quantrs2_sim/
quantum_supremacy.rs

1//! Quantum supremacy verification algorithms and benchmarks.
2//!
3//! This module implements various algorithms and statistical tests for verifying
4//! quantum supremacy claims, including cross-entropy benchmarking, Porter-Thomas
5//! distribution analysis, and linear cross-entropy benchmarking (Linear XEB).
6
7use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
8use scirs2_core::parallel_ops::*;
9use scirs2_core::random::prelude::*;
10use scirs2_core::random::ChaCha8Rng;
11use scirs2_core::random::{Rng, SeedableRng};
12use scirs2_core::Complex64;
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::f64::consts::PI;
16
17use crate::error::{Result, SimulatorError};
18use crate::scirs2_integration::SciRS2Backend;
19use crate::shot_sampling::{QuantumSampler, SamplingConfig};
20use crate::statevector::StateVectorSimulator;
21
22/// Cross-entropy benchmarking result
23#[derive(Debug, Clone, Serialize, Deserialize)]
24pub struct CrossEntropyResult {
25    /// Linear cross-entropy benchmarking (XEB) fidelity
26    pub linear_xeb_fidelity: f64,
27    /// Cross-entropy difference
28    pub cross_entropy_difference: f64,
29    /// Number of samples used
30    pub num_samples: usize,
31    /// Statistical confidence (p-value)
32    pub confidence: f64,
33    /// Porter-Thomas test results
34    pub porter_thomas: PorterThomasResult,
35    /// Heavy output generation (HOG) score
36    pub hog_score: f64,
37    /// Computational cost comparison
38    pub cost_comparison: CostComparison,
39}
40
41/// Porter-Thomas distribution analysis
42#[derive(Debug, Clone, Serialize, Deserialize)]
43pub struct PorterThomasResult {
44    /// Chi-squared statistic
45    pub chi_squared: f64,
46    /// Degrees of freedom
47    pub degrees_freedom: usize,
48    /// P-value of the test
49    pub p_value: f64,
50    /// Whether distribution matches Porter-Thomas
51    pub is_porter_thomas: bool,
52    /// Kolmogorov-Smirnov test statistic
53    pub ks_statistic: f64,
54    /// Mean of the distribution
55    pub mean: f64,
56    /// Variance of the distribution
57    pub variance: f64,
58}
59
60/// Heavy Output Generation analysis
61#[derive(Debug, Clone, Serialize, Deserialize)]
62pub struct HOGAnalysis {
63    /// Fraction of heavy outputs
64    pub heavy_fraction: f64,
65    /// Expected heavy fraction for random circuit
66    pub expected_heavy_fraction: f64,
67    /// Threshold for heavy outputs
68    pub threshold: f64,
69    /// Total outputs analyzed
70    pub total_outputs: usize,
71    /// Heavy outputs count
72    pub heavy_count: usize,
73}
74
75/// Computational cost comparison
76#[derive(Debug, Clone, Serialize, Deserialize)]
77pub struct CostComparison {
78    /// Classical simulation time (seconds)
79    pub classical_time: f64,
80    /// Quantum execution time estimate (seconds)
81    pub quantum_time: f64,
82    /// Memory usage for classical simulation (bytes)
83    pub classical_memory: usize,
84    /// Speedup factor
85    pub speedup_factor: f64,
86    /// Number of operations
87    pub operation_count: usize,
88}
89
90/// Quantum supremacy verifier
91pub struct QuantumSupremacyVerifier {
92    /// Number of qubits
93    num_qubits: usize,
94    /// Random number generator
95    rng: ChaCha8Rng,
96    /// SciRS2 backend for optimization
97    backend: Option<SciRS2Backend>,
98    /// Verification parameters
99    params: VerificationParams,
100}
101
102/// Parameters for quantum supremacy verification
103#[derive(Debug, Clone)]
104pub struct VerificationParams {
105    /// Number of random circuits to test
106    pub num_circuits: usize,
107    /// Number of samples per circuit
108    pub samples_per_circuit: usize,
109    /// Circuit depth
110    pub circuit_depth: usize,
111    /// Gate set to use
112    pub gate_set: GateSet,
113    /// Significance level for statistical tests
114    pub significance_level: f64,
115    /// Porter-Thomas test bins
116    pub pt_bins: usize,
117    /// Heavy output threshold percentile
118    pub heavy_threshold_percentile: f64,
119}
120
121/// Gate set for random circuit generation
122#[derive(Debug, Clone)]
123pub enum GateSet {
124    /// Sycamore-like gate set (√X, √Y, √W, CZ)
125    Sycamore,
126    /// Google's quantum supremacy gate set
127    GoogleSupremacy,
128    /// Universal gate set (H, T, CNOT)
129    Universal,
130    /// IBM-like gate set (RZ, SX, CNOT)
131    IBM,
132    /// Custom gate set
133    Custom(Vec<String>),
134}
135
136impl Default for VerificationParams {
137    fn default() -> Self {
138        Self {
139            num_circuits: 100,
140            samples_per_circuit: 1000,
141            circuit_depth: 20,
142            gate_set: GateSet::Sycamore,
143            significance_level: 0.05,
144            pt_bins: 100,
145            heavy_threshold_percentile: 50.0,
146        }
147    }
148}
149
150impl QuantumSupremacyVerifier {
151    /// Create new quantum supremacy verifier
152    pub fn new(num_qubits: usize, params: VerificationParams) -> Result<Self> {
153        Ok(Self {
154            num_qubits,
155            rng: ChaCha8Rng::from_rng(&mut thread_rng()),
156            backend: None,
157            params,
158        })
159    }
160
161    /// Initialize with SciRS2 backend
162    pub fn with_scirs2_backend(mut self) -> Result<Self> {
163        self.backend = Some(SciRS2Backend::new());
164        Ok(self)
165    }
166
167    /// Set random seed for reproducibility
168    pub fn with_seed(mut self, seed: u64) -> Self {
169        self.rng = ChaCha8Rng::seed_from_u64(seed);
170        self
171    }
172
173    /// Perform comprehensive quantum supremacy verification
174    pub fn verify_quantum_supremacy(&mut self) -> Result<CrossEntropyResult> {
175        let start_time = std::time::Instant::now();
176
177        // Generate random quantum circuits
178        let circuits = self.generate_random_circuits()?;
179
180        // Compute ideal amplitudes (classical simulation)
181        let ideal_amplitudes = self.compute_ideal_amplitudes(&circuits)?;
182
183        // Simulate quantum sampling
184        let quantum_samples = self.simulate_quantum_sampling(&circuits)?;
185
186        // Perform cross-entropy benchmarking
187        let linear_xeb = self.compute_linear_xeb(&ideal_amplitudes, &quantum_samples)?;
188
189        // Analyze Porter-Thomas distribution
190        let porter_thomas = self.analyze_porter_thomas(&ideal_amplitudes)?;
191
192        // Compute Heavy Output Generation score
193        let hog_score = self.compute_hog_score(&ideal_amplitudes, &quantum_samples)?;
194
195        // Cross-entropy difference
196        let cross_entropy_diff =
197            self.compute_cross_entropy_difference(&ideal_amplitudes, &quantum_samples)?;
198
199        // Statistical confidence
200        let confidence =
201            self.compute_statistical_confidence(&ideal_amplitudes, &quantum_samples)?;
202
203        let classical_time = start_time.elapsed().as_secs_f64();
204
205        // Cost comparison
206        let cost_comparison = CostComparison {
207            classical_time,
208            quantum_time: self.estimate_quantum_time()?,
209            classical_memory: self.estimate_classical_memory(),
210            speedup_factor: classical_time / self.estimate_quantum_time()?,
211            operation_count: circuits.len() * self.params.circuit_depth,
212        };
213
214        Ok(CrossEntropyResult {
215            linear_xeb_fidelity: linear_xeb,
216            cross_entropy_difference: cross_entropy_diff,
217            num_samples: self.params.samples_per_circuit,
218            confidence,
219            porter_thomas,
220            hog_score,
221            cost_comparison,
222        })
223    }
224
225    /// Generate random quantum circuits
226    fn generate_random_circuits(&mut self) -> Result<Vec<RandomCircuit>> {
227        let mut circuits = Vec::with_capacity(self.params.num_circuits);
228
229        for _ in 0..self.params.num_circuits {
230            let circuit = self.generate_single_random_circuit()?;
231            circuits.push(circuit);
232        }
233
234        Ok(circuits)
235    }
236
237    /// Generate a single random circuit
238    fn generate_single_random_circuit(&mut self) -> Result<RandomCircuit> {
239        let mut layers = Vec::with_capacity(self.params.circuit_depth);
240
241        for layer_idx in 0..self.params.circuit_depth {
242            let layer = match &self.params.gate_set {
243                GateSet::Sycamore => self.generate_sycamore_layer(layer_idx)?,
244                GateSet::GoogleSupremacy => self.generate_google_supremacy_layer(layer_idx)?,
245                GateSet::Universal => self.generate_universal_layer(layer_idx)?,
246                GateSet::IBM => self.generate_ibm_layer(layer_idx)?,
247                GateSet::Custom(gates) => {
248                    let gates_clone = gates.clone();
249                    self.generate_custom_layer(layer_idx, &gates_clone)?
250                }
251            };
252            layers.push(layer);
253        }
254
255        Ok(RandomCircuit {
256            num_qubits: self.num_qubits,
257            layers,
258            measurement_pattern: self.generate_measurement_pattern(),
259        })
260    }
261
262    /// Generate Sycamore-style layer
263    fn generate_sycamore_layer(&mut self, layer_idx: usize) -> Result<CircuitLayer> {
264        let mut gates = Vec::new();
265
266        // Single-qubit gates
267        for qubit in 0..self.num_qubits {
268            let gate_type = match self.rng.gen_range(0..3) {
269                0 => "SqrtX",
270                1 => "SqrtY",
271                _ => "SqrtW",
272            };
273
274            gates.push(QuantumGate {
275                gate_type: gate_type.to_string(),
276                qubits: vec![qubit],
277                parameters: vec![],
278            });
279        }
280
281        // Two-qubit gates (CZ gates with connectivity pattern)
282        let offset = layer_idx % 2;
283        for row in 0..((self.num_qubits as f64).sqrt() as usize) {
284            for col in (offset..((self.num_qubits as f64).sqrt() as usize)).step_by(2) {
285                let qubit1 = row * ((self.num_qubits as f64).sqrt() as usize) + col;
286                let qubit2 = qubit1 + 1;
287
288                if qubit2 < self.num_qubits {
289                    gates.push(QuantumGate {
290                        gate_type: "CZ".to_string(),
291                        qubits: vec![qubit1, qubit2],
292                        parameters: vec![],
293                    });
294                }
295            }
296        }
297
298        Ok(CircuitLayer { gates })
299    }
300
301    /// Generate Google quantum supremacy layer
302    fn generate_google_supremacy_layer(&mut self, layer_idx: usize) -> Result<CircuitLayer> {
303        // Similar to Sycamore but with specific gate rotations
304        self.generate_sycamore_layer(layer_idx)
305    }
306
307    /// Generate universal gate set layer
308    fn generate_universal_layer(&mut self, _layer_idx: usize) -> Result<CircuitLayer> {
309        let mut gates = Vec::new();
310
311        // Random single-qubit gates
312        for qubit in 0..self.num_qubits {
313            let gate_type = match self.rng.gen_range(0..3) {
314                0 => "H",
315                1 => "T",
316                _ => "S",
317            };
318
319            gates.push(QuantumGate {
320                gate_type: gate_type.to_string(),
321                qubits: vec![qubit],
322                parameters: vec![],
323            });
324        }
325
326        // Random CNOT gates
327        let num_cnots = self.rng.gen_range(1..=self.num_qubits / 2);
328        for _ in 0..num_cnots {
329            let control = self.rng.gen_range(0..self.num_qubits);
330            let target = self.rng.gen_range(0..self.num_qubits);
331
332            if control != target {
333                gates.push(QuantumGate {
334                    gate_type: "CNOT".to_string(),
335                    qubits: vec![control, target],
336                    parameters: vec![],
337                });
338            }
339        }
340
341        Ok(CircuitLayer { gates })
342    }
343
344    /// Generate IBM gate set layer
345    fn generate_ibm_layer(&mut self, _layer_idx: usize) -> Result<CircuitLayer> {
346        let mut gates = Vec::new();
347
348        // RZ and SX gates
349        for qubit in 0..self.num_qubits {
350            // Random RZ rotation
351            let angle = self.rng.gen::<f64>() * 2.0 * PI;
352            gates.push(QuantumGate {
353                gate_type: "RZ".to_string(),
354                qubits: vec![qubit],
355                parameters: vec![angle],
356            });
357
358            // SX gate with probability 0.5
359            if self.rng.gen::<bool>() {
360                gates.push(QuantumGate {
361                    gate_type: "SX".to_string(),
362                    qubits: vec![qubit],
363                    parameters: vec![],
364                });
365            }
366        }
367
368        Ok(CircuitLayer { gates })
369    }
370
371    /// Generate custom gate set layer
372    const fn generate_custom_layer(
373        &mut self,
374        _layer_idx: usize,
375        _gates: &[String],
376    ) -> Result<CircuitLayer> {
377        // Implement custom gate generation
378        Ok(CircuitLayer { gates: Vec::new() })
379    }
380
381    /// Generate measurement pattern
382    fn generate_measurement_pattern(&mut self) -> Vec<usize> {
383        // For now, measure all qubits in computational basis
384        (0..self.num_qubits).collect()
385    }
386
387    /// Compute ideal amplitudes using classical simulation
388    fn compute_ideal_amplitudes(
389        &self,
390        circuits: &[RandomCircuit],
391    ) -> Result<Vec<Array1<Complex64>>> {
392        let mut amplitudes = Vec::with_capacity(circuits.len());
393
394        for circuit in circuits {
395            let mut simulator = StateVectorSimulator::new();
396
397            // Apply circuit layers
398            for layer in &circuit.layers {
399                for gate in &layer.gates {
400                    self.apply_gate_to_simulator(&mut simulator, gate)?;
401                }
402            }
403
404            // Get final state (placeholder - would need proper simulator integration)
405            let dim = 1 << self.num_qubits;
406            let state = Array1::zeros(dim);
407            amplitudes.push(state);
408        }
409
410        Ok(amplitudes)
411    }
412
413    /// Apply gate to simulator
414    const fn apply_gate_to_simulator(
415        &self,
416        _simulator: &mut StateVectorSimulator,
417        _gate: &QuantumGate,
418    ) -> Result<()> {
419        // This would need proper integration with the state vector simulator
420        // For now, placeholder implementation
421        Ok(())
422    }
423
424    /// Simulate quantum sampling
425    fn simulate_quantum_sampling(
426        &mut self,
427        circuits: &[RandomCircuit],
428    ) -> Result<Vec<Vec<Vec<u8>>>> {
429        let mut all_samples = Vec::with_capacity(circuits.len());
430
431        for circuit in circuits {
432            let samples = self.sample_from_circuit(circuit)?;
433            all_samples.push(samples);
434        }
435
436        Ok(all_samples)
437    }
438
439    /// Sample from a single circuit
440    fn sample_from_circuit(&mut self, _circuit: &RandomCircuit) -> Result<Vec<Vec<u8>>> {
441        // For now, generate random samples (should use actual quantum sampling)
442        let mut samples = Vec::with_capacity(self.params.samples_per_circuit);
443
444        for _ in 0..self.params.samples_per_circuit {
445            let mut sample = Vec::with_capacity(self.num_qubits);
446            for _ in 0..self.num_qubits {
447                sample.push(u8::from(self.rng.gen::<bool>()));
448            }
449            samples.push(sample);
450        }
451
452        Ok(samples)
453    }
454
455    /// Compute Linear Cross-Entropy Benchmarking (XEB) fidelity
456    fn compute_linear_xeb(
457        &self,
458        ideal_amplitudes: &[Array1<Complex64>],
459        quantum_samples: &[Vec<Vec<u8>>],
460    ) -> Result<f64> {
461        let mut total_fidelity = 0.0;
462
463        for (amplitudes, samples) in ideal_amplitudes.iter().zip(quantum_samples.iter()) {
464            let circuit_fidelity = self.compute_circuit_linear_xeb(amplitudes, samples)?;
465            total_fidelity += circuit_fidelity;
466        }
467
468        Ok(total_fidelity / ideal_amplitudes.len() as f64)
469    }
470
471    /// Compute linear XEB for a single circuit
472    fn compute_circuit_linear_xeb(
473        &self,
474        amplitudes: &Array1<Complex64>,
475        samples: &[Vec<u8>],
476    ) -> Result<f64> {
477        let dim = amplitudes.len();
478        let uniform_prob = 1.0 / dim as f64;
479
480        let mut sum_probs = 0.0;
481
482        for sample in samples {
483            let bitstring_index = self.bitstring_to_index(sample);
484            if bitstring_index < dim {
485                let prob = amplitudes[bitstring_index].norm_sqr();
486                sum_probs += prob;
487            }
488        }
489
490        let mean_prob = sum_probs / samples.len() as f64;
491        let linear_xeb = (mean_prob - uniform_prob) / uniform_prob;
492
493        Ok(linear_xeb)
494    }
495
496    /// Convert bit string to state index
497    fn bitstring_to_index(&self, bitstring: &[u8]) -> usize {
498        let mut index = 0;
499        for (i, &bit) in bitstring.iter().enumerate() {
500            if bit == 1 {
501                index |= 1 << (self.num_qubits - 1 - i);
502            }
503        }
504        index
505    }
506
507    /// Analyze Porter-Thomas distribution
508    fn analyze_porter_thomas(
509        &self,
510        ideal_amplitudes: &[Array1<Complex64>],
511    ) -> Result<PorterThomasResult> {
512        // Collect all probability amplitudes
513        let mut all_probs = Vec::new();
514
515        for amplitudes in ideal_amplitudes {
516            for amplitude in amplitudes {
517                all_probs.push(amplitude.norm_sqr());
518            }
519        }
520
521        // Compute statistics
522        let mean = all_probs.iter().sum::<f64>() / all_probs.len() as f64;
523        let variance =
524            all_probs.iter().map(|p| (p - mean).powi(2)).sum::<f64>() / all_probs.len() as f64;
525
526        // Expected values for Porter-Thomas distribution
527        let expected_mean = 1.0 / (1 << self.num_qubits) as f64;
528        let expected_variance = expected_mean.powi(2);
529
530        // Chi-squared test
531        let bins = self.params.pt_bins;
532        let mut observed = vec![0; bins];
533        let mut expected = vec![0.0; bins];
534
535        // Create histogram
536        let max_prob = all_probs.iter().copied().fold(0.0f64, f64::max);
537        for &prob in &all_probs {
538            let bin = ((prob / max_prob) * (bins - 1) as f64) as usize;
539            observed[bin.min(bins - 1)] += 1;
540        }
541
542        // Expected counts for Porter-Thomas
543        let total_samples = all_probs.len() as f64;
544        for i in 0..bins {
545            let x = (i as f64 + 0.5) / bins as f64 * max_prob;
546            // Porter-Thomas: p(P) = N * exp(-N*P) where N = 2^n
547            let n = 1 << self.num_qubits;
548            expected[i] = total_samples * (n as f64) * (-n as f64 * x).exp() / bins as f64;
549        }
550
551        // Chi-squared statistic
552        let mut chi_squared = 0.0;
553        let mut degrees_freedom: usize = 0;
554
555        for i in 0..bins {
556            if expected[i] > 5.0 {
557                // Only use bins with sufficient expected count
558                chi_squared += (observed[i] as f64 - expected[i]).powi(2) / expected[i];
559                degrees_freedom += 1;
560            }
561        }
562
563        degrees_freedom = degrees_freedom.saturating_sub(1);
564
565        // Approximate p-value (simplified)
566        let p_value = self.chi_squared_p_value(chi_squared, degrees_freedom);
567
568        // Kolmogorov-Smirnov test (simplified)
569        let ks_statistic = self.kolmogorov_smirnov_test(&all_probs, expected_mean);
570
571        Ok(PorterThomasResult {
572            chi_squared,
573            degrees_freedom,
574            p_value,
575            is_porter_thomas: p_value > self.params.significance_level,
576            ks_statistic,
577            mean,
578            variance,
579        })
580    }
581
582    /// Compute HOG (Heavy Output Generation) score
583    fn compute_hog_score(
584        &self,
585        ideal_amplitudes: &[Array1<Complex64>],
586        quantum_samples: &[Vec<Vec<u8>>],
587    ) -> Result<f64> {
588        let mut total_heavy_fraction = 0.0;
589
590        for (amplitudes, samples) in ideal_amplitudes.iter().zip(quantum_samples.iter()) {
591            let heavy_fraction = self.compute_circuit_hog_score(amplitudes, samples)?;
592            total_heavy_fraction += heavy_fraction;
593        }
594
595        Ok(total_heavy_fraction / ideal_amplitudes.len() as f64)
596    }
597
598    /// Compute HOG score for single circuit
599    fn compute_circuit_hog_score(
600        &self,
601        amplitudes: &Array1<Complex64>,
602        samples: &[Vec<u8>],
603    ) -> Result<f64> {
604        // Find median probability
605        let mut probs: Vec<f64> = amplitudes.iter().map(|amp| amp.norm_sqr()).collect();
606        probs.sort_by(|a, b| a.partial_cmp(b).unwrap());
607        let median_prob = probs[probs.len() / 2];
608
609        // Count heavy outputs (above median)
610        let mut heavy_count = 0;
611
612        for sample in samples {
613            let index = self.bitstring_to_index(sample);
614            if index < amplitudes.len() {
615                let prob = amplitudes[index].norm_sqr();
616                if prob > median_prob {
617                    heavy_count += 1;
618                }
619            }
620        }
621
622        Ok(heavy_count as f64 / samples.len() as f64)
623    }
624
625    /// Compute cross-entropy difference
626    fn compute_cross_entropy_difference(
627        &self,
628        ideal_amplitudes: &[Array1<Complex64>],
629        quantum_samples: &[Vec<Vec<u8>>],
630    ) -> Result<f64> {
631        let mut total_difference = 0.0;
632
633        for (amplitudes, samples) in ideal_amplitudes.iter().zip(quantum_samples.iter()) {
634            let difference = self.compute_circuit_cross_entropy(amplitudes, samples)?;
635            total_difference += difference;
636        }
637
638        Ok(total_difference / ideal_amplitudes.len() as f64)
639    }
640
641    /// Compute cross-entropy for single circuit
642    fn compute_circuit_cross_entropy(
643        &self,
644        amplitudes: &Array1<Complex64>,
645        samples: &[Vec<u8>],
646    ) -> Result<f64> {
647        let dim = amplitudes.len();
648        let uniform_entropy = (dim as f64).ln();
649
650        let mut quantum_entropy = 0.0;
651        let mut sample_counts = HashMap::new();
652
653        // Count sample frequencies
654        for sample in samples {
655            *sample_counts.entry(sample.clone()).or_insert(0) += 1;
656        }
657
658        // Compute empirical entropy
659        for count in sample_counts.values() {
660            let prob = *count as f64 / samples.len() as f64;
661            if prob > 0.0 {
662                quantum_entropy -= prob * prob.ln();
663            }
664        }
665
666        Ok(uniform_entropy - quantum_entropy)
667    }
668
669    /// Compute statistical confidence
670    const fn compute_statistical_confidence(
671        &self,
672        _ideal_amplitudes: &[Array1<Complex64>],
673        _quantum_samples: &[Vec<Vec<u8>>],
674    ) -> Result<f64> {
675        // Placeholder implementation
676        Ok(0.95)
677    }
678
679    /// Estimate quantum execution time
680    fn estimate_quantum_time(&self) -> Result<f64> {
681        // Estimate based on gate count and typical gate times
682        let gates_per_circuit = self.params.circuit_depth * self.num_qubits;
683        let total_gates = gates_per_circuit * self.params.num_circuits;
684        let gate_time = 100e-9; // 100 ns per gate
685        let readout_time = 1e-6; // 1 μs readout
686
687        Ok((total_gates as f64).mul_add(gate_time, self.params.num_circuits as f64 * readout_time))
688    }
689
690    /// Estimate classical memory usage
691    const fn estimate_classical_memory(&self) -> usize {
692        let state_size = (1 << self.num_qubits) * std::mem::size_of::<Complex64>();
693        state_size * self.params.num_circuits
694    }
695
696    /// Simplified chi-squared p-value computation
697    fn chi_squared_p_value(&self, chi_squared: f64, degrees_freedom: usize) -> f64 {
698        // Very simplified approximation
699        if degrees_freedom == 0 {
700            return 1.0;
701        }
702
703        let expected = degrees_freedom as f64;
704        if chi_squared < expected {
705            0.95 // High p-value
706        } else if chi_squared < 2.0 * expected {
707            0.5 // Medium p-value
708        } else {
709            0.01 // Low p-value
710        }
711    }
712
713    /// Kolmogorov-Smirnov test statistic
714    fn kolmogorov_smirnov_test(&self, data: &[f64], expected_mean: f64) -> f64 {
715        // Simplified implementation
716        let n = data.len() as f64;
717        let mut sorted_data = data.to_vec();
718        sorted_data.sort_by(|a, b| a.partial_cmp(b).unwrap());
719
720        let mut max_diff: f64 = 0.0;
721
722        for (i, &value) in sorted_data.iter().enumerate() {
723            let empirical_cdf = (i + 1) as f64 / n;
724            let theoretical_cdf = 1.0 - (-value / expected_mean).exp(); // Exponential CDF
725            let diff = (empirical_cdf - theoretical_cdf).abs();
726            max_diff = max_diff.max(diff);
727        }
728
729        max_diff
730    }
731}
732
733/// Random quantum circuit representation
734#[derive(Debug, Clone)]
735pub struct RandomCircuit {
736    pub num_qubits: usize,
737    pub layers: Vec<CircuitLayer>,
738    pub measurement_pattern: Vec<usize>,
739}
740
741/// Layer of gates in a circuit
742#[derive(Debug, Clone)]
743pub struct CircuitLayer {
744    pub gates: Vec<QuantumGate>,
745}
746
747/// Quantum gate representation
748#[derive(Debug, Clone)]
749pub struct QuantumGate {
750    pub gate_type: String,
751    pub qubits: Vec<usize>,
752    pub parameters: Vec<f64>,
753}
754
755/// Benchmark quantum supremacy verification
756pub fn benchmark_quantum_supremacy(num_qubits: usize) -> Result<CrossEntropyResult> {
757    let params = VerificationParams {
758        num_circuits: 10,
759        samples_per_circuit: 100,
760        circuit_depth: 10,
761        ..Default::default()
762    };
763
764    let mut verifier = QuantumSupremacyVerifier::new(num_qubits, params)?;
765    verifier.verify_quantum_supremacy()
766}
767
768/// Verify specific quantum supremacy claim
769pub fn verify_supremacy_claim(
770    num_qubits: usize,
771    circuit_depth: usize,
772    experimental_data: &[Vec<u8>],
773) -> Result<CrossEntropyResult> {
774    let params = VerificationParams {
775        num_circuits: 1,
776        samples_per_circuit: experimental_data.len(),
777        circuit_depth,
778        ..Default::default()
779    };
780
781    let mut verifier = QuantumSupremacyVerifier::new(num_qubits, params)?;
782
783    // This would require the actual circuit that produced the experimental data
784    // For now, return a placeholder result
785    Ok(CrossEntropyResult {
786        linear_xeb_fidelity: 0.0,
787        cross_entropy_difference: 0.0,
788        num_samples: experimental_data.len(),
789        confidence: 0.0,
790        porter_thomas: PorterThomasResult {
791            chi_squared: 0.0,
792            degrees_freedom: 0,
793            p_value: 0.0,
794            is_porter_thomas: false,
795            ks_statistic: 0.0,
796            mean: 0.0,
797            variance: 0.0,
798        },
799        hog_score: 0.0,
800        cost_comparison: CostComparison {
801            classical_time: 0.0,
802            quantum_time: 0.0,
803            classical_memory: 0,
804            speedup_factor: 0.0,
805            operation_count: 0,
806        },
807    })
808}
809
810#[cfg(test)]
811mod tests {
812    use super::*;
813
814    #[test]
815    fn test_verifier_creation() {
816        let params = VerificationParams::default();
817        let verifier = QuantumSupremacyVerifier::new(10, params);
818        assert!(verifier.is_ok());
819    }
820
821    #[test]
822    fn test_linear_xeb_calculation() {
823        let mut verifier = QuantumSupremacyVerifier::new(3, VerificationParams::default()).unwrap();
824
825        // Create dummy data
826        let amplitudes = Array1::from_vec(vec![
827            Complex64::new(0.5, 0.0),
828            Complex64::new(0.5, 0.0),
829            Complex64::new(0.5, 0.0),
830            Complex64::new(0.5, 0.0),
831            Complex64::new(0.0, 0.0),
832            Complex64::new(0.0, 0.0),
833            Complex64::new(0.0, 0.0),
834            Complex64::new(0.0, 0.0),
835        ]);
836
837        let samples = vec![vec![0, 0, 0], vec![0, 0, 1], vec![0, 1, 0], vec![0, 1, 1]];
838
839        let xeb = verifier
840            .compute_circuit_linear_xeb(&amplitudes, &samples)
841            .unwrap();
842        assert!(xeb >= 0.0);
843    }
844
845    #[test]
846    fn test_bitstring_conversion() {
847        let verifier = QuantumSupremacyVerifier::new(3, VerificationParams::default()).unwrap();
848
849        assert_eq!(verifier.bitstring_to_index(&[0, 0, 0]), 0);
850        assert_eq!(verifier.bitstring_to_index(&[0, 0, 1]), 1);
851        assert_eq!(verifier.bitstring_to_index(&[1, 1, 1]), 7);
852    }
853
854    #[test]
855    fn test_porter_thomas_analysis() {
856        let verifier = QuantumSupremacyVerifier::new(2, VerificationParams::default()).unwrap();
857
858        // Create uniform random amplitudes
859        let amplitudes = vec![Array1::from_vec(vec![
860            Complex64::new(0.5, 0.0),
861            Complex64::new(0.5, 0.0),
862            Complex64::new(0.5, 0.0),
863            Complex64::new(0.5, 0.0),
864        ])];
865
866        let result = verifier.analyze_porter_thomas(&amplitudes).unwrap();
867        assert!(result.chi_squared >= 0.0);
868        assert!(result.p_value >= 0.0 && result.p_value <= 1.0);
869    }
870}