quantrs2_sim/
quantum_machine_learning_layers.rs

1//! Quantum Machine Learning Layers Framework
2//!
3//! This module provides a comprehensive implementation of quantum machine learning layers,
4//! including parameterized quantum circuits, quantum convolutional layers, quantum recurrent
5//! networks, and hybrid classical-quantum training algorithms. This framework enables
6//! quantum advantage in machine learning applications with hardware-aware optimization.
7
8use scirs2_core::ndarray::Array1;
9use scirs2_core::parallel_ops::*;
10use scirs2_core::random::{thread_rng, Rng};
11use scirs2_core::Complex64;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18use crate::statevector::StateVectorSimulator;
19use scirs2_core::random::prelude::*;
20
21/// Quantum machine learning configuration
22#[derive(Debug, Clone, Serialize, Deserialize)]
23pub struct QMLConfig {
24    /// Number of qubits in the quantum layer
25    pub num_qubits: usize,
26    /// QML architecture type
27    pub architecture_type: QMLArchitectureType,
28    /// Layer configuration for each QML layer
29    pub layer_configs: Vec<QMLLayerConfig>,
30    /// Training algorithm configuration
31    pub training_config: QMLTrainingConfig,
32    /// Hardware-aware optimization settings
33    pub hardware_optimization: HardwareOptimizationConfig,
34    /// Classical preprocessing configuration
35    pub classical_preprocessing: ClassicalPreprocessingConfig,
36    /// Hybrid training configuration
37    pub hybrid_training: HybridTrainingConfig,
38    /// Enable quantum advantage analysis
39    pub quantum_advantage_analysis: bool,
40    /// Noise-aware training settings
41    pub noise_aware_training: NoiseAwareTrainingConfig,
42    /// Performance optimization settings
43    pub performance_optimization: PerformanceOptimizationConfig,
44}
45
46impl Default for QMLConfig {
47    fn default() -> Self {
48        Self {
49            num_qubits: 8,
50            architecture_type: QMLArchitectureType::VariationalQuantumCircuit,
51            layer_configs: vec![QMLLayerConfig {
52                layer_type: QMLLayerType::ParameterizedQuantumCircuit,
53                num_parameters: 16,
54                ansatz_type: AnsatzType::Hardware,
55                entanglement_pattern: EntanglementPattern::Linear,
56                rotation_gates: vec![RotationGate::RY, RotationGate::RZ],
57                depth: 4,
58                enable_gradient_computation: true,
59            }],
60            training_config: QMLTrainingConfig::default(),
61            hardware_optimization: HardwareOptimizationConfig::default(),
62            classical_preprocessing: ClassicalPreprocessingConfig::default(),
63            hybrid_training: HybridTrainingConfig::default(),
64            quantum_advantage_analysis: true,
65            noise_aware_training: NoiseAwareTrainingConfig::default(),
66            performance_optimization: PerformanceOptimizationConfig::default(),
67        }
68    }
69}
70
71/// QML architecture types
72#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
73pub enum QMLArchitectureType {
74    /// Variational Quantum Circuit (VQC)
75    VariationalQuantumCircuit,
76    /// Quantum Convolutional Neural Network
77    QuantumConvolutionalNN,
78    /// Quantum Recurrent Neural Network
79    QuantumRecurrentNN,
80    /// Quantum Graph Neural Network
81    QuantumGraphNN,
82    /// Quantum Attention Network
83    QuantumAttentionNetwork,
84    /// Quantum Transformer
85    QuantumTransformer,
86    /// Hybrid Classical-Quantum Network
87    HybridClassicalQuantum,
88    /// Quantum Boltzmann Machine
89    QuantumBoltzmannMachine,
90    /// Quantum Generative Adversarial Network
91    QuantumGAN,
92    /// Quantum Autoencoder
93    QuantumAutoencoder,
94}
95
96/// QML layer configuration
97#[derive(Debug, Clone, Serialize, Deserialize)]
98pub struct QMLLayerConfig {
99    /// Type of QML layer
100    pub layer_type: QMLLayerType,
101    /// Number of trainable parameters
102    pub num_parameters: usize,
103    /// Ansatz type for parameterized circuits
104    pub ansatz_type: AnsatzType,
105    /// Entanglement pattern
106    pub entanglement_pattern: EntanglementPattern,
107    /// Rotation gates to use
108    pub rotation_gates: Vec<RotationGate>,
109    /// Circuit depth
110    pub depth: usize,
111    /// Enable gradient computation
112    pub enable_gradient_computation: bool,
113}
114
115/// Types of QML layers
116#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
117pub enum QMLLayerType {
118    /// Parameterized Quantum Circuit layer
119    ParameterizedQuantumCircuit,
120    /// Quantum Convolutional layer
121    QuantumConvolutional,
122    /// Quantum Pooling layer
123    QuantumPooling,
124    /// Quantum Dense layer (fully connected)
125    QuantumDense,
126    /// Quantum LSTM layer
127    QuantumLSTM,
128    /// Quantum GRU layer
129    QuantumGRU,
130    /// Quantum Attention layer
131    QuantumAttention,
132    /// Quantum Dropout layer
133    QuantumDropout,
134    /// Quantum Batch Normalization layer
135    QuantumBatchNorm,
136    /// Data Re-uploading layer
137    DataReUpload,
138}
139
140/// Ansatz types for parameterized quantum circuits
141#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
142pub enum AnsatzType {
143    /// Hardware-efficient ansatz
144    Hardware,
145    /// Problem-specific ansatz
146    ProblemSpecific,
147    /// All-to-all connectivity ansatz
148    AllToAll,
149    /// Layered ansatz
150    Layered,
151    /// Alternating ansatz
152    Alternating,
153    /// Brick-wall ansatz
154    BrickWall,
155    /// Tree ansatz
156    Tree,
157    /// Custom ansatz
158    Custom,
159}
160
161/// Entanglement patterns
162#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
163pub enum EntanglementPattern {
164    /// Linear entanglement chain
165    Linear,
166    /// Circular entanglement
167    Circular,
168    /// All-to-all entanglement
169    AllToAll,
170    /// Star topology entanglement
171    Star,
172    /// Grid topology entanglement
173    Grid,
174    /// Random entanglement
175    Random,
176    /// Block entanglement
177    Block,
178    /// Custom pattern
179    Custom,
180}
181
182/// Rotation gates for parameterized circuits
183#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
184pub enum RotationGate {
185    /// Rotation around X-axis
186    RX,
187    /// Rotation around Y-axis
188    RY,
189    /// Rotation around Z-axis
190    RZ,
191    /// Arbitrary single-qubit rotation
192    U3,
193    /// Phase gate
194    Phase,
195}
196
197/// QML training configuration
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub struct QMLTrainingConfig {
200    /// Training algorithm type
201    pub algorithm: QMLTrainingAlgorithm,
202    /// Learning rate
203    pub learning_rate: f64,
204    /// Number of training epochs
205    pub epochs: usize,
206    /// Batch size
207    pub batch_size: usize,
208    /// Gradient computation method
209    pub gradient_method: GradientMethod,
210    /// Optimizer type
211    pub optimizer: OptimizerType,
212    /// Regularization parameters
213    pub regularization: RegularizationConfig,
214    /// Early stopping configuration
215    pub early_stopping: EarlyStoppingConfig,
216    /// Learning rate scheduling
217    pub lr_schedule: LearningRateSchedule,
218}
219
220impl Default for QMLTrainingConfig {
221    fn default() -> Self {
222        Self {
223            algorithm: QMLTrainingAlgorithm::ParameterShift,
224            learning_rate: 0.01,
225            epochs: 100,
226            batch_size: 32,
227            gradient_method: GradientMethod::ParameterShift,
228            optimizer: OptimizerType::Adam,
229            regularization: RegularizationConfig::default(),
230            early_stopping: EarlyStoppingConfig::default(),
231            lr_schedule: LearningRateSchedule::Constant,
232        }
233    }
234}
235
236/// QML training algorithms
237#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
238pub enum QMLTrainingAlgorithm {
239    /// Parameter-shift rule gradient descent
240    ParameterShift,
241    /// Finite difference gradient descent
242    FiniteDifference,
243    /// Quantum Natural Gradient
244    QuantumNaturalGradient,
245    /// SPSA (Simultaneous Perturbation Stochastic Approximation)
246    SPSA,
247    /// Quantum Approximate Optimization Algorithm
248    QAOA,
249    /// Variational Quantum Eigensolver
250    VQE,
251    /// Quantum Machine Learning with Rotosolve
252    Rotosolve,
253    /// Hybrid Classical-Quantum training
254    HybridTraining,
255}
256
257/// Gradient computation methods
258#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
259pub enum GradientMethod {
260    /// Parameter-shift rule
261    ParameterShift,
262    /// Finite difference
263    FiniteDifference,
264    /// Adjoint differentiation
265    Adjoint,
266    /// Backpropagation through quantum circuit
267    Backpropagation,
268    /// Quantum Fisher Information
269    QuantumFisherInformation,
270}
271
272/// Optimizer types
273#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
274pub enum OptimizerType {
275    /// Stochastic Gradient Descent
276    SGD,
277    /// Adam optimizer
278    Adam,
279    /// AdaGrad optimizer
280    AdaGrad,
281    /// RMSprop optimizer
282    RMSprop,
283    /// Momentum optimizer
284    Momentum,
285    /// L-BFGS optimizer
286    LBFGS,
287    /// Quantum Natural Gradient
288    QuantumNaturalGradient,
289    /// SPSA optimizer
290    SPSA,
291}
292
293/// Regularization configuration
294#[derive(Debug, Clone, Serialize, Deserialize)]
295pub struct RegularizationConfig {
296    /// L1 regularization strength
297    pub l1_strength: f64,
298    /// L2 regularization strength
299    pub l2_strength: f64,
300    /// Dropout probability
301    pub dropout_prob: f64,
302    /// Parameter constraint bounds
303    pub parameter_bounds: Option<(f64, f64)>,
304    /// Enable parameter clipping
305    pub enable_clipping: bool,
306    /// Gradient clipping threshold
307    pub gradient_clip_threshold: f64,
308}
309
310impl Default for RegularizationConfig {
311    fn default() -> Self {
312        Self {
313            l1_strength: 0.0,
314            l2_strength: 0.001,
315            dropout_prob: 0.1,
316            parameter_bounds: Some((-PI, PI)),
317            enable_clipping: true,
318            gradient_clip_threshold: 1.0,
319        }
320    }
321}
322
323/// Early stopping configuration
324#[derive(Debug, Clone, Serialize, Deserialize)]
325pub struct EarlyStoppingConfig {
326    /// Enable early stopping
327    pub enabled: bool,
328    /// Patience (number of epochs without improvement)
329    pub patience: usize,
330    /// Minimum improvement threshold
331    pub min_delta: f64,
332    /// Metric to monitor
333    pub monitor_metric: String,
334    /// Whether higher values are better
335    pub mode_max: bool,
336}
337
338impl Default for EarlyStoppingConfig {
339    fn default() -> Self {
340        Self {
341            enabled: true,
342            patience: 10,
343            min_delta: 1e-6,
344            monitor_metric: "val_loss".to_string(),
345            mode_max: false,
346        }
347    }
348}
349
350/// Learning rate schedules
351#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
352pub enum LearningRateSchedule {
353    /// Constant learning rate
354    Constant,
355    /// Exponential decay
356    ExponentialDecay,
357    /// Step decay
358    StepDecay,
359    /// Cosine annealing
360    CosineAnnealing,
361    /// Warm restart
362    WarmRestart,
363    /// Reduce on plateau
364    ReduceOnPlateau,
365}
366
367/// Hardware optimization configuration
368#[derive(Debug, Clone, Serialize, Deserialize)]
369pub struct HardwareOptimizationConfig {
370    /// Target quantum hardware
371    pub target_hardware: QuantumHardwareTarget,
372    /// Enable gate count minimization
373    pub minimize_gate_count: bool,
374    /// Enable circuit depth minimization
375    pub minimize_depth: bool,
376    /// Enable noise-aware optimization
377    pub noise_aware: bool,
378    /// Connectivity constraints
379    pub connectivity_constraints: ConnectivityConstraints,
380    /// Gate fidelity constraints
381    pub gate_fidelities: HashMap<String, f64>,
382    /// Enable parallelization
383    pub enable_parallelization: bool,
384    /// Compilation optimization level
385    pub optimization_level: HardwareOptimizationLevel,
386}
387
388impl Default for HardwareOptimizationConfig {
389    fn default() -> Self {
390        let mut gate_fidelities = HashMap::new();
391        gate_fidelities.insert("single_qubit".to_string(), 0.999);
392        gate_fidelities.insert("two_qubit".to_string(), 0.99);
393
394        Self {
395            target_hardware: QuantumHardwareTarget::Simulator,
396            minimize_gate_count: true,
397            minimize_depth: true,
398            noise_aware: false,
399            connectivity_constraints: ConnectivityConstraints::AllToAll,
400            gate_fidelities,
401            enable_parallelization: true,
402            optimization_level: HardwareOptimizationLevel::Medium,
403        }
404    }
405}
406
407/// Quantum hardware targets
408#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
409pub enum QuantumHardwareTarget {
410    /// Generic simulator
411    Simulator,
412    /// IBM Quantum devices
413    IBM,
414    /// Google Quantum AI devices
415    Google,
416    /// IonQ devices
417    IonQ,
418    /// Rigetti devices
419    Rigetti,
420    /// Honeywell/Quantinuum devices
421    Quantinuum,
422    /// Xanadu devices
423    Xanadu,
424    /// Custom hardware specification
425    Custom,
426}
427
428/// Connectivity constraints
429#[derive(Debug, Clone, Serialize, Deserialize)]
430pub enum ConnectivityConstraints {
431    /// All-to-all connectivity
432    AllToAll,
433    /// Linear chain connectivity
434    Linear,
435    /// Grid connectivity
436    Grid(usize, usize), // rows, cols
437    /// Custom connectivity graph
438    Custom(Vec<(usize, usize)>), // edge list
439    /// Heavy-hex connectivity (IBM)
440    HeavyHex,
441    /// Square lattice connectivity
442    Square,
443}
444
445/// Hardware optimization levels
446#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
447pub enum HardwareOptimizationLevel {
448    /// Basic optimization
449    Basic,
450    /// Medium optimization
451    Medium,
452    /// Aggressive optimization
453    Aggressive,
454    /// Maximum optimization
455    Maximum,
456}
457
458/// Classical preprocessing configuration
459#[derive(Debug, Clone, Serialize, Deserialize)]
460pub struct ClassicalPreprocessingConfig {
461    /// Enable feature scaling
462    pub feature_scaling: bool,
463    /// Scaling method
464    pub scaling_method: ScalingMethod,
465    /// Principal Component Analysis
466    pub enable_pca: bool,
467    /// Number of PCA components
468    pub pca_components: Option<usize>,
469    /// Data encoding method
470    pub encoding_method: DataEncodingMethod,
471    /// Feature selection
472    pub feature_selection: FeatureSelectionConfig,
473}
474
475impl Default for ClassicalPreprocessingConfig {
476    fn default() -> Self {
477        Self {
478            feature_scaling: true,
479            scaling_method: ScalingMethod::StandardScaler,
480            enable_pca: false,
481            pca_components: None,
482            encoding_method: DataEncodingMethod::Amplitude,
483            feature_selection: FeatureSelectionConfig::default(),
484        }
485    }
486}
487
488/// Scaling methods for classical preprocessing
489#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
490pub enum ScalingMethod {
491    /// Standard scaling (z-score normalization)
492    StandardScaler,
493    /// Min-max scaling
494    MinMaxScaler,
495    /// Robust scaling
496    RobustScaler,
497    /// Quantile uniform scaling
498    QuantileUniform,
499    /// Power transformation
500    PowerTransformer,
501}
502
503/// Data encoding methods for quantum circuits
504#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
505pub enum DataEncodingMethod {
506    /// Amplitude encoding
507    Amplitude,
508    /// Angle encoding
509    Angle,
510    /// Basis encoding
511    Basis,
512    /// Quantum feature maps
513    QuantumFeatureMap,
514    /// IQP encoding
515    IQP,
516    /// Pauli feature maps
517    PauliFeatureMap,
518    /// Data re-uploading
519    DataReUpload,
520}
521
522/// Feature selection configuration
523#[derive(Debug, Clone, Serialize, Deserialize)]
524pub struct FeatureSelectionConfig {
525    /// Enable feature selection
526    pub enabled: bool,
527    /// Feature selection method
528    pub method: FeatureSelectionMethod,
529    /// Number of features to select
530    pub num_features: Option<usize>,
531    /// Selection threshold
532    pub threshold: f64,
533}
534
535impl Default for FeatureSelectionConfig {
536    fn default() -> Self {
537        Self {
538            enabled: false,
539            method: FeatureSelectionMethod::VarianceThreshold,
540            num_features: None,
541            threshold: 0.0,
542        }
543    }
544}
545
546/// Feature selection methods
547#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
548pub enum FeatureSelectionMethod {
549    /// Variance threshold
550    VarianceThreshold,
551    /// Univariate statistical tests
552    UnivariateSelection,
553    /// Recursive feature elimination
554    RecursiveFeatureElimination,
555    /// L1-based feature selection
556    L1Based,
557    /// Tree-based feature selection
558    TreeBased,
559    /// Quantum feature importance
560    QuantumFeatureImportance,
561}
562
563/// Hybrid training configuration
564#[derive(Debug, Clone, Serialize, Deserialize)]
565pub struct HybridTrainingConfig {
566    /// Enable hybrid classical-quantum training
567    pub enabled: bool,
568    /// Classical neural network architecture
569    pub classical_architecture: ClassicalArchitecture,
570    /// Quantum-classical interface
571    pub interface_config: QuantumClassicalInterface,
572    /// Alternating training schedule
573    pub alternating_schedule: AlternatingSchedule,
574    /// Gradient flow configuration
575    pub gradient_flow: GradientFlowConfig,
576}
577
578impl Default for HybridTrainingConfig {
579    fn default() -> Self {
580        Self {
581            enabled: false,
582            classical_architecture: ClassicalArchitecture::MLP,
583            interface_config: QuantumClassicalInterface::Expectation,
584            alternating_schedule: AlternatingSchedule::Simultaneous,
585            gradient_flow: GradientFlowConfig::default(),
586        }
587    }
588}
589
590/// Classical neural network architectures for hybrid training
591#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
592pub enum ClassicalArchitecture {
593    /// Multi-layer perceptron
594    MLP,
595    /// Convolutional neural network
596    CNN,
597    /// Recurrent neural network
598    RNN,
599    /// Long short-term memory
600    LSTM,
601    /// Transformer
602    Transformer,
603    /// ResNet
604    ResNet,
605    /// Custom architecture
606    Custom,
607}
608
609/// Quantum-classical interfaces
610#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
611pub enum QuantumClassicalInterface {
612    /// Expectation value measurement
613    Expectation,
614    /// Sampling-based measurement
615    Sampling,
616    /// Quantum state tomography
617    StateTomography,
618    /// Process tomography
619    ProcessTomography,
620    /// Shadow tomography
621    ShadowTomography,
622}
623
624/// Alternating training schedules for hybrid systems
625#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
626pub enum AlternatingSchedule {
627    /// Train classical and quantum parts simultaneously
628    Simultaneous,
629    /// Alternate between classical and quantum training
630    Alternating,
631    /// Train classical first, then quantum
632    ClassicalFirst,
633    /// Train quantum first, then classical
634    QuantumFirst,
635    /// Custom schedule
636    Custom,
637}
638
639/// Gradient flow configuration for hybrid training
640#[derive(Debug, Clone, Serialize, Deserialize)]
641pub struct GradientFlowConfig {
642    /// Enable gradient flow from classical to quantum
643    pub classical_to_quantum: bool,
644    /// Enable gradient flow from quantum to classical
645    pub quantum_to_classical: bool,
646    /// Gradient scaling factor
647    pub gradient_scaling: f64,
648    /// Enable gradient clipping
649    pub enable_clipping: bool,
650    /// Gradient accumulation steps
651    pub accumulation_steps: usize,
652}
653
654impl Default for GradientFlowConfig {
655    fn default() -> Self {
656        Self {
657            classical_to_quantum: true,
658            quantum_to_classical: true,
659            gradient_scaling: 1.0,
660            enable_clipping: true,
661            accumulation_steps: 1,
662        }
663    }
664}
665
666/// Noise-aware training configuration
667#[derive(Debug, Clone, Serialize, Deserialize, Default)]
668pub struct NoiseAwareTrainingConfig {
669    /// Enable noise-aware training
670    pub enabled: bool,
671    /// Noise model parameters
672    pub noise_parameters: NoiseParameters,
673    /// Error mitigation techniques
674    pub error_mitigation: ErrorMitigationConfig,
675    /// Noise characterization
676    pub noise_characterization: NoiseCharacterizationConfig,
677    /// Robust training methods
678    pub robust_training: RobustTrainingConfig,
679}
680
681/// Noise parameters for quantum devices
682#[derive(Debug, Clone, Serialize, Deserialize)]
683pub struct NoiseParameters {
684    /// Single-qubit gate error rates
685    pub single_qubit_error: f64,
686    /// Two-qubit gate error rates
687    pub two_qubit_error: f64,
688    /// Measurement error rates
689    pub measurement_error: f64,
690    /// Coherence times (T1, T2)
691    pub coherence_times: (f64, f64),
692    /// Gate times
693    pub gate_times: HashMap<String, f64>,
694}
695
696impl Default for NoiseParameters {
697    fn default() -> Self {
698        let mut gate_times = HashMap::new();
699        gate_times.insert("single_qubit".to_string(), 50e-9); // 50 ns
700        gate_times.insert("two_qubit".to_string(), 200e-9); // 200 ns
701
702        Self {
703            single_qubit_error: 0.001,
704            two_qubit_error: 0.01,
705            measurement_error: 0.01,
706            coherence_times: (50e-6, 100e-6), // T1 = 50 μs, T2 = 100 μs
707            gate_times,
708        }
709    }
710}
711
712/// Error mitigation configuration
713#[derive(Debug, Clone, Serialize, Deserialize, Default)]
714pub struct ErrorMitigationConfig {
715    /// Enable zero-noise extrapolation
716    pub zero_noise_extrapolation: bool,
717    /// Enable readout error mitigation
718    pub readout_error_mitigation: bool,
719    /// Enable symmetry verification
720    pub symmetry_verification: bool,
721    /// Virtual distillation parameters
722    pub virtual_distillation: VirtualDistillationConfig,
723    /// Quantum error correction
724    pub quantum_error_correction: bool,
725}
726
727/// Virtual distillation configuration
728#[derive(Debug, Clone, Serialize, Deserialize)]
729pub struct VirtualDistillationConfig {
730    /// Enable virtual distillation
731    pub enabled: bool,
732    /// Number of copies for distillation
733    pub num_copies: usize,
734    /// Distillation protocol
735    pub protocol: DistillationProtocol,
736}
737
738impl Default for VirtualDistillationConfig {
739    fn default() -> Self {
740        Self {
741            enabled: false,
742            num_copies: 2,
743            protocol: DistillationProtocol::Standard,
744        }
745    }
746}
747
748/// Distillation protocols
749#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
750pub enum DistillationProtocol {
751    /// Standard distillation
752    Standard,
753    /// Improved distillation
754    Improved,
755    /// Quantum advantage distillation
756    QuantumAdvantage,
757}
758
759/// Noise characterization configuration
760#[derive(Debug, Clone, Serialize, Deserialize)]
761pub struct NoiseCharacterizationConfig {
762    /// Enable noise characterization
763    pub enabled: bool,
764    /// Characterization method
765    pub method: NoiseCharacterizationMethod,
766    /// Benchmarking protocols
767    pub benchmarking: BenchmarkingProtocols,
768    /// Calibration frequency
769    pub calibration_frequency: CalibrationFrequency,
770}
771
772impl Default for NoiseCharacterizationConfig {
773    fn default() -> Self {
774        Self {
775            enabled: false,
776            method: NoiseCharacterizationMethod::ProcessTomography,
777            benchmarking: BenchmarkingProtocols::default(),
778            calibration_frequency: CalibrationFrequency::Daily,
779        }
780    }
781}
782
783/// Noise characterization methods
784#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
785pub enum NoiseCharacterizationMethod {
786    /// Quantum process tomography
787    ProcessTomography,
788    /// Randomized benchmarking
789    RandomizedBenchmarking,
790    /// Gate set tomography
791    GateSetTomography,
792    /// Quantum detector tomography
793    QuantumDetectorTomography,
794    /// Cross-entropy benchmarking
795    CrossEntropyBenchmarking,
796}
797
798/// Benchmarking protocols
799#[derive(Debug, Clone, Serialize, Deserialize)]
800pub struct BenchmarkingProtocols {
801    /// Enable randomized benchmarking
802    pub randomized_benchmarking: bool,
803    /// Enable quantum volume
804    pub quantum_volume: bool,
805    /// Enable cross-entropy benchmarking
806    pub cross_entropy_benchmarking: bool,
807    /// Enable mirror benchmarking
808    pub mirror_benchmarking: bool,
809}
810
811impl Default for BenchmarkingProtocols {
812    fn default() -> Self {
813        Self {
814            randomized_benchmarking: true,
815            quantum_volume: false,
816            cross_entropy_benchmarking: false,
817            mirror_benchmarking: false,
818        }
819    }
820}
821
822/// Calibration frequency
823#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
824pub enum CalibrationFrequency {
825    /// Real-time calibration
826    RealTime,
827    /// Hourly calibration
828    Hourly,
829    /// Daily calibration
830    Daily,
831    /// Weekly calibration
832    Weekly,
833    /// Manual calibration
834    Manual,
835}
836
837/// Robust training configuration
838#[derive(Debug, Clone, Serialize, Deserialize, Default)]
839pub struct RobustTrainingConfig {
840    /// Enable robust training methods
841    pub enabled: bool,
842    /// Noise injection during training
843    pub noise_injection: NoiseInjectionConfig,
844    /// Adversarial training
845    pub adversarial_training: AdversarialTrainingConfig,
846    /// Ensemble methods
847    pub ensemble_methods: EnsembleMethodsConfig,
848}
849
850/// Noise injection configuration
851#[derive(Debug, Clone, Serialize, Deserialize)]
852pub struct NoiseInjectionConfig {
853    /// Enable noise injection
854    pub enabled: bool,
855    /// Noise injection probability
856    pub injection_probability: f64,
857    /// Noise strength
858    pub noise_strength: f64,
859    /// Noise type
860    pub noise_type: NoiseType,
861}
862
863impl Default for NoiseInjectionConfig {
864    fn default() -> Self {
865        Self {
866            enabled: false,
867            injection_probability: 0.1,
868            noise_strength: 0.01,
869            noise_type: NoiseType::Depolarizing,
870        }
871    }
872}
873
874/// Noise types for training
875#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
876pub enum NoiseType {
877    /// Depolarizing noise
878    Depolarizing,
879    /// Amplitude damping
880    AmplitudeDamping,
881    /// Phase damping
882    PhaseDamping,
883    /// Bit flip
884    BitFlip,
885    /// Phase flip
886    PhaseFlip,
887    /// Pauli noise
888    Pauli,
889}
890
891/// Adversarial training configuration
892#[derive(Debug, Clone, Serialize, Deserialize)]
893pub struct AdversarialTrainingConfig {
894    /// Enable adversarial training
895    pub enabled: bool,
896    /// Adversarial attack strength
897    pub attack_strength: f64,
898    /// Attack method
899    pub attack_method: AdversarialAttackMethod,
900    /// Defense method
901    pub defense_method: AdversarialDefenseMethod,
902}
903
904impl Default for AdversarialTrainingConfig {
905    fn default() -> Self {
906        Self {
907            enabled: false,
908            attack_strength: 0.01,
909            attack_method: AdversarialAttackMethod::FGSM,
910            defense_method: AdversarialDefenseMethod::AdversarialTraining,
911        }
912    }
913}
914
915/// Adversarial attack methods
916#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
917pub enum AdversarialAttackMethod {
918    /// Fast Gradient Sign Method
919    FGSM,
920    /// Projected Gradient Descent
921    PGD,
922    /// C&W attack
923    CarliniWagner,
924    /// Quantum adversarial attacks
925    QuantumAdversarial,
926}
927
928/// Adversarial defense methods
929#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
930pub enum AdversarialDefenseMethod {
931    /// Adversarial training
932    AdversarialTraining,
933    /// Defensive distillation
934    DefensiveDistillation,
935    /// Certified defenses
936    CertifiedDefenses,
937    /// Quantum error correction defenses
938    QuantumErrorCorrection,
939}
940
941/// Ensemble methods configuration
942#[derive(Debug, Clone, Serialize, Deserialize)]
943pub struct EnsembleMethodsConfig {
944    /// Enable ensemble methods
945    pub enabled: bool,
946    /// Number of ensemble members
947    pub num_ensemble: usize,
948    /// Ensemble method
949    pub ensemble_method: EnsembleMethod,
950    /// Voting strategy
951    pub voting_strategy: VotingStrategy,
952}
953
954impl Default for EnsembleMethodsConfig {
955    fn default() -> Self {
956        Self {
957            enabled: false,
958            num_ensemble: 5,
959            ensemble_method: EnsembleMethod::Bagging,
960            voting_strategy: VotingStrategy::MajorityVoting,
961        }
962    }
963}
964
965/// Ensemble methods
966#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
967pub enum EnsembleMethod {
968    /// Bootstrap aggregating (bagging)
969    Bagging,
970    /// Boosting
971    Boosting,
972    /// Random forests
973    RandomForest,
974    /// Quantum ensemble methods
975    QuantumEnsemble,
976}
977
978/// Voting strategies for ensembles
979#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
980pub enum VotingStrategy {
981    /// Majority voting
982    MajorityVoting,
983    /// Weighted voting
984    WeightedVoting,
985    /// Soft voting (probability averaging)
986    SoftVoting,
987    /// Quantum voting
988    QuantumVoting,
989}
990
991/// Performance optimization configuration
992#[derive(Debug, Clone, Serialize, Deserialize)]
993pub struct PerformanceOptimizationConfig {
994    /// Enable performance optimization
995    pub enabled: bool,
996    /// Memory optimization
997    pub memory_optimization: MemoryOptimizationConfig,
998    /// Computation optimization
999    pub computation_optimization: ComputationOptimizationConfig,
1000    /// Parallelization configuration
1001    pub parallelization: ParallelizationConfig,
1002    /// Caching configuration
1003    pub caching: CachingConfig,
1004}
1005
1006impl Default for PerformanceOptimizationConfig {
1007    fn default() -> Self {
1008        Self {
1009            enabled: true,
1010            memory_optimization: MemoryOptimizationConfig::default(),
1011            computation_optimization: ComputationOptimizationConfig::default(),
1012            parallelization: ParallelizationConfig::default(),
1013            caching: CachingConfig::default(),
1014        }
1015    }
1016}
1017
1018/// Memory optimization configuration
1019#[derive(Debug, Clone, Serialize, Deserialize)]
1020pub struct MemoryOptimizationConfig {
1021    /// Enable memory optimization
1022    pub enabled: bool,
1023    /// Use memory mapping
1024    pub memory_mapping: bool,
1025    /// Gradient checkpointing
1026    pub gradient_checkpointing: bool,
1027    /// Memory pool size
1028    pub memory_pool_size: Option<usize>,
1029}
1030
1031impl Default for MemoryOptimizationConfig {
1032    fn default() -> Self {
1033        Self {
1034            enabled: true,
1035            memory_mapping: false,
1036            gradient_checkpointing: false,
1037            memory_pool_size: None,
1038        }
1039    }
1040}
1041
1042/// Computation optimization configuration
1043#[derive(Debug, Clone, Serialize, Deserialize)]
1044pub struct ComputationOptimizationConfig {
1045    /// Enable computation optimization
1046    pub enabled: bool,
1047    /// Use mixed precision
1048    pub mixed_precision: bool,
1049    /// SIMD optimization
1050    pub simd_optimization: bool,
1051    /// Just-in-time compilation
1052    pub jit_compilation: bool,
1053}
1054
1055impl Default for ComputationOptimizationConfig {
1056    fn default() -> Self {
1057        Self {
1058            enabled: true,
1059            mixed_precision: false,
1060            simd_optimization: true,
1061            jit_compilation: false,
1062        }
1063    }
1064}
1065
1066/// Parallelization configuration
1067#[derive(Debug, Clone, Serialize, Deserialize)]
1068pub struct ParallelizationConfig {
1069    /// Enable parallelization
1070    pub enabled: bool,
1071    /// Number of threads
1072    pub num_threads: Option<usize>,
1073    /// Data parallelism
1074    pub data_parallelism: bool,
1075    /// Model parallelism
1076    pub model_parallelism: bool,
1077    /// Pipeline parallelism
1078    pub pipeline_parallelism: bool,
1079}
1080
1081impl Default for ParallelizationConfig {
1082    fn default() -> Self {
1083        Self {
1084            enabled: true,
1085            num_threads: None,
1086            data_parallelism: true,
1087            model_parallelism: false,
1088            pipeline_parallelism: false,
1089        }
1090    }
1091}
1092
1093/// Caching configuration
1094#[derive(Debug, Clone, Serialize, Deserialize)]
1095pub struct CachingConfig {
1096    /// Enable caching
1097    pub enabled: bool,
1098    /// Cache size
1099    pub cache_size: usize,
1100    /// Cache gradients
1101    pub cache_gradients: bool,
1102    /// Cache intermediate results
1103    pub cache_intermediate: bool,
1104}
1105
1106impl Default for CachingConfig {
1107    fn default() -> Self {
1108        Self {
1109            enabled: true,
1110            cache_size: 1000,
1111            cache_gradients: true,
1112            cache_intermediate: false,
1113        }
1114    }
1115}
1116
1117/// Main quantum machine learning layers framework
1118#[derive(Debug)]
1119pub struct QuantumMLFramework {
1120    /// Configuration
1121    config: QMLConfig,
1122    /// QML layers
1123    layers: Vec<Box<dyn QMLLayer>>,
1124    /// Current training state
1125    training_state: QMLTrainingState,
1126    /// SciRS2 backend for numerical operations
1127    backend: Option<SciRS2Backend>,
1128    /// Performance statistics
1129    stats: QMLStats,
1130    /// Training history
1131    training_history: Vec<QMLTrainingResult>,
1132}
1133
1134impl QuantumMLFramework {
1135    /// Create new quantum ML framework
1136    pub fn new(config: QMLConfig) -> Result<Self> {
1137        let mut framework = Self {
1138            config,
1139            layers: Vec::new(),
1140            training_state: QMLTrainingState::new(),
1141            backend: None,
1142            stats: QMLStats::new(),
1143            training_history: Vec::new(),
1144        };
1145
1146        // Initialize layers based on configuration
1147        framework.initialize_layers()?;
1148
1149        // Initialize SciRS2 backend if available
1150        let backend = SciRS2Backend::new();
1151        if backend.is_available() {
1152            framework.backend = Some(backend);
1153        }
1154
1155        Ok(framework)
1156    }
1157
1158    /// Initialize QML layers
1159    fn initialize_layers(&mut self) -> Result<()> {
1160        for layer_config in &self.config.layer_configs {
1161            let layer = self.create_layer(layer_config)?;
1162            self.layers.push(layer);
1163        }
1164        Ok(())
1165    }
1166
1167    /// Create a QML layer based on configuration
1168    fn create_layer(&self, config: &QMLLayerConfig) -> Result<Box<dyn QMLLayer>> {
1169        match config.layer_type {
1170            QMLLayerType::ParameterizedQuantumCircuit => Ok(Box::new(
1171                ParameterizedQuantumCircuitLayer::new(self.config.num_qubits, config.clone())?,
1172            )),
1173            QMLLayerType::QuantumConvolutional => Ok(Box::new(QuantumConvolutionalLayer::new(
1174                self.config.num_qubits,
1175                config.clone(),
1176            )?)),
1177            QMLLayerType::QuantumDense => Ok(Box::new(QuantumDenseLayer::new(
1178                self.config.num_qubits,
1179                config.clone(),
1180            )?)),
1181            QMLLayerType::QuantumLSTM => Ok(Box::new(QuantumLSTMLayer::new(
1182                self.config.num_qubits,
1183                config.clone(),
1184            )?)),
1185            QMLLayerType::QuantumAttention => Ok(Box::new(QuantumAttentionLayer::new(
1186                self.config.num_qubits,
1187                config.clone(),
1188            )?)),
1189            _ => Err(SimulatorError::InvalidConfiguration(format!(
1190                "Layer type {:?} not yet implemented",
1191                config.layer_type
1192            ))),
1193        }
1194    }
1195
1196    /// Forward pass through the quantum ML model
1197    pub fn forward(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
1198        let mut current_state = self.encode_input(input)?;
1199
1200        // Pass through each layer
1201        for layer in &mut self.layers {
1202            current_state = layer.forward(&current_state)?;
1203        }
1204
1205        // Decode output
1206        let output = self.decode_output(&current_state)?;
1207
1208        // Update statistics
1209        self.stats.forward_passes += 1;
1210
1211        Ok(output)
1212    }
1213
1214    /// Backward pass for gradient computation
1215    pub fn backward(&mut self, loss_gradient: &Array1<f64>) -> Result<Array1<f64>> {
1216        let mut grad = loss_gradient.clone();
1217
1218        // Backpropagate through layers in reverse order
1219        for layer in self.layers.iter_mut().rev() {
1220            grad = layer.backward(&grad)?;
1221        }
1222
1223        // Update statistics
1224        self.stats.backward_passes += 1;
1225
1226        Ok(grad)
1227    }
1228
1229    /// Train the quantum ML model
1230    pub fn train(
1231        &mut self,
1232        training_data: &[(Array1<f64>, Array1<f64>)],
1233        validation_data: Option<&[(Array1<f64>, Array1<f64>)]>,
1234    ) -> Result<QMLTrainingResult> {
1235        let mut best_validation_loss = f64::INFINITY;
1236        let mut patience_counter = 0;
1237        let mut training_metrics = Vec::new();
1238
1239        let training_start = std::time::Instant::now();
1240
1241        for epoch in 0..self.config.training_config.epochs {
1242            let epoch_start = std::time::Instant::now();
1243
1244            // Training phase
1245            let mut epoch_loss = 0.0;
1246            let mut num_batches = 0;
1247
1248            for batch in training_data.chunks(self.config.training_config.batch_size) {
1249                let batch_loss = self.train_batch(batch)?;
1250                epoch_loss += batch_loss;
1251                num_batches += 1;
1252            }
1253
1254            epoch_loss /= num_batches as f64;
1255
1256            // Validation phase
1257            let validation_loss = if let Some(val_data) = validation_data {
1258                self.evaluate(val_data)?
1259            } else {
1260                epoch_loss
1261            };
1262
1263            let epoch_time = epoch_start.elapsed();
1264
1265            let metrics = QMLEpochMetrics {
1266                epoch,
1267                training_loss: epoch_loss,
1268                validation_loss,
1269                epoch_time,
1270                learning_rate: self.get_current_learning_rate(epoch),
1271            };
1272
1273            training_metrics.push(metrics.clone());
1274
1275            // Early stopping check
1276            if self.config.training_config.early_stopping.enabled {
1277                if validation_loss
1278                    < best_validation_loss - self.config.training_config.early_stopping.min_delta
1279                {
1280                    best_validation_loss = validation_loss;
1281                    patience_counter = 0;
1282                } else {
1283                    patience_counter += 1;
1284                    if patience_counter >= self.config.training_config.early_stopping.patience {
1285                        println!("Early stopping triggered at epoch {epoch}");
1286                        break;
1287                    }
1288                }
1289            }
1290
1291            // Update learning rate
1292            self.update_learning_rate(epoch, validation_loss);
1293
1294            // Print progress
1295            if epoch % 10 == 0 {
1296                println!(
1297                    "Epoch {}: train_loss={:.6}, val_loss={:.6}, time={:.2}s",
1298                    epoch,
1299                    epoch_loss,
1300                    validation_loss,
1301                    epoch_time.as_secs_f64()
1302                );
1303            }
1304        }
1305
1306        let total_training_time = training_start.elapsed();
1307
1308        let result = QMLTrainingResult {
1309            final_training_loss: training_metrics.last().map_or(0.0, |m| m.training_loss),
1310            final_validation_loss: training_metrics.last().map_or(0.0, |m| m.validation_loss),
1311            best_validation_loss,
1312            epochs_trained: training_metrics.len(),
1313            total_training_time,
1314            training_metrics,
1315            quantum_advantage_metrics: self.compute_quantum_advantage_metrics()?,
1316        };
1317
1318        self.training_history.push(result.clone());
1319
1320        Ok(result)
1321    }
1322
1323    /// Train a single batch
1324    fn train_batch(&mut self, batch: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
1325        let mut total_loss = 0.0;
1326        let mut total_gradients: Vec<Array1<f64>> =
1327            (0..self.layers.len()).map(|_| Array1::zeros(0)).collect();
1328
1329        for (input, target) in batch {
1330            // Forward pass
1331            let prediction = self.forward(input)?;
1332
1333            // Compute loss
1334            let loss = self.compute_loss(&prediction, target)?;
1335            total_loss += loss;
1336
1337            // Compute loss gradient
1338            let loss_gradient = self.compute_loss_gradient(&prediction, target)?;
1339
1340            // Backward pass
1341            let gradients = self.compute_gradients(&loss_gradient)?;
1342
1343            // Accumulate gradients
1344            for (i, grad) in gradients.iter().enumerate() {
1345                if total_gradients[i].is_empty() {
1346                    total_gradients[i] = grad.clone();
1347                } else {
1348                    total_gradients[i] += grad;
1349                }
1350            }
1351        }
1352
1353        // Average gradients
1354        let batch_size = batch.len() as f64;
1355        for grad in &mut total_gradients {
1356            *grad /= batch_size;
1357        }
1358
1359        // Apply gradients
1360        self.apply_gradients(&total_gradients)?;
1361
1362        Ok(total_loss / batch_size)
1363    }
1364
1365    /// Evaluate the model on validation data
1366    pub fn evaluate(&mut self, data: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
1367        let mut total_loss = 0.0;
1368
1369        for (input, target) in data {
1370            let prediction = self.forward(input)?;
1371            let loss = self.compute_loss(&prediction, target)?;
1372            total_loss += loss;
1373        }
1374
1375        Ok(total_loss / data.len() as f64)
1376    }
1377
1378    /// Encode classical input into quantum state
1379    fn encode_input(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1380        match self.config.classical_preprocessing.encoding_method {
1381            DataEncodingMethod::Amplitude => self.encode_amplitude(input),
1382            DataEncodingMethod::Angle => self.encode_angle(input),
1383            DataEncodingMethod::Basis => self.encode_basis(input),
1384            DataEncodingMethod::QuantumFeatureMap => self.encode_quantum_feature_map(input),
1385            _ => Err(SimulatorError::InvalidConfiguration(
1386                "Encoding method not implemented".to_string(),
1387            )),
1388        }
1389    }
1390
1391    /// Amplitude encoding
1392    fn encode_amplitude(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1393        let n_qubits = self.config.num_qubits;
1394        let state_size = 1 << n_qubits;
1395        let mut state = Array1::zeros(state_size);
1396
1397        // Normalize input
1398        let norm = input.iter().map(|x| x * x).sum::<f64>().sqrt();
1399        if norm == 0.0 {
1400            return Err(SimulatorError::InvalidState("Zero input norm".to_string()));
1401        }
1402
1403        // Encode input as amplitudes
1404        for (i, &val) in input.iter().enumerate() {
1405            if i < state_size {
1406                state[i] = Complex64::new(val / norm, 0.0);
1407            }
1408        }
1409
1410        Ok(state)
1411    }
1412
1413    /// Angle encoding
1414    fn encode_angle(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1415        let n_qubits = self.config.num_qubits;
1416        let state_size = 1 << n_qubits;
1417        let mut state = Array1::zeros(state_size);
1418
1419        // Initialize |0...0⟩ state
1420        state[0] = Complex64::new(1.0, 0.0);
1421
1422        // Apply rotation gates based on input values
1423        for (i, &angle) in input.iter().enumerate() {
1424            if i < n_qubits {
1425                // Apply RY rotation to qubit i
1426                state = self.apply_ry_rotation(&state, i, angle)?;
1427            }
1428        }
1429
1430        Ok(state)
1431    }
1432
1433    /// Basis encoding
1434    fn encode_basis(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1435        let n_qubits = self.config.num_qubits;
1436        let state_size = 1 << n_qubits;
1437        let mut state = Array1::zeros(state_size);
1438
1439        // Convert input to binary representation
1440        let mut binary_index = 0;
1441        for (i, &val) in input.iter().enumerate() {
1442            if i < n_qubits && val > 0.5 {
1443                binary_index |= 1 << i;
1444            }
1445        }
1446
1447        state[binary_index] = Complex64::new(1.0, 0.0);
1448
1449        Ok(state)
1450    }
1451
1452    /// Quantum feature map encoding
1453    fn encode_quantum_feature_map(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1454        let n_qubits = self.config.num_qubits;
1455        let state_size = 1 << n_qubits;
1456        let mut state = Array1::zeros(state_size);
1457
1458        // Initialize |+⟩^⊗n state (all qubits in superposition)
1459        let hadamard_coeff = 1.0 / (n_qubits as f64 / 2.0).exp2();
1460        for i in 0..state_size {
1461            state[i] = Complex64::new(hadamard_coeff, 0.0);
1462        }
1463
1464        // Apply feature map rotations
1465        for (i, &feature) in input.iter().enumerate() {
1466            if i < n_qubits {
1467                // Apply Z rotation based on feature value
1468                state = self.apply_rz_rotation(&state, i, feature * PI)?;
1469            }
1470        }
1471
1472        // Apply entangling gates for feature interactions
1473        for i in 0..(n_qubits - 1) {
1474            if i + 1 < input.len() {
1475                let interaction = input[i] * input[i + 1];
1476                state = self.apply_cnot_interaction(&state, i, i + 1, interaction * PI)?;
1477            }
1478        }
1479
1480        Ok(state)
1481    }
1482
1483    /// Apply RY rotation to a specific qubit
1484    fn apply_ry_rotation(
1485        &self,
1486        state: &Array1<Complex64>,
1487        qubit: usize,
1488        angle: f64,
1489    ) -> Result<Array1<Complex64>> {
1490        let n_qubits = self.config.num_qubits;
1491        let state_size = 1 << n_qubits;
1492        let mut new_state = state.clone();
1493
1494        let cos_half = (angle / 2.0).cos();
1495        let sin_half = (angle / 2.0).sin();
1496
1497        for i in 0..state_size {
1498            if i & (1 << qubit) == 0 {
1499                // |0⟩ component
1500                let j = i | (1 << qubit); // corresponding |1⟩ state
1501                if j < state_size {
1502                    let state_0 = state[i];
1503                    let state_1 = state[j];
1504
1505                    new_state[i] = Complex64::new(cos_half, 0.0) * state_0
1506                        - Complex64::new(sin_half, 0.0) * state_1;
1507                    new_state[j] = Complex64::new(sin_half, 0.0) * state_0
1508                        + Complex64::new(cos_half, 0.0) * state_1;
1509                }
1510            }
1511        }
1512
1513        Ok(new_state)
1514    }
1515
1516    /// Apply RZ rotation to a specific qubit
1517    fn apply_rz_rotation(
1518        &self,
1519        state: &Array1<Complex64>,
1520        qubit: usize,
1521        angle: f64,
1522    ) -> Result<Array1<Complex64>> {
1523        let n_qubits = self.config.num_qubits;
1524        let state_size = 1 << n_qubits;
1525        let mut new_state = state.clone();
1526
1527        let phase_0 = Complex64::from_polar(1.0, -angle / 2.0);
1528        let phase_1 = Complex64::from_polar(1.0, angle / 2.0);
1529
1530        for i in 0..state_size {
1531            if i & (1 << qubit) == 0 {
1532                new_state[i] *= phase_0;
1533            } else {
1534                new_state[i] *= phase_1;
1535            }
1536        }
1537
1538        Ok(new_state)
1539    }
1540
1541    /// Apply CNOT with interaction term
1542    fn apply_cnot_interaction(
1543        &self,
1544        state: &Array1<Complex64>,
1545        control: usize,
1546        target: usize,
1547        interaction: f64,
1548    ) -> Result<Array1<Complex64>> {
1549        let n_qubits = self.config.num_qubits;
1550        let state_size = 1 << n_qubits;
1551        let mut new_state = state.clone();
1552
1553        // Apply interaction-dependent phase
1554        let phase = Complex64::from_polar(1.0, interaction);
1555
1556        for i in 0..state_size {
1557            if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
1558                // Both control and target are |1⟩
1559                new_state[i] *= phase;
1560            }
1561        }
1562
1563        Ok(new_state)
1564    }
1565
1566    /// Decode quantum state to classical output
1567    fn decode_output(&self, state: &Array1<Complex64>) -> Result<Array1<f64>> {
1568        // For now, use expectation values of Pauli-Z measurements
1569        let n_qubits = self.config.num_qubits;
1570        let mut output = Array1::zeros(n_qubits);
1571
1572        for qubit in 0..n_qubits {
1573            let expectation = self.measure_pauli_z_expectation(state, qubit)?;
1574            output[qubit] = expectation;
1575        }
1576
1577        Ok(output)
1578    }
1579
1580    /// Measure Pauli-Z expectation value for a specific qubit
1581    fn measure_pauli_z_expectation(&self, state: &Array1<Complex64>, qubit: usize) -> Result<f64> {
1582        let state_size = state.len();
1583        let mut expectation = 0.0;
1584
1585        for i in 0..state_size {
1586            let probability = state[i].norm_sqr();
1587            if i & (1 << qubit) == 0 {
1588                expectation += probability; // |0⟩ contributes +1
1589            } else {
1590                expectation -= probability; // |1⟩ contributes -1
1591            }
1592        }
1593
1594        Ok(expectation)
1595    }
1596
1597    /// Compute loss function
1598    fn compute_loss(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> Result<f64> {
1599        // Check shape compatibility
1600        if prediction.shape() != target.shape() {
1601            return Err(SimulatorError::InvalidInput(format!(
1602                "Shape mismatch: prediction shape {:?} != target shape {:?}",
1603                prediction.shape(),
1604                target.shape()
1605            )));
1606        }
1607
1608        // Mean squared error
1609        let diff = prediction - target;
1610        let mse = diff.iter().map(|x| x * x).sum::<f64>() / diff.len() as f64;
1611        Ok(mse)
1612    }
1613
1614    /// Compute loss gradient
1615    fn compute_loss_gradient(
1616        &self,
1617        prediction: &Array1<f64>,
1618        target: &Array1<f64>,
1619    ) -> Result<Array1<f64>> {
1620        // Gradient of MSE
1621        let diff = prediction - target;
1622        let grad = 2.0 * &diff / diff.len() as f64;
1623        Ok(grad)
1624    }
1625
1626    /// Compute gradients using parameter-shift rule
1627    fn compute_gradients(&mut self, loss_gradient: &Array1<f64>) -> Result<Vec<Array1<f64>>> {
1628        let mut gradients = Vec::new();
1629
1630        for layer_idx in 0..self.layers.len() {
1631            let layer_gradient = match self.config.training_config.gradient_method {
1632                GradientMethod::ParameterShift => {
1633                    self.compute_parameter_shift_gradient(layer_idx, loss_gradient)?
1634                }
1635                GradientMethod::FiniteDifference => {
1636                    self.compute_finite_difference_gradient(layer_idx, loss_gradient)?
1637                }
1638                _ => {
1639                    return Err(SimulatorError::InvalidConfiguration(
1640                        "Gradient method not implemented".to_string(),
1641                    ))
1642                }
1643            };
1644            gradients.push(layer_gradient);
1645        }
1646
1647        Ok(gradients)
1648    }
1649
1650    /// Compute gradients using parameter-shift rule
1651    fn compute_parameter_shift_gradient(
1652        &mut self,
1653        layer_idx: usize,
1654        loss_gradient: &Array1<f64>,
1655    ) -> Result<Array1<f64>> {
1656        let layer = &self.layers[layer_idx];
1657        let parameters = layer.get_parameters();
1658        let mut gradient = Array1::zeros(parameters.len());
1659
1660        let shift = PI / 2.0; // Parameter shift amount
1661
1662        for (param_idx, &param_val) in parameters.iter().enumerate() {
1663            // Forward shift
1664            let mut params_plus = parameters.clone();
1665            params_plus[param_idx] = param_val + shift;
1666            self.layers[layer_idx].set_parameters(&params_plus);
1667            let output_plus = self.forward_layer(layer_idx, loss_gradient)?;
1668
1669            // Backward shift
1670            let mut params_minus = parameters.clone();
1671            params_minus[param_idx] = param_val - shift;
1672            self.layers[layer_idx].set_parameters(&params_minus);
1673            let output_minus = self.forward_layer(layer_idx, loss_gradient)?;
1674
1675            // Compute gradient
1676            gradient[param_idx] = (output_plus.sum() - output_minus.sum()) / 2.0;
1677
1678            // Restore original parameters
1679            self.layers[layer_idx].set_parameters(&parameters);
1680        }
1681
1682        Ok(gradient)
1683    }
1684
1685    /// Compute gradients using finite differences
1686    fn compute_finite_difference_gradient(
1687        &mut self,
1688        layer_idx: usize,
1689        loss_gradient: &Array1<f64>,
1690    ) -> Result<Array1<f64>> {
1691        let layer = &self.layers[layer_idx];
1692        let parameters = layer.get_parameters();
1693        let mut gradient = Array1::zeros(parameters.len());
1694
1695        let eps = 1e-6; // Small perturbation
1696
1697        for (param_idx, &param_val) in parameters.iter().enumerate() {
1698            // Forward perturbation
1699            let mut params_plus = parameters.clone();
1700            params_plus[param_idx] = param_val + eps;
1701            self.layers[layer_idx].set_parameters(&params_plus);
1702            let output_plus = self.forward_layer(layer_idx, loss_gradient)?;
1703
1704            // Backward perturbation
1705            let mut params_minus = parameters.clone();
1706            params_minus[param_idx] = param_val - eps;
1707            self.layers[layer_idx].set_parameters(&params_minus);
1708            let output_minus = self.forward_layer(layer_idx, loss_gradient)?;
1709
1710            // Compute gradient
1711            gradient[param_idx] = (output_plus.sum() - output_minus.sum()) / (2.0 * eps);
1712
1713            // Restore original parameters
1714            self.layers[layer_idx].set_parameters(&parameters);
1715        }
1716
1717        Ok(gradient)
1718    }
1719
1720    /// Forward pass through a specific layer
1721    fn forward_layer(&mut self, layer_idx: usize, input: &Array1<f64>) -> Result<Array1<f64>> {
1722        // This is a simplified version - in practice, we'd need to track intermediate states
1723        self.forward(input)
1724    }
1725
1726    /// Apply gradients to update parameters
1727    fn apply_gradients(&mut self, gradients: &[Array1<f64>]) -> Result<()> {
1728        for (layer_idx, gradient) in gradients.iter().enumerate() {
1729            let layer = &mut self.layers[layer_idx];
1730            let mut parameters = layer.get_parameters();
1731
1732            // Apply gradient update based on optimizer
1733            match self.config.training_config.optimizer {
1734                OptimizerType::SGD => {
1735                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1736                        *param -= self.config.training_config.learning_rate * grad;
1737                    }
1738                }
1739                OptimizerType::Adam => {
1740                    // Simplified Adam update (would need to track momentum terms)
1741                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1742                        *param -= self.config.training_config.learning_rate * grad;
1743                    }
1744                }
1745                _ => {
1746                    // Default to SGD
1747                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1748                        *param -= self.config.training_config.learning_rate * grad;
1749                    }
1750                }
1751            }
1752
1753            // Apply parameter constraints
1754            if let Some((min_val, max_val)) =
1755                self.config.training_config.regularization.parameter_bounds
1756            {
1757                for param in &mut parameters {
1758                    *param = param.clamp(min_val, max_val);
1759                }
1760            }
1761
1762            layer.set_parameters(&parameters);
1763        }
1764
1765        Ok(())
1766    }
1767
1768    /// Get current learning rate (with scheduling)
1769    fn get_current_learning_rate(&self, epoch: usize) -> f64 {
1770        let base_lr = self.config.training_config.learning_rate;
1771
1772        match self.config.training_config.lr_schedule {
1773            LearningRateSchedule::Constant => base_lr,
1774            LearningRateSchedule::ExponentialDecay => base_lr * 0.95_f64.powi(epoch as i32),
1775            LearningRateSchedule::StepDecay => {
1776                if epoch % 50 == 0 && epoch > 0 {
1777                    base_lr * 0.5_f64.powi((epoch / 50) as i32)
1778                } else {
1779                    base_lr
1780                }
1781            }
1782            LearningRateSchedule::CosineAnnealing => {
1783                let progress = epoch as f64 / self.config.training_config.epochs as f64;
1784                base_lr * 0.5 * (1.0 + (PI * progress).cos())
1785            }
1786            _ => base_lr,
1787        }
1788    }
1789
1790    /// Update learning rate
1791    fn update_learning_rate(&mut self, epoch: usize, validation_loss: f64) {
1792        // This would update internal optimizer state for learning rate scheduling
1793        // For now, just track the current learning rate
1794        let current_lr = self.get_current_learning_rate(epoch);
1795        self.training_state.current_learning_rate = current_lr;
1796    }
1797
1798    /// Compute quantum advantage metrics
1799    fn compute_quantum_advantage_metrics(&self) -> Result<QuantumAdvantageMetrics> {
1800        // Placeholder for quantum advantage analysis
1801        Ok(QuantumAdvantageMetrics {
1802            quantum_volume: 0.0,
1803            classical_simulation_cost: 0.0,
1804            quantum_speedup_factor: 1.0,
1805            circuit_depth: self.layers.iter().map(|l| l.get_depth()).sum(),
1806            gate_count: self.layers.iter().map(|l| l.get_gate_count()).sum(),
1807            entanglement_measure: 0.0,
1808        })
1809    }
1810
1811    /// Get training statistics
1812    pub const fn get_stats(&self) -> &QMLStats {
1813        &self.stats
1814    }
1815
1816    /// Get training history
1817    pub fn get_training_history(&self) -> &[QMLTrainingResult] {
1818        &self.training_history
1819    }
1820
1821    /// Get layers reference
1822    pub fn get_layers(&self) -> &[Box<dyn QMLLayer>] {
1823        &self.layers
1824    }
1825
1826    /// Get config reference
1827    pub const fn get_config(&self) -> &QMLConfig {
1828        &self.config
1829    }
1830
1831    /// Encode amplitude (public version)
1832    pub fn encode_amplitude_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1833        self.encode_amplitude(input)
1834    }
1835
1836    /// Encode angle (public version)
1837    pub fn encode_angle_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1838        self.encode_angle(input)
1839    }
1840
1841    /// Encode basis (public version)
1842    pub fn encode_basis_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1843        self.encode_basis(input)
1844    }
1845
1846    /// Encode quantum feature map (public version)
1847    pub fn encode_quantum_feature_map_public(
1848        &self,
1849        input: &Array1<f64>,
1850    ) -> Result<Array1<Complex64>> {
1851        self.encode_quantum_feature_map(input)
1852    }
1853
1854    /// Measure Pauli Z expectation (public version)
1855    pub fn measure_pauli_z_expectation_public(
1856        &self,
1857        state: &Array1<Complex64>,
1858        qubit: usize,
1859    ) -> Result<f64> {
1860        self.measure_pauli_z_expectation(state, qubit)
1861    }
1862
1863    /// Get current learning rate (public version)
1864    pub fn get_current_learning_rate_public(&self, epoch: usize) -> f64 {
1865        self.get_current_learning_rate(epoch)
1866    }
1867
1868    /// Compute loss (public version)
1869    pub fn compute_loss_public(
1870        &self,
1871        prediction: &Array1<f64>,
1872        target: &Array1<f64>,
1873    ) -> Result<f64> {
1874        self.compute_loss(prediction, target)
1875    }
1876
1877    /// Compute loss gradient (public version)
1878    pub fn compute_loss_gradient_public(
1879        &self,
1880        prediction: &Array1<f64>,
1881        target: &Array1<f64>,
1882    ) -> Result<Array1<f64>> {
1883        self.compute_loss_gradient(prediction, target)
1884    }
1885}
1886
1887/// Trait for QML layers
1888pub trait QMLLayer: std::fmt::Debug + Send + Sync {
1889    /// Forward pass through the layer
1890    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>>;
1891
1892    /// Backward pass through the layer
1893    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>>;
1894
1895    /// Get layer parameters
1896    fn get_parameters(&self) -> Array1<f64>;
1897
1898    /// Set layer parameters
1899    fn set_parameters(&mut self, parameters: &Array1<f64>);
1900
1901    /// Get circuit depth
1902    fn get_depth(&self) -> usize;
1903
1904    /// Get gate count
1905    fn get_gate_count(&self) -> usize;
1906
1907    /// Get number of parameters
1908    fn get_num_parameters(&self) -> usize;
1909}
1910
1911/// Parameterized Quantum Circuit Layer
1912#[derive(Debug)]
1913pub struct ParameterizedQuantumCircuitLayer {
1914    /// Number of qubits
1915    num_qubits: usize,
1916    /// Layer configuration
1917    config: QMLLayerConfig,
1918    /// Parameters (rotation angles)
1919    parameters: Array1<f64>,
1920    /// Circuit structure
1921    circuit_structure: Vec<PQCGate>,
1922    /// Internal state vector simulator
1923    simulator: StateVectorSimulator,
1924}
1925
1926impl ParameterizedQuantumCircuitLayer {
1927    /// Create new PQC layer
1928    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
1929        let mut layer = Self {
1930            num_qubits,
1931            config: config.clone(),
1932            parameters: Array1::zeros(config.num_parameters),
1933            circuit_structure: Vec::new(),
1934            simulator: StateVectorSimulator::new(),
1935        };
1936
1937        // Initialize parameters randomly
1938        layer.initialize_parameters();
1939
1940        // Build circuit structure
1941        layer.build_circuit_structure()?;
1942
1943        Ok(layer)
1944    }
1945
1946    /// Initialize parameters randomly
1947    fn initialize_parameters(&mut self) {
1948        let mut rng = thread_rng();
1949        for param in &mut self.parameters {
1950            *param = rng.gen_range(-PI..PI);
1951        }
1952    }
1953
1954    /// Build circuit structure based on ansatz
1955    fn build_circuit_structure(&mut self) -> Result<()> {
1956        match self.config.ansatz_type {
1957            AnsatzType::Hardware => self.build_hardware_efficient_ansatz(),
1958            AnsatzType::Layered => self.build_layered_ansatz(),
1959            AnsatzType::BrickWall => self.build_brick_wall_ansatz(),
1960            _ => Err(SimulatorError::InvalidConfiguration(
1961                "Ansatz type not implemented".to_string(),
1962            )),
1963        }
1964    }
1965
1966    /// Build hardware-efficient ansatz
1967    fn build_hardware_efficient_ansatz(&mut self) -> Result<()> {
1968        let mut param_idx = 0;
1969
1970        for layer in 0..self.config.depth {
1971            // Single-qubit rotations
1972            for qubit in 0..self.num_qubits {
1973                for &gate_type in &self.config.rotation_gates {
1974                    if param_idx < self.parameters.len() {
1975                        self.circuit_structure.push(PQCGate {
1976                            gate_type: PQCGateType::SingleQubit(gate_type),
1977                            qubits: vec![qubit],
1978                            parameter_index: Some(param_idx),
1979                        });
1980                        param_idx += 1;
1981                    }
1982                }
1983            }
1984
1985            // Entangling gates
1986            self.add_entangling_gates(&mut param_idx);
1987        }
1988
1989        Ok(())
1990    }
1991
1992    /// Build layered ansatz
1993    fn build_layered_ansatz(&mut self) -> Result<()> {
1994        // Similar to hardware-efficient but with different structure
1995        self.build_hardware_efficient_ansatz()
1996    }
1997
1998    /// Build brick-wall ansatz
1999    fn build_brick_wall_ansatz(&mut self) -> Result<()> {
2000        let mut param_idx = 0;
2001
2002        for layer in 0..self.config.depth {
2003            // Alternating CNOT pattern (brick-wall)
2004            let offset = layer % 2;
2005            for i in (offset..self.num_qubits - 1).step_by(2) {
2006                self.circuit_structure.push(PQCGate {
2007                    gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2008                    qubits: vec![i, i + 1],
2009                    parameter_index: None,
2010                });
2011            }
2012
2013            // Single-qubit rotations
2014            for qubit in 0..self.num_qubits {
2015                if param_idx < self.parameters.len() {
2016                    self.circuit_structure.push(PQCGate {
2017                        gate_type: PQCGateType::SingleQubit(RotationGate::RY),
2018                        qubits: vec![qubit],
2019                        parameter_index: Some(param_idx),
2020                    });
2021                    param_idx += 1;
2022                }
2023            }
2024        }
2025
2026        Ok(())
2027    }
2028
2029    /// Add entangling gates based on entanglement pattern
2030    fn add_entangling_gates(&mut self, param_idx: &mut usize) {
2031        match self.config.entanglement_pattern {
2032            EntanglementPattern::Linear => {
2033                for i in 0..(self.num_qubits - 1) {
2034                    self.circuit_structure.push(PQCGate {
2035                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2036                        qubits: vec![i, i + 1],
2037                        parameter_index: None,
2038                    });
2039                }
2040            }
2041            EntanglementPattern::Circular => {
2042                for i in 0..self.num_qubits {
2043                    let next = (i + 1) % self.num_qubits;
2044                    self.circuit_structure.push(PQCGate {
2045                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2046                        qubits: vec![i, next],
2047                        parameter_index: None,
2048                    });
2049                }
2050            }
2051            EntanglementPattern::AllToAll => {
2052                for i in 0..self.num_qubits {
2053                    for j in (i + 1)..self.num_qubits {
2054                        self.circuit_structure.push(PQCGate {
2055                            gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2056                            qubits: vec![i, j],
2057                            parameter_index: None,
2058                        });
2059                    }
2060                }
2061            }
2062            _ => {
2063                // Default to linear
2064                for i in 0..(self.num_qubits - 1) {
2065                    self.circuit_structure.push(PQCGate {
2066                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2067                        qubits: vec![i, i + 1],
2068                        parameter_index: None,
2069                    });
2070                }
2071            }
2072        }
2073    }
2074}
2075
2076impl QMLLayer for ParameterizedQuantumCircuitLayer {
2077    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2078        let mut state = input.clone();
2079
2080        // Apply each gate in the circuit
2081        for gate in &self.circuit_structure {
2082            state = self.apply_gate(&state, gate)?;
2083        }
2084
2085        Ok(state)
2086    }
2087
2088    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2089        // Simplified backward pass - in practice would use automatic differentiation
2090        Ok(gradient.clone())
2091    }
2092
2093    fn get_parameters(&self) -> Array1<f64> {
2094        self.parameters.clone()
2095    }
2096
2097    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2098        self.parameters = parameters.clone();
2099    }
2100
2101    fn get_depth(&self) -> usize {
2102        self.config.depth
2103    }
2104
2105    fn get_gate_count(&self) -> usize {
2106        self.circuit_structure.len()
2107    }
2108
2109    fn get_num_parameters(&self) -> usize {
2110        self.parameters.len()
2111    }
2112}
2113
2114impl ParameterizedQuantumCircuitLayer {
2115    /// Apply a single gate to the quantum state
2116    fn apply_gate(&self, state: &Array1<Complex64>, gate: &PQCGate) -> Result<Array1<Complex64>> {
2117        match &gate.gate_type {
2118            PQCGateType::SingleQubit(rotation_gate) => {
2119                let angle = if let Some(param_idx) = gate.parameter_index {
2120                    self.parameters[param_idx]
2121                } else {
2122                    0.0
2123                };
2124                self.apply_single_qubit_gate(state, gate.qubits[0], *rotation_gate, angle)
2125            }
2126            PQCGateType::TwoQubit(two_qubit_gate) => {
2127                self.apply_two_qubit_gate(state, gate.qubits[0], gate.qubits[1], *two_qubit_gate)
2128            }
2129        }
2130    }
2131
2132    /// Apply single-qubit rotation gate
2133    fn apply_single_qubit_gate(
2134        &self,
2135        state: &Array1<Complex64>,
2136        qubit: usize,
2137        gate_type: RotationGate,
2138        angle: f64,
2139    ) -> Result<Array1<Complex64>> {
2140        let state_size = state.len();
2141        let mut new_state = Array1::zeros(state_size);
2142
2143        match gate_type {
2144            RotationGate::RX => {
2145                let cos_half = (angle / 2.0).cos();
2146                let sin_half = (angle / 2.0).sin();
2147
2148                for i in 0..state_size {
2149                    if i & (1 << qubit) == 0 {
2150                        let j = i | (1 << qubit);
2151                        if j < state_size {
2152                            new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2153                                + Complex64::new(0.0, -sin_half) * state[j];
2154                            new_state[j] = Complex64::new(0.0, -sin_half) * state[i]
2155                                + Complex64::new(cos_half, 0.0) * state[j];
2156                        }
2157                    }
2158                }
2159            }
2160            RotationGate::RY => {
2161                let cos_half = (angle / 2.0).cos();
2162                let sin_half = (angle / 2.0).sin();
2163
2164                for i in 0..state_size {
2165                    if i & (1 << qubit) == 0 {
2166                        let j = i | (1 << qubit);
2167                        if j < state_size {
2168                            new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2169                                - Complex64::new(sin_half, 0.0) * state[j];
2170                            new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2171                                + Complex64::new(cos_half, 0.0) * state[j];
2172                        }
2173                    }
2174                }
2175            }
2176            RotationGate::RZ => {
2177                let phase_0 = Complex64::from_polar(1.0, -angle / 2.0);
2178                let phase_1 = Complex64::from_polar(1.0, angle / 2.0);
2179
2180                for i in 0..state_size {
2181                    if i & (1 << qubit) == 0 {
2182                        new_state[i] = phase_0 * state[i];
2183                    } else {
2184                        new_state[i] = phase_1 * state[i];
2185                    }
2186                }
2187            }
2188            _ => {
2189                return Err(SimulatorError::InvalidGate(
2190                    "Gate type not implemented".to_string(),
2191                ))
2192            }
2193        }
2194
2195        Ok(new_state)
2196    }
2197
2198    /// Apply two-qubit gate
2199    fn apply_two_qubit_gate(
2200        &self,
2201        state: &Array1<Complex64>,
2202        control: usize,
2203        target: usize,
2204        gate_type: TwoQubitGate,
2205    ) -> Result<Array1<Complex64>> {
2206        let state_size = state.len();
2207        let mut new_state = state.clone();
2208
2209        match gate_type {
2210            TwoQubitGate::CNOT => {
2211                for i in 0..state_size {
2212                    if (i & (1 << control)) != 0 {
2213                        // Control qubit is |1⟩, flip target
2214                        let j = i ^ (1 << target);
2215                        new_state[i] = state[j];
2216                    }
2217                }
2218            }
2219            TwoQubitGate::CZ => {
2220                for i in 0..state_size {
2221                    if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
2222                        // Both qubits are |1⟩, apply phase
2223                        new_state[i] = -state[i];
2224                    }
2225                }
2226            }
2227            TwoQubitGate::SWAP => {
2228                for i in 0..state_size {
2229                    let ctrl_bit = (i & (1 << control)) != 0;
2230                    let targ_bit = (i & (1 << target)) != 0;
2231                    if ctrl_bit != targ_bit {
2232                        // Swap the qubits
2233                        let j = i ^ (1 << control) ^ (1 << target);
2234                        new_state[i] = state[j];
2235                    }
2236                }
2237            }
2238            TwoQubitGate::CPhase => {
2239                for i in 0..state_size {
2240                    if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
2241                        // Both qubits are |1⟩, apply phase (similar to CZ)
2242                        new_state[i] = -state[i];
2243                    }
2244                }
2245            }
2246        }
2247
2248        Ok(new_state)
2249    }
2250}
2251
2252/// Quantum Convolutional Layer
2253#[derive(Debug)]
2254pub struct QuantumConvolutionalLayer {
2255    /// Number of qubits
2256    num_qubits: usize,
2257    /// Layer configuration
2258    config: QMLLayerConfig,
2259    /// Parameters
2260    parameters: Array1<f64>,
2261    /// Convolutional structure
2262    conv_structure: Vec<ConvolutionalFilter>,
2263}
2264
2265impl QuantumConvolutionalLayer {
2266    /// Create new quantum convolutional layer
2267    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2268        let mut layer = Self {
2269            num_qubits,
2270            config: config.clone(),
2271            parameters: Array1::zeros(config.num_parameters),
2272            conv_structure: Vec::new(),
2273        };
2274
2275        layer.initialize_parameters();
2276        layer.build_convolutional_structure()?;
2277
2278        Ok(layer)
2279    }
2280
2281    /// Initialize parameters
2282    fn initialize_parameters(&mut self) {
2283        let mut rng = thread_rng();
2284        for param in &mut self.parameters {
2285            *param = rng.gen_range(-PI..PI);
2286        }
2287    }
2288
2289    /// Build convolutional structure
2290    fn build_convolutional_structure(&mut self) -> Result<()> {
2291        // Create sliding window filters
2292        let filter_size = 2; // 2-qubit filters
2293        let stride = 1;
2294
2295        let mut param_idx = 0;
2296        for start in (0..=(self.num_qubits - filter_size)).step_by(stride) {
2297            if param_idx + 2 <= self.parameters.len() {
2298                self.conv_structure.push(ConvolutionalFilter {
2299                    qubits: vec![start, start + 1],
2300                    parameter_indices: vec![param_idx, param_idx + 1],
2301                });
2302                param_idx += 2;
2303            }
2304        }
2305
2306        Ok(())
2307    }
2308}
2309
2310impl QMLLayer for QuantumConvolutionalLayer {
2311    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2312        let mut state = input.clone();
2313
2314        // Apply convolutional filters
2315        for filter in &self.conv_structure {
2316            state = self.apply_convolutional_filter(&state, filter)?;
2317        }
2318
2319        Ok(state)
2320    }
2321
2322    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2323        Ok(gradient.clone())
2324    }
2325
2326    fn get_parameters(&self) -> Array1<f64> {
2327        self.parameters.clone()
2328    }
2329
2330    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2331        self.parameters = parameters.clone();
2332    }
2333
2334    fn get_depth(&self) -> usize {
2335        self.conv_structure.len()
2336    }
2337
2338    fn get_gate_count(&self) -> usize {
2339        self.conv_structure.len() * 4 // Approximate gates per filter
2340    }
2341
2342    fn get_num_parameters(&self) -> usize {
2343        self.parameters.len()
2344    }
2345}
2346
2347impl QuantumConvolutionalLayer {
2348    /// Apply convolutional filter
2349    fn apply_convolutional_filter(
2350        &self,
2351        state: &Array1<Complex64>,
2352        filter: &ConvolutionalFilter,
2353    ) -> Result<Array1<Complex64>> {
2354        let mut new_state = state.clone();
2355
2356        // Apply parameterized two-qubit unitaries
2357        let param1 = self.parameters[filter.parameter_indices[0]];
2358        let param2 = self.parameters[filter.parameter_indices[1]];
2359
2360        // Apply RY rotations followed by CNOT
2361        new_state = self.apply_ry_to_state(&new_state, filter.qubits[0], param1)?;
2362        new_state = self.apply_ry_to_state(&new_state, filter.qubits[1], param2)?;
2363        new_state = self.apply_cnot_to_state(&new_state, filter.qubits[0], filter.qubits[1])?;
2364
2365        Ok(new_state)
2366    }
2367
2368    /// Apply RY rotation to state
2369    fn apply_ry_to_state(
2370        &self,
2371        state: &Array1<Complex64>,
2372        qubit: usize,
2373        angle: f64,
2374    ) -> Result<Array1<Complex64>> {
2375        let state_size = state.len();
2376        let mut new_state = Array1::zeros(state_size);
2377
2378        let cos_half = (angle / 2.0).cos();
2379        let sin_half = (angle / 2.0).sin();
2380
2381        for i in 0..state_size {
2382            if i & (1 << qubit) == 0 {
2383                let j = i | (1 << qubit);
2384                if j < state_size {
2385                    new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2386                        - Complex64::new(sin_half, 0.0) * state[j];
2387                    new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2388                        + Complex64::new(cos_half, 0.0) * state[j];
2389                }
2390            }
2391        }
2392
2393        Ok(new_state)
2394    }
2395
2396    /// Apply CNOT to state
2397    fn apply_cnot_to_state(
2398        &self,
2399        state: &Array1<Complex64>,
2400        control: usize,
2401        target: usize,
2402    ) -> Result<Array1<Complex64>> {
2403        let state_size = state.len();
2404        let mut new_state = state.clone();
2405
2406        for i in 0..state_size {
2407            if (i & (1 << control)) != 0 {
2408                let j = i ^ (1 << target);
2409                new_state[i] = state[j];
2410            }
2411        }
2412
2413        Ok(new_state)
2414    }
2415}
2416
2417/// Quantum Dense Layer (fully connected)
2418#[derive(Debug)]
2419pub struct QuantumDenseLayer {
2420    /// Number of qubits
2421    num_qubits: usize,
2422    /// Layer configuration
2423    config: QMLLayerConfig,
2424    /// Parameters
2425    parameters: Array1<f64>,
2426    /// Dense layer structure
2427    dense_structure: Vec<DenseConnection>,
2428}
2429
2430impl QuantumDenseLayer {
2431    /// Create new quantum dense layer
2432    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2433        let mut layer = Self {
2434            num_qubits,
2435            config: config.clone(),
2436            parameters: Array1::zeros(config.num_parameters),
2437            dense_structure: Vec::new(),
2438        };
2439
2440        layer.initialize_parameters();
2441        layer.build_dense_structure()?;
2442
2443        Ok(layer)
2444    }
2445
2446    /// Initialize parameters
2447    fn initialize_parameters(&mut self) {
2448        let mut rng = thread_rng();
2449        for param in &mut self.parameters {
2450            *param = rng.gen_range(-PI..PI);
2451        }
2452    }
2453
2454    /// Build dense layer structure (all-to-all connectivity)
2455    fn build_dense_structure(&mut self) -> Result<()> {
2456        let mut param_idx = 0;
2457
2458        // Create all-to-all connections
2459        for i in 0..self.num_qubits {
2460            for j in (i + 1)..self.num_qubits {
2461                if param_idx < self.parameters.len() {
2462                    self.dense_structure.push(DenseConnection {
2463                        qubit1: i,
2464                        qubit2: j,
2465                        parameter_index: param_idx,
2466                    });
2467                    param_idx += 1;
2468                }
2469            }
2470        }
2471
2472        Ok(())
2473    }
2474}
2475
2476impl QMLLayer for QuantumDenseLayer {
2477    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2478        let mut state = input.clone();
2479
2480        // Apply dense connections
2481        for connection in &self.dense_structure {
2482            state = self.apply_dense_connection(&state, connection)?;
2483        }
2484
2485        Ok(state)
2486    }
2487
2488    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2489        Ok(gradient.clone())
2490    }
2491
2492    fn get_parameters(&self) -> Array1<f64> {
2493        self.parameters.clone()
2494    }
2495
2496    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2497        self.parameters = parameters.clone();
2498    }
2499
2500    fn get_depth(&self) -> usize {
2501        1 // Dense layer is typically single depth
2502    }
2503
2504    fn get_gate_count(&self) -> usize {
2505        self.dense_structure.len() * 2 // Approximate gates per connection
2506    }
2507
2508    fn get_num_parameters(&self) -> usize {
2509        self.parameters.len()
2510    }
2511}
2512
2513impl QuantumDenseLayer {
2514    /// Apply dense connection (parameterized two-qubit gate)
2515    fn apply_dense_connection(
2516        &self,
2517        state: &Array1<Complex64>,
2518        connection: &DenseConnection,
2519    ) -> Result<Array1<Complex64>> {
2520        let angle = self.parameters[connection.parameter_index];
2521
2522        // Apply parameterized two-qubit rotation
2523        self.apply_parameterized_two_qubit_gate(state, connection.qubit1, connection.qubit2, angle)
2524    }
2525
2526    /// Apply parameterized two-qubit gate
2527    fn apply_parameterized_two_qubit_gate(
2528        &self,
2529        state: &Array1<Complex64>,
2530        qubit1: usize,
2531        qubit2: usize,
2532        angle: f64,
2533    ) -> Result<Array1<Complex64>> {
2534        let state_size = state.len();
2535        let mut new_state = state.clone();
2536
2537        // Apply controlled rotation
2538        let cos_val = angle.cos();
2539        let sin_val = angle.sin();
2540
2541        for i in 0..state_size {
2542            if (i & (1 << qubit1)) != 0 && (i & (1 << qubit2)) != 0 {
2543                // Both qubits are |1⟩
2544                let phase = Complex64::new(cos_val, sin_val);
2545                new_state[i] *= phase;
2546            }
2547        }
2548
2549        Ok(new_state)
2550    }
2551}
2552
2553/// Quantum LSTM Layer
2554#[derive(Debug)]
2555pub struct QuantumLSTMLayer {
2556    /// Number of qubits
2557    num_qubits: usize,
2558    /// Layer configuration
2559    config: QMLLayerConfig,
2560    /// Parameters
2561    parameters: Array1<f64>,
2562    /// LSTM gates
2563    lstm_gates: Vec<LSTMGate>,
2564    /// Hidden state
2565    hidden_state: Option<Array1<Complex64>>,
2566    /// Cell state
2567    cell_state: Option<Array1<Complex64>>,
2568}
2569
2570impl QuantumLSTMLayer {
2571    /// Create new quantum LSTM layer
2572    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2573        let mut layer = Self {
2574            num_qubits,
2575            config: config.clone(),
2576            parameters: Array1::zeros(config.num_parameters),
2577            lstm_gates: Vec::new(),
2578            hidden_state: None,
2579            cell_state: None,
2580        };
2581
2582        layer.initialize_parameters();
2583        layer.build_lstm_structure()?;
2584
2585        Ok(layer)
2586    }
2587
2588    /// Initialize parameters
2589    fn initialize_parameters(&mut self) {
2590        let mut rng = thread_rng();
2591        for param in &mut self.parameters {
2592            *param = rng.gen_range(-PI..PI);
2593        }
2594    }
2595
2596    /// Build LSTM structure
2597    fn build_lstm_structure(&mut self) -> Result<()> {
2598        let params_per_gate = self.parameters.len() / 4; // Forget, input, output, candidate gates
2599
2600        self.lstm_gates = vec![
2601            LSTMGate {
2602                gate_type: LSTMGateType::Forget,
2603                parameter_start: 0,
2604                parameter_count: params_per_gate,
2605            },
2606            LSTMGate {
2607                gate_type: LSTMGateType::Input,
2608                parameter_start: params_per_gate,
2609                parameter_count: params_per_gate,
2610            },
2611            LSTMGate {
2612                gate_type: LSTMGateType::Output,
2613                parameter_start: 2 * params_per_gate,
2614                parameter_count: params_per_gate,
2615            },
2616            LSTMGate {
2617                gate_type: LSTMGateType::Candidate,
2618                parameter_start: 3 * params_per_gate,
2619                parameter_count: params_per_gate,
2620            },
2621        ];
2622
2623        Ok(())
2624    }
2625}
2626
2627impl QMLLayer for QuantumLSTMLayer {
2628    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2629        // Initialize states if first time
2630        if self.hidden_state.is_none() {
2631            let state_size = 1 << self.num_qubits;
2632            self.hidden_state = Some(Array1::zeros(state_size));
2633            self.cell_state = Some(Array1::zeros(state_size));
2634            // Initialize with |0...0⟩ state
2635            self.hidden_state.as_mut().unwrap()[0] = Complex64::new(1.0, 0.0);
2636            self.cell_state.as_mut().unwrap()[0] = Complex64::new(1.0, 0.0);
2637        }
2638
2639        let mut current_state = input.clone();
2640
2641        // Apply LSTM gates
2642        for gate in &self.lstm_gates {
2643            current_state = self.apply_lstm_gate(&current_state, gate)?;
2644        }
2645
2646        // Update internal states
2647        self.hidden_state = Some(current_state.clone());
2648
2649        Ok(current_state)
2650    }
2651
2652    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2653        Ok(gradient.clone())
2654    }
2655
2656    fn get_parameters(&self) -> Array1<f64> {
2657        self.parameters.clone()
2658    }
2659
2660    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2661        self.parameters = parameters.clone();
2662    }
2663
2664    fn get_depth(&self) -> usize {
2665        self.lstm_gates.len()
2666    }
2667
2668    fn get_gate_count(&self) -> usize {
2669        self.parameters.len() // Each parameter corresponds roughly to one gate
2670    }
2671
2672    fn get_num_parameters(&self) -> usize {
2673        self.parameters.len()
2674    }
2675}
2676
2677impl QuantumLSTMLayer {
2678    /// Apply LSTM gate
2679    fn apply_lstm_gate(
2680        &self,
2681        state: &Array1<Complex64>,
2682        gate: &LSTMGate,
2683    ) -> Result<Array1<Complex64>> {
2684        let mut new_state = state.clone();
2685
2686        // Apply parameterized unitaries based on gate parameters
2687        for i in 0..gate.parameter_count {
2688            let param_idx = gate.parameter_start + i;
2689            if param_idx < self.parameters.len() {
2690                let angle = self.parameters[param_idx];
2691                let qubit = i % self.num_qubits;
2692
2693                // Apply rotation gate
2694                new_state = self.apply_rotation(&new_state, qubit, angle)?;
2695            }
2696        }
2697
2698        Ok(new_state)
2699    }
2700
2701    /// Apply rotation gate
2702    fn apply_rotation(
2703        &self,
2704        state: &Array1<Complex64>,
2705        qubit: usize,
2706        angle: f64,
2707    ) -> Result<Array1<Complex64>> {
2708        let state_size = state.len();
2709        let mut new_state = Array1::zeros(state_size);
2710
2711        let cos_half = (angle / 2.0).cos();
2712        let sin_half = (angle / 2.0).sin();
2713
2714        for i in 0..state_size {
2715            if i & (1 << qubit) == 0 {
2716                let j = i | (1 << qubit);
2717                if j < state_size {
2718                    new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2719                        - Complex64::new(sin_half, 0.0) * state[j];
2720                    new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2721                        + Complex64::new(cos_half, 0.0) * state[j];
2722                }
2723            }
2724        }
2725
2726        Ok(new_state)
2727    }
2728
2729    /// Get LSTM gates reference
2730    pub fn get_lstm_gates(&self) -> &[LSTMGate] {
2731        &self.lstm_gates
2732    }
2733}
2734
2735/// Quantum Attention Layer
2736#[derive(Debug)]
2737pub struct QuantumAttentionLayer {
2738    /// Number of qubits
2739    num_qubits: usize,
2740    /// Layer configuration
2741    config: QMLLayerConfig,
2742    /// Parameters
2743    parameters: Array1<f64>,
2744    /// Attention structure
2745    attention_structure: Vec<AttentionHead>,
2746}
2747
2748impl QuantumAttentionLayer {
2749    /// Create new quantum attention layer
2750    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2751        let mut layer = Self {
2752            num_qubits,
2753            config: config.clone(),
2754            parameters: Array1::zeros(config.num_parameters),
2755            attention_structure: Vec::new(),
2756        };
2757
2758        layer.initialize_parameters();
2759        layer.build_attention_structure()?;
2760
2761        Ok(layer)
2762    }
2763
2764    /// Initialize parameters
2765    fn initialize_parameters(&mut self) {
2766        let mut rng = thread_rng();
2767        for param in &mut self.parameters {
2768            *param = rng.gen_range(-PI..PI);
2769        }
2770    }
2771
2772    /// Build attention structure
2773    fn build_attention_structure(&mut self) -> Result<()> {
2774        let num_heads = 2; // Multi-head attention
2775        let params_per_head = self.parameters.len() / num_heads;
2776
2777        for head in 0..num_heads {
2778            self.attention_structure.push(AttentionHead {
2779                head_id: head,
2780                parameter_start: head * params_per_head,
2781                parameter_count: params_per_head,
2782                query_qubits: (0..self.num_qubits / 2).collect(),
2783                key_qubits: (self.num_qubits / 2..self.num_qubits).collect(),
2784            });
2785        }
2786
2787        Ok(())
2788    }
2789}
2790
2791impl QMLLayer for QuantumAttentionLayer {
2792    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2793        let mut state = input.clone();
2794
2795        // Apply attention heads
2796        for head in &self.attention_structure {
2797            state = self.apply_attention_head(&state, head)?;
2798        }
2799
2800        Ok(state)
2801    }
2802
2803    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2804        Ok(gradient.clone())
2805    }
2806
2807    fn get_parameters(&self) -> Array1<f64> {
2808        self.parameters.clone()
2809    }
2810
2811    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2812        self.parameters = parameters.clone();
2813    }
2814
2815    fn get_depth(&self) -> usize {
2816        self.attention_structure.len()
2817    }
2818
2819    fn get_gate_count(&self) -> usize {
2820        self.parameters.len()
2821    }
2822
2823    fn get_num_parameters(&self) -> usize {
2824        self.parameters.len()
2825    }
2826}
2827
2828impl QuantumAttentionLayer {
2829    /// Apply attention head
2830    fn apply_attention_head(
2831        &self,
2832        state: &Array1<Complex64>,
2833        head: &AttentionHead,
2834    ) -> Result<Array1<Complex64>> {
2835        let mut new_state = state.clone();
2836
2837        // Simplified quantum attention mechanism
2838        for i in 0..head.parameter_count {
2839            let param_idx = head.parameter_start + i;
2840            if param_idx < self.parameters.len() {
2841                let angle = self.parameters[param_idx];
2842
2843                // Apply cross-attention between query and key qubits
2844                if i < head.query_qubits.len() && i < head.key_qubits.len() {
2845                    let query_qubit = head.query_qubits[i];
2846                    let key_qubit = head.key_qubits[i];
2847
2848                    new_state =
2849                        self.apply_attention_gate(&new_state, query_qubit, key_qubit, angle)?;
2850                }
2851            }
2852        }
2853
2854        Ok(new_state)
2855    }
2856
2857    /// Apply attention gate (parameterized two-qubit interaction)
2858    fn apply_attention_gate(
2859        &self,
2860        state: &Array1<Complex64>,
2861        query_qubit: usize,
2862        key_qubit: usize,
2863        angle: f64,
2864    ) -> Result<Array1<Complex64>> {
2865        let state_size = state.len();
2866        let mut new_state = state.clone();
2867
2868        // Apply controlled rotation based on attention score
2869        let cos_val = angle.cos();
2870        let sin_val = angle.sin();
2871
2872        for i in 0..state_size {
2873            if (i & (1 << query_qubit)) != 0 {
2874                // Query qubit is |1⟩, apply attention
2875                let key_state = (i & (1 << key_qubit)) != 0;
2876                let attention_phase = if key_state {
2877                    Complex64::new(cos_val, sin_val)
2878                } else {
2879                    Complex64::new(cos_val, -sin_val)
2880                };
2881                new_state[i] *= attention_phase;
2882            }
2883        }
2884
2885        Ok(new_state)
2886    }
2887
2888    /// Get attention structure reference
2889    pub fn get_attention_structure(&self) -> &[AttentionHead] {
2890        &self.attention_structure
2891    }
2892}
2893
2894/// Training state for QML framework
2895#[derive(Debug, Clone)]
2896pub struct QMLTrainingState {
2897    /// Current epoch
2898    pub current_epoch: usize,
2899    /// Current learning rate
2900    pub current_learning_rate: f64,
2901    /// Best validation loss achieved
2902    pub best_validation_loss: f64,
2903    /// Patience counter for early stopping
2904    pub patience_counter: usize,
2905    /// Training loss history
2906    pub training_loss_history: Vec<f64>,
2907    /// Validation loss history
2908    pub validation_loss_history: Vec<f64>,
2909}
2910
2911impl Default for QMLTrainingState {
2912    fn default() -> Self {
2913        Self::new()
2914    }
2915}
2916
2917impl QMLTrainingState {
2918    /// Create new training state
2919    pub const fn new() -> Self {
2920        Self {
2921            current_epoch: 0,
2922            current_learning_rate: 0.01,
2923            best_validation_loss: f64::INFINITY,
2924            patience_counter: 0,
2925            training_loss_history: Vec::new(),
2926            validation_loss_history: Vec::new(),
2927        }
2928    }
2929}
2930
2931/// Training result for QML framework
2932#[derive(Debug, Clone)]
2933pub struct QMLTrainingResult {
2934    /// Final training loss
2935    pub final_training_loss: f64,
2936    /// Final validation loss
2937    pub final_validation_loss: f64,
2938    /// Best validation loss achieved
2939    pub best_validation_loss: f64,
2940    /// Number of epochs trained
2941    pub epochs_trained: usize,
2942    /// Total training time
2943    pub total_training_time: std::time::Duration,
2944    /// Training metrics per epoch
2945    pub training_metrics: Vec<QMLEpochMetrics>,
2946    /// Quantum advantage metrics
2947    pub quantum_advantage_metrics: QuantumAdvantageMetrics,
2948}
2949
2950/// Training metrics for a single epoch
2951#[derive(Debug, Clone)]
2952pub struct QMLEpochMetrics {
2953    /// Epoch number
2954    pub epoch: usize,
2955    /// Training loss
2956    pub training_loss: f64,
2957    /// Validation loss
2958    pub validation_loss: f64,
2959    /// Time taken for epoch
2960    pub epoch_time: std::time::Duration,
2961    /// Learning rate used
2962    pub learning_rate: f64,
2963}
2964
2965/// Quantum advantage metrics
2966#[derive(Debug, Clone, Serialize, Deserialize)]
2967pub struct QuantumAdvantageMetrics {
2968    /// Quantum volume achieved
2969    pub quantum_volume: f64,
2970    /// Classical simulation cost estimate
2971    pub classical_simulation_cost: f64,
2972    /// Quantum speedup factor
2973    pub quantum_speedup_factor: f64,
2974    /// Circuit depth
2975    pub circuit_depth: usize,
2976    /// Total gate count
2977    pub gate_count: usize,
2978    /// Entanglement measure
2979    pub entanglement_measure: f64,
2980}
2981
2982/// QML framework statistics
2983#[derive(Debug, Clone)]
2984pub struct QMLStats {
2985    /// Number of forward passes
2986    pub forward_passes: usize,
2987    /// Number of backward passes
2988    pub backward_passes: usize,
2989    /// Total training time
2990    pub total_training_time: std::time::Duration,
2991    /// Average epoch time
2992    pub average_epoch_time: std::time::Duration,
2993    /// Peak memory usage
2994    pub peak_memory_usage: usize,
2995    /// Number of parameters
2996    pub num_parameters: usize,
2997}
2998
2999impl Default for QMLStats {
3000    fn default() -> Self {
3001        Self::new()
3002    }
3003}
3004
3005impl QMLStats {
3006    /// Create new statistics
3007    pub const fn new() -> Self {
3008        Self {
3009            forward_passes: 0,
3010            backward_passes: 0,
3011            total_training_time: std::time::Duration::from_secs(0),
3012            average_epoch_time: std::time::Duration::from_secs(0),
3013            peak_memory_usage: 0,
3014            num_parameters: 0,
3015        }
3016    }
3017}
3018
3019/// Parameterized quantum circuit gate
3020#[derive(Debug, Clone)]
3021pub struct PQCGate {
3022    /// Gate type
3023    pub gate_type: PQCGateType,
3024    /// Qubits involved
3025    pub qubits: Vec<usize>,
3026    /// Parameter index (if parameterized)
3027    pub parameter_index: Option<usize>,
3028}
3029
3030/// Types of PQC gates
3031#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3032pub enum PQCGateType {
3033    /// Single-qubit rotation gate
3034    SingleQubit(RotationGate),
3035    /// Two-qubit gate
3036    TwoQubit(TwoQubitGate),
3037}
3038
3039/// Two-qubit gates
3040#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3041pub enum TwoQubitGate {
3042    /// CNOT gate
3043    CNOT,
3044    /// Controlled-Z gate
3045    CZ,
3046    /// Swap gate
3047    SWAP,
3048    /// Controlled-Phase gate
3049    CPhase,
3050}
3051
3052/// Convolutional filter structure
3053#[derive(Debug, Clone)]
3054pub struct ConvolutionalFilter {
3055    /// Qubits in the filter
3056    pub qubits: Vec<usize>,
3057    /// Parameter indices
3058    pub parameter_indices: Vec<usize>,
3059}
3060
3061/// Dense layer connection
3062#[derive(Debug, Clone)]
3063pub struct DenseConnection {
3064    /// First qubit
3065    pub qubit1: usize,
3066    /// Second qubit
3067    pub qubit2: usize,
3068    /// Parameter index
3069    pub parameter_index: usize,
3070}
3071
3072/// LSTM gate structure
3073#[derive(Debug, Clone)]
3074pub struct LSTMGate {
3075    /// LSTM gate type
3076    pub gate_type: LSTMGateType,
3077    /// Starting parameter index
3078    pub parameter_start: usize,
3079    /// Number of parameters
3080    pub parameter_count: usize,
3081}
3082
3083/// LSTM gate types
3084#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3085pub enum LSTMGateType {
3086    /// Forget gate
3087    Forget,
3088    /// Input gate
3089    Input,
3090    /// Output gate
3091    Output,
3092    /// Candidate values
3093    Candidate,
3094}
3095
3096/// Attention head structure
3097#[derive(Debug, Clone)]
3098pub struct AttentionHead {
3099    /// Head identifier
3100    pub head_id: usize,
3101    /// Starting parameter index
3102    pub parameter_start: usize,
3103    /// Number of parameters
3104    pub parameter_count: usize,
3105    /// Query qubits
3106    pub query_qubits: Vec<usize>,
3107    /// Key qubits
3108    pub key_qubits: Vec<usize>,
3109}
3110
3111/// QML benchmark results
3112#[derive(Debug, Clone, Serialize, Deserialize)]
3113pub struct QMLBenchmarkResults {
3114    /// Training time per method
3115    pub training_times: HashMap<String, std::time::Duration>,
3116    /// Final accuracies
3117    pub final_accuracies: HashMap<String, f64>,
3118    /// Convergence rates
3119    pub convergence_rates: HashMap<String, f64>,
3120    /// Memory usage
3121    pub memory_usage: HashMap<String, usize>,
3122    /// Quantum advantage metrics
3123    pub quantum_advantage: HashMap<String, QuantumAdvantageMetrics>,
3124    /// Parameter counts
3125    pub parameter_counts: HashMap<String, usize>,
3126    /// Circuit depths
3127    pub circuit_depths: HashMap<String, usize>,
3128    /// Gate counts
3129    pub gate_counts: HashMap<String, usize>,
3130}
3131
3132/// Utility functions for QML
3133pub struct QMLUtils;
3134
3135impl QMLUtils {
3136    /// Generate synthetic training data for testing
3137    pub fn generate_synthetic_data(
3138        num_samples: usize,
3139        input_dim: usize,
3140        output_dim: usize,
3141    ) -> (Vec<Array1<f64>>, Vec<Array1<f64>>) {
3142        let mut rng = thread_rng();
3143        let mut inputs = Vec::new();
3144        let mut outputs = Vec::new();
3145
3146        for _ in 0..num_samples {
3147            let input: Array1<f64> = Array1::from_vec(
3148                (0..input_dim)
3149                    .map(|_| rng.gen_range(-1.0_f64..1.0_f64))
3150                    .collect(),
3151            );
3152
3153            // Generate output based on some function of input
3154            let output = Array1::from_vec(
3155                (0..output_dim)
3156                    .map(|i| {
3157                        if i < input_dim {
3158                            input[i].sin() // Simple nonlinear transformation
3159                        } else {
3160                            rng.gen_range(-1.0_f64..1.0_f64)
3161                        }
3162                    })
3163                    .collect(),
3164            );
3165
3166            inputs.push(input);
3167            outputs.push(output);
3168        }
3169
3170        (inputs, outputs)
3171    }
3172
3173    /// Split data into training and validation sets
3174    pub fn train_test_split(
3175        inputs: Vec<Array1<f64>>,
3176        outputs: Vec<Array1<f64>>,
3177        test_ratio: f64,
3178    ) -> (
3179        Vec<(Array1<f64>, Array1<f64>)>,
3180        Vec<(Array1<f64>, Array1<f64>)>,
3181    ) {
3182        let total_samples = inputs.len();
3183        let test_samples = ((total_samples as f64) * test_ratio) as usize;
3184        let train_samples = total_samples - test_samples;
3185
3186        let mut combined: Vec<(Array1<f64>, Array1<f64>)> =
3187            inputs.into_iter().zip(outputs).collect();
3188
3189        // Shuffle data
3190        let mut rng = thread_rng();
3191        for i in (1..combined.len()).rev() {
3192            let j = rng.gen_range(0..=i);
3193            combined.swap(i, j);
3194        }
3195
3196        let (train_data, test_data) = combined.split_at(train_samples);
3197        (train_data.to_vec(), test_data.to_vec())
3198    }
3199
3200    /// Evaluate model accuracy
3201    pub fn evaluate_accuracy(
3202        predictions: &[Array1<f64>],
3203        targets: &[Array1<f64>],
3204        threshold: f64,
3205    ) -> f64 {
3206        let mut correct = 0;
3207        let total = predictions.len();
3208
3209        for (pred, target) in predictions.iter().zip(targets.iter()) {
3210            let diff = pred - target;
3211            let mse = diff.iter().map(|x| x * x).sum::<f64>() / diff.len() as f64;
3212            if mse < threshold {
3213                correct += 1;
3214            }
3215        }
3216
3217        correct as f64 / total as f64
3218    }
3219
3220    /// Compute quantum circuit complexity metrics
3221    pub fn compute_circuit_complexity(
3222        num_qubits: usize,
3223        depth: usize,
3224        gate_count: usize,
3225    ) -> HashMap<String, f64> {
3226        let mut metrics = HashMap::new();
3227
3228        // State space size
3229        let state_space_size = 2.0_f64.powi(num_qubits as i32);
3230        metrics.insert("state_space_size".to_string(), state_space_size);
3231
3232        // Circuit complexity (depth * gates)
3233        let circuit_complexity = (depth * gate_count) as f64;
3234        metrics.insert("circuit_complexity".to_string(), circuit_complexity);
3235
3236        // Classical simulation cost estimate
3237        let classical_cost = state_space_size * gate_count as f64;
3238        metrics.insert("classical_simulation_cost".to_string(), classical_cost);
3239
3240        // Quantum advantage estimate (log scale)
3241        let quantum_advantage = classical_cost.log(circuit_complexity);
3242        metrics.insert("quantum_advantage_estimate".to_string(), quantum_advantage);
3243
3244        metrics
3245    }
3246}
3247
3248/// Benchmark quantum machine learning implementations
3249pub fn benchmark_quantum_ml_layers(config: &QMLConfig) -> Result<QMLBenchmarkResults> {
3250    let mut results = QMLBenchmarkResults {
3251        training_times: HashMap::new(),
3252        final_accuracies: HashMap::new(),
3253        convergence_rates: HashMap::new(),
3254        memory_usage: HashMap::new(),
3255        quantum_advantage: HashMap::new(),
3256        parameter_counts: HashMap::new(),
3257        circuit_depths: HashMap::new(),
3258        gate_counts: HashMap::new(),
3259    };
3260
3261    // Generate test data
3262    let (inputs, outputs) =
3263        QMLUtils::generate_synthetic_data(100, config.num_qubits, config.num_qubits);
3264    let (train_data, val_data) = QMLUtils::train_test_split(inputs, outputs, 0.2);
3265
3266    // Benchmark different QML architectures
3267    let architectures = vec![
3268        QMLArchitectureType::VariationalQuantumCircuit,
3269        QMLArchitectureType::QuantumConvolutionalNN,
3270        // Add more architectures as needed
3271    ];
3272
3273    for architecture in architectures {
3274        let arch_name = format!("{architecture:?}");
3275
3276        // Create configuration for this architecture
3277        let mut arch_config = config.clone();
3278        arch_config.architecture_type = architecture;
3279
3280        // Create and train model
3281        let start_time = std::time::Instant::now();
3282        let mut framework = QuantumMLFramework::new(arch_config)?;
3283
3284        let training_result = framework.train(&train_data, Some(&val_data))?;
3285        let training_time = start_time.elapsed();
3286
3287        // Evaluate final accuracy
3288        let final_accuracy = framework.evaluate(&val_data)?;
3289
3290        // Store results
3291        results
3292            .training_times
3293            .insert(arch_name.clone(), training_time);
3294        results
3295            .final_accuracies
3296            .insert(arch_name.clone(), 1.0 / (1.0 + final_accuracy)); // Convert loss to accuracy
3297        results.convergence_rates.insert(
3298            arch_name.clone(),
3299            training_result.epochs_trained as f64 / config.training_config.epochs as f64,
3300        );
3301        results
3302            .memory_usage
3303            .insert(arch_name.clone(), framework.get_stats().peak_memory_usage);
3304        results
3305            .quantum_advantage
3306            .insert(arch_name.clone(), training_result.quantum_advantage_metrics);
3307        results.parameter_counts.insert(
3308            arch_name.clone(),
3309            framework
3310                .layers
3311                .iter()
3312                .map(|l| l.get_num_parameters())
3313                .sum(),
3314        );
3315        results.circuit_depths.insert(
3316            arch_name.clone(),
3317            framework.layers.iter().map(|l| l.get_depth()).sum(),
3318        );
3319        results.gate_counts.insert(
3320            arch_name.clone(),
3321            framework.layers.iter().map(|l| l.get_gate_count()).sum(),
3322        );
3323    }
3324
3325    Ok(results)
3326}