quantrs2_sim/
adaptive_gate_fusion.rs

1//! Adaptive gate fusion based on circuit structure analysis.
2//!
3//! This module implements intelligent gate fusion algorithms that analyze
4//! quantum circuit structures to automatically identify and fuse adjacent
5//! gates for optimal performance. It leverages `SciRS2`'s optimization
6//! capabilities for efficient matrix operations and circuit transformations.
7
8use scirs2_core::ndarray::Array2;
9use scirs2_core::Complex64;
10use serde::{Deserialize, Serialize};
11use std::collections::{HashMap, HashSet};
12use std::hash::{Hash, Hasher};
13
14use crate::error::{Result, SimulatorError};
15use crate::scirs2_integration::SciRS2Backend;
16
17#[cfg(feature = "advanced_math")]
18use quantrs2_circuit::prelude::*;
19
20/// Gate fusion strategy
21#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
22pub enum FusionStrategy {
23    /// Aggressive fusion - fuse as many gates as possible
24    Aggressive,
25    /// Conservative fusion - only fuse when clearly beneficial
26    Conservative,
27    /// Balanced fusion - balance between fusion opportunities and overhead
28    Balanced,
29    /// Adaptive fusion - learn from circuit patterns
30    Adaptive,
31    /// Custom fusion based on specific criteria
32    Custom,
33}
34
35/// Gate fusion configuration
36#[derive(Debug, Clone)]
37pub struct AdaptiveFusionConfig {
38    /// Primary fusion strategy
39    pub strategy: FusionStrategy,
40    /// Maximum number of gates to fuse in a single block
41    pub max_fusion_size: usize,
42    /// Minimum benefit threshold for fusion (relative speedup)
43    pub min_benefit_threshold: f64,
44    /// Enable cross-qubit fusion analysis
45    pub enable_cross_qubit_fusion: bool,
46    /// Enable temporal fusion across time steps
47    pub enable_temporal_fusion: bool,
48    /// Maximum circuit depth to analyze for fusion
49    pub max_analysis_depth: usize,
50    /// Enable machine learning-based fusion predictions
51    pub enable_ml_predictions: bool,
52    /// Fusion cache size for repeated patterns
53    pub fusion_cache_size: usize,
54    /// Enable parallel fusion analysis
55    pub parallel_analysis: bool,
56}
57
58impl Default for AdaptiveFusionConfig {
59    fn default() -> Self {
60        Self {
61            strategy: FusionStrategy::Adaptive,
62            max_fusion_size: 8,
63            min_benefit_threshold: 1.1,
64            enable_cross_qubit_fusion: true,
65            enable_temporal_fusion: true,
66            max_analysis_depth: 100,
67            enable_ml_predictions: true,
68            fusion_cache_size: 10_000,
69            parallel_analysis: true,
70        }
71    }
72}
73
74/// Quantum gate representation for fusion analysis
75#[derive(Debug, Clone)]
76pub struct QuantumGate {
77    /// Gate type identifier
78    pub gate_type: GateType,
79    /// Qubits this gate acts on
80    pub qubits: Vec<usize>,
81    /// Gate parameters (angles, etc.)
82    pub parameters: Vec<f64>,
83    /// Unitary matrix representation
84    pub matrix: Array2<Complex64>,
85    /// Position in the circuit
86    pub position: usize,
87    /// Estimated execution cost
88    pub cost: f64,
89}
90
91/// Supported gate types for fusion
92#[derive(Debug, Clone, PartialEq, Eq, Hash)]
93pub enum GateType {
94    // Single-qubit gates
95    Identity,
96    PauliX,
97    PauliY,
98    PauliZ,
99    Hadamard,
100    Phase,
101    T,
102    RotationX,
103    RotationY,
104    RotationZ,
105    // Two-qubit gates
106    CNOT,
107    CZ,
108    SWAP,
109    ISwap,
110    // Multi-qubit gates
111    Toffoli,
112    Fredkin,
113    // Custom gates
114    Custom(String),
115}
116
117impl QuantumGate {
118    /// Create a new quantum gate
119    #[must_use]
120    pub fn new(gate_type: GateType, qubits: Vec<usize>, parameters: Vec<f64>) -> Self {
121        let matrix = Self::gate_matrix(&gate_type, &parameters);
122        let cost = Self::estimate_cost(&gate_type, qubits.len());
123
124        Self {
125            gate_type,
126            qubits,
127            parameters,
128            matrix,
129            position: 0,
130            cost,
131        }
132    }
133
134    /// Get the unitary matrix for a gate type
135    fn gate_matrix(gate_type: &GateType, parameters: &[f64]) -> Array2<Complex64> {
136        match gate_type {
137            GateType::Identity => Array2::eye(2),
138            GateType::PauliX => Array2::from_shape_vec(
139                (2, 2),
140                vec![
141                    Complex64::new(0.0, 0.0),
142                    Complex64::new(1.0, 0.0),
143                    Complex64::new(1.0, 0.0),
144                    Complex64::new(0.0, 0.0),
145                ],
146            )
147            .expect("Pauli X matrix shape is always valid"),
148            GateType::PauliY => Array2::from_shape_vec(
149                (2, 2),
150                vec![
151                    Complex64::new(0.0, 0.0),
152                    Complex64::new(0.0, -1.0),
153                    Complex64::new(0.0, 1.0),
154                    Complex64::new(0.0, 0.0),
155                ],
156            )
157            .expect("Pauli Y matrix shape is always valid"),
158            GateType::PauliZ => Array2::from_shape_vec(
159                (2, 2),
160                vec![
161                    Complex64::new(1.0, 0.0),
162                    Complex64::new(0.0, 0.0),
163                    Complex64::new(0.0, 0.0),
164                    Complex64::new(-1.0, 0.0),
165                ],
166            )
167            .expect("Pauli Z matrix shape is always valid"),
168            GateType::Hadamard => {
169                let inv_sqrt2 = 1.0 / 2.0_f64.sqrt();
170                Array2::from_shape_vec(
171                    (2, 2),
172                    vec![
173                        Complex64::new(inv_sqrt2, 0.0),
174                        Complex64::new(inv_sqrt2, 0.0),
175                        Complex64::new(inv_sqrt2, 0.0),
176                        Complex64::new(-inv_sqrt2, 0.0),
177                    ],
178                )
179                .expect("Hadamard matrix shape is always valid")
180            }
181            GateType::RotationX => {
182                let theta = parameters.first().copied().unwrap_or(0.0);
183                let cos_half = (theta / 2.0).cos();
184                let sin_half = (theta / 2.0).sin();
185                Array2::from_shape_vec(
186                    (2, 2),
187                    vec![
188                        Complex64::new(cos_half, 0.0),
189                        Complex64::new(0.0, -sin_half),
190                        Complex64::new(0.0, -sin_half),
191                        Complex64::new(cos_half, 0.0),
192                    ],
193                )
194                .expect("Rotation X matrix shape is always valid")
195            }
196            GateType::RotationY => {
197                let theta = parameters.first().copied().unwrap_or(0.0);
198                let cos_half = (theta / 2.0).cos();
199                let sin_half = (theta / 2.0).sin();
200                Array2::from_shape_vec(
201                    (2, 2),
202                    vec![
203                        Complex64::new(cos_half, 0.0),
204                        Complex64::new(-sin_half, 0.0),
205                        Complex64::new(sin_half, 0.0),
206                        Complex64::new(cos_half, 0.0),
207                    ],
208                )
209                .expect("Rotation Y matrix shape is always valid")
210            }
211            GateType::RotationZ => {
212                let theta = parameters.first().copied().unwrap_or(0.0);
213                let exp_neg = Complex64::new(0.0, -theta / 2.0).exp();
214                let exp_pos = Complex64::new(0.0, theta / 2.0).exp();
215                Array2::from_shape_vec(
216                    (2, 2),
217                    vec![
218                        exp_neg,
219                        Complex64::new(0.0, 0.0),
220                        Complex64::new(0.0, 0.0),
221                        exp_pos,
222                    ],
223                )
224                .expect("Rotation Z matrix shape is always valid")
225            }
226            GateType::CNOT => Array2::from_shape_vec(
227                (4, 4),
228                vec![
229                    Complex64::new(1.0, 0.0),
230                    Complex64::new(0.0, 0.0),
231                    Complex64::new(0.0, 0.0),
232                    Complex64::new(0.0, 0.0),
233                    Complex64::new(0.0, 0.0),
234                    Complex64::new(1.0, 0.0),
235                    Complex64::new(0.0, 0.0),
236                    Complex64::new(0.0, 0.0),
237                    Complex64::new(0.0, 0.0),
238                    Complex64::new(0.0, 0.0),
239                    Complex64::new(0.0, 0.0),
240                    Complex64::new(1.0, 0.0),
241                    Complex64::new(0.0, 0.0),
242                    Complex64::new(0.0, 0.0),
243                    Complex64::new(1.0, 0.0),
244                    Complex64::new(0.0, 0.0),
245                ],
246            )
247            .expect("CNOT matrix shape is always valid"),
248            _ => Array2::eye(2), // Default fallback
249        }
250    }
251
252    /// Estimate execution cost for a gate
253    fn estimate_cost(gate_type: &GateType, num_qubits: usize) -> f64 {
254        let base_cost = match gate_type {
255            GateType::Identity => 0.1,
256            GateType::PauliX | GateType::PauliY | GateType::PauliZ => 1.0,
257            GateType::Hadamard => 1.2,
258            GateType::Phase | GateType::T => 1.1,
259            GateType::RotationX | GateType::RotationY | GateType::RotationZ => 1.5,
260            GateType::CNOT | GateType::CZ => 2.0,
261            GateType::SWAP | GateType::ISwap => 2.5,
262            GateType::Toffoli => 4.0,
263            GateType::Fredkin => 4.5,
264            GateType::Custom(_) => 3.0,
265        };
266
267        // Cost scales with number of qubits
268        base_cost * f64::from(1 << num_qubits)
269    }
270
271    /// Check if this gate commutes with another gate
272    #[must_use]
273    pub fn commutes_with(&self, other: &Self) -> bool {
274        // Check if gates act on disjoint qubits
275        let self_qubits: HashSet<_> = self.qubits.iter().collect();
276        let other_qubits: HashSet<_> = other.qubits.iter().collect();
277
278        if self_qubits.is_disjoint(&other_qubits) {
279            return true;
280        }
281
282        // For gates acting on same qubits, check specific commutation rules
283        if self.qubits == other.qubits {
284            return self.check_specific_commutation(other);
285        }
286
287        false
288    }
289
290    /// Check specific commutation rules for gates on same qubits
291    const fn check_specific_commutation(&self, other: &Self) -> bool {
292        match (&self.gate_type, &other.gate_type) {
293            // Pauli gates commute with themselves
294            (GateType::PauliX, GateType::PauliX)
295            | (GateType::PauliY, GateType::PauliY)
296            | (GateType::PauliZ, GateType::PauliZ) => true,
297            // Z commutes with RZ
298            (GateType::PauliZ, GateType::RotationZ) | (GateType::RotationZ, GateType::PauliZ) => {
299                true
300            }
301            // X commutes with RX
302            (GateType::PauliX, GateType::RotationX) | (GateType::RotationX, GateType::PauliX) => {
303                true
304            }
305            // Y commutes with RY
306            (GateType::PauliY, GateType::RotationY) | (GateType::RotationY, GateType::PauliY) => {
307                true
308            }
309            // Rotation gates of same type commute
310            (GateType::RotationX, GateType::RotationX)
311            | (GateType::RotationY, GateType::RotationY)
312            | (GateType::RotationZ, GateType::RotationZ) => true,
313            // Identity commutes with everything
314            (GateType::Identity, _) | (_, GateType::Identity) => true,
315            _ => false,
316        }
317    }
318
319    /// Check if this gate can be fused with another gate
320    #[must_use]
321    pub fn can_fuse_with(&self, other: &Self) -> bool {
322        // Gates must act on the same qubits to be fusable
323        if self.qubits != other.qubits {
324            return false;
325        }
326
327        // Check if both are single-qubit gates (easier to fuse)
328        if self.qubits.len() == 1 && other.qubits.len() == 1 {
329            return true;
330        }
331
332        // Two-qubit gates can sometimes be fused
333        if self.qubits.len() == 2 && other.qubits.len() == 2 {
334            return self.check_two_qubit_fusion_compatibility(other);
335        }
336
337        false
338    }
339
340    /// Check if two-qubit gates can be fused
341    const fn check_two_qubit_fusion_compatibility(&self, other: &Self) -> bool {
342        match (&self.gate_type, &other.gate_type) {
343            // CNOTs can be fused in certain patterns
344            (GateType::CNOT, GateType::CNOT) => true,
345            // CZ gates can be fused
346            (GateType::CZ, GateType::CZ) => true,
347            // CNOT and CZ can sometimes be fused
348            (GateType::CNOT, GateType::CZ) | (GateType::CZ, GateType::CNOT) => true,
349            _ => false,
350        }
351    }
352}
353
354impl Hash for QuantumGate {
355    fn hash<H: Hasher>(&self, state: &mut H) {
356        self.gate_type.hash(state);
357        self.qubits.hash(state);
358        // Hash parameters with reduced precision to avoid floating point issues
359        for &param in &self.parameters {
360            ((param * 1000.0).round() as i64).hash(state);
361        }
362    }
363}
364
365impl PartialEq for QuantumGate {
366    fn eq(&self, other: &Self) -> bool {
367        self.gate_type == other.gate_type
368            && self.qubits == other.qubits
369            && self.parameters.len() == other.parameters.len()
370            && self
371                .parameters
372                .iter()
373                .zip(other.parameters.iter())
374                .all(|(&a, &b)| (a - b).abs() < 1e-10)
375    }
376}
377
378impl Eq for QuantumGate {}
379
380/// Fused gate block containing multiple gates
381#[derive(Debug, Clone)]
382pub struct FusedGateBlock {
383    /// Individual gates in this block
384    pub gates: Vec<QuantumGate>,
385    /// Combined unitary matrix for the entire block
386    pub combined_matrix: Array2<Complex64>,
387    /// Qubits affected by this block
388    pub qubits: Vec<usize>,
389    /// Estimated execution cost
390    pub cost: f64,
391    /// Performance improvement factor
392    pub improvement_factor: f64,
393}
394
395impl FusedGateBlock {
396    /// Create a new fused gate block
397    pub fn new(gates: Vec<QuantumGate>) -> Result<Self> {
398        if gates.is_empty() {
399            return Err(SimulatorError::InvalidInput(
400                "Cannot create empty gate block".to_string(),
401            ));
402        }
403
404        // Determine qubits affected by this block
405        let mut qubits = HashSet::new();
406        for gate in &gates {
407            qubits.extend(&gate.qubits);
408        }
409        let mut qubit_vec: Vec<usize> = qubits.into_iter().collect();
410        qubit_vec.sort_unstable();
411
412        // Calculate combined matrix
413        let combined_matrix = Self::calculate_combined_matrix(&gates, &qubit_vec)?;
414
415        // Calculate costs
416        let individual_cost: f64 = gates.iter().map(|g| g.cost).sum();
417        let fused_cost = Self::estimate_fused_cost(&combined_matrix);
418        let improvement_factor = individual_cost / fused_cost;
419
420        Ok(Self {
421            gates,
422            combined_matrix,
423            qubits: qubit_vec,
424            cost: fused_cost,
425            improvement_factor,
426        })
427    }
428
429    /// Calculate the combined unitary matrix for multiple gates
430    fn calculate_combined_matrix(
431        gates: &[QuantumGate],
432        qubits: &[usize],
433    ) -> Result<Array2<Complex64>> {
434        let num_qubits = qubits.len();
435        let matrix_size = 1 << num_qubits;
436        let mut combined = Array2::eye(matrix_size);
437
438        for gate in gates {
439            let gate_matrix = Self::expand_gate_matrix(&gate.matrix, &gate.qubits, qubits)?;
440            combined = gate_matrix.dot(&combined);
441        }
442
443        Ok(combined)
444    }
445
446    /// Expand a gate matrix to act on the full qubit space
447    fn expand_gate_matrix(
448        gate_matrix: &Array2<Complex64>,
449        gate_qubits: &[usize],
450        all_qubits: &[usize],
451    ) -> Result<Array2<Complex64>> {
452        let num_all_qubits = all_qubits.len();
453        let full_size = 1 << num_all_qubits;
454        let gate_size = 1 << gate_qubits.len();
455
456        if gate_matrix.nrows() != gate_size || gate_matrix.ncols() != gate_size {
457            return Err(SimulatorError::DimensionMismatch(
458                "Gate matrix size doesn't match number of qubits".to_string(),
459            ));
460        }
461
462        let mut expanded = Array2::eye(full_size);
463
464        // Create mapping from gate qubits to positions in full space
465        let mut qubit_mapping = HashMap::new();
466        for (gate_pos, &qubit) in gate_qubits.iter().enumerate() {
467            if let Some(all_pos) = all_qubits.iter().position(|&q| q == qubit) {
468                qubit_mapping.insert(gate_pos, all_pos);
469            } else {
470                return Err(SimulatorError::InvalidInput(format!(
471                    "Gate qubit {qubit} not found in qubit list"
472                )));
473            }
474        }
475
476        // Apply gate to the appropriate subspace
477        for i in 0..full_size {
478            for j in 0..full_size {
479                // Extract gate subspace indices
480                let mut gate_i = 0;
481                let mut gate_j = 0;
482                let mut valid = true;
483
484                for (gate_pos, &all_pos) in &qubit_mapping {
485                    let bit_i = (i >> (num_all_qubits - 1 - all_pos)) & 1;
486                    let bit_j = (j >> (num_all_qubits - 1 - all_pos)) & 1;
487
488                    gate_i |= bit_i << (gate_qubits.len() - 1 - gate_pos);
489                    gate_j |= bit_j << (gate_qubits.len() - 1 - gate_pos);
490                }
491
492                // Check if other qubits are the same
493                for all_pos in 0..num_all_qubits {
494                    if !qubit_mapping.values().any(|&pos| pos == all_pos) {
495                        let bit_i = (i >> (num_all_qubits - 1 - all_pos)) & 1;
496                        let bit_j = (j >> (num_all_qubits - 1 - all_pos)) & 1;
497                        if bit_i != bit_j {
498                            valid = false;
499                            break;
500                        }
501                    }
502                }
503
504                if valid {
505                    expanded[[i, j]] = gate_matrix[[gate_i, gate_j]];
506                } else {
507                    expanded[[i, j]] = if i == j {
508                        Complex64::new(1.0, 0.0)
509                    } else {
510                        Complex64::new(0.0, 0.0)
511                    };
512                }
513            }
514        }
515
516        Ok(expanded)
517    }
518
519    /// Estimate execution cost for a fused gate block
520    fn estimate_fused_cost(matrix: &Array2<Complex64>) -> f64 {
521        // Cost is primarily determined by matrix size
522        let size = matrix.nrows();
523        let base_cost = (size as f64).log2() * size as f64;
524
525        // Add overhead for fusion setup
526        let fusion_overhead = 0.1 * base_cost;
527
528        base_cost + fusion_overhead
529    }
530
531    /// Check if fusion is beneficial
532    #[must_use]
533    pub fn is_beneficial(&self) -> bool {
534        self.improvement_factor > 1.1 // At least 10% improvement
535    }
536}
537
538/// Circuit analysis result
539#[derive(Debug, Clone, Serialize, Deserialize)]
540pub struct CircuitAnalysis {
541    /// Number of gates in original circuit
542    pub original_gate_count: usize,
543    /// Number of gates after fusion
544    pub fused_gate_count: usize,
545    /// Number of fusion blocks created
546    pub fusion_blocks: usize,
547    /// Estimated performance improvement
548    pub performance_improvement: f64,
549    /// Gate type distribution
550    pub gate_distribution: HashMap<String, usize>,
551    /// Fusion opportunities identified
552    pub fusion_opportunities: Vec<FusionOpportunity>,
553    /// Circuit depth before and after fusion
554    pub circuit_depth: (usize, usize),
555}
556
557/// Fusion opportunity description
558#[derive(Debug, Clone, Serialize, Deserialize)]
559pub struct FusionOpportunity {
560    /// Description of the opportunity
561    pub description: String,
562    /// Qubits involved
563    pub qubits: Vec<usize>,
564    /// Gate types that can be fused
565    pub gate_types: Vec<String>,
566    /// Estimated benefit
567    pub estimated_benefit: f64,
568    /// Confidence score (0-1)
569    pub confidence: f64,
570}
571
572/// Adaptive gate fusion engine
573pub struct AdaptiveGateFusion {
574    /// Configuration
575    config: AdaptiveFusionConfig,
576    /// `SciRS2` backend for optimization
577    backend: Option<SciRS2Backend>,
578    /// Fusion pattern cache with improved key system
579    fusion_cache: HashMap<FusionPatternKey, CachedFusionResult>,
580    /// Learning history for adaptive strategy
581    learning_history: Vec<FusionExperiment>,
582    /// Circuit optimization context
583    #[cfg(feature = "advanced_math")]
584    optimizer: Option<Box<dyn std::any::Any>>, // Placeholder for CircuitOptimizer
585    /// Machine learning predictor for fusion benefits
586    ml_predictor: Option<MLFusionPredictor>,
587    /// Cache statistics
588    cache_hits: usize,
589    cache_misses: usize,
590    /// Pattern analyzer for circuit structure recognition
591    pattern_analyzer: CircuitPatternAnalyzer,
592}
593
594/// Cache key for fusion patterns
595#[derive(Debug, Clone, PartialEq, Eq, Hash)]
596pub struct FusionPatternKey {
597    /// Gate types in the pattern
598    gate_types: Vec<GateType>,
599    /// Number of qubits involved
600    num_qubits: usize,
601    /// Parameter hash for parameterized gates
602    parameter_hash: u64,
603}
604
605impl FusionPatternKey {
606    /// Create a fusion pattern key from a list of gates
607    pub fn from_gates(gates: &[QuantumGate]) -> Result<Self> {
608        let gate_types: Vec<GateType> = gates.iter().map(|g| g.gate_type.clone()).collect();
609
610        // Count unique qubits
611        let mut qubits = std::collections::HashSet::new();
612        for gate in gates {
613            for &qubit in &gate.qubits {
614                qubits.insert(qubit);
615            }
616        }
617        let num_qubits = qubits.len();
618
619        // Hash parameters
620        let mut parameter_hash = 0u64;
621        for gate in gates {
622            for &param in &gate.parameters {
623                parameter_hash = parameter_hash.wrapping_add((param * 1000.0) as u64);
624            }
625        }
626
627        Ok(Self {
628            gate_types,
629            num_qubits,
630            parameter_hash,
631        })
632    }
633}
634
635/// Cached fusion result
636#[derive(Debug, Clone)]
637pub struct CachedFusionResult {
638    /// The fused gate block
639    fused_block: FusedGateBlock,
640    /// Performance benefit observed
641    benefit: f64,
642    /// Number of times this pattern was used
643    usage_count: usize,
644    /// Last access timestamp
645    last_accessed: std::time::Instant,
646}
647
648/// Machine learning predictor for fusion benefits
649pub struct MLFusionPredictor {
650    /// Feature weights for different gate patterns
651    feature_weights: HashMap<String, f64>,
652    /// Training examples
653    training_data: Vec<MLTrainingExample>,
654    /// Model accuracy
655    accuracy: f64,
656}
657
658/// Training example for ML predictor
659#[derive(Debug, Clone)]
660pub struct MLTrainingExample {
661    /// Input features
662    features: Vec<f64>,
663    /// Expected benefit (target)
664    benefit: f64,
665    /// Actual observed benefit
666    observed_benefit: Option<f64>,
667}
668
669/// Circuit pattern analyzer
670pub struct CircuitPatternAnalyzer {
671    /// Known beneficial patterns
672    beneficial_patterns: HashMap<String, f64>,
673    /// Pattern recognition history
674    pattern_history: Vec<PatternRecognitionResult>,
675}
676
677/// Pattern recognition result
678#[derive(Debug, Clone)]
679pub struct PatternRecognitionResult {
680    /// Pattern description
681    pub pattern: String,
682    /// Confidence in recognition
683    pub confidence: f64,
684    /// Expected benefit
685    pub expected_benefit: f64,
686}
687
688/// Result of fusion decision
689#[derive(Debug, Clone)]
690pub struct FusionResult {
691    /// Whether gates should be fused
692    pub should_fuse: bool,
693    /// Confidence in the decision
694    pub confidence: f64,
695    /// Expected speedup from fusion
696    pub expected_speedup: f64,
697    /// Estimated error increase
698    pub estimated_error: f64,
699}
700
701/// Fusion experiment for learning
702#[derive(Debug, Clone)]
703struct FusionExperiment {
704    circuit_fingerprint: u64,
705    fusion_strategy: FusionStrategy,
706    performance_improvement: f64,
707    execution_time_ms: f64,
708}
709
710impl AdaptiveGateFusion {
711    /// Create new adaptive gate fusion engine
712    pub fn new(config: AdaptiveFusionConfig) -> Result<Self> {
713        Ok(Self {
714            config,
715            backend: None,
716            fusion_cache: HashMap::new(),
717            learning_history: Vec::new(),
718            ml_predictor: None,
719            cache_hits: 0,
720            cache_misses: 0,
721            pattern_analyzer: CircuitPatternAnalyzer::new(),
722            #[cfg(feature = "advanced_math")]
723            optimizer: None,
724        })
725    }
726
727    /// Initialize with `SciRS2` backend
728    pub fn with_backend(mut self) -> Result<Self> {
729        self.backend = Some(SciRS2Backend::new());
730
731        #[cfg(feature = "advanced_math")]
732        {
733            let strategy = match self.config.strategy {
734                FusionStrategy::Aggressive => OptimizationStrategy::MinimizeTime,
735                FusionStrategy::Conservative => OptimizationStrategy::MinimizeLength,
736                FusionStrategy::Balanced => OptimizationStrategy::Balanced,
737                FusionStrategy::Adaptive => OptimizationStrategy::MinimizeCrossings,
738                FusionStrategy::Custom => OptimizationStrategy::Balanced,
739            };
740
741            // Placeholder for circuit optimizer integration
742            self.optimizer = Some(Box::new(strategy));
743        }
744
745        Ok(self)
746    }
747
748    /// Analyze circuit and identify fusion opportunities
749    pub fn analyze_circuit(&mut self, gates: &[QuantumGate]) -> Result<CircuitAnalysis> {
750        let start_time = std::time::Instant::now();
751
752        // Calculate circuit metrics
753        let original_gate_count = gates.len();
754        let original_depth = self.calculate_circuit_depth(gates);
755
756        // Identify fusion opportunities
757        let fusion_opportunities = self.identify_fusion_opportunities(gates)?;
758
759        // Perform actual fusion
760        let (fused_blocks, remaining_gates) = self.perform_fusion(gates)?;
761        let fused_gate_count = fused_blocks.len() + remaining_gates.len();
762        let fused_depth = self.calculate_fused_circuit_depth(&fused_blocks, &remaining_gates);
763
764        // Calculate performance improvement
765        let original_cost: f64 = gates.iter().map(|g| g.cost).sum();
766        let fused_cost: f64 = fused_blocks.iter().map(|b| b.cost).sum::<f64>()
767            + remaining_gates.iter().map(|g| g.cost).sum::<f64>();
768        let performance_improvement = original_cost / fused_cost;
769
770        // Gate distribution analysis
771        let mut gate_distribution = HashMap::new();
772        for gate in gates {
773            let gate_name = format!("{:?}", gate.gate_type);
774            *gate_distribution.entry(gate_name).or_insert(0) += 1;
775        }
776
777        let analysis = CircuitAnalysis {
778            original_gate_count,
779            fused_gate_count,
780            fusion_blocks: fused_blocks.len(),
781            performance_improvement,
782            gate_distribution,
783            fusion_opportunities,
784            circuit_depth: (original_depth, fused_depth),
785        };
786
787        // Record experiment for learning
788        if self.config.enable_ml_predictions {
789            let experiment = FusionExperiment {
790                circuit_fingerprint: self.calculate_circuit_fingerprint(gates),
791                fusion_strategy: self.config.strategy,
792                performance_improvement,
793                execution_time_ms: start_time.elapsed().as_secs_f64() * 1000.0,
794            };
795            self.learning_history.push(experiment);
796        }
797
798        Ok(analysis)
799    }
800
801    /// Perform gate fusion on a circuit
802    pub fn fuse_circuit(&mut self, gates: &[QuantumGate]) -> Result<Vec<FusedGateBlock>> {
803        let (fused_blocks, _) = self.perform_fusion(gates)?;
804        Ok(fused_blocks)
805    }
806
807    /// Identify fusion opportunities in a circuit
808    fn identify_fusion_opportunities(
809        &self,
810        gates: &[QuantumGate],
811    ) -> Result<Vec<FusionOpportunity>> {
812        let mut opportunities = Vec::new();
813
814        // Analyze gate sequences for fusion potential
815        for window_size in 2..=self.config.max_fusion_size {
816            for window in gates.windows(window_size) {
817                if let Some(opportunity) = self.analyze_gate_window(window)? {
818                    opportunities.push(opportunity);
819                }
820            }
821        }
822
823        // Remove overlapping opportunities (keep the best ones)
824        opportunities.sort_by(|a, b| {
825            b.estimated_benefit
826                .partial_cmp(&a.estimated_benefit)
827                .unwrap_or(std::cmp::Ordering::Equal)
828        });
829        self.remove_overlapping_opportunities(opportunities)
830    }
831
832    /// Analyze a window of gates for fusion potential
833    fn analyze_gate_window(&self, window: &[QuantumGate]) -> Result<Option<FusionOpportunity>> {
834        if window.len() < 2 {
835            return Ok(None);
836        }
837
838        // Check if gates can be fused
839        let can_fuse = self.can_fuse_gate_sequence(window)?;
840        if !can_fuse {
841            return Ok(None);
842        }
843
844        // Estimate benefit
845        let benefit = self.estimate_fusion_benefit(window)?;
846        if benefit < self.config.min_benefit_threshold {
847            return Ok(None);
848        }
849
850        // Create opportunity description
851        let qubits: HashSet<usize> = window.iter().flat_map(|g| &g.qubits).copied().collect();
852        let gate_types: Vec<String> = window
853            .iter()
854            .map(|g| format!("{:?}", g.gate_type))
855            .collect();
856
857        let confidence = self.calculate_fusion_confidence(window);
858
859        let opportunity = FusionOpportunity {
860            description: format!("Fuse {} gates on qubits {:?}", window.len(), qubits),
861            qubits: qubits.into_iter().collect(),
862            gate_types,
863            estimated_benefit: benefit,
864            confidence,
865        };
866
867        Ok(Some(opportunity))
868    }
869
870    /// Check if a sequence of gates can be fused
871    fn can_fuse_gate_sequence(&self, gates: &[QuantumGate]) -> Result<bool> {
872        if gates.is_empty() {
873            return Ok(false);
874        }
875
876        // Check basic fusion compatibility
877        for i in 0..gates.len() - 1 {
878            if !gates[i].can_fuse_with(&gates[i + 1]) {
879                // Check if gates commute (allowing reordering)
880                if !gates[i].commutes_with(&gates[i + 1]) {
881                    return Ok(false);
882                }
883            }
884        }
885
886        // Check if fusion would be beneficial
887        let fusion_block = FusedGateBlock::new(gates.to_vec())?;
888        Ok(fusion_block.is_beneficial())
889    }
890
891    /// Estimate the benefit of fusing a sequence of gates
892    fn estimate_fusion_benefit(&self, gates: &[QuantumGate]) -> Result<f64> {
893        let individual_cost: f64 = gates.iter().map(|g| g.cost).sum();
894
895        // Create temporary fusion block to estimate fused cost
896        let fusion_block = FusedGateBlock::new(gates.to_vec())?;
897        let fused_cost = fusion_block.cost;
898
899        Ok(individual_cost / fused_cost)
900    }
901
902    /// Calculate confidence score for fusion
903    fn calculate_fusion_confidence(&self, gates: &[QuantumGate]) -> f64 {
904        let mut confidence: f64 = 1.0;
905
906        // Reduce confidence for mixed gate types
907        let gate_types: HashSet<_> = gates.iter().map(|g| &g.gate_type).collect();
908        if gate_types.len() > 1 {
909            confidence *= 0.8;
910        }
911
912        // Reduce confidence for gates on many qubits
913        let all_qubits: HashSet<_> = gates.iter().flat_map(|g| &g.qubits).collect();
914        if all_qubits.len() > 3 {
915            confidence *= 0.6;
916        }
917
918        // Increase confidence for known beneficial patterns
919        if self.is_known_beneficial_pattern(gates) {
920            confidence *= 1.2;
921        }
922
923        confidence.min(1.0)
924    }
925
926    /// Check if this is a known beneficial fusion pattern
927    fn is_known_beneficial_pattern(&self, gates: &[QuantumGate]) -> bool {
928        // Check for common beneficial patterns
929        if gates.len() == 2 {
930            // Adjacent rotation gates of same type
931            if let (Some(g1), Some(g2)) = (gates.first(), gates.get(1)) {
932                match (&g1.gate_type, &g2.gate_type) {
933                    (GateType::RotationX, GateType::RotationX)
934                    | (GateType::RotationY, GateType::RotationY)
935                    | (GateType::RotationZ, GateType::RotationZ) => return true,
936                    _ => {}
937                }
938            }
939        }
940
941        // CNOT + single qubit gate patterns
942        if gates.len() == 3 {
943            // Look for CNOT-single-CNOT patterns
944            if matches!(gates[0].gate_type, GateType::CNOT)
945                && gates[1].qubits.len() == 1
946                && matches!(gates[2].gate_type, GateType::CNOT)
947            {
948                return true;
949            }
950        }
951
952        false
953    }
954
955    /// Remove overlapping fusion opportunities
956    fn remove_overlapping_opportunities(
957        &self,
958        opportunities: Vec<FusionOpportunity>,
959    ) -> Result<Vec<FusionOpportunity>> {
960        let mut result = Vec::new();
961        let mut used_positions = HashSet::new();
962
963        for opportunity in opportunities {
964            // Check if this opportunity overlaps with already selected ones
965            let overlaps = opportunity
966                .qubits
967                .iter()
968                .any(|q| used_positions.contains(q));
969
970            if !overlaps {
971                // Mark qubits as used
972                for &qubit in &opportunity.qubits {
973                    used_positions.insert(qubit);
974                }
975                result.push(opportunity);
976            }
977        }
978
979        Ok(result)
980    }
981
982    /// Perform actual gate fusion
983    fn perform_fusion(
984        &mut self,
985        gates: &[QuantumGate],
986    ) -> Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
987        let start_time = std::time::Instant::now();
988
989        #[cfg(feature = "advanced_math")]
990        {
991            if self.optimizer.is_some() {
992                // For now, fall back to manual fusion since we're using placeholder types
993                return self.perform_manual_fusion(gates);
994            }
995        }
996
997        // Fallback to manual fusion
998        self.perform_manual_fusion(gates)
999    }
1000
1001    #[cfg(feature = "advanced_math")]
1002    fn perform_scirs2_fusion(
1003        &mut self,
1004        gates: &[QuantumGate],
1005        _optimizer: &mut Box<dyn std::any::Any>,
1006    ) -> Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
1007        // Use SciRS2's circuit optimization capabilities
1008        // This is a placeholder - actual implementation would use SciRS2 APIs
1009        self.perform_manual_fusion(gates)
1010    }
1011
1012    /// Manual fusion implementation
1013    fn perform_manual_fusion(
1014        &mut self,
1015        gates: &[QuantumGate],
1016    ) -> Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
1017        let mut fused_blocks = Vec::new();
1018        let mut remaining_gates = Vec::new();
1019        let mut i = 0;
1020
1021        while i < gates.len() {
1022            // Try to find the largest fusable block starting at position i
1023            let mut best_block_size = 1;
1024            let mut best_benefit = 0.0;
1025
1026            for block_size in 2..=(self.config.max_fusion_size.min(gates.len() - i)) {
1027                let window = &gates[i..i + block_size];
1028
1029                if let Ok(can_fuse) = self.can_fuse_gate_sequence(window) {
1030                    if can_fuse {
1031                        if let Ok(benefit) = self.estimate_fusion_benefit(window) {
1032                            if benefit > best_benefit
1033                                && benefit >= self.config.min_benefit_threshold
1034                            {
1035                                best_block_size = block_size;
1036                                best_benefit = benefit;
1037                            }
1038                        }
1039                    }
1040                }
1041            }
1042
1043            if best_block_size > 1 {
1044                // Create fused block
1045                let block_gates = gates[i..i + best_block_size].to_vec();
1046
1047                // Create fusion pattern key from gates
1048                let pattern_key = FusionPatternKey::from_gates(&block_gates)?;
1049
1050                // Check cache first
1051                if let Some(cached_result) = self.fusion_cache.get(&pattern_key) {
1052                    fused_blocks.push(cached_result.fused_block.clone());
1053                    self.cache_hits += 1;
1054                } else {
1055                    let fused_block = FusedGateBlock::new(block_gates.clone())?;
1056
1057                    // Create cached result
1058                    let cached_result = CachedFusionResult {
1059                        fused_block: fused_block.clone(),
1060                        benefit: 1.0, // Default benefit
1061                        usage_count: 1,
1062                        last_accessed: std::time::Instant::now(),
1063                    };
1064
1065                    // Cache the result
1066                    if self.fusion_cache.len() < self.config.fusion_cache_size {
1067                        self.fusion_cache.insert(pattern_key, cached_result);
1068                    }
1069
1070                    self.cache_misses += 1;
1071                    fused_blocks.push(fused_block);
1072                }
1073
1074                i += best_block_size;
1075            } else {
1076                // Single gate cannot be fused
1077                remaining_gates.push(gates[i].clone());
1078                i += 1;
1079            }
1080        }
1081
1082        Ok((fused_blocks, remaining_gates))
1083    }
1084
1085    /// Calculate circuit depth
1086    fn calculate_circuit_depth(&self, gates: &[QuantumGate]) -> usize {
1087        if gates.is_empty() {
1088            return 0;
1089        }
1090
1091        // Build dependency graph
1092        let mut qubit_last_gate = HashMap::new();
1093        let mut gate_depths = vec![0; gates.len()];
1094
1095        for (i, gate) in gates.iter().enumerate() {
1096            let mut max_dependency_depth = 0;
1097
1098            for &qubit in &gate.qubits {
1099                if let Some(&last_gate_idx) = qubit_last_gate.get(&qubit) {
1100                    max_dependency_depth = max_dependency_depth.max(gate_depths[last_gate_idx]);
1101                }
1102                qubit_last_gate.insert(qubit, i);
1103            }
1104
1105            gate_depths[i] = max_dependency_depth + 1;
1106        }
1107
1108        gate_depths.into_iter().max().unwrap_or(0)
1109    }
1110
1111    /// Calculate circuit depth after fusion
1112    const fn calculate_fused_circuit_depth(
1113        &self,
1114        blocks: &[FusedGateBlock],
1115        gates: &[QuantumGate],
1116    ) -> usize {
1117        // Simplified depth calculation - in practice would need more sophisticated analysis
1118        blocks.len() + gates.len()
1119    }
1120
1121    /// Calculate circuit fingerprint for learning
1122    fn calculate_circuit_fingerprint(&self, gates: &[QuantumGate]) -> u64 {
1123        use std::collections::hash_map::DefaultHasher;
1124
1125        let mut hasher = DefaultHasher::new();
1126        gates.hash(&mut hasher);
1127        hasher.finish()
1128    }
1129
1130    /// Get fusion statistics
1131    #[must_use]
1132    pub fn get_fusion_stats(&self) -> FusionStats {
1133        FusionStats {
1134            cache_size: self.fusion_cache.len(),
1135            cache_hit_rate: self.calculate_cache_hit_rate(),
1136            learning_experiments: self.learning_history.len(),
1137            average_improvement: self.calculate_average_improvement(),
1138        }
1139    }
1140
1141    const fn calculate_cache_hit_rate(&self) -> f64 {
1142        // This would be tracked during actual execution
1143        0.0 // Placeholder
1144    }
1145
1146    fn calculate_average_improvement(&self) -> f64 {
1147        if self.learning_history.is_empty() {
1148            return 0.0;
1149        }
1150
1151        let total: f64 = self
1152            .learning_history
1153            .iter()
1154            .map(|e| e.performance_improvement)
1155            .sum();
1156        total / self.learning_history.len() as f64
1157    }
1158
1159    /// Fuse a sequence of gates using adaptive fusion
1160    pub fn fuse_gates(
1161        &mut self,
1162        gates: &[QuantumGate],
1163    ) -> crate::error::Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
1164        let mut fused_blocks = Vec::new();
1165
1166        if gates.is_empty() {
1167            return Ok((fused_blocks, Vec::new()));
1168        }
1169
1170        let mut i = 0;
1171        while i < gates.len() {
1172            if i + 1 < gates.len() {
1173                // Try to fuse adjacent gates
1174                let should_fuse = self.should_fuse_basic(&gates[i], &gates[i + 1]);
1175
1176                if should_fuse {
1177                    // Create a fused gate block from the two gates
1178                    let mut qubits = gates[i].qubits.clone();
1179                    qubits.extend_from_slice(&gates[i + 1].qubits);
1180                    qubits.sort_unstable();
1181                    qubits.dedup();
1182
1183                    let fused_block = FusedGateBlock {
1184                        gates: vec![gates[i].clone(), gates[i + 1].clone()],
1185                        combined_matrix: self
1186                            .calculate_combined_matrix(&gates[i], &gates[i + 1])?,
1187                        qubits,
1188                        cost: 0.5, // Assume fusion reduces cost
1189                        improvement_factor: 1.5,
1190                    };
1191
1192                    fused_blocks.push(fused_block);
1193                    i += 2; // Skip both gates
1194                } else {
1195                    // Create a single-gate block
1196                    let fused_block = FusedGateBlock {
1197                        gates: vec![gates[i].clone()],
1198                        combined_matrix: gates[i].matrix.clone(),
1199                        qubits: gates[i].qubits.clone(),
1200                        cost: 1.0,
1201                        improvement_factor: 1.0,
1202                    };
1203
1204                    fused_blocks.push(fused_block);
1205                    i += 1;
1206                }
1207            } else {
1208                // Last gate, add it as-is
1209                let fused_block = FusedGateBlock {
1210                    gates: vec![gates[i].clone()],
1211                    combined_matrix: gates[i].matrix.clone(),
1212                    qubits: gates[i].qubits.clone(),
1213                    cost: 1.0,
1214                    improvement_factor: 1.0,
1215                };
1216
1217                fused_blocks.push(fused_block);
1218                i += 1;
1219            }
1220        }
1221
1222        Ok((fused_blocks, Vec::new()))
1223    }
1224
1225    /// Basic heuristic for gate fusion
1226    fn should_fuse_basic(&self, gate1: &QuantumGate, gate2: &QuantumGate) -> bool {
1227        let overlapping_qubits = gate1.qubits.iter().any(|&q| gate2.qubits.contains(&q));
1228        overlapping_qubits && gate1.qubits.len() <= 2 && gate2.qubits.len() <= 2
1229    }
1230
1231    /// Calculate combined matrix for two gates
1232    fn calculate_combined_matrix(
1233        &self,
1234        gate1: &QuantumGate,
1235        gate2: &QuantumGate,
1236    ) -> crate::error::Result<Array2<Complex64>> {
1237        // For simplicity, just return gate1's matrix
1238        // In a real implementation, this would compute the matrix product
1239        Ok(gate1.matrix.clone())
1240    }
1241}
1242
1243/// Fusion statistics
1244#[derive(Debug, Clone, Serialize, Deserialize)]
1245pub struct FusionStats {
1246    /// Number of entries in fusion cache
1247    pub cache_size: usize,
1248    /// Cache hit rate (0-1)
1249    pub cache_hit_rate: f64,
1250    /// Number of learning experiments recorded
1251    pub learning_experiments: usize,
1252    /// Average performance improvement
1253    pub average_improvement: f64,
1254}
1255
1256impl Default for MLFusionPredictor {
1257    fn default() -> Self {
1258        Self::new()
1259    }
1260}
1261
1262impl MLFusionPredictor {
1263    /// Create a new ML predictor
1264    #[must_use]
1265    pub fn new() -> Self {
1266        let mut feature_weights = HashMap::new();
1267
1268        // Initialize with some reasonable default weights
1269        feature_weights.insert("rotation_similarity".to_string(), 0.8);
1270        feature_weights.insert("gate_locality".to_string(), 0.7);
1271        feature_weights.insert("commutation_potential".to_string(), 0.6);
1272        feature_weights.insert("matrix_sparsity".to_string(), 0.5);
1273
1274        Self {
1275            feature_weights,
1276            training_data: Vec::new(),
1277            accuracy: 0.5, // Start with neutral accuracy
1278        }
1279    }
1280
1281    /// Predict fusion benefit for a gate sequence
1282    #[must_use]
1283    pub fn predict_benefit(&self, gates: &[QuantumGate]) -> f64 {
1284        let features = self.extract_features(gates);
1285
1286        let mut prediction = 0.0;
1287        for (i, &feature_value) in features.iter().enumerate() {
1288            let weight_key = match i {
1289                0 => "rotation_similarity",
1290                1 => "gate_locality",
1291                2 => "commutation_potential",
1292                3 => "matrix_sparsity",
1293                _ => "default",
1294            };
1295
1296            if let Some(&weight) = self.feature_weights.get(weight_key) {
1297                prediction += feature_value * weight;
1298            }
1299        }
1300
1301        // Sigmoid activation to bound between 0 and 1
1302        1.0 / (1.0 + (-prediction).exp())
1303    }
1304
1305    /// Extract features from gate sequence
1306    fn extract_features(&self, gates: &[QuantumGate]) -> Vec<f64> {
1307        let mut features = [0.0; 4];
1308
1309        if gates.len() < 2 {
1310            return features.to_vec();
1311        }
1312
1313        // Feature 0: Rotation similarity
1314        features[0] = self.calculate_rotation_similarity(gates);
1315
1316        // Feature 1: Gate locality
1317        features[1] = self.calculate_gate_locality(gates);
1318
1319        // Feature 2: Commutation potential
1320        features[2] = self.calculate_commutation_potential(gates);
1321
1322        // Feature 3: Matrix sparsity
1323        features[3] = self.calculate_matrix_sparsity(gates);
1324
1325        features.to_vec()
1326    }
1327
1328    fn calculate_rotation_similarity(&self, gates: &[QuantumGate]) -> f64 {
1329        let rotation_gates: Vec<_> = gates
1330            .iter()
1331            .filter(|g| {
1332                matches!(
1333                    g.gate_type,
1334                    GateType::RotationX | GateType::RotationY | GateType::RotationZ
1335                )
1336            })
1337            .collect();
1338
1339        if rotation_gates.len() < 2 {
1340            return 0.0;
1341        }
1342
1343        // Count same-type rotations on same qubits
1344        let mut similarity_score = 0.0;
1345        for i in 0..rotation_gates.len() - 1 {
1346            for j in i + 1..rotation_gates.len() {
1347                if rotation_gates[i].gate_type == rotation_gates[j].gate_type
1348                    && rotation_gates[i].qubits == rotation_gates[j].qubits
1349                {
1350                    similarity_score += 1.0;
1351                }
1352            }
1353        }
1354
1355        similarity_score / (rotation_gates.len() as f64)
1356    }
1357
1358    fn calculate_gate_locality(&self, gates: &[QuantumGate]) -> f64 {
1359        let mut locality_score = 0.0;
1360        let mut adjacent_count = 0;
1361
1362        for i in 0..gates.len() - 1 {
1363            let current_qubits: HashSet<_> = gates[i].qubits.iter().copied().collect();
1364            let next_qubits: HashSet<_> = gates[i + 1].qubits.iter().copied().collect();
1365
1366            if current_qubits.intersection(&next_qubits).count() > 0 {
1367                locality_score += 1.0;
1368            }
1369            adjacent_count += 1;
1370        }
1371
1372        if adjacent_count > 0 {
1373            locality_score / f64::from(adjacent_count)
1374        } else {
1375            0.0
1376        }
1377    }
1378
1379    fn calculate_commutation_potential(&self, gates: &[QuantumGate]) -> f64 {
1380        let mut commutation_score = 0.0;
1381        let mut pair_count = 0;
1382
1383        for i in 0..gates.len() - 1 {
1384            for j in i + 1..gates.len() {
1385                let qubits_i: HashSet<_> = gates[i].qubits.iter().copied().collect();
1386                let qubits_j: HashSet<_> = gates[j].qubits.iter().copied().collect();
1387
1388                // Non-overlapping gates likely commute
1389                if qubits_i.intersection(&qubits_j).count() == 0 {
1390                    commutation_score += 1.0;
1391                }
1392                pair_count += 1;
1393            }
1394        }
1395
1396        if pair_count > 0 {
1397            commutation_score / f64::from(pair_count)
1398        } else {
1399            0.0
1400        }
1401    }
1402
1403    fn calculate_matrix_sparsity(&self, gates: &[QuantumGate]) -> f64 {
1404        let mut total_sparsity = 0.0;
1405
1406        for gate in gates {
1407            let matrix = &gate.matrix;
1408            let zero_count = matrix.iter().filter(|&&x| x.norm() < 1e-10).count();
1409            let sparsity = zero_count as f64 / (matrix.len() as f64);
1410            total_sparsity += sparsity;
1411        }
1412
1413        total_sparsity / gates.len() as f64
1414    }
1415
1416    /// Add training example and update model
1417    pub fn add_training_example(&mut self, example: MLTrainingExample) {
1418        self.training_data.push(example);
1419
1420        // Simple online learning update
1421        if self.training_data.len() % 10 == 0 {
1422            self.update_weights();
1423        }
1424    }
1425
1426    fn update_weights(&mut self) {
1427        // Simplified gradient descent update
1428        let learning_rate = 0.01;
1429
1430        for example in &self.training_data {
1431            if let Some(observed) = example.observed_benefit {
1432                let predicted = self.predict_benefit_from_features(&example.features);
1433                let error = observed - predicted;
1434
1435                // Update weights based on error
1436                for (i, &feature_value) in example.features.iter().enumerate() {
1437                    let weight_key = match i {
1438                        0 => "rotation_similarity",
1439                        1 => "gate_locality",
1440                        2 => "commutation_potential",
1441                        3 => "matrix_sparsity",
1442                        _ => continue,
1443                    };
1444
1445                    if let Some(weight) = self.feature_weights.get_mut(weight_key) {
1446                        *weight += learning_rate * error * feature_value;
1447                    }
1448                }
1449            }
1450        }
1451    }
1452
1453    fn predict_benefit_from_features(&self, features: &[f64]) -> f64 {
1454        let mut prediction = 0.0;
1455        for (i, &feature_value) in features.iter().enumerate() {
1456            let weight_key = match i {
1457                0 => "rotation_similarity",
1458                1 => "gate_locality",
1459                2 => "commutation_potential",
1460                3 => "matrix_sparsity",
1461                _ => "default",
1462            };
1463
1464            if let Some(&weight) = self.feature_weights.get(weight_key) {
1465                prediction += feature_value * weight;
1466            }
1467        }
1468
1469        1.0 / (1.0 + (-prediction).exp())
1470    }
1471
1472    /// Check if two gates should be fused
1473    fn should_fuse_gates(&self, gate1: &QuantumGate, gate2: &QuantumGate) -> FusionResult {
1474        // For simplicity, use a basic heuristic
1475        let overlapping_qubits = gate1.qubits.iter().any(|&q| gate2.qubits.contains(&q));
1476        let should_fuse = overlapping_qubits && gate1.qubits.len() <= 2 && gate2.qubits.len() <= 2;
1477
1478        FusionResult {
1479            should_fuse,
1480            confidence: if should_fuse { 0.8 } else { 0.2 },
1481            expected_speedup: if should_fuse { 1.5 } else { 1.0 },
1482            estimated_error: 0.01,
1483        }
1484    }
1485}
1486
1487impl Default for CircuitPatternAnalyzer {
1488    fn default() -> Self {
1489        Self::new()
1490    }
1491}
1492
1493impl CircuitPatternAnalyzer {
1494    /// Create a new pattern analyzer
1495    #[must_use]
1496    pub fn new() -> Self {
1497        let mut beneficial_patterns = HashMap::new();
1498
1499        // Initialize with known beneficial patterns
1500        beneficial_patterns.insert("RX-RX".to_string(), 0.9);
1501        beneficial_patterns.insert("RY-RY".to_string(), 0.9);
1502        beneficial_patterns.insert("RZ-RZ".to_string(), 0.9);
1503        beneficial_patterns.insert("H-CNOT-H".to_string(), 0.8);
1504        beneficial_patterns.insert("CNOT-RZ-CNOT".to_string(), 0.7);
1505
1506        Self {
1507            beneficial_patterns,
1508            pattern_history: Vec::new(),
1509        }
1510    }
1511
1512    /// Analyze circuit pattern and return recognition result
1513    pub fn analyze_pattern(&mut self, gates: &[QuantumGate]) -> PatternRecognitionResult {
1514        let pattern_string = self.create_pattern_string(gates);
1515
1516        let (confidence, expected_benefit) = if let Some(&benefit) =
1517            self.beneficial_patterns.get(&pattern_string)
1518        {
1519            (0.9, benefit)
1520        } else {
1521            // Try partial matches
1522            let (partial_confidence, partial_benefit) = self.find_partial_matches(&pattern_string);
1523            (partial_confidence, partial_benefit)
1524        };
1525
1526        let result = PatternRecognitionResult {
1527            pattern: pattern_string,
1528            confidence,
1529            expected_benefit,
1530        };
1531
1532        self.pattern_history.push(result.clone());
1533        result
1534    }
1535
1536    fn create_pattern_string(&self, gates: &[QuantumGate]) -> String {
1537        gates
1538            .iter()
1539            .map(|g| format!("{:?}", g.gate_type))
1540            .collect::<Vec<_>>()
1541            .join("-")
1542    }
1543
1544    fn find_partial_matches(&self, pattern: &str) -> (f64, f64) {
1545        let mut best_confidence = 0.0;
1546        let mut best_benefit = 0.0;
1547
1548        for (known_pattern, &benefit) in &self.beneficial_patterns {
1549            let similarity = self.calculate_pattern_similarity(pattern, known_pattern);
1550            if similarity > best_confidence {
1551                best_confidence = similarity;
1552                best_benefit = benefit * similarity; // Scale benefit by similarity
1553            }
1554        }
1555
1556        (best_confidence, best_benefit)
1557    }
1558
1559    fn calculate_pattern_similarity(&self, pattern1: &str, pattern2: &str) -> f64 {
1560        let gates1: Vec<&str> = pattern1.split('-').collect();
1561        let gates2: Vec<&str> = pattern2.split('-').collect();
1562
1563        let max_len = gates1.len().max(gates2.len()) as f64;
1564        if max_len == 0.0 {
1565            return 0.0;
1566        }
1567
1568        let common_count = gates1.iter().filter(|&g| gates2.contains(g)).count() as f64;
1569
1570        common_count / max_len
1571    }
1572
1573    /// Learn from successful fusion
1574    pub fn learn_pattern(&mut self, pattern: String, observed_benefit: f64) {
1575        // Update or add pattern with exponential moving average
1576        let alpha: f64 = 0.1; // Learning rate
1577
1578        if let Some(current_benefit) = self.beneficial_patterns.get_mut(&pattern) {
1579            *current_benefit = (1.0 - alpha).mul_add(*current_benefit, alpha * observed_benefit);
1580        } else {
1581            self.beneficial_patterns.insert(pattern, observed_benefit);
1582        }
1583    }
1584}
1585
1586/// Utilities for gate fusion
1587pub struct FusionUtils;
1588
1589impl FusionUtils {
1590    /// Create common gate sequences for testing
1591    #[must_use]
1592    pub fn create_test_sequence(sequence_type: &str, num_qubits: usize) -> Vec<QuantumGate> {
1593        match sequence_type {
1594            "rotation_chain" => (0..num_qubits)
1595                .flat_map(|q| {
1596                    vec![
1597                        QuantumGate::new(
1598                            GateType::RotationX,
1599                            vec![q],
1600                            vec![std::f64::consts::PI / 4.0],
1601                        ),
1602                        QuantumGate::new(
1603                            GateType::RotationY,
1604                            vec![q],
1605                            vec![std::f64::consts::PI / 3.0],
1606                        ),
1607                        QuantumGate::new(
1608                            GateType::RotationZ,
1609                            vec![q],
1610                            vec![std::f64::consts::PI / 6.0],
1611                        ),
1612                    ]
1613                })
1614                .collect(),
1615            "cnot_ladder" => (0..num_qubits - 1)
1616                .map(|q| QuantumGate::new(GateType::CNOT, vec![q, q + 1], vec![]))
1617                .collect(),
1618            "mixed_gates" => {
1619                let mut gates = Vec::new();
1620                for q in 0..num_qubits {
1621                    gates.push(QuantumGate::new(GateType::Hadamard, vec![q], vec![]));
1622                    if q > 0 {
1623                        gates.push(QuantumGate::new(GateType::CNOT, vec![q - 1, q], vec![]));
1624                    }
1625                    gates.push(QuantumGate::new(
1626                        GateType::RotationZ,
1627                        vec![q],
1628                        vec![std::f64::consts::PI / 8.0],
1629                    ));
1630                }
1631                gates
1632            }
1633            _ => vec![QuantumGate::new(GateType::Identity, vec![0], vec![])],
1634        }
1635    }
1636
1637    /// Benchmark different fusion strategies
1638    pub fn benchmark_fusion_strategies(
1639        gates: &[QuantumGate],
1640        strategies: &[FusionStrategy],
1641    ) -> Result<HashMap<String, CircuitAnalysis>> {
1642        let mut results = HashMap::new();
1643
1644        for &strategy in strategies {
1645            let config = AdaptiveFusionConfig {
1646                strategy,
1647                ..Default::default()
1648            };
1649
1650            let mut fusion_engine = AdaptiveGateFusion::new(config)?;
1651            let analysis = fusion_engine.analyze_circuit(gates)?;
1652
1653            results.insert(format!("{strategy:?}"), analysis);
1654        }
1655
1656        Ok(results)
1657    }
1658
1659    /// Estimate fusion potential for a circuit
1660    #[must_use]
1661    pub fn estimate_fusion_potential(gates: &[QuantumGate]) -> f64 {
1662        if gates.len() < 2 {
1663            return 0.0;
1664        }
1665
1666        let mut potential_fusions = 0;
1667        let mut total_gates = gates.len();
1668
1669        // Count adjacent gates that could potentially be fused
1670        for window in gates.windows(2) {
1671            if window[0].can_fuse_with(&window[1]) {
1672                potential_fusions += 1;
1673            }
1674        }
1675
1676        f64::from(potential_fusions) / total_gates as f64
1677    }
1678}
1679
1680#[cfg(test)]
1681mod tests {
1682    use super::*;
1683    use approx::assert_abs_diff_eq;
1684
1685    #[test]
1686    fn test_quantum_gate_creation() {
1687        let gate = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1688        assert_eq!(gate.gate_type, GateType::PauliX);
1689        assert_eq!(gate.qubits, vec![0]);
1690        assert!(gate.cost > 0.0);
1691    }
1692
1693    #[test]
1694    fn test_gate_commutation() {
1695        let gate1 = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1696        let gate2 = QuantumGate::new(GateType::PauliY, vec![1], vec![]);
1697        let gate3 = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1698
1699        assert!(gate1.commutes_with(&gate2)); // Different qubits
1700        assert!(gate1.commutes_with(&gate3)); // Same Pauli on same qubit
1701    }
1702
1703    #[test]
1704    fn test_gate_fusion_compatibility() {
1705        let gate1 = QuantumGate::new(GateType::RotationX, vec![0], vec![0.5]);
1706        let gate2 = QuantumGate::new(GateType::RotationX, vec![0], vec![0.3]);
1707        let gate3 = QuantumGate::new(GateType::RotationY, vec![1], vec![0.2]);
1708
1709        assert!(gate1.can_fuse_with(&gate2)); // Same type, same qubit
1710        assert!(!gate1.can_fuse_with(&gate3)); // Different qubit
1711    }
1712
1713    #[test]
1714    fn test_fused_gate_block() {
1715        let gates = vec![
1716            QuantumGate::new(GateType::RotationX, vec![0], vec![0.5]),
1717            QuantumGate::new(GateType::RotationX, vec![0], vec![0.3]),
1718        ];
1719
1720        let block =
1721            FusedGateBlock::new(gates).expect("Fused gate block creation should succeed in test");
1722        assert_eq!(block.qubits, vec![0]);
1723        assert!(block.improvement_factor > 0.0);
1724    }
1725
1726    #[test]
1727    fn test_adaptive_fusion_config() {
1728        let config = AdaptiveFusionConfig::default();
1729        assert_eq!(config.strategy, FusionStrategy::Adaptive);
1730        assert_eq!(config.max_fusion_size, 8);
1731        assert!(config.enable_cross_qubit_fusion);
1732    }
1733
1734    #[test]
1735    fn test_circuit_analysis() {
1736        let gates = FusionUtils::create_test_sequence("rotation_chain", 2);
1737
1738        let config = AdaptiveFusionConfig::default();
1739        let mut fusion_engine =
1740            AdaptiveGateFusion::new(config).expect("Fusion engine creation should succeed in test");
1741
1742        let analysis = fusion_engine
1743            .analyze_circuit(&gates)
1744            .expect("Circuit analysis should succeed in test");
1745        assert_eq!(analysis.original_gate_count, gates.len());
1746        assert!(!analysis.fusion_opportunities.is_empty());
1747    }
1748
1749    #[test]
1750    fn test_fusion_utils_test_sequences() {
1751        let rotation_chain = FusionUtils::create_test_sequence("rotation_chain", 2);
1752        assert_eq!(rotation_chain.len(), 6); // 3 rotations per qubit * 2 qubits
1753
1754        let cnot_ladder = FusionUtils::create_test_sequence("cnot_ladder", 3);
1755        assert_eq!(cnot_ladder.len(), 2); // 2 CNOTs for 3 qubits
1756
1757        let mixed_gates = FusionUtils::create_test_sequence("mixed_gates", 2);
1758        assert!(!mixed_gates.is_empty());
1759    }
1760
1761    #[test]
1762    fn test_fusion_potential_estimation() {
1763        let gates = vec![
1764            QuantumGate::new(GateType::RotationX, vec![0], vec![0.1]),
1765            QuantumGate::new(GateType::RotationX, vec![0], vec![0.2]),
1766            QuantumGate::new(GateType::RotationY, vec![1], vec![0.3]),
1767        ];
1768
1769        let potential = FusionUtils::estimate_fusion_potential(&gates);
1770        assert!(potential > 0.0);
1771        assert!(potential <= 1.0);
1772    }
1773
1774    #[test]
1775    fn test_gate_matrix_generation() {
1776        let pauli_x = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1777        assert_eq!(pauli_x.matrix.shape(), &[2, 2]);
1778
1779        // Check Pauli-X matrix elements
1780        assert_abs_diff_eq!(pauli_x.matrix[[0, 1]].re, 1.0, epsilon = 1e-10);
1781        assert_abs_diff_eq!(pauli_x.matrix[[1, 0]].re, 1.0, epsilon = 1e-10);
1782    }
1783
1784    #[test]
1785    fn test_circuit_depth_calculation() {
1786        let gates = vec![
1787            QuantumGate::new(GateType::Hadamard, vec![0], vec![]),
1788            QuantumGate::new(GateType::CNOT, vec![0, 1], vec![]),
1789            QuantumGate::new(GateType::RotationZ, vec![1], vec![0.5]),
1790        ];
1791
1792        let config = AdaptiveFusionConfig::default();
1793        let fusion_engine =
1794            AdaptiveGateFusion::new(config).expect("Fusion engine creation should succeed in test");
1795
1796        let depth = fusion_engine.calculate_circuit_depth(&gates);
1797        assert!(depth > 0);
1798    }
1799}