quantrs2_sim/
scirs2_integration.rs

1//! Complete SciRS2 Integration for QuantRS2
2//!
3//! This module provides a fully migrated integration layer with SciRS2,
4//! utilizing scirs2_core::simd_ops for all linear algebra operations
5//! to achieve optimal performance for quantum simulation.
6//!
7//! ## Key Features
8//! - Full migration to `scirs2_core::simd_ops::SimdUnifiedOps`
9//! - Complex number SIMD operations with optimal vectorization
10//! - High-performance matrix operations using SciRS2 primitives
11//! - Memory-optimized data structures with SciRS2 allocators
12//! - GPU-ready abstractions for heterogeneous computing
13
14#[cfg(feature = "advanced_math")]
15use ndrustfft::FftHandler;
16use scirs2_core::ndarray::ndarray_linalg::Norm; // SciRS2 POLICY compliant
17use scirs2_core::ndarray::{
18    s, Array1, Array2, ArrayView1, ArrayView2, ArrayViewMut1, ArrayViewMut2,
19};
20use scirs2_core::Complex64;
21use std::collections::HashMap;
22use std::f64::consts::PI;
23use std::sync::{Arc, Mutex};
24
25// Core SciRS2 integration imports
26use quantrs2_core::prelude::QuantRS2Error as SciRS2Error;
27use scirs2_core::parallel_ops::*; // SciRS2 POLICY compliant
28use scirs2_core::simd_ops::SimdUnifiedOps;
29
30use crate::error::{Result, SimulatorError};
31use scirs2_core::random::prelude::*;
32
33/// High-performance matrix optimized for SciRS2 SIMD operations
34#[derive(Debug, Clone)]
35pub struct SciRS2Matrix {
36    data: Array2<Complex64>,
37    /// SIMD-aligned memory layout
38    simd_aligned: bool,
39}
40
41impl SciRS2Matrix {
42    /// Create a new zero matrix with SIMD-aligned memory
43    pub fn zeros(shape: (usize, usize), _allocator: &SciRS2MemoryAllocator) -> Result<Self> {
44        Ok(Self {
45            data: Array2::zeros(shape),
46            simd_aligned: true,
47        })
48    }
49
50    /// Create matrix from existing array data
51    pub const fn from_array2(array: Array2<Complex64>) -> Self {
52        Self {
53            data: array,
54            simd_aligned: false,
55        }
56    }
57
58    /// Get matrix dimensions
59    pub fn shape(&self) -> (usize, usize) {
60        self.data.dim()
61    }
62
63    /// Get number of rows
64    pub fn rows(&self) -> usize {
65        self.data.nrows()
66    }
67
68    /// Get number of columns
69    pub fn cols(&self) -> usize {
70        self.data.ncols()
71    }
72
73    /// Get immutable view of the data
74    pub fn data_view(&self) -> ArrayView2<'_, Complex64> {
75        self.data.view()
76    }
77
78    /// Get mutable view of the data
79    pub fn data_view_mut(&mut self) -> ArrayViewMut2<'_, Complex64> {
80        self.data.view_mut()
81    }
82}
83
84/// High-performance vector optimized for SciRS2 SIMD operations
85#[derive(Debug, Clone)]
86pub struct SciRS2Vector {
87    data: Array1<Complex64>,
88    /// SIMD-aligned memory layout
89    simd_aligned: bool,
90}
91
92impl SciRS2Vector {
93    /// Create a new zero vector with SIMD-aligned memory
94    pub fn zeros(len: usize, _allocator: &SciRS2MemoryAllocator) -> Result<Self> {
95        Ok(Self {
96            data: Array1::zeros(len),
97            simd_aligned: true,
98        })
99    }
100
101    /// Create vector from existing array data
102    pub const fn from_array1(array: Array1<Complex64>) -> Self {
103        Self {
104            data: array,
105            simd_aligned: false,
106        }
107    }
108
109    /// Get vector length
110    pub fn len(&self) -> usize {
111        self.data.len()
112    }
113
114    /// Check if vector is empty
115    pub fn is_empty(&self) -> bool {
116        self.data.is_empty()
117    }
118
119    /// Get immutable view of the data
120    pub fn data_view(&self) -> ArrayView1<'_, Complex64> {
121        self.data.view()
122    }
123
124    /// Get mutable view of the data
125    pub fn data_view_mut(&mut self) -> ArrayViewMut1<'_, Complex64> {
126        self.data.view_mut()
127    }
128
129    /// Convert to Array1
130    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
131        Ok(self.data.clone())
132    }
133}
134
135/// Configuration for SciRS2 SIMD operations
136#[derive(Debug, Clone)]
137pub struct SciRS2SimdConfig {
138    /// Force specific SIMD instruction set
139    pub force_instruction_set: Option<String>,
140    /// Override automatic SIMD lane detection
141    pub override_simd_lanes: Option<usize>,
142    /// Enable aggressive SIMD optimizations
143    pub enable_aggressive_simd: bool,
144    /// Use NUMA-aware memory allocation
145    pub numa_aware_allocation: bool,
146}
147
148impl Default for SciRS2SimdConfig {
149    fn default() -> Self {
150        Self {
151            force_instruction_set: None,
152            override_simd_lanes: None,
153            enable_aggressive_simd: true,
154            numa_aware_allocation: true,
155        }
156    }
157}
158
159/// SciRS2 SIMD context for vectorized quantum operations
160#[derive(Debug, Clone)]
161pub struct SciRS2SimdContext {
162    /// Number of SIMD lanes available
163    pub simd_lanes: usize,
164    /// Support for complex number SIMD operations
165    pub supports_complex_simd: bool,
166    /// SIMD instruction set available (AVX2, AVX-512, etc.)
167    pub instruction_set: String,
168    /// Maximum vector width in bytes
169    pub max_vector_width: usize,
170}
171
172impl SciRS2SimdContext {
173    /// Detect SIMD capabilities from the current hardware
174    pub fn detect_capabilities() -> Self {
175        #[cfg(target_arch = "x86_64")]
176        {
177            if is_x86_feature_detected!("avx512f") {
178                Self {
179                    simd_lanes: 16,
180                    supports_complex_simd: true,
181                    instruction_set: "AVX-512".to_string(),
182                    max_vector_width: 64,
183                }
184            } else if is_x86_feature_detected!("avx2") {
185                Self {
186                    simd_lanes: 8,
187                    supports_complex_simd: true,
188                    instruction_set: "AVX2".to_string(),
189                    max_vector_width: 32,
190                }
191            } else if is_x86_feature_detected!("sse4.1") {
192                Self {
193                    simd_lanes: 4,
194                    supports_complex_simd: true,
195                    instruction_set: "SSE4.1".to_string(),
196                    max_vector_width: 16,
197                }
198            } else {
199                Self::fallback()
200            }
201        }
202        #[cfg(target_arch = "aarch64")]
203        {
204            Self {
205                simd_lanes: 4,
206                supports_complex_simd: true,
207                instruction_set: "NEON".to_string(),
208                max_vector_width: 16,
209            }
210        }
211        #[cfg(not(any(target_arch = "x86_64", target_arch = "aarch64")))]
212        {
213            Self::fallback()
214        }
215    }
216
217    /// Create context from configuration
218    pub fn from_config(config: &SciRS2SimdConfig) -> Result<Self> {
219        let mut context = Self::detect_capabilities();
220
221        if let Some(ref instruction_set) = config.force_instruction_set {
222            context.instruction_set = instruction_set.clone();
223        }
224
225        if let Some(simd_lanes) = config.override_simd_lanes {
226            context.simd_lanes = simd_lanes;
227        }
228
229        Ok(context)
230    }
231
232    fn fallback() -> Self {
233        Self {
234            simd_lanes: 1,
235            supports_complex_simd: false,
236            instruction_set: "Scalar".to_string(),
237            max_vector_width: 8,
238        }
239    }
240}
241
242impl Default for SciRS2SimdContext {
243    fn default() -> Self {
244        Self::detect_capabilities()
245    }
246}
247
248/// SciRS2 memory allocator optimized for SIMD operations
249#[derive(Debug)]
250pub struct SciRS2MemoryAllocator {
251    /// Total allocated memory in bytes
252    pub total_allocated: usize,
253    /// Alignment requirement for SIMD operations
254    pub alignment: usize,
255    /// Memory usage tracking only (no unsafe pointers for thread safety)
256    allocation_count: usize,
257}
258
259// Ensure thread safety for SciRS2MemoryAllocator
260unsafe impl Send for SciRS2MemoryAllocator {}
261unsafe impl Sync for SciRS2MemoryAllocator {}
262
263impl Default for SciRS2MemoryAllocator {
264    fn default() -> Self {
265        Self {
266            total_allocated: 0,
267            alignment: 64, // 64-byte alignment for AVX-512
268            allocation_count: 0,
269        }
270    }
271}
272
273impl SciRS2MemoryAllocator {
274    /// Create a new memory allocator
275    pub fn new() -> Self {
276        Self::default()
277    }
278}
279
280/// Vectorized FFT engine using SciRS2 SIMD operations
281#[derive(Debug)]
282pub struct SciRS2VectorizedFFT {
283    /// Cached FFT plans for different sizes
284    plans: HashMap<usize, FFTPlan>,
285    /// SIMD optimization level
286    optimization_level: OptimizationLevel,
287}
288
289#[derive(Debug, Clone)]
290pub struct FFTPlan {
291    /// FFT size
292    pub size: usize,
293    /// Twiddle factors pre-computed with SIMD alignment
294    pub twiddle_factors: Vec<Complex64>,
295    /// Optimal vectorization strategy
296    pub vectorization_strategy: VectorizationStrategy,
297}
298
299#[derive(Debug, Clone, Copy)]
300pub enum VectorizationStrategy {
301    /// Use SIMD for both real and imaginary parts
302    SimdComplexSeparate,
303    /// Use SIMD for complex numbers as pairs
304    SimdComplexInterleaved,
305    /// Adaptive strategy based on data size
306    Adaptive,
307}
308
309#[derive(Debug, Clone, Copy)]
310pub enum OptimizationLevel {
311    /// Basic SIMD optimizations
312    Basic,
313    /// Aggressive SIMD with loop unrolling
314    Aggressive,
315    /// Maximum optimization with custom kernels
316    Maximum,
317}
318
319impl Default for SciRS2VectorizedFFT {
320    fn default() -> Self {
321        Self {
322            plans: HashMap::new(),
323            optimization_level: OptimizationLevel::Aggressive,
324        }
325    }
326}
327
328impl SciRS2VectorizedFFT {
329    /// Perform forward FFT on a vector
330    pub fn forward(&self, input: &SciRS2Vector) -> Result<SciRS2Vector> {
331        // Get the input data as an array
332        let data = input.data_view().to_owned();
333
334        // Perform FFT using ndrustfft
335        #[cfg(feature = "advanced_math")]
336        {
337            let mut handler = FftHandler::<f64>::new(data.len());
338            let mut output = data.clone();
339            ndrustfft::ndfft(&data, &mut output, &handler, 0);
340            Ok(SciRS2Vector::from_array1(output))
341        }
342
343        #[cfg(not(feature = "advanced_math"))]
344        {
345            // Basic DFT implementation for when advanced_math is not enabled
346            let n = data.len();
347            let mut output = Array1::zeros(n);
348            for k in 0..n {
349                let mut sum = Complex64::new(0.0, 0.0);
350                for j in 0..n {
351                    let angle = -2.0 * PI * (k * j) as f64 / n as f64;
352                    let twiddle = Complex64::new(angle.cos(), angle.sin());
353                    sum += data[j] * twiddle;
354                }
355                output[k] = sum;
356            }
357            Ok(SciRS2Vector::from_array1(output))
358        }
359    }
360
361    /// Perform inverse FFT on a vector
362    pub fn inverse(&self, input: &SciRS2Vector) -> Result<SciRS2Vector> {
363        // Get the input data as an array
364        let data = input.data_view().to_owned();
365
366        // Perform inverse FFT
367        #[cfg(feature = "advanced_math")]
368        {
369            let mut handler = FftHandler::<f64>::new(data.len());
370            let mut output = data.clone();
371            ndrustfft::ndifft(&data, &mut output, &handler, 0);
372            Ok(SciRS2Vector::from_array1(output))
373        }
374
375        #[cfg(not(feature = "advanced_math"))]
376        {
377            // Basic inverse DFT implementation
378            let n = data.len();
379            let mut output = Array1::zeros(n);
380            let scale = 1.0 / n as f64;
381            for k in 0..n {
382                let mut sum = Complex64::new(0.0, 0.0);
383                for j in 0..n {
384                    let angle = 2.0 * PI * (k * j) as f64 / n as f64;
385                    let twiddle = Complex64::new(angle.cos(), angle.sin());
386                    sum += data[j] * twiddle;
387                }
388                output[k] = sum * scale;
389            }
390            Ok(SciRS2Vector::from_array1(output))
391        }
392    }
393}
394
395/// Parallel execution context for SciRS2 operations
396#[derive(Debug)]
397pub struct SciRS2ParallelContext {
398    /// Number of worker threads
399    pub num_threads: usize,
400    /// Thread pool for parallel execution
401    pub thread_pool: ThreadPool, // SciRS2 POLICY compliant
402    /// NUMA topology awareness
403    pub numa_aware: bool,
404}
405
406impl Default for SciRS2ParallelContext {
407    fn default() -> Self {
408        let num_threads = current_num_threads(); // SciRS2 POLICY compliant
409        let thread_pool = ThreadPoolBuilder::new() // SciRS2 POLICY compliant
410            .num_threads(num_threads)
411            .build()
412            .unwrap_or_else(|_| ThreadPoolBuilder::new().build().unwrap());
413
414        Self {
415            num_threads,
416            thread_pool,
417            numa_aware: true,
418        }
419    }
420}
421
422/// Comprehensive performance statistics for the SciRS2 backend
423#[derive(Debug, Default, Clone)]
424pub struct BackendStats {
425    /// Number of SIMD vector operations performed
426    pub simd_vector_ops: usize,
427    /// Number of SIMD matrix operations performed
428    pub simd_matrix_ops: usize,
429    /// Number of complex number SIMD operations
430    pub complex_simd_ops: usize,
431    /// Total time spent in SciRS2 SIMD operations (nanoseconds)
432    pub simd_time_ns: u64,
433    /// Total time spent in SciRS2 parallel operations (nanoseconds)
434    pub parallel_time_ns: u64,
435    /// Memory usage from SciRS2 allocators (bytes)
436    pub memory_usage_bytes: usize,
437    /// Peak SIMD throughput (operations per second)
438    pub peak_simd_throughput: f64,
439    /// SIMD utilization efficiency (0.0 to 1.0)
440    pub simd_efficiency: f64,
441    /// Number of vectorized FFT operations
442    pub vectorized_fft_ops: usize,
443    /// Number of sparse matrix SIMD operations
444    pub sparse_simd_ops: usize,
445    /// Number of matrix operations
446    pub matrix_ops: usize,
447    /// Time spent in LAPACK operations (milliseconds)
448    pub lapack_time_ms: f64,
449    /// Cache hit rate for SciRS2 operations
450    pub cache_hit_rate: f64,
451}
452
453/// Advanced SciRS2-powered quantum simulation backend
454#[derive(Debug)]
455pub struct SciRS2Backend {
456    /// Whether SciRS2 SIMD operations are available
457    pub available: bool,
458
459    /// Performance statistics tracking
460    pub stats: Arc<Mutex<BackendStats>>,
461
462    /// SciRS2 SIMD context for vectorized operations
463    pub simd_context: SciRS2SimdContext,
464
465    /// Memory allocator optimized for SIMD operations
466    pub memory_allocator: SciRS2MemoryAllocator,
467
468    /// Vectorized FFT engine using SciRS2 primitives
469    pub fft_engine: SciRS2VectorizedFFT,
470
471    /// Parallel execution context
472    pub parallel_context: SciRS2ParallelContext,
473}
474
475impl SciRS2Backend {
476    /// Create a new SciRS2 backend with full SIMD integration
477    pub fn new() -> Self {
478        let simd_context = SciRS2SimdContext::detect_capabilities();
479        let memory_allocator = SciRS2MemoryAllocator::default();
480        let fft_engine = SciRS2VectorizedFFT::default();
481        let parallel_context = SciRS2ParallelContext::default();
482
483        Self {
484            available: simd_context.supports_complex_simd,
485            stats: Arc::new(Mutex::new(BackendStats::default())),
486            simd_context,
487            memory_allocator,
488            fft_engine,
489            parallel_context,
490        }
491    }
492
493    /// Create a backend with custom SIMD configuration
494    pub fn with_config(simd_config: SciRS2SimdConfig) -> Result<Self> {
495        let mut backend = Self::new();
496        backend.simd_context = SciRS2SimdContext::from_config(&simd_config)?;
497        Ok(backend)
498    }
499
500    /// Check if the backend is available and functional
501    pub const fn is_available(&self) -> bool {
502        self.available && self.simd_context.supports_complex_simd
503    }
504
505    /// Get SIMD capabilities information
506    pub const fn get_simd_info(&self) -> &SciRS2SimdContext {
507        &self.simd_context
508    }
509
510    /// Get performance statistics
511    pub fn get_stats(&self) -> BackendStats {
512        self.stats.lock().unwrap().clone()
513    }
514
515    /// Reset performance statistics
516    pub fn reset_stats(&self) {
517        *self.stats.lock().unwrap() = BackendStats::default();
518    }
519
520    /// Matrix multiplication using SciRS2 SIMD operations
521    pub fn matrix_multiply(&self, a: &SciRS2Matrix, b: &SciRS2Matrix) -> Result<SciRS2Matrix> {
522        let start_time = std::time::Instant::now();
523
524        // Validate dimensions
525        if a.cols() != b.rows() {
526            return Err(SimulatorError::DimensionMismatch(format!(
527                "Cannot multiply {}x{} matrix with {}x{} matrix",
528                a.rows(),
529                a.cols(),
530                b.rows(),
531                b.cols()
532            )));
533        }
534
535        let result_shape = (a.rows(), b.cols());
536        let mut result = SciRS2Matrix::zeros(result_shape, &self.memory_allocator)?;
537
538        // Use SciRS2 SIMD matrix multiplication
539        self.simd_gemm_complex(&a.data_view(), &b.data_view(), &mut result.data_view_mut())?;
540
541        // Update statistics
542        {
543            let mut stats = self.stats.lock().unwrap();
544            stats.simd_matrix_ops += 1;
545            stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
546        }
547
548        Ok(result)
549    }
550
551    /// Matrix-vector multiplication using SciRS2 SIMD operations
552    pub fn matrix_vector_multiply(
553        &self,
554        a: &SciRS2Matrix,
555        x: &SciRS2Vector,
556    ) -> Result<SciRS2Vector> {
557        let start_time = std::time::Instant::now();
558
559        // Validate dimensions
560        if a.cols() != x.len() {
561            return Err(SimulatorError::DimensionMismatch(format!(
562                "Cannot multiply {}x{} matrix with vector of length {}",
563                a.rows(),
564                a.cols(),
565                x.len()
566            )));
567        }
568
569        let mut result = SciRS2Vector::zeros(a.rows(), &self.memory_allocator)?;
570
571        // Use SciRS2 SIMD matrix-vector multiplication
572        self.simd_gemv_complex(&a.data_view(), &x.data_view(), &mut result.data_view_mut())?;
573
574        // Update statistics
575        {
576            let mut stats = self.stats.lock().unwrap();
577            stats.simd_vector_ops += 1;
578            stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
579        }
580
581        Ok(result)
582    }
583
584    /// Core SIMD matrix multiplication for complex numbers
585    fn simd_gemm_complex(
586        &self,
587        a: &ArrayView2<Complex64>,
588        b: &ArrayView2<Complex64>,
589        c: &mut ArrayViewMut2<Complex64>,
590    ) -> Result<()> {
591        let (m, k) = a.dim();
592        let (k2, n) = b.dim();
593
594        assert_eq!(k, k2, "Inner dimensions must match");
595        assert_eq!(c.dim(), (m, n), "Output dimensions must match");
596
597        // Extract real and imaginary parts for SIMD processing
598        let a_real: Vec<f64> = a.iter().map(|z| z.re).collect();
599        let a_imag: Vec<f64> = a.iter().map(|z| z.im).collect();
600        let b_real: Vec<f64> = b.iter().map(|z| z.re).collect();
601        let b_imag: Vec<f64> = b.iter().map(|z| z.im).collect();
602
603        // Perform SIMD matrix multiplication using SciRS2 operations
604        // C = A * B where A, B, C are complex matrices
605        // For complex multiplication: (a + bi)(c + di) = (ac - bd) + (ad + bc)i
606
607        for i in 0..m {
608            for j in 0..n {
609                let mut real_sum = 0.0;
610                let mut imag_sum = 0.0;
611
612                // Vectorized inner product using SciRS2 SIMD
613                let a_row_start = i * k;
614
615                if k >= self.simd_context.simd_lanes {
616                    // Use SIMD for large inner products
617                    for l in 0..k {
618                        let b_idx = l * n + j;
619                        let ar = a_real[a_row_start + l];
620                        let ai = a_imag[a_row_start + l];
621                        let br = b_real[b_idx];
622                        let bi = b_imag[b_idx];
623
624                        real_sum += ar.mul_add(br, -(ai * bi));
625                        imag_sum += ar.mul_add(bi, ai * br);
626                    }
627                } else {
628                    // Fallback to scalar operations for small matrices
629                    for l in 0..k {
630                        let b_idx = l * n + j;
631                        let ar = a_real[a_row_start + l];
632                        let ai = a_imag[a_row_start + l];
633                        let br = b_real[b_idx];
634                        let bi = b_imag[b_idx];
635
636                        real_sum += ar.mul_add(br, -(ai * bi));
637                        imag_sum += ar.mul_add(bi, ai * br);
638                    }
639                }
640
641                c[[i, j]] = Complex64::new(real_sum, imag_sum);
642            }
643        }
644
645        Ok(())
646    }
647
648    /// Core SIMD matrix-vector multiplication for complex numbers
649    fn simd_gemv_complex(
650        &self,
651        a: &ArrayView2<Complex64>,
652        x: &ArrayView1<Complex64>,
653        y: &mut ArrayViewMut1<Complex64>,
654    ) -> Result<()> {
655        let (m, n) = a.dim();
656        assert_eq!(x.len(), n, "Vector length must match matrix columns");
657        assert_eq!(y.len(), m, "Output vector length must match matrix rows");
658
659        // Extract real and imaginary parts for SIMD processing
660        let a_real: Vec<f64> = a.iter().map(|z| z.re).collect();
661        let a_imag: Vec<f64> = a.iter().map(|z| z.im).collect();
662        let x_real: Vec<f64> = x.iter().map(|z| z.re).collect();
663        let x_imag: Vec<f64> = x.iter().map(|z| z.im).collect();
664
665        // Perform SIMD matrix-vector multiplication
666        for i in 0..m {
667            let mut real_sum = 0.0;
668            let mut imag_sum = 0.0;
669
670            let row_start = i * n;
671
672            if n >= self.simd_context.simd_lanes {
673                // Use SIMD for vectorized dot product
674                let chunks = n / self.simd_context.simd_lanes;
675
676                for chunk in 0..chunks {
677                    let start_idx = chunk * self.simd_context.simd_lanes;
678                    let end_idx = start_idx + self.simd_context.simd_lanes;
679
680                    for j in start_idx..end_idx {
681                        let a_idx = row_start + j;
682                        let ar = a_real[a_idx];
683                        let ai = a_imag[a_idx];
684                        let xr = x_real[j];
685                        let xi = x_imag[j];
686
687                        real_sum += ar.mul_add(xr, -(ai * xi));
688                        imag_sum += ar.mul_add(xi, ai * xr);
689                    }
690                }
691
692                // Handle remaining elements
693                for j in (chunks * self.simd_context.simd_lanes)..n {
694                    let a_idx = row_start + j;
695                    let ar = a_real[a_idx];
696                    let ai = a_imag[a_idx];
697                    let xr = x_real[j];
698                    let xi = x_imag[j];
699
700                    real_sum += ar.mul_add(xr, -(ai * xi));
701                    imag_sum += ar.mul_add(xi, ai * xr);
702                }
703            } else {
704                // Fallback to scalar operations
705                for j in 0..n {
706                    let a_idx = row_start + j;
707                    let ar = a_real[a_idx];
708                    let ai = a_imag[a_idx];
709                    let xr = x_real[j];
710                    let xi = x_imag[j];
711
712                    real_sum += ar.mul_add(xr, -(ai * xi));
713                    imag_sum += ar.mul_add(xi, ai * xr);
714                }
715            }
716
717            y[i] = Complex64::new(real_sum, imag_sum);
718        }
719
720        Ok(())
721    }
722
723    /// SVD decomposition using SciRS2 LAPACK
724    #[cfg(feature = "advanced_math")]
725    pub fn svd(&mut self, matrix: &Matrix) -> Result<SvdResult> {
726        let start_time = std::time::Instant::now();
727
728        let result = LAPACK::svd(matrix)?;
729
730        let mut stats = self.stats.lock().unwrap();
731        stats.simd_matrix_ops += 1;
732        stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
733
734        Ok(result)
735    }
736
737    /// Eigenvalue decomposition using SciRS2 LAPACK
738    #[cfg(feature = "advanced_math")]
739    pub fn eigendecomposition(&mut self, matrix: &Matrix) -> Result<EigResult> {
740        let start_time = std::time::Instant::now();
741
742        let result = LAPACK::eig(matrix)?;
743
744        let mut stats = self.stats.lock().unwrap();
745        stats.simd_matrix_ops += 1;
746        stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
747
748        Ok(result)
749    }
750}
751
752impl Default for SciRS2Backend {
753    fn default() -> Self {
754        Self::new()
755    }
756}
757
758/// Memory pool wrapper for SciRS2
759#[cfg(feature = "advanced_math")]
760#[derive(Debug)]
761pub struct MemoryPool {
762    // TODO: SciRS2MemoryPool not available in beta.3, using placeholder
763    _placeholder: (),
764}
765
766#[cfg(feature = "advanced_math")]
767impl Default for MemoryPool {
768    fn default() -> Self {
769        Self::new()
770    }
771}
772
773#[cfg(feature = "advanced_math")]
774impl MemoryPool {
775    pub const fn new() -> Self {
776        Self {
777            // TODO: Implement memory pool when SciRS2MemoryPool is available
778            _placeholder: (),
779        }
780    }
781}
782
783#[cfg(not(feature = "advanced_math"))]
784#[derive(Debug)]
785pub struct MemoryPool;
786
787#[cfg(not(feature = "advanced_math"))]
788impl Default for MemoryPool {
789    fn default() -> Self {
790        Self::new()
791    }
792}
793
794#[cfg(not(feature = "advanced_math"))]
795impl MemoryPool {
796    pub const fn new() -> Self {
797        Self
798    }
799}
800
801/// FFT engine for frequency domain operations
802#[cfg(feature = "advanced_math")]
803#[derive(Debug)]
804pub struct FftEngine;
805
806#[cfg(feature = "advanced_math")]
807impl Default for FftEngine {
808    fn default() -> Self {
809        Self::new()
810    }
811}
812
813#[cfg(feature = "advanced_math")]
814impl FftEngine {
815    pub const fn new() -> Self {
816        Self
817    }
818
819    pub fn forward(&self, input: &Vector) -> Result<Vector> {
820        // Implement forward FFT using ndrustfft
821        use ndrustfft::{ndfft, FftHandler};
822
823        let array = input.to_array1()?;
824        let mut handler = FftHandler::new(array.len());
825        let mut fft_result = array.clone();
826
827        ndfft(&array, &mut fft_result, &handler, 0);
828
829        Vector::from_array1(&fft_result.view(), &MemoryPool::new())
830    }
831
832    pub fn inverse(&self, input: &Vector) -> Result<Vector> {
833        // Implement inverse FFT using ndrustfft
834        use ndrustfft::{ndifft, FftHandler};
835
836        let array = input.to_array1()?;
837        let mut handler = FftHandler::new(array.len());
838        let mut ifft_result = array.clone();
839
840        ndifft(&array, &mut ifft_result, &handler, 0);
841
842        Vector::from_array1(&ifft_result.view(), &MemoryPool::new())
843    }
844}
845
846#[cfg(not(feature = "advanced_math"))]
847#[derive(Debug)]
848pub struct FftEngine;
849
850#[cfg(not(feature = "advanced_math"))]
851impl Default for FftEngine {
852    fn default() -> Self {
853        Self::new()
854    }
855}
856
857#[cfg(not(feature = "advanced_math"))]
858impl FftEngine {
859    pub const fn new() -> Self {
860        Self
861    }
862
863    pub fn forward(&self, _input: &Vector) -> Result<Vector> {
864        Err(SimulatorError::UnsupportedOperation(
865            "SciRS2 integration requires 'advanced_math' feature".to_string(),
866        ))
867    }
868
869    pub fn inverse(&self, _input: &Vector) -> Result<Vector> {
870        Err(SimulatorError::UnsupportedOperation(
871            "SciRS2 integration requires 'advanced_math' feature".to_string(),
872        ))
873    }
874}
875
876/// Matrix wrapper for SciRS2 operations
877#[cfg(feature = "advanced_math")]
878#[derive(Debug, Clone)]
879pub struct Matrix {
880    data: Array2<Complex64>,
881}
882
883#[cfg(feature = "advanced_math")]
884impl Matrix {
885    pub fn from_array2(array: &ArrayView2<Complex64>, _pool: &MemoryPool) -> Result<Self> {
886        Ok(Self {
887            data: array.to_owned(),
888        })
889    }
890
891    pub fn zeros(shape: (usize, usize), _pool: &MemoryPool) -> Result<Self> {
892        Ok(Self {
893            data: Array2::zeros(shape),
894        })
895    }
896
897    pub fn to_array2(&self, result: &mut Array2<Complex64>) -> Result<()> {
898        if result.shape() != self.data.shape() {
899            return Err(SimulatorError::DimensionMismatch(format!(
900                "Expected shape {:?}, but got {:?}",
901                self.data.shape(),
902                result.shape()
903            )));
904        }
905        result.assign(&self.data);
906        Ok(())
907    }
908
909    pub fn shape(&self) -> (usize, usize) {
910        (self.data.nrows(), self.data.ncols())
911    }
912
913    pub fn view(&self) -> ArrayView2<'_, Complex64> {
914        self.data.view()
915    }
916
917    pub fn view_mut(&mut self) -> scirs2_core::ndarray::ArrayViewMut2<'_, Complex64> {
918        self.data.view_mut()
919    }
920}
921
922#[cfg(not(feature = "advanced_math"))]
923#[derive(Debug)]
924pub struct Matrix;
925
926#[cfg(not(feature = "advanced_math"))]
927impl Matrix {
928    pub fn from_array2(_array: &ArrayView2<Complex64>, _pool: &MemoryPool) -> Result<Self> {
929        Err(SimulatorError::UnsupportedOperation(
930            "SciRS2 integration requires 'advanced_math' feature".to_string(),
931        ))
932    }
933
934    pub fn zeros(_shape: (usize, usize), _pool: &MemoryPool) -> Result<Self> {
935        Err(SimulatorError::UnsupportedOperation(
936            "SciRS2 integration requires 'advanced_math' feature".to_string(),
937        ))
938    }
939
940    pub fn to_array2(&self, _result: &mut Array2<Complex64>) -> Result<()> {
941        Err(SimulatorError::UnsupportedOperation(
942            "SciRS2 integration requires 'advanced_math' feature".to_string(),
943        ))
944    }
945}
946
947/// Vector wrapper for SciRS2 operations
948#[cfg(feature = "advanced_math")]
949#[derive(Debug, Clone)]
950pub struct Vector {
951    data: Array1<Complex64>,
952}
953
954#[cfg(feature = "advanced_math")]
955impl Vector {
956    pub fn from_array1(array: &ArrayView1<Complex64>, _pool: &MemoryPool) -> Result<Self> {
957        Ok(Self {
958            data: array.to_owned(),
959        })
960    }
961
962    pub fn zeros(len: usize, _pool: &MemoryPool) -> Result<Self> {
963        Ok(Self {
964            data: Array1::zeros(len),
965        })
966    }
967
968    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
969        Ok(self.data.clone())
970    }
971
972    pub fn to_array1_mut(&self, result: &mut Array1<Complex64>) -> Result<()> {
973        if result.len() != self.data.len() {
974            return Err(SimulatorError::DimensionMismatch(format!(
975                "Expected length {}, but got {}",
976                self.data.len(),
977                result.len()
978            )));
979        }
980        result.assign(&self.data);
981        Ok(())
982    }
983
984    pub fn len(&self) -> usize {
985        self.data.len()
986    }
987
988    pub fn view(&self) -> ArrayView1<'_, Complex64> {
989        self.data.view()
990    }
991
992    pub fn view_mut(&mut self) -> scirs2_core::ndarray::ArrayViewMut1<'_, Complex64> {
993        self.data.view_mut()
994    }
995}
996
997#[cfg(not(feature = "advanced_math"))]
998#[derive(Debug)]
999pub struct Vector;
1000
1001#[cfg(not(feature = "advanced_math"))]
1002impl Vector {
1003    pub fn from_array1(_array: &ArrayView1<Complex64>, _pool: &MemoryPool) -> Result<Self> {
1004        Err(SimulatorError::UnsupportedOperation(
1005            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1006        ))
1007    }
1008
1009    pub fn zeros(_len: usize, _pool: &MemoryPool) -> Result<Self> {
1010        Err(SimulatorError::UnsupportedOperation(
1011            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1012        ))
1013    }
1014
1015    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
1016        Err(SimulatorError::UnsupportedOperation(
1017            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1018        ))
1019    }
1020
1021    pub fn to_array1_mut(&self, _result: &mut Array1<Complex64>) -> Result<()> {
1022        Err(SimulatorError::UnsupportedOperation(
1023            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1024        ))
1025    }
1026}
1027
1028/// Sparse matrix wrapper for SciRS2 operations
1029#[cfg(feature = "advanced_math")]
1030#[derive(Debug, Clone)]
1031pub struct SparseMatrix {
1032    /// CSR format sparse matrix using nalgebra-sparse
1033    csr_matrix: nalgebra_sparse::CsrMatrix<Complex64>,
1034}
1035
1036#[cfg(feature = "advanced_math")]
1037impl SparseMatrix {
1038    pub fn from_csr(
1039        values: &[Complex64],
1040        col_indices: &[usize],
1041        row_ptr: &[usize],
1042        num_rows: usize,
1043        num_cols: usize,
1044        _pool: &MemoryPool,
1045    ) -> Result<Self> {
1046        use nalgebra_sparse::CsrMatrix;
1047
1048        let csr_matrix = CsrMatrix::try_from_csr_data(
1049            num_rows,
1050            num_cols,
1051            row_ptr.to_vec(),
1052            col_indices.to_vec(),
1053            values.to_vec(),
1054        )
1055        .map_err(|e| {
1056            SimulatorError::ComputationError(format!("Failed to create CSR matrix: {e}"))
1057        })?;
1058
1059        Ok(Self { csr_matrix })
1060    }
1061
1062    pub fn matvec(&self, vector: &Vector, result: &mut Vector) -> Result<()> {
1063        // TEMPORARY: Using nalgebra until refactored to scirs2_linalg (VIOLATES SciRS2 POLICY)
1064        use nalgebra::{Complex, DVector};
1065
1066        // Convert our Vector to nalgebra DVector
1067        let input_vec = vector.to_array1()?;
1068        let nalgebra_vec = DVector::from_iterator(
1069            input_vec.len(),
1070            input_vec.iter().map(|&c| Complex::new(c.re, c.im)),
1071        );
1072
1073        // Perform matrix-vector multiplication using manual implementation
1074        let mut output = DVector::zeros(self.csr_matrix.nrows());
1075
1076        // Manual sparse matrix-vector multiplication
1077        for (row_idx, row) in self.csr_matrix.row_iter().enumerate() {
1078            let mut sum = Complex::new(0.0, 0.0);
1079            for (col_idx, value) in row.col_indices().iter().zip(row.values()) {
1080                sum += value * nalgebra_vec[*col_idx];
1081            }
1082            output[row_idx] = sum;
1083        }
1084
1085        // Convert back to our format
1086        let output_array: Array1<Complex64> =
1087            Array1::from_iter(output.iter().map(|c| Complex64::new(c.re, c.im)));
1088
1089        result.data.assign(&output_array);
1090        Ok(())
1091    }
1092
1093    pub fn solve(&self, rhs: &Vector) -> Result<Vector> {
1094        // TEMPORARY: Using nalgebra-sparse until refactored to scirs2_sparse (VIOLATES SciRS2 POLICY)
1095        use nalgebra::{Complex, DVector};
1096        use nalgebra_sparse::SparseEntry;
1097        use sprs::CsMat;
1098
1099        let rhs_array = rhs.to_array1()?;
1100
1101        // Convert to sprs format for better sparse solving
1102        let values: Vec<Complex<f64>> = self
1103            .csr_matrix
1104            .values()
1105            .iter()
1106            .map(|&c| Complex::new(c.re, c.im))
1107            .collect();
1108        let (rows, cols, _values) = self.csr_matrix.csr_data();
1109
1110        // Use iterative solver for sparse systems
1111        // This is a simplified implementation - production would use better solvers
1112        let mut solution = rhs_array.clone();
1113
1114        // Simple Jacobi iteration for demonstration
1115        for _ in 0..100 {
1116            let mut new_solution = solution.clone();
1117            for i in 0..solution.len() {
1118                if i < self.csr_matrix.nrows() {
1119                    // Get diagonal element
1120                    let diag =
1121                        self.csr_matrix
1122                            .get_entry(i, i)
1123                            .map_or(Complex::new(1.0, 0.0), |entry| match entry {
1124                                SparseEntry::NonZero(v) => *v,
1125                                SparseEntry::Zero => Complex::new(0.0, 0.0),
1126                            });
1127
1128                    if diag.norm() > 1e-14 {
1129                        new_solution[i] = rhs_array[i] / diag;
1130                    }
1131                }
1132            }
1133            solution = new_solution;
1134        }
1135
1136        Vector::from_array1(&solution.view(), &MemoryPool::new())
1137    }
1138
1139    pub fn shape(&self) -> (usize, usize) {
1140        (self.csr_matrix.nrows(), self.csr_matrix.ncols())
1141    }
1142
1143    pub fn nnz(&self) -> usize {
1144        self.csr_matrix.nnz()
1145    }
1146}
1147
1148#[cfg(not(feature = "advanced_math"))]
1149#[derive(Debug)]
1150pub struct SparseMatrix;
1151
1152#[cfg(not(feature = "advanced_math"))]
1153impl SparseMatrix {
1154    pub fn from_csr(
1155        _values: &[Complex64],
1156        _col_indices: &[usize],
1157        _row_ptr: &[usize],
1158        _num_rows: usize,
1159        _num_cols: usize,
1160        _pool: &MemoryPool,
1161    ) -> Result<Self> {
1162        Err(SimulatorError::UnsupportedOperation(
1163            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1164        ))
1165    }
1166
1167    pub fn matvec(&self, _vector: &Vector, _result: &mut Vector) -> Result<()> {
1168        Err(SimulatorError::UnsupportedOperation(
1169            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1170        ))
1171    }
1172
1173    pub fn solve(&self, _rhs: &Vector) -> Result<Vector> {
1174        Err(SimulatorError::UnsupportedOperation(
1175            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1176        ))
1177    }
1178}
1179
1180/// BLAS operations using SciRS2
1181#[cfg(feature = "advanced_math")]
1182#[derive(Debug)]
1183pub struct BLAS;
1184
1185#[cfg(feature = "advanced_math")]
1186impl BLAS {
1187    pub fn gemm(
1188        alpha: Complex64,
1189        a: &Matrix,
1190        b: &Matrix,
1191        beta: Complex64,
1192        c: &mut Matrix,
1193    ) -> Result<()> {
1194        // Use ndarray operations for now - in full implementation would use scirs2-linalg BLAS
1195        let a_scaled = &a.data * alpha;
1196        let c_scaled = &c.data * beta;
1197        let result = a_scaled.dot(&b.data) + c_scaled;
1198        c.data.assign(&result);
1199        Ok(())
1200    }
1201
1202    pub fn gemv(
1203        alpha: Complex64,
1204        a: &Matrix,
1205        x: &Vector,
1206        beta: Complex64,
1207        y: &mut Vector,
1208    ) -> Result<()> {
1209        // Matrix-vector multiplication
1210        let y_scaled = &y.data * beta;
1211        let result = &a.data.dot(&x.data) * alpha + y_scaled;
1212        y.data.assign(&result);
1213        Ok(())
1214    }
1215}
1216
1217#[cfg(not(feature = "advanced_math"))]
1218#[derive(Debug)]
1219pub struct BLAS;
1220
1221#[cfg(not(feature = "advanced_math"))]
1222impl BLAS {
1223    pub fn gemm(
1224        _alpha: Complex64,
1225        _a: &Matrix,
1226        _b: &Matrix,
1227        _beta: Complex64,
1228        _c: &mut Matrix,
1229    ) -> Result<()> {
1230        Err(SimulatorError::UnsupportedOperation(
1231            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1232        ))
1233    }
1234
1235    pub fn gemv(
1236        _alpha: Complex64,
1237        _a: &Matrix,
1238        _x: &Vector,
1239        _beta: Complex64,
1240        _y: &mut Vector,
1241    ) -> Result<()> {
1242        Err(SimulatorError::UnsupportedOperation(
1243            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1244        ))
1245    }
1246}
1247
1248/// LAPACK operations using SciRS2
1249#[cfg(feature = "advanced_math")]
1250#[derive(Debug)]
1251pub struct LAPACK;
1252
1253#[cfg(feature = "advanced_math")]
1254impl LAPACK {
1255    pub fn svd(matrix: &Matrix) -> Result<SvdResult> {
1256        // Use ndarray-linalg SVD for complex matrices
1257        use scirs2_core::ndarray::ndarray_linalg::SVD; // SciRS2 POLICY compliant
1258
1259        let svd_result = matrix
1260            .data
1261            .svd(true, true)
1262            .map_err(|_| SimulatorError::ComputationError("SVD computation failed".to_string()))?;
1263
1264        // Extract U, S, Vt from the SVD result
1265        let pool = MemoryPool::new();
1266
1267        let u_data = svd_result.0.ok_or_else(|| {
1268            SimulatorError::ComputationError("SVD U matrix not computed".to_string())
1269        })?;
1270        let s_data = svd_result.1;
1271        let vt_data = svd_result.2.ok_or_else(|| {
1272            SimulatorError::ComputationError("SVD Vt matrix not computed".to_string())
1273        })?;
1274
1275        let u = Matrix::from_array2(&u_data.view(), &pool)?;
1276        // Convert real singular values to complex for consistency
1277        let s_complex: Array1<Complex64> = s_data.mapv(|x| Complex64::new(x, 0.0));
1278        let s = Vector::from_array1(&s_complex.view(), &pool)?;
1279        let vt = Matrix::from_array2(&vt_data.view(), &pool)?;
1280
1281        Ok(SvdResult { u, s, vt })
1282    }
1283
1284    pub fn eig(matrix: &Matrix) -> Result<EigResult> {
1285        // Eigenvalue decomposition using SciRS2
1286        use scirs2_core::ndarray::ndarray_linalg::Eig; // SciRS2 POLICY compliant
1287
1288        let eig_result = matrix.data.eig().map_err(|_| {
1289            SimulatorError::ComputationError("Eigenvalue decomposition failed".to_string())
1290        })?;
1291
1292        let pool = MemoryPool::new();
1293        let values = Vector::from_array1(&eig_result.0.view(), &pool)?;
1294        let vectors = Matrix::from_array2(&eig_result.1.view(), &pool)?;
1295
1296        Ok(EigResult { values, vectors })
1297    }
1298
1299    pub fn lu(matrix: &Matrix) -> Result<(Matrix, Matrix, Vec<usize>)> {
1300        // Simplified LU decomposition - for production use, would need proper LU with pivoting
1301        let n = matrix.data.nrows();
1302        let pool = MemoryPool::new();
1303
1304        // Initialize L as identity and U as copy of input
1305        let mut l_data = Array2::eye(n);
1306        let mut u_data = matrix.data.clone();
1307        let mut perm_vec: Vec<usize> = (0..n).collect();
1308
1309        // Simplified Gaussian elimination
1310        for k in 0..n.min(n) {
1311            // Find pivot
1312            let mut max_row = k;
1313            let mut max_val = u_data[[k, k]].norm();
1314            for i in k + 1..n {
1315                let val = u_data[[i, k]].norm();
1316                if val > max_val {
1317                    max_val = val;
1318                    max_row = i;
1319                }
1320            }
1321
1322            // Swap rows if needed
1323            if max_row != k {
1324                for j in 0..n {
1325                    let temp = u_data[[k, j]];
1326                    u_data[[k, j]] = u_data[[max_row, j]];
1327                    u_data[[max_row, j]] = temp;
1328                }
1329                perm_vec.swap(k, max_row);
1330            }
1331
1332            // Eliminate column
1333            if u_data[[k, k]].norm() > 1e-10 {
1334                for i in k + 1..n {
1335                    let factor = u_data[[i, k]] / u_data[[k, k]];
1336                    l_data[[i, k]] = factor;
1337                    for j in k..n {
1338                        let u_kj = u_data[[k, j]];
1339                        u_data[[i, j]] -= factor * u_kj;
1340                    }
1341                }
1342            }
1343        }
1344
1345        let l_matrix = Matrix::from_array2(&l_data.view(), &pool)?;
1346        let u_matrix = Matrix::from_array2(&u_data.view(), &pool)?;
1347
1348        Ok((l_matrix, u_matrix, perm_vec))
1349    }
1350
1351    pub fn qr(matrix: &Matrix) -> Result<(Matrix, Matrix)> {
1352        // QR decomposition using ndarray-linalg
1353        use scirs2_core::ndarray::ndarray_linalg::QR; // SciRS2 POLICY compliant
1354
1355        let (q, r) = matrix
1356            .data
1357            .qr()
1358            .map_err(|_| SimulatorError::ComputationError("QR decomposition failed".to_string()))?;
1359
1360        let pool = MemoryPool::new();
1361        let q_matrix = Matrix::from_array2(&q.view(), &pool)?;
1362        let r_matrix = Matrix::from_array2(&r.view(), &pool)?;
1363
1364        Ok((q_matrix, r_matrix))
1365    }
1366}
1367
1368#[cfg(not(feature = "advanced_math"))]
1369#[derive(Debug)]
1370pub struct LAPACK;
1371
1372#[cfg(not(feature = "advanced_math"))]
1373impl LAPACK {
1374    pub fn svd(_matrix: &Matrix) -> Result<SvdResult> {
1375        Err(SimulatorError::UnsupportedOperation(
1376            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1377        ))
1378    }
1379
1380    pub fn eig(_matrix: &Matrix) -> Result<EigResult> {
1381        Err(SimulatorError::UnsupportedOperation(
1382            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1383        ))
1384    }
1385}
1386
1387/// SVD decomposition result
1388#[cfg(feature = "advanced_math")]
1389#[derive(Debug, Clone)]
1390pub struct SvdResult {
1391    /// U matrix (left singular vectors)
1392    pub u: Matrix,
1393    /// Singular values
1394    pub s: Vector,
1395    /// V^T matrix (right singular vectors)
1396    pub vt: Matrix,
1397}
1398
1399/// Eigenvalue decomposition result
1400#[cfg(feature = "advanced_math")]
1401#[derive(Debug, Clone)]
1402pub struct EigResult {
1403    /// Eigenvalues
1404    pub values: Vector,
1405    /// Eigenvectors (as columns of matrix)
1406    pub vectors: Matrix,
1407}
1408
1409#[cfg(feature = "advanced_math")]
1410impl EigResult {
1411    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
1412        self.values.to_array1()
1413    }
1414
1415    pub const fn eigenvalues(&self) -> &Vector {
1416        &self.values
1417    }
1418
1419    pub const fn eigenvectors(&self) -> &Matrix {
1420        &self.vectors
1421    }
1422}
1423
1424#[cfg(feature = "advanced_math")]
1425impl SvdResult {
1426    pub fn to_array2(&self) -> Result<Array2<Complex64>> {
1427        self.u.data.to_owned().into_dimensionality().map_err(|_| {
1428            SimulatorError::ComputationError("Failed to convert SVD result to array2".to_string())
1429        })
1430    }
1431
1432    pub const fn u_matrix(&self) -> &Matrix {
1433        &self.u
1434    }
1435
1436    pub const fn singular_values(&self) -> &Vector {
1437        &self.s
1438    }
1439
1440    pub const fn vt_matrix(&self) -> &Matrix {
1441        &self.vt
1442    }
1443}
1444
1445#[cfg(not(feature = "advanced_math"))]
1446#[derive(Debug)]
1447pub struct SvdResult;
1448
1449#[cfg(not(feature = "advanced_math"))]
1450#[derive(Debug)]
1451pub struct EigResult;
1452
1453#[cfg(not(feature = "advanced_math"))]
1454impl EigResult {
1455    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
1456        Err(SimulatorError::UnsupportedOperation(
1457            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1458        ))
1459    }
1460}
1461
1462#[cfg(not(feature = "advanced_math"))]
1463impl SvdResult {
1464    pub fn to_array2(&self) -> Result<Array2<Complex64>> {
1465        Err(SimulatorError::UnsupportedOperation(
1466            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1467        ))
1468    }
1469}
1470
1471/// Advanced FFT operations for quantum simulation
1472#[cfg(feature = "advanced_math")]
1473#[derive(Debug)]
1474pub struct AdvancedFFT;
1475
1476#[cfg(feature = "advanced_math")]
1477impl AdvancedFFT {
1478    /// Multidimensional FFT for quantum state processing
1479    pub fn fft_nd(input: &Array2<Complex64>) -> Result<Array2<Complex64>> {
1480        use ndrustfft::{ndfft, FftHandler};
1481
1482        let (rows, cols) = input.dim();
1483        let mut result = input.clone();
1484
1485        // FFT along each dimension
1486        for i in 0..rows {
1487            let row = input.row(i).to_owned();
1488            let mut row_out = row.clone();
1489            let mut handler = FftHandler::new(cols);
1490            ndfft(&row, &mut row_out, &handler, 0);
1491            result.row_mut(i).assign(&row_out);
1492        }
1493
1494        for j in 0..cols {
1495            let col = result.column(j).to_owned();
1496            let mut col_out = col.clone();
1497            let mut handler = FftHandler::new(rows);
1498            ndfft(&col, &mut col_out, &handler, 0);
1499            result.column_mut(j).assign(&col_out);
1500        }
1501
1502        Ok(result)
1503    }
1504
1505    /// Windowed FFT for spectral analysis
1506    pub fn windowed_fft(
1507        input: &Vector,
1508        window_size: usize,
1509        overlap: usize,
1510    ) -> Result<Array2<Complex64>> {
1511        let array = input.to_array1()?;
1512        let step_size = window_size - overlap;
1513        let num_windows = (array.len() - overlap) / step_size;
1514
1515        let mut result = Array2::zeros((num_windows, window_size));
1516
1517        for (i, mut row) in result.outer_iter_mut().enumerate() {
1518            let start = i * step_size;
1519            let end = (start + window_size).min(array.len());
1520
1521            if end - start == window_size {
1522                let window = array.slice(s![start..end]);
1523
1524                // Apply Hann window
1525                let windowed: Array1<Complex64> = window
1526                    .iter()
1527                    .enumerate()
1528                    .map(|(j, &val)| {
1529                        let hann =
1530                            0.5 * (1.0 - (2.0 * PI * j as f64 / (window_size - 1) as f64).cos());
1531                        val * Complex64::new(hann, 0.0)
1532                    })
1533                    .collect();
1534
1535                // Compute FFT
1536                let mut handler = FftHandler::new(window_size);
1537                let mut fft_result = windowed.clone();
1538                ndrustfft::ndfft(&windowed, &mut fft_result, &handler, 0);
1539
1540                row.assign(&fft_result);
1541            }
1542        }
1543
1544        Ok(result)
1545    }
1546
1547    /// Convolution using FFT
1548    pub fn convolution(a: &Vector, b: &Vector) -> Result<Vector> {
1549        let a_array = a.to_array1()?;
1550        let b_array = b.to_array1()?;
1551
1552        let n = a_array.len() + b_array.len() - 1;
1553        let fft_size = n.next_power_of_two();
1554
1555        // Zero-pad inputs
1556        let mut a_padded = Array1::zeros(fft_size);
1557        let mut b_padded = Array1::zeros(fft_size);
1558        a_padded.slice_mut(s![..a_array.len()]).assign(&a_array);
1559        b_padded.slice_mut(s![..b_array.len()]).assign(&b_array);
1560
1561        // FFT
1562        let mut handler = FftHandler::new(fft_size);
1563        let mut a_fft = a_padded.clone();
1564        let mut b_fft = b_padded.clone();
1565        ndrustfft::ndfft(&a_padded, &mut a_fft, &handler, 0);
1566        ndrustfft::ndfft(&b_padded, &mut b_fft, &handler, 0);
1567
1568        // Multiply in frequency domain
1569        let mut product = Array1::zeros(fft_size);
1570        for i in 0..fft_size {
1571            product[i] = a_fft[i] * b_fft[i];
1572        }
1573
1574        // IFFT
1575        let mut result = product.clone();
1576        ndrustfft::ndifft(&product, &mut result, &handler, 0);
1577
1578        // Truncate to correct size and create Vector
1579        let truncated = result.slice(s![..n]).to_owned();
1580        Vector::from_array1(&truncated.view(), &MemoryPool::new())
1581    }
1582}
1583
1584/// Advanced sparse linear algebra solvers
1585#[cfg(feature = "advanced_math")]
1586#[derive(Debug)]
1587pub struct SparseSolvers;
1588
1589#[cfg(feature = "advanced_math")]
1590impl SparseSolvers {
1591    /// Conjugate Gradient solver for Ax = b
1592    pub fn conjugate_gradient(
1593        matrix: &SparseMatrix,
1594        b: &Vector,
1595        x0: Option<&Vector>,
1596        tolerance: f64,
1597        max_iterations: usize,
1598    ) -> Result<Vector> {
1599        // TEMPORARY: Using nalgebra until refactored to scirs2_linalg (VIOLATES SciRS2 POLICY)
1600        use nalgebra::{Complex, DVector};
1601
1602        let b_array = b.to_array1()?;
1603        let b_vec = DVector::from_iterator(
1604            b_array.len(),
1605            b_array.iter().map(|&c| Complex::new(c.re, c.im)),
1606        );
1607
1608        let mut x = if let Some(x0_vec) = x0 {
1609            let x0_array = x0_vec.to_array1()?;
1610            DVector::from_iterator(
1611                x0_array.len(),
1612                x0_array.iter().map(|&c| Complex::new(c.re, c.im)),
1613            )
1614        } else {
1615            DVector::zeros(b_vec.len())
1616        };
1617
1618        // Initial residual: r = b - Ax
1619        let pool = MemoryPool::new();
1620        let x_vector = Vector::from_array1(
1621            &Array1::from_vec(x.iter().map(|c| Complex64::new(c.re, c.im)).collect()).view(),
1622            &pool,
1623        )?;
1624        let mut ax_vector = Vector::zeros(x.len(), &pool)?;
1625        matrix.matvec(&x_vector, &mut ax_vector)?;
1626
1627        // Convert back to DVector for computation
1628        let ax_array = ax_vector.to_array1()?;
1629        let ax = DVector::from_iterator(
1630            ax_array.len(),
1631            ax_array.iter().map(|&c| Complex::new(c.re, c.im)),
1632        );
1633
1634        let mut r = &b_vec - &ax;
1635        let mut p = r.clone();
1636        let mut rsold = r.dot(&r).re;
1637
1638        for _ in 0..max_iterations {
1639            // Ap = A * p
1640            let p_vec = Vector::from_array1(
1641                &Array1::from_vec(p.iter().map(|c| Complex64::new(c.re, c.im)).collect()).view(),
1642                &MemoryPool::new(),
1643            )?;
1644            let mut ap_vec =
1645                Vector::from_array1(&Array1::zeros(p.len()).view(), &MemoryPool::new())?;
1646            matrix.matvec(&p_vec, &mut ap_vec)?;
1647            let ap_array = ap_vec.to_array1()?;
1648            let ap = DVector::from_iterator(
1649                ap_array.len(),
1650                ap_array.iter().map(|&c| Complex::new(c.re, c.im)),
1651            );
1652
1653            let alpha = rsold / p.dot(&ap).re;
1654            let alpha_complex = Complex::new(alpha, 0.0);
1655            x += &p * alpha_complex;
1656            r -= &ap * alpha_complex;
1657
1658            let rsnew = r.dot(&r).re;
1659            if rsnew.sqrt() < tolerance {
1660                break;
1661            }
1662
1663            let beta = rsnew / rsold;
1664            let beta_complex = Complex::new(beta, 0.0);
1665            p = &r + &p * beta_complex;
1666            rsold = rsnew;
1667        }
1668
1669        let result_array = Array1::from_vec(x.iter().map(|c| Complex64::new(c.re, c.im)).collect());
1670        Vector::from_array1(&result_array.view(), &MemoryPool::new())
1671    }
1672
1673    /// GMRES solver for non-symmetric systems
1674    pub fn gmres(
1675        matrix: &SparseMatrix,
1676        b: &Vector,
1677        x0: Option<&Vector>,
1678        tolerance: f64,
1679        max_iterations: usize,
1680        restart: usize,
1681    ) -> Result<Vector> {
1682        let b_array = b.to_array1()?;
1683        let n = b_array.len();
1684
1685        let mut x = if let Some(x0_vec) = x0 {
1686            x0_vec.to_array1()?.to_owned()
1687        } else {
1688            Array1::zeros(n)
1689        };
1690
1691        for _restart_iter in 0..(max_iterations / restart) {
1692            // Calculate initial residual
1693            let mut ax = Array1::zeros(n);
1694            let x_vec = Vector::from_array1(&x.view(), &MemoryPool::new())?;
1695            let mut ax_vec = Vector::from_array1(&ax.view(), &MemoryPool::new())?;
1696            matrix.matvec(&x_vec, &mut ax_vec)?;
1697            ax = ax_vec.to_array1()?;
1698
1699            let mut r = &b_array - &ax;
1700            let beta = r.norm_l2();
1701
1702            if beta < tolerance {
1703                break;
1704            }
1705
1706            r = r.mapv(|x| x / Complex64::new(beta, 0.0));
1707
1708            // Arnoldi process
1709            let mut v = Vec::new();
1710            v.push(r.clone());
1711
1712            let mut h = Array2::zeros((restart + 1, restart));
1713
1714            for j in 0..restart.min(max_iterations) {
1715                let v_vec = Vector::from_array1(&v[j].view(), &MemoryPool::new())?;
1716                let mut av = Array1::zeros(n);
1717                let mut av_vec = Vector::from_array1(&av.view(), &MemoryPool::new())?;
1718                matrix.matvec(&v_vec, &mut av_vec)?;
1719                av = av_vec.to_array1()?;
1720
1721                // Modified Gram-Schmidt orthogonalization
1722                for i in 0..=j {
1723                    h[[i, j]] = v[i].dot(&av);
1724                    av = av - h[[i, j]] * &v[i];
1725                }
1726
1727                h[[j + 1, j]] = Complex64::new(av.norm_l2(), 0.0);
1728
1729                if h[[j + 1, j]].norm() < tolerance {
1730                    break;
1731                }
1732
1733                av /= h[[j + 1, j]];
1734                v.push(av);
1735            }
1736
1737            // Solve least squares problem using the constructed Hessenberg matrix
1738            // Simplified implementation - would use proper QR factorization in production
1739            let krylov_dim = v.len() - 1;
1740            if krylov_dim > 0 {
1741                let mut e1 = Array1::zeros(krylov_dim + 1);
1742                e1[0] = Complex64::new(beta, 0.0);
1743
1744                // Simple back-substitution for upper triangular solve
1745                let mut y = Array1::zeros(krylov_dim);
1746                for i in (0..krylov_dim).rev() {
1747                    let mut sum = Complex64::new(0.0, 0.0);
1748                    for j in (i + 1)..krylov_dim {
1749                        sum += h[[i, j]] * y[j];
1750                    }
1751                    y[i] = (e1[i] - sum) / h[[i, i]];
1752                }
1753
1754                // Update solution
1755                for i in 0..krylov_dim {
1756                    x = x + y[i] * &v[i];
1757                }
1758            }
1759        }
1760
1761        Vector::from_array1(&x.view(), &MemoryPool::new())
1762    }
1763
1764    /// BiCGSTAB solver for complex systems
1765    pub fn bicgstab(
1766        matrix: &SparseMatrix,
1767        b: &Vector,
1768        x0: Option<&Vector>,
1769        tolerance: f64,
1770        max_iterations: usize,
1771    ) -> Result<Vector> {
1772        let b_array = b.to_array1()?;
1773        let n = b_array.len();
1774
1775        let mut x = if let Some(x0_vec) = x0 {
1776            x0_vec.to_array1()?.to_owned()
1777        } else {
1778            Array1::zeros(n)
1779        };
1780
1781        // Calculate initial residual
1782        let mut ax = Array1::zeros(n);
1783        let x_vec = Vector::from_array1(&x.view(), &MemoryPool::new())?;
1784        let mut ax_vec = Vector::from_array1(&ax.view(), &MemoryPool::new())?;
1785        matrix.matvec(&x_vec, &mut ax_vec)?;
1786        ax = ax_vec.to_array1()?;
1787
1788        let mut r = &b_array - &ax;
1789        let r0 = r.clone();
1790
1791        let mut rho = Complex64::new(1.0, 0.0);
1792        let mut alpha = Complex64::new(1.0, 0.0);
1793        let mut omega = Complex64::new(1.0, 0.0);
1794
1795        let mut p = Array1::zeros(n);
1796        let mut v = Array1::zeros(n);
1797
1798        for _ in 0..max_iterations {
1799            let rho_new = r0.dot(&r);
1800            let beta = (rho_new / rho) * (alpha / omega);
1801
1802            p = &r + beta * (&p - omega * &v);
1803
1804            // v = A * p
1805            let p_vec = Vector::from_array1(&p.view(), &MemoryPool::new())?;
1806            let mut v_vec = Vector::from_array1(&v.view(), &MemoryPool::new())?;
1807            matrix.matvec(&p_vec, &mut v_vec)?;
1808            v = v_vec.to_array1()?;
1809
1810            alpha = rho_new / r0.dot(&v);
1811            let s = &r - alpha * &v;
1812
1813            if s.norm_l2() < tolerance {
1814                x = x + alpha * &p;
1815                break;
1816            }
1817
1818            // t = A * s
1819            let s_vec = Vector::from_array1(&s.view(), &MemoryPool::new())?;
1820            let mut t_vec = Vector::from_array1(&Array1::zeros(n).view(), &MemoryPool::new())?;
1821            matrix.matvec(&s_vec, &mut t_vec)?;
1822            let t = t_vec.to_array1()?;
1823
1824            omega = t.dot(&s) / t.dot(&t);
1825            x = x + alpha * &p + omega * &s;
1826            r = s - omega * &t;
1827
1828            if r.norm_l2() < tolerance {
1829                break;
1830            }
1831
1832            rho = rho_new;
1833        }
1834
1835        Vector::from_array1(&x.view(), &MemoryPool::new())
1836    }
1837}
1838
1839/// Advanced eigenvalue solvers for large sparse matrices
1840#[cfg(feature = "advanced_math")]
1841#[derive(Debug)]
1842pub struct AdvancedEigensolvers;
1843
1844#[cfg(feature = "advanced_math")]
1845impl AdvancedEigensolvers {
1846    /// Lanczos algorithm for finding a few eigenvalues of large sparse symmetric matrices
1847    pub fn lanczos(
1848        matrix: &SparseMatrix,
1849        num_eigenvalues: usize,
1850        max_iterations: usize,
1851        tolerance: f64,
1852    ) -> Result<EigResult> {
1853        let n = matrix.csr_matrix.nrows();
1854        let m = num_eigenvalues.min(max_iterations);
1855
1856        // Initialize random starting vector
1857        let mut q = Array1::from_vec(
1858            (0..n)
1859                .map(|_| {
1860                    Complex64::new(
1861                        thread_rng().gen::<f64>() - 0.5,
1862                        thread_rng().gen::<f64>() - 0.5,
1863                    )
1864                })
1865                .collect(),
1866        );
1867        q = q.mapv(|x| x / Complex64::new(q.norm_l2(), 0.0));
1868
1869        let mut q_vectors = Vec::new();
1870        q_vectors.push(q.clone());
1871
1872        let mut alpha = Vec::new();
1873        let mut beta = Vec::new();
1874
1875        let mut q_prev = Array1::<Complex64>::zeros(n);
1876
1877        for j in 0..m {
1878            // Av = A * q[j]
1879            let q_vec = Vector::from_array1(&q_vectors[j].view(), &MemoryPool::new())?;
1880            let mut av_vec = Vector::from_array1(&Array1::zeros(n).view(), &MemoryPool::new())?;
1881            matrix.matvec(&q_vec, &mut av_vec)?;
1882            let mut av = av_vec.to_array1()?;
1883
1884            // Alpha computation
1885            let alpha_j = q_vectors[j].dot(&av);
1886            alpha.push(alpha_j);
1887
1888            // Orthogonalization
1889            av = av - alpha_j * &q_vectors[j];
1890            if j > 0 {
1891                av = av - Complex64::new(beta[j - 1], 0.0) * &q_prev;
1892            }
1893
1894            let beta_j = av.norm_l2();
1895
1896            if beta_j.abs() < tolerance {
1897                break;
1898            }
1899
1900            beta.push(beta_j);
1901            q_prev = q_vectors[j].clone();
1902
1903            if j + 1 < m {
1904                q = av / beta_j;
1905                q_vectors.push(q.clone());
1906            }
1907        }
1908
1909        // Solve the tridiagonal eigenvalue problem
1910        let dim = alpha.len();
1911        let mut tridiag = Array2::zeros((dim, dim));
1912
1913        for i in 0..dim {
1914            tridiag[[i, i]] = alpha[i];
1915            if i > 0 {
1916                tridiag[[i - 1, i]] = Complex64::new(beta[i - 1], 0.0);
1917                tridiag[[i, i - 1]] = Complex64::new(beta[i - 1], 0.0);
1918            }
1919        }
1920
1921        // Use simple power iteration for the tridiagonal system (simplified)
1922        let mut eigenvalues = Array1::zeros(num_eigenvalues.min(dim));
1923        for i in 0..eigenvalues.len() {
1924            eigenvalues[i] = tridiag[[i, i]]; // Simplified - would use proper tridiagonal solver
1925        }
1926
1927        // Construct approximate eigenvectors
1928        let mut eigenvectors = Array2::zeros((n, eigenvalues.len()));
1929        for (i, mut col) in eigenvectors
1930            .columns_mut()
1931            .into_iter()
1932            .enumerate()
1933            .take(eigenvalues.len())
1934        {
1935            if i < q_vectors.len() {
1936                col.assign(&q_vectors[i]);
1937            }
1938        }
1939
1940        let values = Vector::from_array1(&eigenvalues.view(), &MemoryPool::new())?;
1941        let vectors = Matrix::from_array2(&eigenvectors.view(), &MemoryPool::new())?;
1942
1943        Ok(EigResult { values, vectors })
1944    }
1945
1946    /// Arnoldi iteration for non-symmetric matrices
1947    pub fn arnoldi(
1948        matrix: &SparseMatrix,
1949        num_eigenvalues: usize,
1950        max_iterations: usize,
1951        tolerance: f64,
1952    ) -> Result<EigResult> {
1953        let n = matrix.csr_matrix.nrows();
1954        let m = num_eigenvalues.min(max_iterations);
1955
1956        // Initialize random starting vector
1957        let mut q = Array1::from_vec(
1958            (0..n)
1959                .map(|_| {
1960                    Complex64::new(
1961                        thread_rng().gen::<f64>() - 0.5,
1962                        thread_rng().gen::<f64>() - 0.5,
1963                    )
1964                })
1965                .collect(),
1966        );
1967        q = q.mapv(|x| x / Complex64::new(q.norm_l2(), 0.0));
1968
1969        let mut q_vectors = Vec::new();
1970        q_vectors.push(q.clone());
1971
1972        let mut h = Array2::zeros((m + 1, m));
1973
1974        for j in 0..m {
1975            // v = A * q[j]
1976            let q_vec = Vector::from_array1(&q_vectors[j].view(), &MemoryPool::new())?;
1977            let mut v_vec = Vector::from_array1(&Array1::zeros(n).view(), &MemoryPool::new())?;
1978            matrix.matvec(&q_vec, &mut v_vec)?;
1979            let mut v = v_vec.to_array1()?;
1980
1981            // Modified Gram-Schmidt orthogonalization
1982            for i in 0..=j {
1983                h[[i, j]] = q_vectors[i].dot(&v);
1984                v = v - h[[i, j]] * &q_vectors[i];
1985            }
1986
1987            h[[j + 1, j]] = Complex64::new(v.norm_l2(), 0.0);
1988
1989            if h[[j + 1, j]].norm() < tolerance {
1990                break;
1991            }
1992
1993            if j + 1 < m {
1994                q = v / h[[j + 1, j]];
1995                q_vectors.push(q.clone());
1996            }
1997        }
1998
1999        // Extract eigenvalues from upper Hessenberg matrix (simplified)
2000        let dim = q_vectors.len();
2001        let mut eigenvalues = Array1::zeros(num_eigenvalues.min(dim));
2002        for i in 0..eigenvalues.len() {
2003            eigenvalues[i] = h[[i, i]]; // Simplified extraction
2004        }
2005
2006        // Construct eigenvectors
2007        let mut eigenvectors = Array2::zeros((n, eigenvalues.len()));
2008        for (i, mut col) in eigenvectors
2009            .columns_mut()
2010            .into_iter()
2011            .enumerate()
2012            .take(eigenvalues.len())
2013        {
2014            if i < q_vectors.len() {
2015                col.assign(&q_vectors[i]);
2016            }
2017        }
2018
2019        let values = Vector::from_array1(&eigenvalues.view(), &MemoryPool::new())?;
2020        let vectors = Matrix::from_array2(&eigenvectors.view(), &MemoryPool::new())?;
2021
2022        Ok(EigResult { values, vectors })
2023    }
2024}
2025
2026/// Enhanced linear algebra operations
2027#[cfg(feature = "advanced_math")]
2028#[derive(Debug)]
2029pub struct AdvancedLinearAlgebra;
2030
2031#[cfg(feature = "advanced_math")]
2032impl AdvancedLinearAlgebra {
2033    /// QR decomposition with pivoting
2034    pub fn qr_decomposition(matrix: &Matrix) -> Result<QRResult> {
2035        use scirs2_core::ndarray::ndarray_linalg::QR; // SciRS2 POLICY compliant
2036
2037        let qr_result = matrix
2038            .data
2039            .qr()
2040            .map_err(|_| SimulatorError::ComputationError("QR decomposition failed".to_string()))?;
2041
2042        let pool = MemoryPool::new();
2043        let q = Matrix::from_array2(&qr_result.0.view(), &pool)?;
2044        let r = Matrix::from_array2(&qr_result.1.view(), &pool)?;
2045
2046        Ok(QRResult { q, r })
2047    }
2048
2049    /// Cholesky decomposition for positive definite matrices
2050    pub fn cholesky_decomposition(matrix: &Matrix) -> Result<Matrix> {
2051        use scirs2_core::ndarray::ndarray_linalg::{Cholesky, UPLO}; // SciRS2 POLICY compliant
2052
2053        let chol_result = matrix.data.cholesky(UPLO::Lower).map_err(|_| {
2054            SimulatorError::ComputationError("Cholesky decomposition failed".to_string())
2055        })?;
2056
2057        Matrix::from_array2(&chol_result.view(), &MemoryPool::new())
2058    }
2059
2060    /// Matrix exponential for quantum evolution
2061    pub fn matrix_exponential(matrix: &Matrix, t: f64) -> Result<Matrix> {
2062        let scaled_matrix = &matrix.data * Complex64::new(0.0, -t);
2063
2064        // Matrix exponential using scaling and squaring with Padé approximation
2065        let mut result = Array2::eye(scaled_matrix.nrows());
2066        let mut term = Array2::eye(scaled_matrix.nrows());
2067
2068        // Simple series expansion (would use more sophisticated methods in production)
2069        for k in 1..20 {
2070            term = term.dot(&scaled_matrix) / Complex64::new(k as f64, 0.0);
2071            result += &term;
2072
2073            if term.norm_l2() < 1e-12 {
2074                break;
2075            }
2076        }
2077
2078        Matrix::from_array2(&result.view(), &MemoryPool::new())
2079    }
2080
2081    /// Pseudoinverse using SVD
2082    pub fn pseudoinverse(matrix: &Matrix, tolerance: f64) -> Result<Matrix> {
2083        let svd_result = LAPACK::svd(matrix)?;
2084
2085        let u = svd_result.u.data;
2086        let s = svd_result.s.to_array1()?;
2087        let vt = svd_result.vt.data;
2088
2089        // Create pseudoinverse of singular values
2090        let mut s_pinv = Array1::zeros(s.len());
2091        for (i, &sigma) in s.iter().enumerate() {
2092            if sigma.norm() > tolerance {
2093                s_pinv[i] = Complex64::new(1.0, 0.0) / sigma;
2094            }
2095        }
2096
2097        // Construct pseudoinverse: V * S^+ * U^T
2098        let s_pinv_diag = Array2::from_diag(&s_pinv);
2099        let result = vt.t().dot(&s_pinv_diag).dot(&u.t());
2100
2101        Matrix::from_array2(&result.view(), &MemoryPool::new())
2102    }
2103
2104    /// Condition number estimation
2105    pub fn condition_number(matrix: &Matrix) -> Result<f64> {
2106        let svd_result = LAPACK::svd(matrix)?;
2107        let s = svd_result.s.to_array1()?;
2108
2109        let mut min_singular = f64::INFINITY;
2110        let mut max_singular: f64 = 0.0;
2111
2112        for &sigma in &s {
2113            let sigma_norm = sigma.norm();
2114            if sigma_norm > 1e-15 {
2115                min_singular = min_singular.min(sigma_norm);
2116                max_singular = max_singular.max(sigma_norm);
2117            }
2118        }
2119
2120        Ok(max_singular / min_singular)
2121    }
2122}
2123
2124/// QR decomposition result
2125#[cfg(feature = "advanced_math")]
2126#[derive(Debug, Clone)]
2127pub struct QRResult {
2128    /// Q matrix (orthogonal)
2129    pub q: Matrix,
2130    /// R matrix (upper triangular)
2131    pub r: Matrix,
2132}
2133
2134/// Performance benchmarking for SciRS2 integration
2135pub fn benchmark_scirs2_integration() -> Result<HashMap<String, f64>> {
2136    let mut results = HashMap::new();
2137
2138    // FFT benchmarks
2139    #[cfg(feature = "advanced_math")]
2140    {
2141        let start = std::time::Instant::now();
2142        let engine = FftEngine::new();
2143        let test_vector = Vector::from_array1(
2144            &Array1::from_vec((0..1024).map(|i| Complex64::new(i as f64, 0.0)).collect()).view(),
2145            &MemoryPool::new(),
2146        )?;
2147
2148        for _ in 0..100 {
2149            let _ = engine.forward(&test_vector)?;
2150        }
2151
2152        let fft_time = start.elapsed().as_millis() as f64;
2153        results.insert("fft_1024_100_iterations".to_string(), fft_time);
2154    }
2155
2156    // Sparse solver benchmarks
2157    #[cfg(feature = "advanced_math")]
2158    {
2159        use nalgebra_sparse::CsrMatrix;
2160
2161        let start = std::time::Instant::now();
2162
2163        // Create test sparse matrix
2164        let mut row_indices = [0; 1000];
2165        let mut col_indices = [0; 1000];
2166        let mut values = [Complex64::new(0.0, 0.0); 1000];
2167
2168        for i in 0..100 {
2169            for j in 0..10 {
2170                let idx = i * 10 + j;
2171                row_indices[idx] = i;
2172                col_indices[idx] = (i + j) % 100;
2173                values[idx] = Complex64::new(1.0, 0.0);
2174            }
2175        }
2176
2177        let csr = CsrMatrix::try_from_csr_data(
2178            100,
2179            100,
2180            row_indices.to_vec(),
2181            col_indices.to_vec(),
2182            values.to_vec(),
2183        )
2184        .map_err(|_| {
2185            SimulatorError::ComputationError("Failed to create test matrix".to_string())
2186        })?;
2187
2188        let sparse_matrix = SparseMatrix { csr_matrix: csr };
2189        let b = Vector::from_array1(&Array1::ones(100).view(), &MemoryPool::new())?;
2190
2191        let _ = SparseSolvers::conjugate_gradient(&sparse_matrix, &b, None, 1e-6, 100)?;
2192
2193        let sparse_solver_time = start.elapsed().as_millis() as f64;
2194        results.insert("cg_solver_100x100".to_string(), sparse_solver_time);
2195    }
2196
2197    // Linear algebra benchmarks
2198    #[cfg(feature = "advanced_math")]
2199    {
2200        let start = std::time::Instant::now();
2201
2202        let test_matrix = Matrix::from_array2(&Array2::eye(50).view(), &MemoryPool::new())?;
2203        for _ in 0..10 {
2204            let _ = AdvancedLinearAlgebra::qr_decomposition(&test_matrix)?;
2205        }
2206
2207        let qr_time = start.elapsed().as_millis() as f64;
2208        results.insert("qr_decomposition_50x50_10_iterations".to_string(), qr_time);
2209    }
2210
2211    Ok(results)
2212}