epsilon = 1e-6); // Softmax normalization
1193    }
1194
1195    #[test]
1196    fn test_rl_agent_creation() {
1197        let agent = ErrorCorrectionAgent::new(4, 0.1, 0.99, 0.1);
1198        assert_eq!(agent.action_space_size, 4);
1199        assert!(agent.q_table.is_empty());
1200    }
1201
1202    #[test]
1203    fn test_rl_agent_action_selection() {
1204        let mut agent = ErrorCorrectionAgent::new(3, 0.1, 0.99, 0.0); // No exploration
1205        let state = "001";
1206
1207        // First call should create Q-values and select action 0 (all zeros)
1208        let action = agent.select_action(state);
1209        assert!(action < 3);
1210    }
1211
1212    #[test]
1213    fn test_feature_extraction() {
1214        let extractor = FeatureExtractor::new(FeatureExtractionMethod::RawSyndrome);
1215        let syndrome = vec![true, false, true, false];
1216        let features = extractor.extract_features(&syndrome);
1217
1218        assert_eq!(features.len(), 4);
1219        assert_abs_diff_eq!(features[0], 1.0, epsilon = 1e-10);
1220        assert_abs_diff_eq!(features[1], 0.0, epsilon = 1e-10);
1221        assert_abs_diff_eq!(features[2], 1.0, epsilon = 1e-10);
1222        assert_abs_diff_eq!(features[3], 0.0, epsilon = 1e-10);
1223    }
1224
1225    #[test]
1226    fn test_adaptive_ml_error_correction_creation() {
1227        let config = AdaptiveMLConfig::default();
1228        let adaptive_ec = AdaptiveMLErrorCorrection::new(config);
1229        assert!(adaptive_ec.is_ok());
1230    }
1231
1232    #[test]
1233    fn test_error_correction_application() {
1234        let config = AdaptiveMLConfig::default();
1235        let mut adaptive_ec = AdaptiveMLErrorCorrection::new(config)
1236            .expect("Failed to create AdaptiveMLErrorCorrection");
1237
1238        let mut state = Array1::from_vec(vec![
1239            Complex64::new(1.0, 0.0),
1240            Complex64::new(0.0, 0.0),
1241            Complex64::new(0.0, 0.0),
1242            Complex64::new(0.0, 0.0),
1243        ]);
1244
1245        let syndrome = vec![false, false];
1246        let result = adaptive_ec.correct_errors_adaptive(&mut state, &syndrome);
1247        assert!(result.is_ok());
1248
1249        let correction_result = result.expect("Failed to correct errors");
1250        assert!(correction_result.processing_time_ms >= 0.0);
1251    }
1252
1253    #[test]
1254    fn test_metrics_calculation() {
1255        let mut metrics = CorrectionMetrics::default();
1256        metrics.total_corrections = 100;
1257        metrics.successful_corrections = 90;
1258        metrics.false_positives = 5;
1259        metrics.false_negatives = 5;
1260
1261        assert_abs_diff_eq!(metrics.accuracy(), 0.9, epsilon = 1e-10);
1262        assert_abs_diff_eq!(metrics.precision(), 90.0 / 95.0, epsilon = 1e-10);
1263        assert_abs_diff_eq!(metrics.recall(), 90.0 / 95.0, epsilon = 1e-10);
1264    }
1265
1266    #[test]
1267    fn test_different_error_types() {
1268        let config = AdaptiveMLConfig::default();
1269        let adaptive_ec = AdaptiveMLErrorCorrection::new(config)
1270            .expect("Failed to create AdaptiveMLErrorCorrection");
1271
1272        assert_eq!(adaptive_ec.class_to_error_type(0), ErrorType::Identity);
1273        assert_eq!(adaptive_ec.class_to_error_type(1), ErrorType::BitFlip);
1274        assert_eq!(adaptive_ec.class_to_error_type(2), ErrorType::PhaseFlip);
1275        assert_eq!(adaptive_ec.class_to_error_type(3), ErrorType::BitPhaseFlip);
1276    }
1277}