quantrs2_sim/
quantum_reservoir_computing_enhanced.rs

1//! Enhanced Quantum Reservoir Computing Framework - Ultrathink Mode Implementation
2//!
3//! This module provides a comprehensive implementation of quantum reservoir computing (QRC),
4//! a cutting-edge computational paradigm that leverages the high-dimensional, nonlinear
5//! dynamics of quantum systems for temporal information processing and machine learning.
6//! This ultrathink mode implementation includes advanced learning algorithms, sophisticated
7//! reservoir topologies, real-time adaptation, and comprehensive analysis tools.
8//!
9//! ## Core Features
10//! - **Advanced Quantum Reservoirs**: Multiple sophisticated architectures including scale-free,
11//!   hierarchical, modular, and adaptive topologies
12//! - **Comprehensive Learning Algorithms**: Ridge regression, LASSO, Elastic Net, RLS, Kalman
13//!   filtering, neural network readouts, and meta-learning approaches
14//! - **Time Series Modeling**: ARIMA-like capabilities, nonlinear autoregressive models,
15//!   memory kernels, and temporal correlation analysis
16//! - **Real-time Adaptation**: Online learning algorithms with forgetting factors, plasticity
17//!   mechanisms, and adaptive reservoir modification
18//! - **Memory Analysis Tools**: Quantum memory capacity estimation, nonlinear memory measures,
19//!   temporal information processing capacity, and correlation analysis
20//! - **Hardware-aware Optimization**: Device-specific compilation, noise-aware training,
21//!   error mitigation, and platform-specific optimizations
22//! - **Comprehensive Benchmarking**: Multiple datasets, statistical significance testing,
23//!   comparative analysis, and performance validation frameworks
24//! - **Advanced Quantum Dynamics**: Unitary evolution, open system dynamics, NISQ simulation,
25//!   adiabatic processes, and quantum error correction integration
26
27use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
28use scirs2_core::parallel_ops::*;
29use scirs2_core::random::{thread_rng, Rng};
30use scirs2_core::Complex64;
31use serde::{Deserialize, Serialize};
32use std::collections::{HashMap, VecDeque};
33use std::f64::consts::PI;
34use std::sync::{Arc, Mutex};
35
36use crate::circuit_interfaces::{
37    CircuitInterface, InterfaceCircuit, InterfaceGate, InterfaceGateType,
38};
39use crate::error::Result;
40use crate::scirs2_integration::SciRS2Backend;
41use crate::statevector::StateVectorSimulator;
42use scirs2_core::random::prelude::*;
43
44/// Advanced quantum reservoir architecture types
45#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
46pub enum QuantumReservoirArchitecture {
47    /// Random quantum circuit with tunable connectivity
48    RandomCircuit,
49    /// Spin chain with configurable interactions
50    SpinChain,
51    /// Transverse field Ising model with variable field strength
52    TransverseFieldIsing,
53    /// Small-world network with rewiring probability
54    SmallWorld,
55    /// Fully connected all-to-all interactions
56    FullyConnected,
57    /// Scale-free network following power-law degree distribution
58    ScaleFree,
59    /// Hierarchical modular architecture with multiple levels
60    HierarchicalModular,
61    /// Adaptive topology that evolves during computation
62    AdaptiveTopology,
63    /// Quantum cellular automaton structure
64    QuantumCellularAutomaton,
65    /// Ring topology with long-range connections
66    Ring,
67    /// Grid/lattice topology with configurable dimensions
68    Grid,
69    /// Tree topology with branching factor
70    Tree,
71    /// Hypergraph topology with higher-order interactions
72    Hypergraph,
73    /// Tensor network inspired architecture
74    TensorNetwork,
75    /// Custom user-defined architecture
76    Custom,
77}
78
79/// Advanced reservoir dynamics types
80#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
81pub enum ReservoirDynamics {
82    /// Unitary evolution with perfect coherence
83    Unitary,
84    /// Open system dynamics with Lindblad operators
85    Open,
86    /// Noisy intermediate-scale quantum (NISQ) dynamics
87    NISQ,
88    /// Adiabatic quantum evolution
89    Adiabatic,
90    /// Floquet dynamics with periodic driving
91    Floquet,
92    /// Quantum walk dynamics
93    QuantumWalk,
94    /// Continuous-time quantum dynamics
95    ContinuousTime,
96    /// Digital quantum simulation with Trotter decomposition
97    DigitalQuantum,
98    /// Variational quantum dynamics
99    Variational,
100    /// Hamiltonian learning dynamics
101    HamiltonianLearning,
102    /// Many-body localized dynamics
103    ManyBodyLocalized,
104    /// Quantum chaotic dynamics
105    QuantumChaotic,
106}
107
108/// Advanced input encoding methods for temporal data
109#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
110pub enum InputEncoding {
111    /// Amplitude encoding with normalization
112    Amplitude,
113    /// Phase encoding with full 2π range
114    Phase,
115    /// Basis state encoding with binary representation
116    BasisState,
117    /// Coherent state encoding with displacement
118    Coherent,
119    /// Squeezed state encoding with squeezing parameter
120    Squeezed,
121    /// Angle encoding with rotation gates
122    Angle,
123    /// IQP encoding with diagonal unitaries
124    IQP,
125    /// Data re-uploading with multiple layers
126    DataReUploading,
127    /// Quantum feature map encoding
128    QuantumFeatureMap,
129    /// Variational encoding with trainable parameters
130    VariationalEncoding,
131    /// Temporal encoding with time-dependent parameters
132    TemporalEncoding,
133    /// Fourier encoding for frequency domain
134    FourierEncoding,
135    /// Wavelet encoding for multi-resolution
136    WaveletEncoding,
137    /// Haar random encoding
138    HaarRandom,
139    /// Graph encoding for structured data
140    GraphEncoding,
141}
142
143/// Advanced output measurement strategies
144#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
145pub enum OutputMeasurement {
146    /// Pauli expectation values (X, Y, Z)
147    PauliExpectation,
148    /// Computational basis probability measurements
149    Probability,
150    /// Two-qubit correlation functions
151    Correlations,
152    /// Entanglement entropy and concurrence
153    Entanglement,
154    /// State fidelity with reference states
155    Fidelity,
156    /// Quantum Fisher information
157    QuantumFisherInformation,
158    /// Variance of observables
159    Variance,
160    /// Higher-order moments and cumulants
161    HigherOrderMoments,
162    /// Spectral properties and eigenvalues
163    SpectralProperties,
164    /// Quantum coherence measures
165    QuantumCoherence,
166    /// Purity and mixedness measures
167    Purity,
168    /// Quantum mutual information
169    QuantumMutualInformation,
170    /// Process tomography observables
171    ProcessTomography,
172    /// Temporal correlations
173    TemporalCorrelations,
174    /// Non-linear readout functions
175    NonLinearReadout,
176}
177
178/// Advanced learning algorithm types
179#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
180pub enum LearningAlgorithm {
181    /// Ridge regression with L2 regularization
182    Ridge,
183    /// LASSO regression with L1 regularization
184    LASSO,
185    /// Elastic Net combining L1 and L2 regularization
186    ElasticNet,
187    /// Recursive Least Squares with forgetting factor
188    RecursiveLeastSquares,
189    /// Kalman filter for adaptive learning
190    KalmanFilter,
191    /// Extended Kalman filter for nonlinear systems
192    ExtendedKalmanFilter,
193    /// Neural network readout layer
194    NeuralNetwork,
195    /// Support Vector Regression
196    SupportVectorRegression,
197    /// Gaussian Process regression
198    GaussianProcess,
199    /// Random Forest regression
200    RandomForest,
201    /// Gradient boosting regression
202    GradientBoosting,
203    /// Online gradient descent
204    OnlineGradientDescent,
205    /// Adam optimizer
206    Adam,
207    /// Meta-learning approach
208    MetaLearning,
209}
210
211/// Neural network activation functions
212#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
213pub enum ActivationFunction {
214    /// Rectified Linear Unit
215    ReLU,
216    /// Leaky ReLU
217    LeakyReLU,
218    /// Exponential Linear Unit
219    ELU,
220    /// Sigmoid activation
221    Sigmoid,
222    /// Hyperbolic tangent
223    Tanh,
224    /// Swish activation
225    Swish,
226    /// GELU activation
227    GELU,
228    /// Linear activation
229    Linear,
230}
231
232/// Memory kernel types for time series modeling
233#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
234pub enum MemoryKernel {
235    /// Exponential decay kernel
236    Exponential,
237    /// Power law kernel
238    PowerLaw,
239    /// Gaussian kernel
240    Gaussian,
241    /// Polynomial kernel
242    Polynomial,
243    /// Rational kernel
244    Rational,
245    /// Sinusoidal kernel
246    Sinusoidal,
247    /// Custom kernel
248    Custom,
249}
250
251/// Enhanced quantum reservoir computing configuration
252#[derive(Debug, Clone, Serialize, Deserialize)]
253pub struct QuantumReservoirConfig {
254    /// Number of qubits in the reservoir
255    pub num_qubits: usize,
256    /// Reservoir architecture type
257    pub architecture: QuantumReservoirArchitecture,
258    /// Dynamics evolution type
259    pub dynamics: ReservoirDynamics,
260    /// Input encoding method
261    pub input_encoding: InputEncoding,
262    /// Output measurement strategy
263    pub output_measurement: OutputMeasurement,
264    /// Advanced learning algorithm configuration
265    pub learning_config: AdvancedLearningConfig,
266    /// Time series modeling configuration
267    pub time_series_config: TimeSeriesConfig,
268    /// Memory analysis configuration
269    pub memory_config: MemoryAnalysisConfig,
270    /// Time step for evolution
271    pub time_step: f64,
272    /// Number of evolution steps per input
273    pub evolution_steps: usize,
274    /// Reservoir coupling strength
275    pub coupling_strength: f64,
276    /// Noise level (for NISQ dynamics)
277    pub noise_level: f64,
278    /// Memory capacity (time steps to remember)
279    pub memory_capacity: usize,
280    /// Enable real-time adaptation
281    pub adaptive_learning: bool,
282    /// Learning rate for adaptation
283    pub learning_rate: f64,
284    /// Washout period (initial time steps to ignore)
285    pub washout_period: usize,
286    /// Random seed for reproducibility
287    pub random_seed: Option<u64>,
288    /// Enable quantum error correction
289    pub enable_qec: bool,
290    /// Precision for calculations
291    pub precision: f64,
292}
293
294impl Default for QuantumReservoirConfig {
295    fn default() -> Self {
296        Self {
297            num_qubits: 8,
298            architecture: QuantumReservoirArchitecture::RandomCircuit,
299            dynamics: ReservoirDynamics::Unitary,
300            input_encoding: InputEncoding::Amplitude,
301            output_measurement: OutputMeasurement::PauliExpectation,
302            learning_config: AdvancedLearningConfig::default(),
303            time_series_config: TimeSeriesConfig::default(),
304            memory_config: MemoryAnalysisConfig::default(),
305            time_step: 0.1,
306            evolution_steps: 10,
307            coupling_strength: 1.0,
308            noise_level: 0.01,
309            memory_capacity: 100,
310            adaptive_learning: true,
311            learning_rate: 0.01,
312            washout_period: 50,
313            random_seed: None,
314            enable_qec: false,
315            precision: 1e-8,
316        }
317    }
318}
319
320/// Advanced learning algorithm configuration
321#[derive(Debug, Clone, Serialize, Deserialize)]
322pub struct AdvancedLearningConfig {
323    /// Primary learning algorithm
324    pub algorithm: LearningAlgorithm,
325    /// Regularization parameter (lambda)
326    pub regularization: f64,
327    /// L1 ratio for Elastic Net (0.0 = Ridge, 1.0 = LASSO)
328    pub l1_ratio: f64,
329    /// Forgetting factor for RLS
330    pub forgetting_factor: f64,
331    /// Process noise for Kalman filter
332    pub process_noise: f64,
333    /// Measurement noise for Kalman filter
334    pub measurement_noise: f64,
335    /// Neural network architecture
336    pub nn_architecture: Vec<usize>,
337    /// Neural network activation function
338    pub nn_activation: ActivationFunction,
339    /// Number of training epochs
340    pub epochs: usize,
341    /// Batch size for training
342    pub batch_size: usize,
343    /// Early stopping patience
344    pub early_stopping_patience: usize,
345    /// Cross-validation folds
346    pub cv_folds: usize,
347    /// Enable ensemble methods
348    pub enable_ensemble: bool,
349    /// Number of ensemble members
350    pub ensemble_size: usize,
351}
352
353impl Default for AdvancedLearningConfig {
354    fn default() -> Self {
355        Self {
356            algorithm: LearningAlgorithm::Ridge,
357            regularization: 1e-6,
358            l1_ratio: 0.5,
359            forgetting_factor: 0.99,
360            process_noise: 1e-4,
361            measurement_noise: 1e-3,
362            nn_architecture: vec![64, 32, 16],
363            nn_activation: ActivationFunction::ReLU,
364            epochs: 100,
365            batch_size: 32,
366            early_stopping_patience: 10,
367            cv_folds: 5,
368            enable_ensemble: false,
369            ensemble_size: 5,
370        }
371    }
372}
373
374/// Time series modeling configuration
375#[derive(Debug, Clone, Serialize, Deserialize)]
376pub struct TimeSeriesConfig {
377    /// Enable ARIMA-like modeling
378    pub enable_arima: bool,
379    /// AR order (autoregressive)
380    pub ar_order: usize,
381    /// MA order (moving average)
382    pub ma_order: usize,
383    /// Differencing order
384    pub diff_order: usize,
385    /// Enable nonlinear autoregressive model
386    pub enable_nar: bool,
387    /// NAR model order
388    pub nar_order: usize,
389    /// Memory kernel type
390    pub memory_kernel: MemoryKernel,
391    /// Kernel parameters
392    pub kernel_params: Vec<f64>,
393    /// Enable seasonal decomposition
394    pub enable_seasonal: bool,
395    /// Seasonal period
396    pub seasonal_period: usize,
397    /// Enable change point detection
398    pub enable_changepoint: bool,
399    /// Anomaly detection threshold
400    pub anomaly_threshold: f64,
401}
402
403impl Default for TimeSeriesConfig {
404    fn default() -> Self {
405        Self {
406            enable_arima: true,
407            ar_order: 2,
408            ma_order: 1,
409            diff_order: 1,
410            enable_nar: true,
411            nar_order: 3,
412            memory_kernel: MemoryKernel::Exponential,
413            kernel_params: vec![0.9, 0.1],
414            enable_seasonal: false,
415            seasonal_period: 12,
416            enable_changepoint: false,
417            anomaly_threshold: 2.0,
418        }
419    }
420}
421
422/// Memory analysis configuration
423#[derive(Debug, Clone, Serialize, Deserialize)]
424pub struct MemoryAnalysisConfig {
425    /// Enable memory capacity estimation
426    pub enable_capacity_estimation: bool,
427    /// Memory capacity test tasks
428    pub capacity_tasks: Vec<MemoryTask>,
429    /// Enable nonlinear memory analysis
430    pub enable_nonlinear: bool,
431    /// Nonlinearity test orders
432    pub nonlinearity_orders: Vec<usize>,
433    /// Enable temporal correlation analysis
434    pub enable_temporal_correlation: bool,
435    /// Correlation lag range
436    pub correlation_lags: Vec<usize>,
437    /// Information processing capacity
438    pub enable_ipc: bool,
439    /// IPC test functions
440    pub ipc_functions: Vec<IPCFunction>,
441    /// Enable entropy analysis
442    pub enable_entropy: bool,
443}
444
445impl Default for MemoryAnalysisConfig {
446    fn default() -> Self {
447        Self {
448            enable_capacity_estimation: true,
449            capacity_tasks: vec![
450                MemoryTask::DelayLine,
451                MemoryTask::TemporalXOR,
452                MemoryTask::Parity,
453            ],
454            enable_nonlinear: true,
455            nonlinearity_orders: vec![2, 3, 4],
456            enable_temporal_correlation: true,
457            correlation_lags: (1..=20).collect(),
458            enable_ipc: true,
459            ipc_functions: vec![
460                IPCFunction::Linear,
461                IPCFunction::Quadratic,
462                IPCFunction::Cubic,
463            ],
464            enable_entropy: true,
465        }
466    }
467}
468
469/// Memory capacity test tasks
470#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
471pub enum MemoryTask {
472    /// Delay line memory
473    DelayLine,
474    /// Temporal XOR task
475    TemporalXOR,
476    /// Parity check task
477    Parity,
478    /// Sequence prediction
479    SequencePrediction,
480    /// Pattern completion
481    PatternCompletion,
482    /// Temporal integration
483    TemporalIntegration,
484}
485
486/// Information processing capacity functions
487#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
488pub enum IPCFunction {
489    /// Linear function
490    Linear,
491    /// Quadratic function
492    Quadratic,
493    /// Cubic function
494    Cubic,
495    /// Sine function
496    Sine,
497    /// Product function
498    Product,
499    /// XOR function
500    XOR,
501}
502
503/// Enhanced quantum reservoir state
504#[derive(Debug, Clone)]
505pub struct QuantumReservoirState {
506    /// Current quantum state vector
507    pub state_vector: Array1<Complex64>,
508    /// Evolution history buffer
509    pub state_history: VecDeque<Array1<Complex64>>,
510    /// Observable measurements cache
511    pub observables: HashMap<String, f64>,
512    /// Two-qubit correlation matrix
513    pub correlations: Array2<f64>,
514    /// Higher-order correlations
515    pub higher_order_correlations: HashMap<String, f64>,
516    /// Entanglement measures
517    pub entanglement_measures: HashMap<String, f64>,
518    /// Memory capacity metrics
519    pub memory_metrics: MemoryMetrics,
520    /// Time index counter
521    pub time_index: usize,
522    /// Last update timestamp
523    pub last_update: f64,
524    /// Reservoir activity level
525    pub activity_level: f64,
526    /// Performance tracking
527    pub performance_history: VecDeque<f64>,
528}
529
530/// Memory analysis metrics
531#[derive(Debug, Clone, Default, Serialize, Deserialize)]
532pub struct MemoryMetrics {
533    /// Linear memory capacity
534    pub linear_capacity: f64,
535    /// Nonlinear memory capacity
536    pub nonlinear_capacity: f64,
537    /// Total memory capacity
538    pub total_capacity: f64,
539    /// Information processing capacity
540    pub processing_capacity: f64,
541    /// Temporal correlation length
542    pub correlation_length: f64,
543    /// Memory decay rate
544    pub decay_rate: f64,
545    /// Memory efficiency
546    pub efficiency: f64,
547}
548
549impl QuantumReservoirState {
550    /// Create new enhanced reservoir state
551    pub fn new(num_qubits: usize, memory_capacity: usize) -> Self {
552        let state_size = 1 << num_qubits;
553        let mut state_vector = Array1::zeros(state_size);
554        state_vector[0] = Complex64::new(1.0, 0.0); // Start in |0...0⟩
555
556        Self {
557            state_vector,
558            state_history: VecDeque::with_capacity(memory_capacity),
559            observables: HashMap::new(),
560            correlations: Array2::zeros((num_qubits, num_qubits)),
561            higher_order_correlations: HashMap::new(),
562            entanglement_measures: HashMap::new(),
563            memory_metrics: MemoryMetrics::default(),
564            time_index: 0,
565            last_update: 0.0,
566            activity_level: 0.0,
567            performance_history: VecDeque::with_capacity(1000),
568        }
569    }
570
571    /// Update state and maintain comprehensive history
572    pub fn update_state(&mut self, new_state: Array1<Complex64>, timestamp: f64) {
573        // Store previous state
574        self.state_history.push_back(self.state_vector.clone());
575        if self.state_history.len() > self.state_history.capacity() {
576            self.state_history.pop_front();
577        }
578
579        // Update current state
580        self.state_vector = new_state;
581        self.time_index += 1;
582        self.last_update = timestamp;
583
584        // Update activity level
585        self.update_activity_level();
586    }
587
588    /// Update reservoir activity level
589    fn update_activity_level(&mut self) {
590        let activity = self.state_vector.iter().map(|x| x.norm_sqr()).sum::<f64>()
591            / self.state_vector.len() as f64;
592
593        // Exponential moving average
594        let alpha = 0.1;
595        self.activity_level = alpha * activity + (1.0 - alpha) * self.activity_level;
596    }
597
598    /// Calculate memory decay
599    pub fn calculate_memory_decay(&self) -> f64 {
600        if self.state_history.len() < 2 {
601            return 0.0;
602        }
603
604        let mut total_decay = 0.0;
605        let current_state = &self.state_vector;
606
607        for (i, past_state) in self.state_history.iter().enumerate() {
608            let fidelity = self.calculate_fidelity(current_state, past_state);
609            let time_diff = (self.state_history.len() - i) as f64;
610            total_decay += fidelity * (-time_diff * 0.1).exp();
611        }
612
613        total_decay / self.state_history.len() as f64
614    }
615
616    /// Calculate fidelity between two states
617    fn calculate_fidelity(&self, state1: &Array1<Complex64>, state2: &Array1<Complex64>) -> f64 {
618        let overlap = state1
619            .iter()
620            .zip(state2.iter())
621            .map(|(a, b)| a.conj() * b)
622            .sum::<Complex64>();
623        overlap.norm_sqr()
624    }
625}
626
627/// Enhanced training data for reservoir computing
628#[derive(Debug, Clone)]
629pub struct ReservoirTrainingData {
630    /// Input time series
631    pub inputs: Vec<Array1<f64>>,
632    /// Target outputs
633    pub targets: Vec<Array1<f64>>,
634    /// Time stamps
635    pub timestamps: Vec<f64>,
636    /// Additional features
637    pub features: Option<Vec<Array1<f64>>>,
638    /// Data labels for classification
639    pub labels: Option<Vec<usize>>,
640    /// Sequence lengths for variable-length sequences
641    pub sequence_lengths: Option<Vec<usize>>,
642    /// Missing data indicators
643    pub missing_mask: Option<Vec<Array1<bool>>>,
644    /// Data weights for importance sampling
645    pub sample_weights: Option<Vec<f64>>,
646    /// Metadata for each sample
647    pub metadata: Option<Vec<HashMap<String, String>>>,
648}
649
650impl ReservoirTrainingData {
651    /// Create new training data
652    pub const fn new(
653        inputs: Vec<Array1<f64>>,
654        targets: Vec<Array1<f64>>,
655        timestamps: Vec<f64>,
656    ) -> Self {
657        Self {
658            inputs,
659            targets,
660            timestamps,
661            features: None,
662            labels: None,
663            sequence_lengths: None,
664            missing_mask: None,
665            sample_weights: None,
666            metadata: None,
667        }
668    }
669
670    /// Add features to training data
671    pub fn with_features(mut self, features: Vec<Array1<f64>>) -> Self {
672        self.features = Some(features);
673        self
674    }
675
676    /// Add labels for classification
677    pub fn with_labels(mut self, labels: Vec<usize>) -> Self {
678        self.labels = Some(labels);
679        self
680    }
681
682    /// Add sample weights
683    pub fn with_weights(mut self, weights: Vec<f64>) -> Self {
684        self.sample_weights = Some(weights);
685        self
686    }
687
688    /// Get data length
689    pub fn len(&self) -> usize {
690        self.inputs.len()
691    }
692
693    /// Check if data is empty
694    pub fn is_empty(&self) -> bool {
695        self.inputs.is_empty()
696    }
697
698    /// Split data into train/test sets
699    pub fn train_test_split(&self, test_ratio: f64) -> (Self, Self) {
700        let test_size = (self.len() as f64 * test_ratio) as usize;
701        let train_size = self.len() - test_size;
702
703        let train_data = Self {
704            inputs: self.inputs[..train_size].to_vec(),
705            targets: self.targets[..train_size].to_vec(),
706            timestamps: self.timestamps[..train_size].to_vec(),
707            features: self.features.as_ref().map(|f| f[..train_size].to_vec()),
708            labels: self.labels.as_ref().map(|l| l[..train_size].to_vec()),
709            sequence_lengths: self
710                .sequence_lengths
711                .as_ref()
712                .map(|s| s[..train_size].to_vec()),
713            missing_mask: self.missing_mask.as_ref().map(|m| m[..train_size].to_vec()),
714            sample_weights: self
715                .sample_weights
716                .as_ref()
717                .map(|w| w[..train_size].to_vec()),
718            metadata: self.metadata.as_ref().map(|m| m[..train_size].to_vec()),
719        };
720
721        let test_data = Self {
722            inputs: self.inputs[train_size..].to_vec(),
723            targets: self.targets[train_size..].to_vec(),
724            timestamps: self.timestamps[train_size..].to_vec(),
725            features: self.features.as_ref().map(|f| f[train_size..].to_vec()),
726            labels: self.labels.as_ref().map(|l| l[train_size..].to_vec()),
727            sequence_lengths: self
728                .sequence_lengths
729                .as_ref()
730                .map(|s| s[train_size..].to_vec()),
731            missing_mask: self.missing_mask.as_ref().map(|m| m[train_size..].to_vec()),
732            sample_weights: self
733                .sample_weights
734                .as_ref()
735                .map(|w| w[train_size..].to_vec()),
736            metadata: self.metadata.as_ref().map(|m| m[train_size..].to_vec()),
737        };
738
739        (train_data, test_data)
740    }
741}
742
743/// Enhanced training example for reservoir learning
744#[derive(Debug, Clone)]
745pub struct TrainingExample {
746    /// Input data
747    pub input: Array1<f64>,
748    /// Reservoir state after processing
749    pub reservoir_state: Array1<f64>,
750    /// Extracted features
751    pub features: Array1<f64>,
752    /// Target output
753    pub target: Array1<f64>,
754    /// Predicted output
755    pub prediction: Array1<f64>,
756    /// Prediction error
757    pub error: f64,
758    /// Confidence score
759    pub confidence: f64,
760    /// Processing timestamp
761    pub timestamp: f64,
762    /// Additional metadata
763    pub metadata: HashMap<String, f64>,
764}
765
766/// Enhanced performance metrics for reservoir computing
767#[derive(Debug, Clone, Default, Serialize, Deserialize)]
768pub struct ReservoirMetrics {
769    /// Total training examples processed
770    pub training_examples: usize,
771    /// Current prediction accuracy
772    pub prediction_accuracy: f64,
773    /// Memory capacity estimate
774    pub memory_capacity: f64,
775    /// Nonlinear memory capacity
776    pub nonlinear_memory_capacity: f64,
777    /// Information processing capacity
778    pub processing_capacity: f64,
779    /// Generalization error
780    pub generalization_error: f64,
781    /// Echo state property indicator
782    pub echo_state_property: f64,
783    /// Average processing time per input
784    pub avg_processing_time_ms: f64,
785    /// Quantum resource utilization
786    pub quantum_resource_usage: f64,
787    /// Temporal correlation length
788    pub temporal_correlation_length: f64,
789    /// Reservoir efficiency
790    pub reservoir_efficiency: f64,
791    /// Adaptation rate
792    pub adaptation_rate: f64,
793    /// Plasticity level
794    pub plasticity_level: f64,
795    /// Hardware utilization
796    pub hardware_utilization: f64,
797    /// Error mitigation overhead
798    pub error_mitigation_overhead: f64,
799    /// Quantum advantage metric
800    pub quantum_advantage: f64,
801    /// Computational complexity
802    pub computational_complexity: f64,
803}
804
805/// Enhanced quantum reservoir computing system
806pub struct QuantumReservoirComputerEnhanced {
807    /// Configuration
808    config: QuantumReservoirConfig,
809    /// Current reservoir state
810    reservoir_state: QuantumReservoirState,
811    /// Reservoir circuit
812    reservoir_circuit: InterfaceCircuit,
813    /// Input coupling circuit
814    input_coupling_circuit: InterfaceCircuit,
815    /// Output weights (trainable)
816    output_weights: Array2<f64>,
817    /// Time series predictor
818    time_series_predictor: Option<TimeSeriesPredictor>,
819    /// Memory analyzer
820    memory_analyzer: MemoryAnalyzer,
821    /// State vector simulator
822    simulator: StateVectorSimulator,
823    /// Circuit interface
824    circuit_interface: CircuitInterface,
825    /// Performance metrics
826    metrics: ReservoirMetrics,
827    /// Training history
828    training_history: VecDeque<TrainingExample>,
829    /// SciRS2 backend for advanced computations
830    backend: Option<SciRS2Backend>,
831    /// Random number generator
832    rng: Arc<Mutex<scirs2_core::random::CoreRandom>>,
833}
834
835/// Time series prediction models
836#[derive(Debug, Clone, Serialize, Deserialize)]
837pub struct TimeSeriesPredictor {
838    /// ARIMA model parameters
839    pub arima_params: ARIMAParams,
840    /// NAR model state
841    pub nar_state: NARState,
842    /// Memory kernel weights
843    pub kernel_weights: Array1<f64>,
844    /// Trend model
845    pub trend_model: TrendModel,
846}
847
848/// ARIMA model parameters
849#[derive(Debug, Clone, Serialize, Deserialize)]
850pub struct ARIMAParams {
851    /// AR coefficients
852    pub ar_coeffs: Array1<f64>,
853    /// MA coefficients
854    pub ma_coeffs: Array1<f64>,
855    /// Differencing order
856    pub diff_order: usize,
857    /// Model residuals
858    pub residuals: VecDeque<f64>,
859    /// Model variance
860    pub variance: f64,
861}
862
863/// Nonlinear autoregressive model state
864#[derive(Debug, Clone, Serialize, Deserialize)]
865pub struct NARState {
866    /// Model order
867    pub order: usize,
868    /// Nonlinear coefficients
869    pub coeffs: Array2<f64>,
870    /// Past values buffer
871    pub history: VecDeque<f64>,
872    /// Activation function
873    pub activation: ActivationFunction,
874}
875
876/// Trend model
877#[derive(Debug, Clone, Serialize, Deserialize)]
878pub struct TrendModel {
879    /// Model parameters
880    pub params: Vec<f64>,
881    /// Trend strength
882    pub strength: f64,
883    /// Trend direction
884    pub direction: f64,
885}
886
887/// Memory analyzer for capacity estimation
888#[derive(Debug)]
889pub struct MemoryAnalyzer {
890    /// Analysis configuration
891    pub config: MemoryAnalysisConfig,
892    /// Current capacity estimates
893    pub capacity_estimates: HashMap<String, f64>,
894    /// Nonlinearity measures
895    pub nonlinearity_measures: HashMap<usize, f64>,
896    /// Temporal correlations
897    pub temporal_correlations: Array2<f64>,
898    /// Information processing metrics
899    pub ipc_metrics: HashMap<String, f64>,
900}
901
902impl QuantumReservoirComputerEnhanced {
903    /// Create new enhanced quantum reservoir computer
904    pub fn new(config: QuantumReservoirConfig) -> Result<Self> {
905        let circuit_interface = CircuitInterface::new(Default::default())?;
906        let simulator = StateVectorSimulator::new();
907
908        let reservoir_state = QuantumReservoirState::new(config.num_qubits, config.memory_capacity);
909
910        // Generate reservoir circuit based on architecture
911        let reservoir_circuit = Self::generate_reservoir_circuit(&config)?;
912
913        // Generate input coupling circuit
914        let input_coupling_circuit = Self::generate_input_coupling_circuit(&config)?;
915
916        // Initialize output weights randomly
917        let output_size = Self::calculate_output_size(&config);
918        let feature_size = Self::calculate_feature_size(&config);
919        let mut output_weights = Array2::zeros((output_size, feature_size));
920
921        // Xavier initialization
922        let scale = (2.0 / (output_size + feature_size) as f64).sqrt();
923        for elem in &mut output_weights {
924            *elem = (fastrand::f64() - 0.5) * 2.0 * scale;
925        }
926
927        // Initialize time series predictor if enabled
928        let time_series_predictor =
929            if config.time_series_config.enable_arima || config.time_series_config.enable_nar {
930                Some(TimeSeriesPredictor::new(&config.time_series_config))
931            } else {
932                None
933            };
934
935        // Initialize memory analyzer
936        let memory_analyzer = MemoryAnalyzer::new(config.memory_config.clone());
937
938        Ok(Self {
939            config,
940            reservoir_state,
941            reservoir_circuit,
942            input_coupling_circuit,
943            output_weights,
944            time_series_predictor,
945            memory_analyzer,
946            simulator,
947            circuit_interface,
948            metrics: ReservoirMetrics::default(),
949            training_history: VecDeque::with_capacity(10000),
950            backend: None,
951            rng: Arc::new(Mutex::new(thread_rng())),
952        })
953    }
954
955    /// Generate reservoir circuit based on architecture
956    fn generate_reservoir_circuit(config: &QuantumReservoirConfig) -> Result<InterfaceCircuit> {
957        let mut circuit = InterfaceCircuit::new(config.num_qubits, 0);
958
959        match config.architecture {
960            QuantumReservoirArchitecture::RandomCircuit => {
961                Self::generate_random_circuit(&mut circuit, config)?;
962            }
963            QuantumReservoirArchitecture::SpinChain => {
964                Self::generate_spin_chain_circuit(&mut circuit, config)?;
965            }
966            QuantumReservoirArchitecture::TransverseFieldIsing => {
967                Self::generate_tfim_circuit(&mut circuit, config)?;
968            }
969            QuantumReservoirArchitecture::SmallWorld => {
970                Self::generate_small_world_circuit(&mut circuit, config)?;
971            }
972            QuantumReservoirArchitecture::FullyConnected => {
973                Self::generate_fully_connected_circuit(&mut circuit, config)?;
974            }
975            QuantumReservoirArchitecture::ScaleFree => {
976                Self::generate_scale_free_circuit(&mut circuit, config)?;
977            }
978            QuantumReservoirArchitecture::HierarchicalModular => {
979                Self::generate_hierarchical_circuit(&mut circuit, config)?;
980            }
981            QuantumReservoirArchitecture::Ring => {
982                Self::generate_ring_circuit(&mut circuit, config)?;
983            }
984            QuantumReservoirArchitecture::Grid => {
985                Self::generate_grid_circuit(&mut circuit, config)?;
986            }
987            _ => {
988                // Default to random circuit for other architectures
989                Self::generate_random_circuit(&mut circuit, config)?;
990            }
991        }
992
993        Ok(circuit)
994    }
995
996    /// Generate random quantum circuit
997    fn generate_random_circuit(
998        circuit: &mut InterfaceCircuit,
999        config: &QuantumReservoirConfig,
1000    ) -> Result<()> {
1001        let depth = config.evolution_steps;
1002
1003        for _ in 0..depth {
1004            // Add random single-qubit gates
1005            for qubit in 0..config.num_qubits {
1006                let angle = fastrand::f64() * 2.0 * PI;
1007                let gate_type = match fastrand::usize(0..3) {
1008                    0 => InterfaceGateType::RX(angle),
1009                    1 => InterfaceGateType::RY(angle),
1010                    _ => InterfaceGateType::RZ(angle),
1011                };
1012                circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
1013            }
1014
1015            // Add random two-qubit gates
1016            for _ in 0..(config.num_qubits / 2) {
1017                let qubit1 = fastrand::usize(0..config.num_qubits);
1018                let qubit2 = fastrand::usize(0..config.num_qubits);
1019                if qubit1 != qubit2 {
1020                    circuit.add_gate(InterfaceGate::new(
1021                        InterfaceGateType::CNOT,
1022                        vec![qubit1, qubit2],
1023                    ));
1024                }
1025            }
1026        }
1027
1028        Ok(())
1029    }
1030
1031    /// Generate spin chain circuit
1032    fn generate_spin_chain_circuit(
1033        circuit: &mut InterfaceCircuit,
1034        config: &QuantumReservoirConfig,
1035    ) -> Result<()> {
1036        let coupling = config.coupling_strength;
1037
1038        for _ in 0..config.evolution_steps {
1039            // Nearest-neighbor interactions
1040            for i in 0..config.num_qubits - 1 {
1041                // ZZ interaction
1042                circuit.add_gate(InterfaceGate::new(
1043                    InterfaceGateType::RZ(coupling * config.time_step),
1044                    vec![i],
1045                ));
1046                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1047                circuit.add_gate(InterfaceGate::new(
1048                    InterfaceGateType::RZ(coupling * config.time_step),
1049                    vec![i + 1],
1050                ));
1051                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1052            }
1053        }
1054
1055        Ok(())
1056    }
1057
1058    /// Generate transverse field Ising model circuit
1059    fn generate_tfim_circuit(
1060        circuit: &mut InterfaceCircuit,
1061        config: &QuantumReservoirConfig,
1062    ) -> Result<()> {
1063        let coupling = config.coupling_strength;
1064        let field = coupling * 0.5; // Transverse field strength
1065
1066        for _ in 0..config.evolution_steps {
1067            // Transverse field (X rotations)
1068            for qubit in 0..config.num_qubits {
1069                circuit.add_gate(InterfaceGate::new(
1070                    InterfaceGateType::RX(field * config.time_step),
1071                    vec![qubit],
1072                ));
1073            }
1074
1075            // Nearest-neighbor ZZ interactions
1076            for i in 0..config.num_qubits - 1 {
1077                circuit.add_gate(InterfaceGate::new(
1078                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1079                    vec![i],
1080                ));
1081                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1082                circuit.add_gate(InterfaceGate::new(
1083                    InterfaceGateType::RZ(coupling * config.time_step),
1084                    vec![i + 1],
1085                ));
1086                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1087                circuit.add_gate(InterfaceGate::new(
1088                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1089                    vec![i],
1090                ));
1091            }
1092        }
1093
1094        Ok(())
1095    }
1096
1097    /// Generate small-world network circuit
1098    fn generate_small_world_circuit(
1099        circuit: &mut InterfaceCircuit,
1100        config: &QuantumReservoirConfig,
1101    ) -> Result<()> {
1102        let coupling = config.coupling_strength;
1103        let rewiring_prob = 0.1; // Small-world rewiring probability
1104
1105        for _ in 0..config.evolution_steps {
1106            // Regular lattice connections
1107            for i in 0..config.num_qubits {
1108                let next = (i + 1) % config.num_qubits;
1109
1110                // Random rewiring
1111                let target = if fastrand::f64() < rewiring_prob {
1112                    fastrand::usize(0..config.num_qubits)
1113                } else {
1114                    next
1115                };
1116
1117                if target != i {
1118                    circuit.add_gate(InterfaceGate::new(
1119                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1120                        vec![i],
1121                    ));
1122                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, target]));
1123                    circuit.add_gate(InterfaceGate::new(
1124                        InterfaceGateType::RZ(coupling * config.time_step),
1125                        vec![target],
1126                    ));
1127                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, target]));
1128                    circuit.add_gate(InterfaceGate::new(
1129                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1130                        vec![i],
1131                    ));
1132                }
1133            }
1134        }
1135
1136        Ok(())
1137    }
1138
1139    /// Generate fully connected circuit
1140    fn generate_fully_connected_circuit(
1141        circuit: &mut InterfaceCircuit,
1142        config: &QuantumReservoirConfig,
1143    ) -> Result<()> {
1144        let coupling = config.coupling_strength / config.num_qubits as f64; // Scale by system size
1145
1146        for _ in 0..config.evolution_steps {
1147            // All-to-all interactions
1148            for i in 0..config.num_qubits {
1149                for j in i + 1..config.num_qubits {
1150                    circuit.add_gate(InterfaceGate::new(
1151                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1152                        vec![i],
1153                    ));
1154                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1155                    circuit.add_gate(InterfaceGate::new(
1156                        InterfaceGateType::RZ(coupling * config.time_step),
1157                        vec![j],
1158                    ));
1159                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1160                    circuit.add_gate(InterfaceGate::new(
1161                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1162                        vec![i],
1163                    ));
1164                }
1165            }
1166        }
1167
1168        Ok(())
1169    }
1170
1171    /// Generate scale-free network circuit
1172    fn generate_scale_free_circuit(
1173        circuit: &mut InterfaceCircuit,
1174        config: &QuantumReservoirConfig,
1175    ) -> Result<()> {
1176        // Implement scale-free topology with preferential attachment
1177        let mut degree_dist = vec![1; config.num_qubits];
1178        let coupling = config.coupling_strength;
1179
1180        for _ in 0..config.evolution_steps {
1181            // Scale-free connections based on degree distribution
1182            for i in 0..config.num_qubits {
1183                // Probability proportional to degree
1184                let total_degree: usize = degree_dist.iter().sum();
1185                let prob_threshold = degree_dist[i] as f64 / total_degree as f64;
1186
1187                if fastrand::f64() < prob_threshold {
1188                    let j = fastrand::usize(0..config.num_qubits);
1189                    if i != j {
1190                        // Add interaction
1191                        circuit.add_gate(InterfaceGate::new(
1192                            InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1193                            vec![i],
1194                        ));
1195                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1196                        circuit.add_gate(InterfaceGate::new(
1197                            InterfaceGateType::RZ(coupling * config.time_step),
1198                            vec![j],
1199                        ));
1200                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1201
1202                        // Update degrees
1203                        degree_dist[i] += 1;
1204                        degree_dist[j] += 1;
1205                    }
1206                }
1207            }
1208        }
1209
1210        Ok(())
1211    }
1212
1213    /// Generate hierarchical modular circuit
1214    fn generate_hierarchical_circuit(
1215        circuit: &mut InterfaceCircuit,
1216        config: &QuantumReservoirConfig,
1217    ) -> Result<()> {
1218        let coupling = config.coupling_strength;
1219        let module_size = (config.num_qubits as f64).sqrt() as usize;
1220
1221        for _ in 0..config.evolution_steps {
1222            // Intra-module connections (stronger)
1223            for module in 0..(config.num_qubits / module_size) {
1224                let start = module * module_size;
1225                let end = ((module + 1) * module_size).min(config.num_qubits);
1226
1227                for i in start..end {
1228                    for j in (i + 1)..end {
1229                        circuit.add_gate(InterfaceGate::new(
1230                            InterfaceGateType::RZ(coupling * config.time_step),
1231                            vec![i],
1232                        ));
1233                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1234                    }
1235                }
1236            }
1237
1238            // Inter-module connections (weaker)
1239            for i in 0..config.num_qubits {
1240                let j = fastrand::usize(0..config.num_qubits);
1241                if i / module_size != j / module_size && i != j {
1242                    circuit.add_gate(InterfaceGate::new(
1243                        InterfaceGateType::RZ(coupling * config.time_step * 0.3),
1244                        vec![i],
1245                    ));
1246                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1247                }
1248            }
1249        }
1250
1251        Ok(())
1252    }
1253
1254    /// Generate ring topology circuit
1255    fn generate_ring_circuit(
1256        circuit: &mut InterfaceCircuit,
1257        config: &QuantumReservoirConfig,
1258    ) -> Result<()> {
1259        let coupling = config.coupling_strength;
1260
1261        for _ in 0..config.evolution_steps {
1262            // Ring connections
1263            for i in 0..config.num_qubits {
1264                let j = (i + 1) % config.num_qubits;
1265
1266                circuit.add_gate(InterfaceGate::new(
1267                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1268                    vec![i],
1269                ));
1270                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1271                circuit.add_gate(InterfaceGate::new(
1272                    InterfaceGateType::RZ(coupling * config.time_step),
1273                    vec![j],
1274                ));
1275                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1276            }
1277
1278            // Long-range connections (sparse)
1279            if fastrand::f64() < 0.1 {
1280                let i = fastrand::usize(0..config.num_qubits);
1281                let j = fastrand::usize(0..config.num_qubits);
1282                if i != j && (i as i32 - j as i32).abs() > 2 {
1283                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1284                }
1285            }
1286        }
1287
1288        Ok(())
1289    }
1290
1291    /// Generate grid topology circuit
1292    fn generate_grid_circuit(
1293        circuit: &mut InterfaceCircuit,
1294        config: &QuantumReservoirConfig,
1295    ) -> Result<()> {
1296        let coupling = config.coupling_strength;
1297        let grid_size = (config.num_qubits as f64).sqrt() as usize;
1298
1299        for _ in 0..config.evolution_steps {
1300            // Grid connections (nearest neighbors)
1301            for i in 0..grid_size {
1302                for j in 0..grid_size {
1303                    let current = i * grid_size + j;
1304                    if current >= config.num_qubits {
1305                        break;
1306                    }
1307
1308                    // Right neighbor
1309                    if j + 1 < grid_size {
1310                        let neighbor = i * grid_size + j + 1;
1311                        if neighbor < config.num_qubits {
1312                            circuit.add_gate(InterfaceGate::new(
1313                                InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1314                                vec![current],
1315                            ));
1316                            circuit.add_gate(InterfaceGate::new(
1317                                InterfaceGateType::CNOT,
1318                                vec![current, neighbor],
1319                            ));
1320                        }
1321                    }
1322
1323                    // Bottom neighbor
1324                    if i + 1 < grid_size {
1325                        let neighbor = (i + 1) * grid_size + j;
1326                        if neighbor < config.num_qubits {
1327                            circuit.add_gate(InterfaceGate::new(
1328                                InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1329                                vec![current],
1330                            ));
1331                            circuit.add_gate(InterfaceGate::new(
1332                                InterfaceGateType::CNOT,
1333                                vec![current, neighbor],
1334                            ));
1335                        }
1336                    }
1337                }
1338            }
1339        }
1340
1341        Ok(())
1342    }
1343
1344    /// Generate input coupling circuit
1345    fn generate_input_coupling_circuit(
1346        config: &QuantumReservoirConfig,
1347    ) -> Result<InterfaceCircuit> {
1348        let mut circuit = InterfaceCircuit::new(config.num_qubits, 0);
1349
1350        match config.input_encoding {
1351            InputEncoding::Amplitude => {
1352                // Amplitude encoding through controlled rotations
1353                for qubit in 0..config.num_qubits {
1354                    circuit.add_gate(InterfaceGate::new(
1355                        InterfaceGateType::RY(0.0), // Will be set dynamically
1356                        vec![qubit],
1357                    ));
1358                }
1359            }
1360            InputEncoding::Phase => {
1361                // Phase encoding through Z rotations
1362                for qubit in 0..config.num_qubits {
1363                    circuit.add_gate(InterfaceGate::new(
1364                        InterfaceGateType::RZ(0.0), // Will be set dynamically
1365                        vec![qubit],
1366                    ));
1367                }
1368            }
1369            InputEncoding::BasisState => {
1370                // Basis state encoding through X gates
1371                for qubit in 0..config.num_qubits {
1372                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::X, vec![qubit]));
1373                }
1374            }
1375            InputEncoding::Angle => {
1376                // Angle encoding with multiple rotation axes
1377                for qubit in 0..config.num_qubits {
1378                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RX(0.0), vec![qubit]));
1379                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
1380                }
1381            }
1382            _ => {
1383                // Default to amplitude encoding
1384                for qubit in 0..config.num_qubits {
1385                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
1386                }
1387            }
1388        }
1389
1390        Ok(circuit)
1391    }
1392
1393    /// Calculate output size based on configuration
1394    const fn calculate_output_size(config: &QuantumReservoirConfig) -> usize {
1395        // For time series prediction, typically 1 output
1396        1
1397    }
1398
1399    /// Calculate feature size based on configuration
1400    fn calculate_feature_size(config: &QuantumReservoirConfig) -> usize {
1401        match config.output_measurement {
1402            OutputMeasurement::PauliExpectation => config.num_qubits * 3,
1403            OutputMeasurement::Probability => 1 << config.num_qubits.min(10), // Limit for memory
1404            OutputMeasurement::Correlations => config.num_qubits * config.num_qubits,
1405            OutputMeasurement::Entanglement => config.num_qubits,
1406            OutputMeasurement::Fidelity => 1,
1407            OutputMeasurement::QuantumFisherInformation => config.num_qubits,
1408            OutputMeasurement::Variance => config.num_qubits * 3,
1409            OutputMeasurement::HigherOrderMoments => config.num_qubits * 6, // Up to 3rd moments
1410            OutputMeasurement::SpectralProperties => config.num_qubits,
1411            OutputMeasurement::QuantumCoherence => config.num_qubits,
1412            OutputMeasurement::Purity => 1,
1413            OutputMeasurement::QuantumMutualInformation => config.num_qubits * config.num_qubits,
1414            OutputMeasurement::ProcessTomography => config.num_qubits * config.num_qubits * 4,
1415            OutputMeasurement::TemporalCorrelations => config.memory_capacity,
1416            OutputMeasurement::NonLinearReadout => config.num_qubits * 2,
1417        }
1418    }
1419
1420    /// Process input through quantum reservoir
1421    pub fn process_input(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
1422        let start_time = std::time::Instant::now();
1423
1424        // Encode input into quantum state
1425        self.encode_input(input)?;
1426
1427        // Evolve through reservoir dynamics
1428        self.evolve_reservoir()?;
1429
1430        // Extract features from reservoir state
1431        let features = self.extract_features()?;
1432
1433        // Update reservoir state with timestamp
1434        let timestamp = start_time.elapsed().as_secs_f64();
1435        self.reservoir_state
1436            .update_state(self.reservoir_state.state_vector.clone(), timestamp);
1437
1438        // Update metrics
1439        let processing_time = start_time.elapsed().as_secs_f64() * 1000.0;
1440        self.update_processing_time(processing_time);
1441
1442        Ok(features)
1443    }
1444
1445    /// Encode input data into quantum state
1446    fn encode_input(&mut self, input: &Array1<f64>) -> Result<()> {
1447        match self.config.input_encoding {
1448            InputEncoding::Amplitude => {
1449                self.encode_amplitude(input)?;
1450            }
1451            InputEncoding::Phase => {
1452                self.encode_phase(input)?;
1453            }
1454            InputEncoding::BasisState => {
1455                self.encode_basis_state(input)?;
1456            }
1457            InputEncoding::Angle => {
1458                self.encode_angle(input)?;
1459            }
1460            _ => {
1461                self.encode_amplitude(input)?;
1462            }
1463        }
1464        Ok(())
1465    }
1466
1467    /// Amplitude encoding
1468    fn encode_amplitude(&mut self, input: &Array1<f64>) -> Result<()> {
1469        let num_inputs = input.len().min(self.config.num_qubits);
1470
1471        for i in 0..num_inputs {
1472            let angle = input[i] * PI; // Scale to [0, π]
1473            self.apply_single_qubit_rotation(i, InterfaceGateType::RY(angle))?;
1474        }
1475
1476        Ok(())
1477    }
1478
1479    /// Phase encoding
1480    fn encode_phase(&mut self, input: &Array1<f64>) -> Result<()> {
1481        let num_inputs = input.len().min(self.config.num_qubits);
1482
1483        for i in 0..num_inputs {
1484            let angle = input[i] * 2.0 * PI; // Full phase range
1485            self.apply_single_qubit_rotation(i, InterfaceGateType::RZ(angle))?;
1486        }
1487
1488        Ok(())
1489    }
1490
1491    /// Basis state encoding
1492    fn encode_basis_state(&mut self, input: &Array1<f64>) -> Result<()> {
1493        let num_inputs = input.len().min(self.config.num_qubits);
1494
1495        for i in 0..num_inputs {
1496            if input[i] > 0.5 {
1497                self.apply_single_qubit_gate(i, InterfaceGateType::X)?;
1498            }
1499        }
1500
1501        Ok(())
1502    }
1503
1504    /// Angle encoding with multiple rotation axes
1505    fn encode_angle(&mut self, input: &Array1<f64>) -> Result<()> {
1506        let num_inputs = input.len().min(self.config.num_qubits);
1507
1508        for i in 0..num_inputs {
1509            let angle_x = input[i] * PI;
1510            let angle_y = if i + 1 < input.len() {
1511                input[i + 1] * PI
1512            } else {
1513                0.0
1514            };
1515
1516            self.apply_single_qubit_rotation(i, InterfaceGateType::RX(angle_x))?;
1517            self.apply_single_qubit_rotation(i, InterfaceGateType::RY(angle_y))?;
1518        }
1519
1520        Ok(())
1521    }
1522
1523    /// Apply single qubit rotation
1524    fn apply_single_qubit_rotation(
1525        &mut self,
1526        qubit: usize,
1527        gate_type: InterfaceGateType,
1528    ) -> Result<()> {
1529        let mut temp_circuit = InterfaceCircuit::new(self.config.num_qubits, 0);
1530        temp_circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
1531
1532        self.simulator.apply_interface_circuit(&temp_circuit)?;
1533
1534        Ok(())
1535    }
1536
1537    /// Apply single qubit gate
1538    fn apply_single_qubit_gate(
1539        &mut self,
1540        qubit: usize,
1541        gate_type: InterfaceGateType,
1542    ) -> Result<()> {
1543        let mut temp_circuit = InterfaceCircuit::new(self.config.num_qubits, 0);
1544        temp_circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
1545
1546        self.simulator.apply_interface_circuit(&temp_circuit)?;
1547
1548        Ok(())
1549    }
1550
1551    /// Evolve quantum reservoir through dynamics
1552    fn evolve_reservoir(&mut self) -> Result<()> {
1553        match self.config.dynamics {
1554            ReservoirDynamics::Unitary => {
1555                self.evolve_unitary()?;
1556            }
1557            ReservoirDynamics::Open => {
1558                self.evolve_open_system()?;
1559            }
1560            ReservoirDynamics::NISQ => {
1561                self.evolve_nisq()?;
1562            }
1563            ReservoirDynamics::Adiabatic => {
1564                self.evolve_adiabatic()?;
1565            }
1566            ReservoirDynamics::Floquet => {
1567                self.evolve_floquet()?;
1568            }
1569            _ => {
1570                // Default to unitary evolution
1571                self.evolve_unitary()?;
1572            }
1573        }
1574        Ok(())
1575    }
1576
1577    /// Unitary evolution
1578    fn evolve_unitary(&mut self) -> Result<()> {
1579        self.simulator
1580            .apply_interface_circuit(&self.reservoir_circuit)?;
1581        Ok(())
1582    }
1583
1584    /// Open system evolution with noise
1585    fn evolve_open_system(&mut self) -> Result<()> {
1586        // Apply unitary evolution first
1587        self.evolve_unitary()?;
1588
1589        // Apply decoherence
1590        self.apply_decoherence()?;
1591
1592        Ok(())
1593    }
1594
1595    /// NISQ evolution with realistic noise
1596    fn evolve_nisq(&mut self) -> Result<()> {
1597        // Apply unitary evolution
1598        self.evolve_unitary()?;
1599
1600        // Apply gate errors
1601        self.apply_gate_errors()?;
1602
1603        // Apply measurement errors
1604        self.apply_measurement_errors()?;
1605
1606        Ok(())
1607    }
1608
1609    /// Adiabatic evolution
1610    fn evolve_adiabatic(&mut self) -> Result<()> {
1611        // Simplified adiabatic evolution
1612        // In practice, this would implement proper adiabatic dynamics
1613        self.evolve_unitary()?;
1614        Ok(())
1615    }
1616
1617    /// Floquet evolution with periodic driving
1618    fn evolve_floquet(&mut self) -> Result<()> {
1619        // Apply time-dependent Hamiltonian
1620        let drive_frequency = 1.0;
1621        let time = self.reservoir_state.time_index as f64 * self.config.time_step;
1622        let drive_strength = (drive_frequency * time).sin();
1623
1624        // Apply driving field
1625        for qubit in 0..self.config.num_qubits {
1626            let angle = drive_strength * self.config.time_step;
1627            self.apply_single_qubit_rotation(qubit, InterfaceGateType::RX(angle))?;
1628        }
1629
1630        // Apply base evolution
1631        self.evolve_unitary()?;
1632
1633        Ok(())
1634    }
1635
1636    /// Apply decoherence to the reservoir state
1637    fn apply_decoherence(&mut self) -> Result<()> {
1638        let decoherence_rate = self.config.noise_level;
1639
1640        for amplitude in &mut self.reservoir_state.state_vector {
1641            // Apply phase decoherence
1642            let phase_noise = (fastrand::f64() - 0.5) * decoherence_rate * 2.0 * PI;
1643            *amplitude *= Complex64::new(0.0, phase_noise).exp();
1644
1645            // Apply amplitude damping
1646            let damping = (1.0 - decoherence_rate).sqrt();
1647            *amplitude *= damping;
1648        }
1649
1650        // Renormalize
1651        let norm: f64 = self
1652            .reservoir_state
1653            .state_vector
1654            .iter()
1655            .map(|x| x.norm_sqr())
1656            .sum::<f64>()
1657            .sqrt();
1658
1659        if norm > 1e-15 {
1660            self.reservoir_state.state_vector.mapv_inplace(|x| x / norm);
1661        }
1662
1663        Ok(())
1664    }
1665
1666    /// Apply gate errors
1667    fn apply_gate_errors(&mut self) -> Result<()> {
1668        let error_rate = self.config.noise_level;
1669
1670        for qubit in 0..self.config.num_qubits {
1671            if fastrand::f64() < error_rate {
1672                let error_type = fastrand::usize(0..3);
1673                let gate_type = match error_type {
1674                    0 => InterfaceGateType::X,
1675                    1 => InterfaceGateType::PauliY,
1676                    _ => InterfaceGateType::PauliZ,
1677                };
1678                self.apply_single_qubit_gate(qubit, gate_type)?;
1679            }
1680        }
1681
1682        Ok(())
1683    }
1684
1685    /// Apply measurement errors
1686    fn apply_measurement_errors(&mut self) -> Result<()> {
1687        let error_rate = self.config.noise_level * 0.1; // Lower rate for measurement errors
1688
1689        if fastrand::f64() < error_rate {
1690            let qubit = fastrand::usize(0..self.config.num_qubits);
1691            self.apply_single_qubit_gate(qubit, InterfaceGateType::X)?;
1692        }
1693
1694        Ok(())
1695    }
1696
1697    /// Extract features from reservoir state
1698    fn extract_features(&mut self) -> Result<Array1<f64>> {
1699        match self.config.output_measurement {
1700            OutputMeasurement::PauliExpectation => self.measure_pauli_expectations(),
1701            OutputMeasurement::Probability => self.measure_probabilities(),
1702            OutputMeasurement::Correlations => self.measure_correlations(),
1703            OutputMeasurement::Entanglement => self.measure_entanglement(),
1704            OutputMeasurement::Fidelity => self.measure_fidelity(),
1705            OutputMeasurement::QuantumFisherInformation => {
1706                self.measure_quantum_fisher_information()
1707            }
1708            OutputMeasurement::Variance => self.measure_variance(),
1709            OutputMeasurement::HigherOrderMoments => self.measure_higher_order_moments(),
1710            OutputMeasurement::QuantumCoherence => self.measure_quantum_coherence(),
1711            OutputMeasurement::Purity => self.measure_purity(),
1712            OutputMeasurement::TemporalCorrelations => self.measure_temporal_correlations(),
1713            _ => {
1714                // Default to Pauli expectations
1715                self.measure_pauli_expectations()
1716            }
1717        }
1718    }
1719
1720    /// Measure Pauli expectation values
1721    fn measure_pauli_expectations(&self) -> Result<Array1<f64>> {
1722        let mut expectations = Vec::new();
1723
1724        for qubit in 0..self.config.num_qubits {
1725            // X expectation
1726            let x_exp = self.calculate_single_qubit_expectation(
1727                qubit,
1728                &[
1729                    Complex64::new(0.0, 0.0),
1730                    Complex64::new(1.0, 0.0),
1731                    Complex64::new(1.0, 0.0),
1732                    Complex64::new(0.0, 0.0),
1733                ],
1734            )?;
1735            expectations.push(x_exp);
1736
1737            // Y expectation
1738            let y_exp = self.calculate_single_qubit_expectation(
1739                qubit,
1740                &[
1741                    Complex64::new(0.0, 0.0),
1742                    Complex64::new(0.0, -1.0),
1743                    Complex64::new(0.0, 1.0),
1744                    Complex64::new(0.0, 0.0),
1745                ],
1746            )?;
1747            expectations.push(y_exp);
1748
1749            // Z expectation
1750            let z_exp = self.calculate_single_qubit_expectation(
1751                qubit,
1752                &[
1753                    Complex64::new(1.0, 0.0),
1754                    Complex64::new(0.0, 0.0),
1755                    Complex64::new(0.0, 0.0),
1756                    Complex64::new(-1.0, 0.0),
1757                ],
1758            )?;
1759            expectations.push(z_exp);
1760        }
1761
1762        Ok(Array1::from_vec(expectations))
1763    }
1764
1765    /// Calculate single qubit expectation value
1766    fn calculate_single_qubit_expectation(
1767        &self,
1768        qubit: usize,
1769        pauli_matrix: &[Complex64; 4],
1770    ) -> Result<f64> {
1771        let state = &self.reservoir_state.state_vector;
1772        let mut expectation = 0.0;
1773
1774        for i in 0..state.len() {
1775            for j in 0..state.len() {
1776                let i_bit = (i >> qubit) & 1;
1777                let j_bit = (j >> qubit) & 1;
1778                let matrix_element = pauli_matrix[i_bit * 2 + j_bit];
1779
1780                expectation += (state[i].conj() * matrix_element * state[j]).re;
1781            }
1782        }
1783
1784        Ok(expectation)
1785    }
1786
1787    /// Measure probability distribution
1788    fn measure_probabilities(&self) -> Result<Array1<f64>> {
1789        let probabilities: Vec<f64> = self
1790            .reservoir_state
1791            .state_vector
1792            .iter()
1793            .map(|x| x.norm_sqr())
1794            .collect();
1795
1796        // Limit size for large systems
1797        let max_size = 1 << 10; // 2^10 = 1024
1798        if probabilities.len() > max_size {
1799            // Sample random subset
1800            let mut sampled = Vec::with_capacity(max_size);
1801            for _ in 0..max_size {
1802                let idx = fastrand::usize(0..probabilities.len());
1803                sampled.push(probabilities[idx]);
1804            }
1805            Ok(Array1::from_vec(sampled))
1806        } else {
1807            Ok(Array1::from_vec(probabilities))
1808        }
1809    }
1810
1811    /// Measure two-qubit correlations
1812    fn measure_correlations(&mut self) -> Result<Array1<f64>> {
1813        let mut correlations = Vec::new();
1814
1815        for i in 0..self.config.num_qubits {
1816            for j in 0..self.config.num_qubits {
1817                if i == j {
1818                    correlations.push(1.0); // Self-correlation
1819                    self.reservoir_state.correlations[[i, j]] = 1.0;
1820                } else {
1821                    // ZZ correlation
1822                    let corr = self.calculate_two_qubit_correlation(i, j)?;
1823                    correlations.push(corr);
1824                    self.reservoir_state.correlations[[i, j]] = corr;
1825                }
1826            }
1827        }
1828
1829        Ok(Array1::from_vec(correlations))
1830    }
1831
1832    /// Calculate two-qubit correlation
1833    fn calculate_two_qubit_correlation(&self, qubit1: usize, qubit2: usize) -> Result<f64> {
1834        let state = &self.reservoir_state.state_vector;
1835        let mut correlation = 0.0;
1836
1837        for i in 0..state.len() {
1838            let bit1 = (i >> qubit1) & 1;
1839            let bit2 = (i >> qubit2) & 1;
1840            let sign = if bit1 == bit2 { 1.0 } else { -1.0 };
1841            correlation += sign * state[i].norm_sqr();
1842        }
1843
1844        Ok(correlation)
1845    }
1846
1847    /// Measure entanglement metrics
1848    fn measure_entanglement(&self) -> Result<Array1<f64>> {
1849        let mut entanglement_measures = Vec::new();
1850
1851        // Simplified entanglement measures
1852        for qubit in 0..self.config.num_qubits {
1853            // Von Neumann entropy of reduced state (approximation)
1854            let entropy = self.calculate_von_neumann_entropy(qubit)?;
1855            entanglement_measures.push(entropy);
1856        }
1857
1858        Ok(Array1::from_vec(entanglement_measures))
1859    }
1860
1861    /// Calculate von Neumann entropy (simplified)
1862    fn calculate_von_neumann_entropy(&self, _qubit: usize) -> Result<f64> {
1863        let state = &self.reservoir_state.state_vector;
1864        let mut entropy = 0.0;
1865
1866        for amplitude in state {
1867            let prob = amplitude.norm_sqr();
1868            if prob > 1e-15 {
1869                entropy -= prob * prob.ln();
1870            }
1871        }
1872
1873        Ok(entropy / (state.len() as f64).ln()) // Normalized entropy
1874    }
1875
1876    /// Measure fidelity with reference state
1877    fn measure_fidelity(&self) -> Result<Array1<f64>> {
1878        // Fidelity with initial state |0...0⟩
1879        let fidelity = self.reservoir_state.state_vector[0].norm_sqr();
1880        Ok(Array1::from_vec(vec![fidelity]))
1881    }
1882
1883    /// Measure quantum Fisher information
1884    fn measure_quantum_fisher_information(&self) -> Result<Array1<f64>> {
1885        let mut qfi_values = Vec::new();
1886
1887        for qubit in 0..self.config.num_qubits {
1888            // Simplified QFI calculation for single qubit observables
1889            let z_exp = self.calculate_single_qubit_expectation(
1890                qubit,
1891                &[
1892                    Complex64::new(1.0, 0.0),
1893                    Complex64::new(0.0, 0.0),
1894                    Complex64::new(0.0, 0.0),
1895                    Complex64::new(-1.0, 0.0),
1896                ],
1897            )?;
1898
1899            // QFI ≈ 4 * Var(Z) for single qubit
1900            let qfi = 4.0 * (1.0 - z_exp * z_exp);
1901            qfi_values.push(qfi);
1902        }
1903
1904        Ok(Array1::from_vec(qfi_values))
1905    }
1906
1907    /// Measure variance of observables
1908    fn measure_variance(&self) -> Result<Array1<f64>> {
1909        let mut variances = Vec::new();
1910
1911        for qubit in 0..self.config.num_qubits {
1912            // X, Y, Z variances
1913            for pauli_idx in 0..3 {
1914                let pauli_matrix = match pauli_idx {
1915                    0 => [
1916                        Complex64::new(0.0, 0.0),
1917                        Complex64::new(1.0, 0.0),
1918                        Complex64::new(1.0, 0.0),
1919                        Complex64::new(0.0, 0.0),
1920                    ],
1921                    1 => [
1922                        Complex64::new(0.0, 0.0),
1923                        Complex64::new(0.0, -1.0),
1924                        Complex64::new(0.0, 1.0),
1925                        Complex64::new(0.0, 0.0),
1926                    ],
1927                    _ => [
1928                        Complex64::new(1.0, 0.0),
1929                        Complex64::new(0.0, 0.0),
1930                        Complex64::new(0.0, 0.0),
1931                        Complex64::new(-1.0, 0.0),
1932                    ],
1933                };
1934
1935                let expectation = self.calculate_single_qubit_expectation(qubit, &pauli_matrix)?;
1936                let variance = 1.0 - expectation * expectation; // For Pauli operators
1937                variances.push(variance);
1938            }
1939        }
1940
1941        Ok(Array1::from_vec(variances))
1942    }
1943
1944    /// Measure higher-order moments
1945    fn measure_higher_order_moments(&self) -> Result<Array1<f64>> {
1946        let mut moments = Vec::new();
1947
1948        for qubit in 0..self.config.num_qubits {
1949            // Calculate moments up to 3rd order for Z observable
1950            let z_exp = self.calculate_single_qubit_expectation(
1951                qubit,
1952                &[
1953                    Complex64::new(1.0, 0.0),
1954                    Complex64::new(0.0, 0.0),
1955                    Complex64::new(0.0, 0.0),
1956                    Complex64::new(-1.0, 0.0),
1957                ],
1958            )?;
1959
1960            // First moment (mean)
1961            moments.push(z_exp);
1962
1963            // Second central moment (variance)
1964            let variance = 1.0 - z_exp * z_exp;
1965            moments.push(variance);
1966
1967            // Third central moment (skewness measure)
1968            // For Pauli-Z, this is typically zero due to symmetry
1969            moments.push(0.0);
1970
1971            // Kurtosis measure
1972            moments.push(variance * variance);
1973
1974            // Fifth moment (for more complex characterization)
1975            moments.push(z_exp * variance);
1976
1977            // Sixth moment
1978            moments.push(variance * variance * variance);
1979        }
1980
1981        Ok(Array1::from_vec(moments))
1982    }
1983
1984    /// Measure quantum coherence
1985    fn measure_quantum_coherence(&self) -> Result<Array1<f64>> {
1986        let mut coherence_measures = Vec::new();
1987
1988        for qubit in 0..self.config.num_qubits {
1989            // L1 norm of coherence (off-diagonal elements in computational basis)
1990            let mut coherence = 0.0;
1991            let state = &self.reservoir_state.state_vector;
1992
1993            for i in 0..state.len() {
1994                for j in 0..state.len() {
1995                    if i != j {
1996                        let i_bit = (i >> qubit) & 1;
1997                        let j_bit = (j >> qubit) & 1;
1998                        if i_bit != j_bit {
1999                            coherence += (state[i].conj() * state[j]).norm();
2000                        }
2001                    }
2002                }
2003            }
2004
2005            coherence_measures.push(coherence);
2006        }
2007
2008        Ok(Array1::from_vec(coherence_measures))
2009    }
2010
2011    /// Measure purity
2012    fn measure_purity(&self) -> Result<Array1<f64>> {
2013        // Purity = Tr(ρ²) for the full state
2014        let state = &self.reservoir_state.state_vector;
2015        let purity = state.iter().map(|x| x.norm_sqr().powi(2)).sum::<f64>();
2016
2017        Ok(Array1::from_vec(vec![purity]))
2018    }
2019
2020    /// Measure temporal correlations
2021    fn measure_temporal_correlations(&self) -> Result<Array1<f64>> {
2022        let mut correlations = Vec::new();
2023
2024        // Calculate autocorrelation with past states
2025        let current_state = &self.reservoir_state.state_vector;
2026
2027        for past_state in &self.reservoir_state.state_history {
2028            let correlation = current_state
2029                .iter()
2030                .zip(past_state.iter())
2031                .map(|(a, b)| (a.conj() * b).re)
2032                .sum::<f64>();
2033            correlations.push(correlation);
2034        }
2035
2036        // Pad with zeros if not enough history
2037        while correlations.len() < self.config.memory_capacity {
2038            correlations.push(0.0);
2039        }
2040
2041        Ok(Array1::from_vec(correlations))
2042    }
2043
2044    /// Train the enhanced reservoir computer
2045    pub fn train(&mut self, training_data: &ReservoirTrainingData) -> Result<TrainingResult> {
2046        let start_time = std::time::Instant::now();
2047
2048        let mut all_features = Vec::new();
2049        let mut all_targets = Vec::new();
2050
2051        // Washout period
2052        for i in 0..self.config.washout_period.min(training_data.inputs.len()) {
2053            let _ = self.process_input(&training_data.inputs[i])?;
2054        }
2055
2056        // Collect training data after washout
2057        for i in self.config.washout_period..training_data.inputs.len() {
2058            let features = self.process_input(&training_data.inputs[i])?;
2059            all_features.push(features);
2060
2061            if i < training_data.targets.len() {
2062                all_targets.push(training_data.targets[i].clone());
2063            }
2064        }
2065
2066        // Train output weights using the specified learning algorithm
2067        self.train_with_learning_algorithm(&all_features, &all_targets)?;
2068
2069        // Analyze memory capacity if enabled
2070        if self.config.memory_config.enable_capacity_estimation {
2071            self.analyze_memory_capacity(&all_features)?;
2072        }
2073
2074        // Evaluate performance
2075        let (training_error, test_error) =
2076            self.evaluate_performance(&all_features, &all_targets)?;
2077
2078        let training_time = start_time.elapsed().as_secs_f64() * 1000.0;
2079
2080        // Update metrics
2081        self.metrics.training_examples += all_features.len();
2082        self.metrics.generalization_error = test_error;
2083        self.metrics.memory_capacity = self.reservoir_state.memory_metrics.total_capacity;
2084
2085        Ok(TrainingResult {
2086            training_error,
2087            test_error,
2088            training_time_ms: training_time,
2089            num_examples: all_features.len(),
2090            echo_state_property: self.estimate_echo_state_property()?,
2091            memory_capacity: self.reservoir_state.memory_metrics.total_capacity,
2092            nonlinear_capacity: self.reservoir_state.memory_metrics.nonlinear_capacity,
2093            processing_capacity: self.reservoir_state.memory_metrics.processing_capacity,
2094        })
2095    }
2096
2097    /// Train using advanced learning algorithms
2098    fn train_with_learning_algorithm(
2099        &mut self,
2100        features: &[Array1<f64>],
2101        targets: &[Array1<f64>],
2102    ) -> Result<()> {
2103        match self.config.learning_config.algorithm {
2104            LearningAlgorithm::Ridge => {
2105                self.train_ridge_regression(features, targets)?;
2106            }
2107            LearningAlgorithm::LASSO => {
2108                self.train_lasso_regression(features, targets)?;
2109            }
2110            LearningAlgorithm::ElasticNet => {
2111                self.train_elastic_net(features, targets)?;
2112            }
2113            LearningAlgorithm::RecursiveLeastSquares => {
2114                self.train_recursive_least_squares(features, targets)?;
2115            }
2116            LearningAlgorithm::KalmanFilter => {
2117                self.train_kalman_filter(features, targets)?;
2118            }
2119            _ => {
2120                // Default to ridge regression
2121                self.train_ridge_regression(features, targets)?;
2122            }
2123        }
2124
2125        Ok(())
2126    }
2127
2128    /// Train ridge regression
2129    fn train_ridge_regression(
2130        &mut self,
2131        features: &[Array1<f64>],
2132        targets: &[Array1<f64>],
2133    ) -> Result<()> {
2134        if features.is_empty() || targets.is_empty() {
2135            return Ok(());
2136        }
2137
2138        let n_samples = features.len().min(targets.len());
2139        let n_features = features[0].len();
2140        let n_outputs = targets[0].len().min(self.output_weights.nrows());
2141
2142        // Create feature matrix
2143        let mut feature_matrix = Array2::zeros((n_samples, n_features));
2144        for (i, feature_vec) in features.iter().enumerate().take(n_samples) {
2145            for (j, &val) in feature_vec.iter().enumerate().take(n_features) {
2146                feature_matrix[[i, j]] = val;
2147            }
2148        }
2149
2150        // Create target matrix
2151        let mut target_matrix = Array2::zeros((n_samples, n_outputs));
2152        for (i, target_vec) in targets.iter().enumerate().take(n_samples) {
2153            for (j, &val) in target_vec.iter().enumerate().take(n_outputs) {
2154                target_matrix[[i, j]] = val;
2155            }
2156        }
2157
2158        // Ridge regression: W = (X^T X + λI)^(-1) X^T Y
2159        let lambda = self.config.learning_config.regularization;
2160
2161        // X^T X
2162        let xtx = feature_matrix.t().dot(&feature_matrix);
2163
2164        // Add regularization
2165        let mut xtx_reg = xtx;
2166        for i in 0..xtx_reg.nrows().min(xtx_reg.ncols()) {
2167            xtx_reg[[i, i]] += lambda;
2168        }
2169
2170        // X^T Y
2171        let xty = feature_matrix.t().dot(&target_matrix);
2172
2173        // Solve using simplified approach (in practice would use proper linear solver)
2174        self.solve_linear_system(&xtx_reg, &xty)?;
2175
2176        Ok(())
2177    }
2178
2179    /// Train LASSO regression (simplified)
2180    fn train_lasso_regression(
2181        &mut self,
2182        features: &[Array1<f64>],
2183        targets: &[Array1<f64>],
2184    ) -> Result<()> {
2185        // Simplified LASSO using coordinate descent
2186        let lambda = self.config.learning_config.regularization;
2187        let max_iter = 100;
2188
2189        for _ in 0..max_iter {
2190            // Coordinate descent updates
2191            for j in 0..self.output_weights.ncols().min(features[0].len()) {
2192                for i in 0..self.output_weights.nrows().min(targets[0].len()) {
2193                    // Soft thresholding update
2194                    let old_weight = self.output_weights[[i, j]];
2195                    let gradient = self.compute_lasso_gradient(features, targets, i, j)?;
2196                    let update = 0.01f64.mul_add(-gradient, old_weight);
2197
2198                    // Soft thresholding
2199                    self.output_weights[[i, j]] = if update > lambda {
2200                        update - lambda
2201                    } else if update < -lambda {
2202                        update + lambda
2203                    } else {
2204                        0.0
2205                    };
2206                }
2207            }
2208        }
2209
2210        Ok(())
2211    }
2212
2213    /// Compute LASSO gradient (simplified)
2214    fn compute_lasso_gradient(
2215        &self,
2216        features: &[Array1<f64>],
2217        targets: &[Array1<f64>],
2218        output_idx: usize,
2219        feature_idx: usize,
2220    ) -> Result<f64> {
2221        let mut gradient = 0.0;
2222
2223        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
2224            if feature_idx < feature_vec.len() && output_idx < target_vec.len() {
2225                let prediction = self.predict_single_output(feature_vec, output_idx)?;
2226                let error = prediction - target_vec[output_idx];
2227                gradient += error * feature_vec[feature_idx];
2228            }
2229        }
2230
2231        gradient /= features.len() as f64;
2232        Ok(gradient)
2233    }
2234
2235    /// Train Elastic Net regression
2236    fn train_elastic_net(
2237        &mut self,
2238        features: &[Array1<f64>],
2239        targets: &[Array1<f64>],
2240    ) -> Result<()> {
2241        let l1_ratio = self.config.learning_config.l1_ratio;
2242
2243        // Combine Ridge and LASSO with L1 ratio
2244        if l1_ratio > 0.5 {
2245            // More L1 regularization
2246            self.train_lasso_regression(features, targets)?;
2247        } else {
2248            // More L2 regularization
2249            self.train_ridge_regression(features, targets)?;
2250        }
2251
2252        Ok(())
2253    }
2254
2255    /// Train Recursive Least Squares
2256    fn train_recursive_least_squares(
2257        &mut self,
2258        features: &[Array1<f64>],
2259        targets: &[Array1<f64>],
2260    ) -> Result<()> {
2261        let forgetting_factor = self.config.learning_config.forgetting_factor;
2262        let n_features = features[0].len().min(self.output_weights.ncols());
2263        let n_outputs = targets[0].len().min(self.output_weights.nrows());
2264
2265        // Initialize covariance matrix
2266        let mut p_matrix = Array2::eye(n_features) * 1000.0; // Large initial covariance
2267
2268        // Online RLS updates
2269        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
2270            let x = feature_vec.slice(s![..n_features]).to_owned();
2271            let y = target_vec.slice(s![..n_outputs]).to_owned();
2272
2273            // Update covariance matrix
2274            let px = p_matrix.dot(&x);
2275            let denominator = forgetting_factor + x.dot(&px);
2276
2277            if denominator > 1e-15 {
2278                let k = &px / denominator;
2279
2280                // Update weights for each output
2281                for output_idx in 0..n_outputs {
2282                    let prediction = self.predict_single_output(feature_vec, output_idx)?;
2283                    let error = y[output_idx] - prediction;
2284
2285                    // RLS weight update
2286                    for feature_idx in 0..n_features {
2287                        self.output_weights[[output_idx, feature_idx]] += k[feature_idx] * error;
2288                    }
2289                }
2290
2291                // Update covariance matrix
2292                let outer_product = k
2293                    .view()
2294                    .insert_axis(Axis(1))
2295                    .dot(&x.view().insert_axis(Axis(0)));
2296                p_matrix = (p_matrix - outer_product) / forgetting_factor;
2297            }
2298        }
2299
2300        Ok(())
2301    }
2302
2303    /// Train Kalman filter
2304    fn train_kalman_filter(
2305        &mut self,
2306        features: &[Array1<f64>],
2307        targets: &[Array1<f64>],
2308    ) -> Result<()> {
2309        let process_noise = self.config.learning_config.process_noise;
2310        let measurement_noise = self.config.learning_config.measurement_noise;
2311
2312        let n_features = features[0].len().min(self.output_weights.ncols());
2313        let n_outputs = targets[0].len().min(self.output_weights.nrows());
2314
2315        // Initialize Kalman filter matrices
2316        let mut state_covariance = Array2::eye(n_features) * 1.0;
2317        let process_noise_matrix: Array2<f64> = Array2::eye(n_features) * process_noise;
2318        let measurement_noise_scalar = measurement_noise;
2319
2320        // Kalman filter updates
2321        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
2322            let x = feature_vec.slice(s![..n_features]).to_owned();
2323            let y = target_vec.slice(s![..n_outputs]).to_owned();
2324
2325            // Prediction step
2326            let predicted_covariance = &state_covariance + &process_noise_matrix;
2327
2328            // Update step for each output
2329            for output_idx in 0..n_outputs {
2330                let measurement = y[output_idx];
2331                let prediction = self.predict_single_output(feature_vec, output_idx)?;
2332
2333                // Kalman gain
2334                let s = x.dot(&predicted_covariance.dot(&x)) + measurement_noise_scalar;
2335                if s > 1e-15 {
2336                    let k = predicted_covariance.dot(&x) / s;
2337
2338                    // Update weights
2339                    let innovation = measurement - prediction;
2340                    for feature_idx in 0..n_features {
2341                        self.output_weights[[output_idx, feature_idx]] +=
2342                            k[feature_idx] * innovation;
2343                    }
2344
2345                    // Update covariance
2346                    let kh = k
2347                        .view()
2348                        .insert_axis(Axis(1))
2349                        .dot(&x.view().insert_axis(Axis(0)));
2350                    state_covariance = &predicted_covariance - &kh.dot(&predicted_covariance);
2351                }
2352            }
2353        }
2354
2355        Ok(())
2356    }
2357
2358    /// Predict single output value
2359    fn predict_single_output(&self, features: &Array1<f64>, output_idx: usize) -> Result<f64> {
2360        let feature_size = features.len().min(self.output_weights.ncols());
2361        let mut output = 0.0;
2362
2363        for j in 0..feature_size {
2364            output += self.output_weights[[output_idx, j]] * features[j];
2365        }
2366
2367        Ok(output)
2368    }
2369
2370    /// Analyze memory capacity
2371    fn analyze_memory_capacity(&mut self, features: &[Array1<f64>]) -> Result<()> {
2372        // Linear memory capacity
2373        let linear_capacity = self.estimate_linear_memory_capacity(features)?;
2374        self.reservoir_state.memory_metrics.linear_capacity = linear_capacity;
2375
2376        // Nonlinear memory capacity
2377        if self.config.memory_config.enable_nonlinear {
2378            let nonlinear_capacity = self.estimate_nonlinear_memory_capacity(features)?;
2379            self.reservoir_state.memory_metrics.nonlinear_capacity = nonlinear_capacity;
2380        }
2381
2382        // Total capacity
2383        self.reservoir_state.memory_metrics.total_capacity =
2384            self.reservoir_state.memory_metrics.linear_capacity
2385                + self.reservoir_state.memory_metrics.nonlinear_capacity;
2386
2387        // Information processing capacity
2388        if self.config.memory_config.enable_ipc {
2389            let ipc = self.estimate_information_processing_capacity(features)?;
2390            self.reservoir_state.memory_metrics.processing_capacity = ipc;
2391        }
2392
2393        // Update memory analyzer
2394        self.memory_analyzer.capacity_estimates.insert(
2395            "linear".to_string(),
2396            self.reservoir_state.memory_metrics.linear_capacity,
2397        );
2398        self.memory_analyzer.capacity_estimates.insert(
2399            "nonlinear".to_string(),
2400            self.reservoir_state.memory_metrics.nonlinear_capacity,
2401        );
2402        self.memory_analyzer.capacity_estimates.insert(
2403            "total".to_string(),
2404            self.reservoir_state.memory_metrics.total_capacity,
2405        );
2406
2407        Ok(())
2408    }
2409
2410    /// Estimate linear memory capacity
2411    fn estimate_linear_memory_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
2412        // Use correlation analysis to estimate linear memory
2413        let mut capacity = 0.0;
2414
2415        for lag in 1..=20 {
2416            if lag < features.len() {
2417                let mut correlation = 0.0;
2418                let mut count = 0;
2419
2420                for i in lag..features.len() {
2421                    for j in 0..features[i].len().min(features[i - lag].len()) {
2422                        correlation += features[i][j] * features[i - lag][j];
2423                        count += 1;
2424                    }
2425                }
2426
2427                if count > 0 {
2428                    correlation /= count as f64;
2429                    capacity += correlation.abs();
2430                }
2431            }
2432        }
2433
2434        Ok(capacity)
2435    }
2436
2437    /// Estimate nonlinear memory capacity
2438    fn estimate_nonlinear_memory_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
2439        let mut nonlinear_capacity = 0.0;
2440
2441        // Test various nonlinear functions
2442        for order in &self.config.memory_config.nonlinearity_orders {
2443            let capacity_order = self.test_nonlinear_order(*order, features)?;
2444            nonlinear_capacity += capacity_order;
2445        }
2446
2447        Ok(nonlinear_capacity)
2448    }
2449
2450    /// Test specific nonlinear order
2451    fn test_nonlinear_order(&self, order: usize, features: &[Array1<f64>]) -> Result<f64> {
2452        let mut capacity = 0.0;
2453
2454        // Generate nonlinear target function
2455        for lag in 1..=10 {
2456            if lag < features.len() {
2457                let mut correlation = 0.0;
2458                let mut count = 0;
2459
2460                for i in lag..features.len() {
2461                    for j in 0..features[i].len().min(features[i - lag].len()) {
2462                        // Nonlinear transformation
2463                        let current = features[i][j];
2464                        let past = features[i - lag][j];
2465                        let nonlinear_target = past.powi(order as i32);
2466
2467                        correlation += current * nonlinear_target;
2468                        count += 1;
2469                    }
2470                }
2471
2472                if count > 0 {
2473                    correlation /= count as f64;
2474                    capacity += correlation.abs() / order as f64; // Normalize by order
2475                }
2476            }
2477        }
2478
2479        Ok(capacity)
2480    }
2481
2482    /// Estimate information processing capacity
2483    fn estimate_information_processing_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
2484        let mut ipc = 0.0;
2485
2486        for ipc_function in &self.config.memory_config.ipc_functions {
2487            let capacity_func = self.test_ipc_function(*ipc_function, features)?;
2488            ipc += capacity_func;
2489        }
2490
2491        Ok(ipc)
2492    }
2493
2494    /// Test specific IPC function
2495    fn test_ipc_function(&self, function: IPCFunction, features: &[Array1<f64>]) -> Result<f64> {
2496        let mut capacity = 0.0;
2497
2498        for lag in 1..=10 {
2499            if lag < features.len() {
2500                let mut correlation = 0.0;
2501                let mut count = 0;
2502
2503                for i in lag..features.len() {
2504                    for j in 0..features[i].len().min(features[i - lag].len()) {
2505                        let current = features[i][j];
2506                        let past = features[i - lag][j];
2507
2508                        let target = match function {
2509                            IPCFunction::Linear => past,
2510                            IPCFunction::Quadratic => past * past,
2511                            IPCFunction::Cubic => past * past * past,
2512                            IPCFunction::Sine => past.sin(),
2513                            IPCFunction::Product => {
2514                                if j > 0 && j - 1 < features[i - lag].len() {
2515                                    past * features[i - lag][j - 1]
2516                                } else {
2517                                    past
2518                                }
2519                            }
2520                            IPCFunction::XOR => {
2521                                if past > 0.0 {
2522                                    1.0
2523                                } else {
2524                                    -1.0
2525                                }
2526                            }
2527                        };
2528
2529                        correlation += current * target;
2530                        count += 1;
2531                    }
2532                }
2533
2534                if count > 0 {
2535                    correlation /= count as f64;
2536                    capacity += correlation.abs();
2537                }
2538            }
2539        }
2540
2541        Ok(capacity)
2542    }
2543
2544    /// Solve linear system (simplified implementation)
2545    fn solve_linear_system(&mut self, a: &Array2<f64>, b: &Array2<f64>) -> Result<()> {
2546        let min_dim = a.nrows().min(a.ncols()).min(b.nrows());
2547
2548        for i in 0..min_dim.min(self.output_weights.nrows()) {
2549            for j in 0..b.ncols().min(self.output_weights.ncols()) {
2550                if a[[i, i]].abs() > 1e-15 {
2551                    self.output_weights[[i, j]] = b[[i, j]] / a[[i, i]];
2552                }
2553            }
2554        }
2555
2556        Ok(())
2557    }
2558
2559    /// Evaluate performance on training data
2560    fn evaluate_performance(
2561        &self,
2562        features: &[Array1<f64>],
2563        targets: &[Array1<f64>],
2564    ) -> Result<(f64, f64)> {
2565        if features.is_empty() || targets.is_empty() {
2566            return Ok((0.0, 0.0));
2567        }
2568
2569        let mut total_error = 0.0;
2570        let n_samples = features.len().min(targets.len());
2571
2572        for i in 0..n_samples {
2573            let prediction = self.predict_output(&features[i])?;
2574            let error = self.calculate_prediction_error(&prediction, &targets[i]);
2575            total_error += error;
2576        }
2577
2578        let training_error = total_error / n_samples as f64;
2579
2580        // Use same error for test (in practice, would use separate test set)
2581        let test_error = training_error;
2582
2583        Ok((training_error, test_error))
2584    }
2585
2586    /// Predict output for given features
2587    fn predict_output(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
2588        let feature_size = features.len().min(self.output_weights.ncols());
2589        let output_size = self.output_weights.nrows();
2590
2591        let mut output = Array1::zeros(output_size);
2592
2593        for i in 0..output_size {
2594            for j in 0..feature_size {
2595                output[i] += self.output_weights[[i, j]] * features[j];
2596            }
2597        }
2598
2599        Ok(output)
2600    }
2601
2602    /// Calculate prediction error
2603    fn calculate_prediction_error(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> f64 {
2604        let min_len = prediction.len().min(target.len());
2605        let mut error = 0.0;
2606
2607        for i in 0..min_len {
2608            let diff = prediction[i] - target[i];
2609            error += diff * diff;
2610        }
2611
2612        (error / min_len as f64).sqrt() // RMSE
2613    }
2614
2615    /// Estimate echo state property
2616    fn estimate_echo_state_property(&self) -> Result<f64> {
2617        let coupling = self.config.coupling_strength;
2618        let estimated_spectral_radius = coupling.tanh(); // Heuristic estimate
2619
2620        // Echo state property requires spectral radius < 1
2621        Ok(if estimated_spectral_radius < 1.0 {
2622            1.0
2623        } else {
2624            1.0 / estimated_spectral_radius
2625        })
2626    }
2627
2628    /// Update processing time metrics
2629    fn update_processing_time(&mut self, time_ms: f64) {
2630        let count = self.metrics.training_examples as f64;
2631        self.metrics.avg_processing_time_ms =
2632            self.metrics.avg_processing_time_ms.mul_add(count, time_ms) / (count + 1.0);
2633    }
2634
2635    /// Get current metrics
2636    pub const fn get_metrics(&self) -> &ReservoirMetrics {
2637        &self.metrics
2638    }
2639
2640    /// Get memory analysis results
2641    pub const fn get_memory_analysis(&self) -> &MemoryAnalyzer {
2642        &self.memory_analyzer
2643    }
2644
2645    /// Reset reservoir computer
2646    pub fn reset(&mut self) -> Result<()> {
2647        self.reservoir_state =
2648            QuantumReservoirState::new(self.config.num_qubits, self.config.memory_capacity);
2649        self.metrics = ReservoirMetrics::default();
2650        self.training_history.clear();
2651        Ok(())
2652    }
2653}
2654
2655impl TimeSeriesPredictor {
2656    /// Create new time series predictor
2657    pub fn new(config: &TimeSeriesConfig) -> Self {
2658        Self {
2659            arima_params: ARIMAParams {
2660                ar_coeffs: Array1::zeros(config.ar_order),
2661                ma_coeffs: Array1::zeros(config.ma_order),
2662                diff_order: config.diff_order,
2663                residuals: VecDeque::with_capacity(config.ma_order),
2664                variance: 1.0,
2665            },
2666            nar_state: NARState {
2667                order: config.nar_order,
2668                coeffs: Array2::zeros((config.nar_order, config.nar_order)),
2669                history: VecDeque::with_capacity(config.nar_order),
2670                activation: ActivationFunction::Tanh,
2671            },
2672            kernel_weights: Array1::from_vec(config.kernel_params.clone()),
2673            trend_model: TrendModel {
2674                params: vec![0.0, 0.0], // Linear trend: intercept, slope
2675                strength: 0.0,
2676                direction: 0.0,
2677            },
2678        }
2679    }
2680}
2681
2682impl MemoryAnalyzer {
2683    /// Create new memory analyzer
2684    pub fn new(config: MemoryAnalysisConfig) -> Self {
2685        Self {
2686            config,
2687            capacity_estimates: HashMap::new(),
2688            nonlinearity_measures: HashMap::new(),
2689            temporal_correlations: Array2::zeros((0, 0)),
2690            ipc_metrics: HashMap::new(),
2691        }
2692    }
2693}
2694
2695/// Enhanced training result
2696#[derive(Debug, Clone, Serialize, Deserialize)]
2697pub struct TrainingResult {
2698    /// Training error (RMSE)
2699    pub training_error: f64,
2700    /// Test error (RMSE)
2701    pub test_error: f64,
2702    /// Training time in milliseconds
2703    pub training_time_ms: f64,
2704    /// Number of training examples
2705    pub num_examples: usize,
2706    /// Echo state property measure
2707    pub echo_state_property: f64,
2708    /// Memory capacity estimate
2709    pub memory_capacity: f64,
2710    /// Nonlinear memory capacity
2711    pub nonlinear_capacity: f64,
2712    /// Information processing capacity
2713    pub processing_capacity: f64,
2714}
2715
2716/// Comprehensive benchmark for enhanced quantum reservoir computing
2717pub fn benchmark_enhanced_quantum_reservoir_computing() -> Result<HashMap<String, f64>> {
2718    let mut results = HashMap::new();
2719
2720    // Test different enhanced reservoir configurations
2721    let configs = vec![
2722        QuantumReservoirConfig {
2723            num_qubits: 6,
2724            architecture: QuantumReservoirArchitecture::RandomCircuit,
2725            learning_config: AdvancedLearningConfig {
2726                algorithm: LearningAlgorithm::Ridge,
2727                ..Default::default()
2728            },
2729            ..Default::default()
2730        },
2731        QuantumReservoirConfig {
2732            num_qubits: 8,
2733            architecture: QuantumReservoirArchitecture::ScaleFree,
2734            learning_config: AdvancedLearningConfig {
2735                algorithm: LearningAlgorithm::LASSO,
2736                ..Default::default()
2737            },
2738            ..Default::default()
2739        },
2740        QuantumReservoirConfig {
2741            num_qubits: 6,
2742            architecture: QuantumReservoirArchitecture::HierarchicalModular,
2743            learning_config: AdvancedLearningConfig {
2744                algorithm: LearningAlgorithm::RecursiveLeastSquares,
2745                ..Default::default()
2746            },
2747            memory_config: MemoryAnalysisConfig {
2748                enable_capacity_estimation: true,
2749                enable_nonlinear: true,
2750                ..Default::default()
2751            },
2752            ..Default::default()
2753        },
2754        QuantumReservoirConfig {
2755            num_qubits: 8,
2756            architecture: QuantumReservoirArchitecture::Grid,
2757            dynamics: ReservoirDynamics::Floquet,
2758            input_encoding: InputEncoding::Angle,
2759            output_measurement: OutputMeasurement::TemporalCorrelations,
2760            ..Default::default()
2761        },
2762    ];
2763
2764    for (i, config) in configs.into_iter().enumerate() {
2765        let start = std::time::Instant::now();
2766
2767        let mut qrc = QuantumReservoirComputerEnhanced::new(config)?;
2768
2769        // Generate enhanced test data
2770        let training_data = ReservoirTrainingData::new(
2771            (0..200)
2772                .map(|i| {
2773                    Array1::from_vec(vec![
2774                        (i as f64 * 0.1).sin(),
2775                        (i as f64 * 0.1).cos(),
2776                        (i as f64 * 0.05).sin() * (i as f64 * 0.2).cos(),
2777                    ])
2778                })
2779                .collect(),
2780            (0..200)
2781                .map(|i| Array1::from_vec(vec![(i as f64).mul_add(0.1, 1.0).sin()]))
2782                .collect(),
2783            (0..200).map(|i| i as f64 * 0.1).collect(),
2784        );
2785
2786        // Train and test
2787        let training_result = qrc.train(&training_data)?;
2788
2789        let time = start.elapsed().as_secs_f64() * 1000.0;
2790        results.insert(format!("enhanced_config_{i}"), time);
2791
2792        // Add enhanced performance metrics
2793        let metrics = qrc.get_metrics();
2794        results.insert(
2795            format!("enhanced_config_{i}_accuracy"),
2796            metrics.prediction_accuracy,
2797        );
2798        results.insert(
2799            format!("enhanced_config_{i}_memory_capacity"),
2800            training_result.memory_capacity,
2801        );
2802        results.insert(
2803            format!("enhanced_config_{i}_nonlinear_capacity"),
2804            training_result.nonlinear_capacity,
2805        );
2806        results.insert(
2807            format!("enhanced_config_{i}_processing_capacity"),
2808            training_result.processing_capacity,
2809        );
2810        results.insert(
2811            format!("enhanced_config_{i}_quantum_advantage"),
2812            metrics.quantum_advantage,
2813        );
2814        results.insert(
2815            format!("enhanced_config_{i}_efficiency"),
2816            metrics.reservoir_efficiency,
2817        );
2818
2819        // Memory analysis results
2820        let memory_analyzer = qrc.get_memory_analysis();
2821        if let Some(&linear_capacity) = memory_analyzer.capacity_estimates.get("linear") {
2822            results.insert(
2823                format!("enhanced_config_{i}_linear_memory"),
2824                linear_capacity,
2825            );
2826        }
2827        if let Some(&total_capacity) = memory_analyzer.capacity_estimates.get("total") {
2828            results.insert(format!("enhanced_config_{i}_total_memory"), total_capacity);
2829        }
2830    }
2831
2832    Ok(results)
2833}
2834
2835#[cfg(test)]
2836mod tests {
2837    use super::*;
2838    use approx::assert_abs_diff_eq;
2839
2840    #[test]
2841    fn test_enhanced_quantum_reservoir_creation() {
2842        let config = QuantumReservoirConfig::default();
2843        let qrc = QuantumReservoirComputerEnhanced::new(config);
2844        assert!(qrc.is_ok());
2845    }
2846
2847    #[test]
2848    fn test_enhanced_reservoir_state_creation() {
2849        let state = QuantumReservoirState::new(3, 10);
2850        assert_eq!(state.state_vector.len(), 8); // 2^3
2851        assert_eq!(state.state_history.capacity(), 10);
2852        assert_eq!(state.time_index, 0);
2853        assert!(state.memory_metrics.total_capacity >= 0.0);
2854    }
2855
2856    #[test]
2857    fn test_enhanced_input_processing() {
2858        let config = QuantumReservoirConfig {
2859            num_qubits: 3,
2860            evolution_steps: 2,
2861            ..Default::default()
2862        };
2863        let mut qrc = QuantumReservoirComputerEnhanced::new(config).unwrap();
2864
2865        let input = Array1::from_vec(vec![0.5, 0.3, 0.8]);
2866        let result = qrc.process_input(&input);
2867        assert!(result.is_ok());
2868
2869        let features = result.unwrap();
2870        assert!(!features.is_empty());
2871    }
2872
2873    #[test]
2874    fn test_enhanced_architectures() {
2875        let architectures = vec![
2876            QuantumReservoirArchitecture::RandomCircuit,
2877            QuantumReservoirArchitecture::SpinChain,
2878            QuantumReservoirArchitecture::ScaleFree,
2879            QuantumReservoirArchitecture::HierarchicalModular,
2880            QuantumReservoirArchitecture::Ring,
2881            QuantumReservoirArchitecture::Grid,
2882        ];
2883
2884        for arch in architectures {
2885            let config = QuantumReservoirConfig {
2886                num_qubits: 4,
2887                architecture: arch,
2888                evolution_steps: 2,
2889                ..Default::default()
2890            };
2891
2892            let qrc = QuantumReservoirComputerEnhanced::new(config);
2893            assert!(qrc.is_ok(), "Failed for architecture: {arch:?}");
2894        }
2895    }
2896
2897    #[test]
2898    fn test_advanced_learning_algorithms() {
2899        let algorithms = vec![
2900            LearningAlgorithm::Ridge,
2901            LearningAlgorithm::LASSO,
2902            LearningAlgorithm::ElasticNet,
2903            LearningAlgorithm::RecursiveLeastSquares,
2904        ];
2905
2906        for algorithm in algorithms {
2907            let config = QuantumReservoirConfig {
2908                num_qubits: 3,
2909                learning_config: AdvancedLearningConfig {
2910                    algorithm,
2911                    ..Default::default()
2912                },
2913                ..Default::default()
2914            };
2915
2916            let qrc = QuantumReservoirComputerEnhanced::new(config);
2917            assert!(qrc.is_ok(), "Failed for algorithm: {algorithm:?}");
2918        }
2919    }
2920
2921    #[test]
2922    fn test_enhanced_encoding_methods() {
2923        let encodings = vec![
2924            InputEncoding::Amplitude,
2925            InputEncoding::Phase,
2926            InputEncoding::BasisState,
2927            InputEncoding::Angle,
2928        ];
2929
2930        for encoding in encodings {
2931            let config = QuantumReservoirConfig {
2932                num_qubits: 3,
2933                input_encoding: encoding,
2934                ..Default::default()
2935            };
2936            let mut qrc = QuantumReservoirComputerEnhanced::new(config).unwrap();
2937
2938            let input = Array1::from_vec(vec![0.5, 0.3]);
2939            let result = qrc.encode_input(&input);
2940            assert!(result.is_ok(), "Failed for encoding: {encoding:?}");
2941        }
2942    }
2943
2944    #[test]
2945    fn test_enhanced_measurement_strategies() {
2946        let measurements = vec![
2947            OutputMeasurement::PauliExpectation,
2948            OutputMeasurement::Probability,
2949            OutputMeasurement::Correlations,
2950            OutputMeasurement::Entanglement,
2951            OutputMeasurement::QuantumFisherInformation,
2952            OutputMeasurement::Variance,
2953            OutputMeasurement::QuantumCoherence,
2954            OutputMeasurement::Purity,
2955            OutputMeasurement::TemporalCorrelations,
2956        ];
2957
2958        for measurement in measurements {
2959            let config = QuantumReservoirConfig {
2960                num_qubits: 3,
2961                output_measurement: measurement,
2962                ..Default::default()
2963            };
2964
2965            let qrc = QuantumReservoirComputerEnhanced::new(config);
2966            assert!(qrc.is_ok(), "Failed for measurement: {measurement:?}");
2967        }
2968    }
2969
2970    #[test]
2971    fn test_enhanced_reservoir_dynamics() {
2972        let dynamics = vec![
2973            ReservoirDynamics::Unitary,
2974            ReservoirDynamics::Open,
2975            ReservoirDynamics::NISQ,
2976            ReservoirDynamics::Floquet,
2977        ];
2978
2979        for dynamic in dynamics {
2980            let config = QuantumReservoirConfig {
2981                num_qubits: 3,
2982                dynamics: dynamic,
2983                evolution_steps: 1,
2984                ..Default::default()
2985            };
2986
2987            let mut qrc = QuantumReservoirComputerEnhanced::new(config).unwrap();
2988            let result = qrc.evolve_reservoir();
2989            assert!(result.is_ok(), "Failed for dynamics: {dynamic:?}");
2990        }
2991    }
2992
2993    #[test]
2994    fn test_memory_analysis() {
2995        let config = QuantumReservoirConfig {
2996            num_qubits: 4,
2997            memory_config: MemoryAnalysisConfig {
2998                enable_capacity_estimation: true,
2999                enable_nonlinear: true,
3000                enable_ipc: true,
3001                ..Default::default()
3002            },
3003            ..Default::default()
3004        };
3005
3006        let qrc = QuantumReservoirComputerEnhanced::new(config).unwrap();
3007        let memory_analyzer = qrc.get_memory_analysis();
3008
3009        assert!(memory_analyzer.config.enable_capacity_estimation);
3010        assert!(memory_analyzer.config.enable_nonlinear);
3011        assert!(memory_analyzer.config.enable_ipc);
3012    }
3013
3014    #[test]
3015    fn test_enhanced_training_data() {
3016        let training_data = ReservoirTrainingData::new(
3017            vec![
3018                Array1::from_vec(vec![0.1, 0.2]),
3019                Array1::from_vec(vec![0.3, 0.4]),
3020            ],
3021            vec![Array1::from_vec(vec![0.5]), Array1::from_vec(vec![0.6])],
3022            vec![0.0, 1.0],
3023        )
3024        .with_features(vec![
3025            Array1::from_vec(vec![0.7, 0.8]),
3026            Array1::from_vec(vec![0.9, 1.0]),
3027        ])
3028        .with_labels(vec![0, 1])
3029        .with_weights(vec![1.0, 1.0]);
3030
3031        assert_eq!(training_data.len(), 2);
3032        assert!(training_data.features.is_some());
3033        assert!(training_data.labels.is_some());
3034        assert!(training_data.sample_weights.is_some());
3035
3036        let (train, test) = training_data.train_test_split(0.5);
3037        assert_eq!(train.len(), 1);
3038        assert_eq!(test.len(), 1);
3039    }
3040
3041    #[test]
3042    fn test_time_series_predictor() {
3043        let config = TimeSeriesConfig::default();
3044        let predictor = TimeSeriesPredictor::new(&config);
3045
3046        assert_eq!(predictor.arima_params.ar_coeffs.len(), config.ar_order);
3047        assert_eq!(predictor.arima_params.ma_coeffs.len(), config.ma_order);
3048        assert_eq!(predictor.nar_state.order, config.nar_order);
3049    }
3050
3051    #[test]
3052    fn test_enhanced_metrics_tracking() {
3053        let config = QuantumReservoirConfig::default();
3054        let qrc = QuantumReservoirComputerEnhanced::new(config).unwrap();
3055
3056        let metrics = qrc.get_metrics();
3057        assert_eq!(metrics.training_examples, 0);
3058        assert_eq!(metrics.prediction_accuracy, 0.0);
3059        assert_eq!(metrics.memory_capacity, 0.0);
3060        assert_eq!(metrics.nonlinear_memory_capacity, 0.0);
3061        assert_eq!(metrics.quantum_advantage, 0.0);
3062    }
3063
3064    #[test]
3065    fn test_enhanced_feature_sizes() {
3066        let measurements = vec![
3067            (OutputMeasurement::PauliExpectation, 24), // 8 qubits * 3 Pauli
3068            (OutputMeasurement::QuantumFisherInformation, 8), // 8 qubits
3069            (OutputMeasurement::Variance, 24),         // 8 qubits * 3 Pauli
3070            (OutputMeasurement::Purity, 1),            // Single value
3071        ];
3072
3073        for (measurement, expected_size) in measurements {
3074            let config = QuantumReservoirConfig {
3075                num_qubits: 8,
3076                output_measurement: measurement,
3077                ..Default::default()
3078            };
3079
3080            let feature_size = QuantumReservoirComputerEnhanced::calculate_feature_size(&config);
3081            assert_eq!(
3082                feature_size, expected_size,
3083                "Feature size mismatch for {measurement:?}"
3084            );
3085        }
3086    }
3087}