quantrs2_sim/
quantum_ldpc_codes.rs

1//! Quantum Low-Density Parity-Check (LDPC) Codes with Belief Propagation Decoding
2//!
3//! This module implements quantum LDPC codes, which are a class of quantum error correction
4//! codes characterized by sparse parity-check matrices. LDPC codes offer excellent error
5//! correction performance with efficient decoding algorithms, making them practical for
6//! large-scale quantum error correction.
7//!
8//! Key features:
9//! - Sparse parity-check matrix construction and optimization
10//! - Belief propagation decoding with message passing
11//! - Support for both CSS and non-CSS LDPC codes
12//! - Tanner graph representation for efficient processing
13//! - Syndrome decoding with iterative refinement
14//! - Performance analysis and threshold estimation
15//! - Hardware-aware optimization for different architectures
16
17use scirs2_core::ndarray::Array2;
18use serde::{Deserialize, Serialize};
19use std::collections::{HashMap, HashSet, VecDeque};
20
21use crate::circuit_interfaces::{
22    CircuitInterface, InterfaceCircuit, InterfaceGate, InterfaceGateType,
23};
24use crate::error::Result;
25
26/// LDPC code construction method
27#[derive(Debug, Clone, Copy, PartialEq, Eq)]
28pub enum LDPCConstructionMethod {
29    /// Random regular LDPC codes
30    RandomRegular,
31    /// Progressive edge-growth (PEG) construction
32    ProgressiveEdgeGrowth,
33    /// Gallager construction
34    Gallager,
35    /// MacKay construction
36    MacKay,
37    /// Quantum-specific constructions
38    QuantumBicycle,
39    /// Surface code as LDPC
40    SurfaceCode,
41}
42
43/// Belief propagation decoding algorithm
44#[derive(Debug, Clone, Copy, PartialEq, Eq)]
45pub enum BeliefPropagationAlgorithm {
46    /// Sum-product algorithm
47    SumProduct,
48    /// Min-sum algorithm (simplified)
49    MinSum,
50    /// Normalized min-sum
51    NormalizedMinSum,
52    /// Offset min-sum
53    OffsetMinSum,
54    /// Layered belief propagation
55    LayeredBP,
56}
57
58/// LDPC code configuration
59#[derive(Debug, Clone)]
60pub struct LDPCConfig {
61    /// Number of information bits
62    pub k: usize,
63    /// Code length (number of physical qubits)
64    pub n: usize,
65    /// Number of parity checks
66    pub m: usize,
67    /// Variable node degree (for regular codes)
68    pub dv: usize,
69    /// Check node degree (for regular codes)
70    pub dc: usize,
71    /// Construction method
72    pub construction_method: LDPCConstructionMethod,
73    /// Belief propagation algorithm
74    pub bp_algorithm: BeliefPropagationAlgorithm,
75    /// Maximum BP iterations
76    pub max_bp_iterations: usize,
77    /// Convergence threshold
78    pub convergence_threshold: f64,
79    /// Damping factor for message updates
80    pub damping_factor: f64,
81    /// Enable early termination
82    pub early_termination: bool,
83    /// Noise variance for channel
84    pub noise_variance: f64,
85}
86
87impl Default for LDPCConfig {
88    fn default() -> Self {
89        Self {
90            k: 10,
91            n: 20,
92            m: 10,
93            dv: 3,
94            dc: 6,
95            construction_method: LDPCConstructionMethod::ProgressiveEdgeGrowth,
96            bp_algorithm: BeliefPropagationAlgorithm::SumProduct,
97            max_bp_iterations: 50,
98            convergence_threshold: 1e-6,
99            damping_factor: 0.8,
100            early_termination: true,
101            noise_variance: 0.1,
102        }
103    }
104}
105
106/// Tanner graph representation of LDPC code
107#[derive(Debug, Clone)]
108pub struct TannerGraph {
109    /// Variable nodes (corresponding to qubits)
110    pub variable_nodes: Vec<VariableNode>,
111    /// Check nodes (corresponding to stabilizers)
112    pub check_nodes: Vec<CheckNode>,
113    /// Adjacency matrix (variable to check connections)
114    pub adjacency_matrix: Array2<bool>,
115    /// Parity check matrix H
116    pub parity_check_matrix: Array2<u8>,
117}
118
119/// Variable node in Tanner graph
120#[derive(Debug, Clone)]
121pub struct VariableNode {
122    /// Node index
123    pub id: usize,
124    /// Connected check nodes
125    pub connected_checks: Vec<usize>,
126    /// Current belief (log-likelihood ratio)
127    pub belief: f64,
128    /// Channel information
129    pub channel_llr: f64,
130    /// Incoming messages from check nodes
131    pub incoming_messages: HashMap<usize, f64>,
132}
133
134/// Check node in Tanner graph
135#[derive(Debug, Clone)]
136pub struct CheckNode {
137    /// Node index
138    pub id: usize,
139    /// Connected variable nodes
140    pub connected_variables: Vec<usize>,
141    /// Incoming messages from variable nodes
142    pub incoming_messages: HashMap<usize, f64>,
143    /// Syndrome value
144    pub syndrome: bool,
145}
146
147impl VariableNode {
148    /// Create new variable node
149    pub fn new(id: usize) -> Self {
150        Self {
151            id,
152            connected_checks: Vec::new(),
153            belief: 0.0,
154            channel_llr: 0.0,
155            incoming_messages: HashMap::new(),
156        }
157    }
158
159    /// Update belief based on incoming messages
160    pub fn update_belief(&mut self) {
161        self.belief = self.channel_llr + self.incoming_messages.values().sum::<f64>();
162    }
163
164    /// Compute outgoing message to specific check node
165    pub fn compute_outgoing_message(&self, check_id: usize) -> f64 {
166        let message_sum: f64 = self
167            .incoming_messages
168            .iter()
169            .filter(|(&id, _)| id != check_id)
170            .map(|(_, &value)| value)
171            .sum();
172        self.channel_llr + message_sum
173    }
174}
175
176impl CheckNode {
177    /// Create new check node
178    pub fn new(id: usize) -> Self {
179        Self {
180            id,
181            connected_variables: Vec::new(),
182            incoming_messages: HashMap::new(),
183            syndrome: false,
184        }
185    }
186
187    /// Compute outgoing message to specific variable node using sum-product
188    pub fn compute_outgoing_message_sum_product(&self, var_id: usize) -> f64 {
189        let product: f64 = self
190            .incoming_messages
191            .iter()
192            .filter(|(&id, _)| id != var_id)
193            .map(|(_, &msg)| msg.tanh() / 2.0)
194            .product();
195
196        2.0 * product.atanh()
197    }
198
199    /// Compute outgoing message using min-sum algorithm
200    pub fn compute_outgoing_message_min_sum(&self, var_id: usize) -> f64 {
201        let other_messages: Vec<f64> = self
202            .incoming_messages
203            .iter()
204            .filter(|(&id, _)| id != var_id)
205            .map(|(_, &msg)| msg)
206            .collect();
207
208        if other_messages.is_empty() {
209            return 0.0;
210        }
211
212        let sign_product: f64 = other_messages
213            .iter()
214            .map(|&msg| if msg >= 0.0 { 1.0 } else { -1.0 })
215            .product();
216
217        let min_magnitude = other_messages
218            .iter()
219            .map(|&msg| msg.abs())
220            .fold(f64::INFINITY, |a, b| a.min(b));
221
222        sign_product * min_magnitude
223    }
224}
225
226/// Quantum LDPC code implementation
227pub struct QuantumLDPCCode {
228    /// Configuration
229    config: LDPCConfig,
230    /// Tanner graph representation
231    tanner_graph: TannerGraph,
232    /// X stabilizer generators
233    #[allow(dead_code)]
234    x_stabilizers: Array2<u8>,
235    /// Z stabilizer generators
236    #[allow(dead_code)]
237    z_stabilizers: Array2<u8>,
238    /// Logical X operators
239    #[allow(dead_code)]
240    logical_x_ops: Array2<u8>,
241    /// Logical Z operators
242    #[allow(dead_code)]
243    logical_z_ops: Array2<u8>,
244    /// Circuit interface
245    #[allow(dead_code)]
246    circuit_interface: CircuitInterface,
247    /// Performance statistics
248    stats: LDPCStats,
249}
250
251/// LDPC performance statistics
252#[derive(Debug, Clone, Default, Serialize, Deserialize)]
253pub struct LDPCStats {
254    /// Total decoding attempts
255    pub total_decodings: usize,
256    /// Successful decodings
257    pub successful_decodings: usize,
258    /// Average BP iterations
259    pub avg_bp_iterations: f64,
260    /// Block error rate
261    pub block_error_rate: f64,
262    /// Bit error rate
263    pub bit_error_rate: f64,
264    /// Average decoding time
265    pub avg_decoding_time_ms: f64,
266    /// Threshold estimate
267    pub threshold_estimate: f64,
268    /// Convergence rate
269    pub convergence_rate: f64,
270}
271
272impl LDPCStats {
273    /// Update statistics after decoding
274    pub fn update_after_decoding(&mut self, success: bool, iterations: usize, time_ms: f64) {
275        self.total_decodings += 1;
276        if success {
277            self.successful_decodings += 1;
278        }
279
280        let prev_avg_iter = self.avg_bp_iterations;
281        self.avg_bp_iterations = prev_avg_iter
282            .mul_add((self.total_decodings - 1) as f64, iterations as f64)
283            / self.total_decodings as f64;
284
285        let prev_avg_time = self.avg_decoding_time_ms;
286        self.avg_decoding_time_ms = prev_avg_time
287            .mul_add((self.total_decodings - 1) as f64, time_ms)
288            / self.total_decodings as f64;
289
290        self.block_error_rate =
291            1.0 - (self.successful_decodings as f64 / self.total_decodings as f64);
292        self.convergence_rate = self.successful_decodings as f64 / self.total_decodings as f64;
293    }
294}
295
296/// Belief propagation decoding result
297#[derive(Debug, Clone, Serialize, Deserialize)]
298pub struct BPDecodingResult {
299    /// Decoded codeword
300    pub decoded_bits: Vec<bool>,
301    /// Final syndrome
302    pub final_syndrome: Vec<bool>,
303    /// Number of BP iterations
304    pub iterations: usize,
305    /// Converged successfully
306    pub converged: bool,
307    /// Final log-likelihood ratios
308    pub final_llrs: Vec<f64>,
309    /// Decoding time in milliseconds
310    pub decoding_time_ms: f64,
311    /// Error correction success
312    pub success: bool,
313}
314
315impl QuantumLDPCCode {
316    /// Create new quantum LDPC code
317    pub fn new(config: LDPCConfig) -> Result<Self> {
318        let circuit_interface = CircuitInterface::new(Default::default())?;
319
320        // Construct Tanner graph
321        let tanner_graph = Self::construct_tanner_graph(&config)?;
322
323        // Generate stabilizer matrices
324        let (x_stabilizers, z_stabilizers) =
325            Self::generate_stabilizer_matrices(&config, &tanner_graph)?;
326
327        // Generate logical operators
328        let (logical_x_ops, logical_z_ops) =
329            Self::generate_logical_operators(&config, &x_stabilizers, &z_stabilizers)?;
330
331        Ok(Self {
332            config,
333            tanner_graph,
334            x_stabilizers,
335            z_stabilizers,
336            logical_x_ops,
337            logical_z_ops,
338            circuit_interface,
339            stats: LDPCStats::default(),
340        })
341    }
342
343    /// Construct Tanner graph based on configuration
344    fn construct_tanner_graph(config: &LDPCConfig) -> Result<TannerGraph> {
345        match config.construction_method {
346            LDPCConstructionMethod::RandomRegular => Self::construct_random_regular(config),
347            LDPCConstructionMethod::ProgressiveEdgeGrowth => Self::construct_peg(config),
348            LDPCConstructionMethod::Gallager => Self::construct_gallager(config),
349            LDPCConstructionMethod::MacKay => Self::construct_mackay(config),
350            LDPCConstructionMethod::QuantumBicycle => Self::construct_quantum_bicycle(config),
351            LDPCConstructionMethod::SurfaceCode => Self::construct_surface_code(config),
352        }
353    }
354
355    /// Construct random regular LDPC code
356    fn construct_random_regular(config: &LDPCConfig) -> Result<TannerGraph> {
357        let mut variable_nodes = Vec::with_capacity(config.n);
358        let mut check_nodes = Vec::with_capacity(config.m);
359        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
360
361        // Initialize nodes
362        for i in 0..config.n {
363            variable_nodes.push(VariableNode::new(i));
364        }
365        for i in 0..config.m {
366            check_nodes.push(CheckNode::new(i));
367        }
368
369        // Create edges for regular LDPC code
370        let mut edges = Vec::new();
371
372        // Add edges from variable nodes
373        for var_id in 0..config.n {
374            for _ in 0..config.dv {
375                edges.push(var_id);
376            }
377        }
378
379        // Shuffle edges for randomness
380        for i in 0..edges.len() {
381            let j = fastrand::usize(i..edges.len());
382            edges.swap(i, j);
383        }
384
385        // Assign edges to check nodes
386        let mut edge_idx = 0;
387        for check_id in 0..config.m {
388            for _ in 0..config.dc {
389                if edge_idx < edges.len() {
390                    let var_id = edges[edge_idx];
391
392                    // Add connection
393                    variable_nodes[var_id].connected_checks.push(check_id);
394                    check_nodes[check_id].connected_variables.push(var_id);
395                    adjacency_matrix[[var_id, check_id]] = true;
396
397                    edge_idx += 1;
398                }
399            }
400        }
401
402        // Create parity check matrix
403        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
404        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
405            if *check_id {
406                parity_check_matrix[[var_id.1, var_id.0]] = 1;
407            }
408        }
409
410        Ok(TannerGraph {
411            variable_nodes,
412            check_nodes,
413            adjacency_matrix,
414            parity_check_matrix,
415        })
416    }
417
418    /// Construct LDPC code using Progressive Edge Growth (PEG)
419    fn construct_peg(config: &LDPCConfig) -> Result<TannerGraph> {
420        let mut variable_nodes = Vec::with_capacity(config.n);
421        let mut check_nodes = Vec::with_capacity(config.m);
422        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
423
424        // Initialize nodes
425        for i in 0..config.n {
426            variable_nodes.push(VariableNode::new(i));
427        }
428        for i in 0..config.m {
429            check_nodes.push(CheckNode::new(i));
430        }
431
432        // PEG algorithm: for each variable node, connect to checks that maximize girth
433        for var_id in 0..config.n {
434            let mut connected_checks = HashSet::new();
435
436            for _ in 0..config.dv {
437                let best_check = Self::find_best_check_for_peg(
438                    var_id,
439                    &connected_checks,
440                    &variable_nodes,
441                    &check_nodes,
442                    &adjacency_matrix,
443                    config.m,
444                );
445
446                if let Some(check_id) = best_check {
447                    // Add connection
448                    variable_nodes[var_id].connected_checks.push(check_id);
449                    check_nodes[check_id].connected_variables.push(var_id);
450                    adjacency_matrix[[var_id, check_id]] = true;
451                    connected_checks.insert(check_id);
452                }
453            }
454        }
455
456        // Create parity check matrix
457        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
458        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
459            if *check_id {
460                parity_check_matrix[[var_id.1, var_id.0]] = 1;
461            }
462        }
463
464        Ok(TannerGraph {
465            variable_nodes,
466            check_nodes,
467            adjacency_matrix,
468            parity_check_matrix,
469        })
470    }
471
472    /// Find best check node for PEG construction
473    fn find_best_check_for_peg(
474        var_id: usize,
475        connected_checks: &HashSet<usize>,
476        _variable_nodes: &[VariableNode],
477        _check_nodes: &[CheckNode],
478        adjacency_matrix: &Array2<bool>,
479        num_checks: usize,
480    ) -> Option<usize> {
481        let mut best_check = None;
482        let mut best_girth = 0;
483
484        for check_id in 0..num_checks {
485            if connected_checks.contains(&check_id) {
486                continue;
487            }
488
489            // Calculate local girth if we connect to this check
490            let girth = Self::calculate_local_girth(var_id, check_id, adjacency_matrix);
491
492            if girth > best_girth {
493                best_girth = girth;
494                best_check = Some(check_id);
495            }
496        }
497
498        best_check
499    }
500
501    /// Calculate local girth around a potential edge
502    fn calculate_local_girth(
503        var_id: usize,
504        check_id: usize,
505        adjacency_matrix: &Array2<bool>,
506    ) -> usize {
507        // Simplified girth calculation - BFS to find shortest cycle
508        let mut visited_vars = HashSet::new();
509        let mut visited_checks = HashSet::new();
510        let mut queue = VecDeque::new();
511
512        queue.push_back((var_id, 0, true)); // (node_id, distance, is_variable)
513        visited_vars.insert(var_id);
514
515        while let Some((node_id, dist, is_var)) = queue.pop_front() {
516            if dist > 6 {
517                // Limit search depth
518                break;
519            }
520
521            if is_var {
522                // Variable node - explore connected checks
523                for (check_idx, &connected) in adjacency_matrix.row(node_id).indexed_iter() {
524                    if connected && check_idx != check_id {
525                        if visited_checks.contains(&check_idx) {
526                            return dist * 2; // Found cycle
527                        }
528                        visited_checks.insert(check_idx);
529                        queue.push_back((check_idx, dist + 1, false));
530                    }
531                }
532            } else {
533                // Check node - explore connected variables
534                for (var_idx, &connected) in adjacency_matrix.column(node_id).indexed_iter() {
535                    if connected && var_idx != var_id {
536                        if visited_vars.contains(&var_idx) {
537                            return dist * 2 + 1; // Found cycle
538                        }
539                        visited_vars.insert(var_idx);
540                        queue.push_back((var_idx, dist + 1, true));
541                    }
542                }
543            }
544        }
545
546        12 // Default large girth if no cycle found
547    }
548
549    /// Construct Gallager LDPC code
550    fn construct_gallager(config: &LDPCConfig) -> Result<TannerGraph> {
551        // For simplicity, use random regular construction
552        // Real Gallager construction would be more sophisticated
553        Self::construct_random_regular(config)
554    }
555
556    /// Construct MacKay LDPC code
557    fn construct_mackay(config: &LDPCConfig) -> Result<TannerGraph> {
558        // For simplicity, use PEG construction
559        // Real MacKay construction would use specific algorithms
560        Self::construct_peg(config)
561    }
562
563    /// Construct quantum bicycle code
564    fn construct_quantum_bicycle(config: &LDPCConfig) -> Result<TannerGraph> {
565        // Simplified bicycle code construction
566        let mut variable_nodes = Vec::with_capacity(config.n);
567        let mut check_nodes = Vec::with_capacity(config.m);
568        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
569
570        // Initialize nodes
571        for i in 0..config.n {
572            variable_nodes.push(VariableNode::new(i));
573        }
574        for i in 0..config.m {
575            check_nodes.push(CheckNode::new(i));
576        }
577
578        // Bicycle code structure: cyclic connections
579        let l = config.n / 2;
580        for i in 0..l {
581            for j in 0..config.dv {
582                let check_id = (i + j * l / config.dv) % config.m;
583
584                // Connect variable i to check_id
585                variable_nodes[i].connected_checks.push(check_id);
586                check_nodes[check_id].connected_variables.push(i);
587                adjacency_matrix[[i, check_id]] = true;
588
589                // Connect variable i+l to check_id (bicycle structure)
590                if i + l < config.n {
591                    variable_nodes[i + l].connected_checks.push(check_id);
592                    check_nodes[check_id].connected_variables.push(i + l);
593                    adjacency_matrix[[i + l, check_id]] = true;
594                }
595            }
596        }
597
598        // Create parity check matrix
599        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
600        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
601            if *check_id {
602                parity_check_matrix[[var_id.1, var_id.0]] = 1;
603            }
604        }
605
606        Ok(TannerGraph {
607            variable_nodes,
608            check_nodes,
609            adjacency_matrix,
610            parity_check_matrix,
611        })
612    }
613
614    /// Construct surface code as LDPC
615    fn construct_surface_code(config: &LDPCConfig) -> Result<TannerGraph> {
616        // Simplified surface code construction
617        let d = (config.n as f64).sqrt() as usize; // Assume square lattice
618        let mut variable_nodes = Vec::with_capacity(config.n);
619        let mut check_nodes = Vec::with_capacity(config.m);
620        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
621
622        // Initialize nodes
623        for i in 0..config.n {
624            variable_nodes.push(VariableNode::new(i));
625        }
626        for i in 0..config.m {
627            check_nodes.push(CheckNode::new(i));
628        }
629
630        // Surface code structure: each stabilizer connects to 4 neighboring qubits
631        for check_id in 0..config.m {
632            let row = check_id / d;
633            let col = check_id % d;
634
635            // Connect to neighboring qubits (up, down, left, right)
636            let neighbors = [
637                (row.wrapping_sub(1), col),
638                (row + 1, col),
639                (row, col.wrapping_sub(1)),
640                (row, col + 1),
641            ];
642
643            for (r, c) in &neighbors {
644                if *r < d && *c < d {
645                    let var_id = r * d + c;
646                    if var_id < config.n {
647                        variable_nodes[var_id].connected_checks.push(check_id);
648                        check_nodes[check_id].connected_variables.push(var_id);
649                        adjacency_matrix[[var_id, check_id]] = true;
650                    }
651                }
652            }
653        }
654
655        // Create parity check matrix
656        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
657        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
658            if *check_id {
659                parity_check_matrix[[var_id.1, var_id.0]] = 1;
660            }
661        }
662
663        Ok(TannerGraph {
664            variable_nodes,
665            check_nodes,
666            adjacency_matrix,
667            parity_check_matrix,
668        })
669    }
670
671    /// Generate stabilizer matrices for quantum LDPC code
672    fn generate_stabilizer_matrices(
673        _config: &LDPCConfig,
674        tanner_graph: &TannerGraph,
675    ) -> Result<(Array2<u8>, Array2<u8>)> {
676        // For CSS codes, X and Z stabilizers are independent
677        let x_stabilizers = tanner_graph.parity_check_matrix.clone();
678        let z_stabilizers = tanner_graph.parity_check_matrix.clone();
679
680        Ok((x_stabilizers, z_stabilizers))
681    }
682
683    /// Generate logical operators
684    fn generate_logical_operators(
685        config: &LDPCConfig,
686        _x_stabilizers: &Array2<u8>,
687        _z_stabilizers: &Array2<u8>,
688    ) -> Result<(Array2<u8>, Array2<u8>)> {
689        let k = config.k;
690        let n = config.n;
691
692        // Simplified logical operator generation
693        let mut logical_x_ops = Array2::zeros((k, n));
694        let mut logical_z_ops = Array2::zeros((k, n));
695
696        // For demonstration, create simple logical operators
697        for i in 0..k.min(n) {
698            logical_x_ops[[i, i]] = 1;
699            logical_z_ops[[i, i]] = 1;
700        }
701
702        Ok((logical_x_ops, logical_z_ops))
703    }
704
705    /// Perform belief propagation decoding
706    pub fn decode_belief_propagation(
707        &mut self,
708        received_llrs: &[f64],
709        syndrome: &[bool],
710    ) -> Result<BPDecodingResult> {
711        let start_time = std::time::Instant::now();
712
713        // Initialize channel LLRs
714        for (i, &llr) in received_llrs.iter().enumerate() {
715            if i < self.tanner_graph.variable_nodes.len() {
716                self.tanner_graph.variable_nodes[i].channel_llr = llr;
717            }
718        }
719
720        // Set syndromes
721        for (i, &syn) in syndrome.iter().enumerate() {
722            if i < self.tanner_graph.check_nodes.len() {
723                self.tanner_graph.check_nodes[i].syndrome = syn;
724            }
725        }
726
727        let mut converged = false;
728        let mut iteration = 0;
729
730        // Belief propagation iterations
731        while iteration < self.config.max_bp_iterations && !converged {
732            // Variable to check messages
733            self.update_variable_to_check_messages();
734
735            // Check to variable messages
736            self.update_check_to_variable_messages();
737
738            // Update variable beliefs
739            self.update_variable_beliefs();
740
741            // Check convergence
742            converged = self.check_convergence();
743
744            if self.config.early_termination && converged {
745                break;
746            }
747
748            iteration += 1;
749        }
750
751        // Extract final decoded bits
752        let decoded_bits = self.extract_decoded_bits();
753
754        // Calculate final syndrome
755        let final_syndrome = self.calculate_syndrome(&decoded_bits);
756
757        // Check if decoding was successful
758        let success = final_syndrome.iter().all(|&s| !s);
759
760        let decoding_time_ms = start_time.elapsed().as_secs_f64() * 1000.0;
761
762        // Update statistics
763        self.stats
764            .update_after_decoding(success, iteration, decoding_time_ms);
765
766        // Extract final LLRs
767        let final_llrs: Vec<f64> = self
768            .tanner_graph
769            .variable_nodes
770            .iter()
771            .map(|node| node.belief)
772            .collect();
773
774        Ok(BPDecodingResult {
775            decoded_bits,
776            final_syndrome,
777            iterations: iteration,
778            converged,
779            final_llrs,
780            decoding_time_ms,
781            success,
782        })
783    }
784
785    /// Update variable to check messages
786    fn update_variable_to_check_messages(&mut self) {
787        for var_node in &mut self.tanner_graph.variable_nodes {
788            for &check_id in &var_node.connected_checks.clone() {
789                let message = var_node.compute_outgoing_message(check_id);
790
791                // Apply damping
792                let old_message = self.tanner_graph.check_nodes[check_id]
793                    .incoming_messages
794                    .get(&var_node.id)
795                    .unwrap_or(&0.0);
796
797                let damped_message = self
798                    .config
799                    .damping_factor
800                    .mul_add(message, (1.0 - self.config.damping_factor) * old_message);
801
802                self.tanner_graph.check_nodes[check_id]
803                    .incoming_messages
804                    .insert(var_node.id, damped_message);
805            }
806        }
807    }
808
809    /// Update check to variable messages
810    fn update_check_to_variable_messages(&mut self) {
811        for check_node in &mut self.tanner_graph.check_nodes {
812            for &var_id in &check_node.connected_variables.clone() {
813                let message = match self.config.bp_algorithm {
814                    BeliefPropagationAlgorithm::SumProduct => {
815                        check_node.compute_outgoing_message_sum_product(var_id)
816                    }
817                    BeliefPropagationAlgorithm::MinSum => {
818                        check_node.compute_outgoing_message_min_sum(var_id)
819                    }
820                    BeliefPropagationAlgorithm::NormalizedMinSum => {
821                        let min_sum_msg = check_node.compute_outgoing_message_min_sum(var_id);
822                        min_sum_msg * 0.75 // Normalization factor
823                    }
824                    BeliefPropagationAlgorithm::OffsetMinSum => {
825                        let min_sum_msg = check_node.compute_outgoing_message_min_sum(var_id);
826                        let offset = 0.1;
827                        if min_sum_msg.abs() > offset {
828                            min_sum_msg.signum() * (min_sum_msg.abs() - offset)
829                        } else {
830                            0.0
831                        }
832                    }
833                    BeliefPropagationAlgorithm::LayeredBP => {
834                        // Simplified layered BP
835                        check_node.compute_outgoing_message_sum_product(var_id)
836                    }
837                };
838
839                // Apply damping
840                let old_message = self.tanner_graph.variable_nodes[var_id]
841                    .incoming_messages
842                    .get(&check_node.id)
843                    .unwrap_or(&0.0);
844
845                let damped_message = self
846                    .config
847                    .damping_factor
848                    .mul_add(message, (1.0 - self.config.damping_factor) * old_message);
849
850                self.tanner_graph.variable_nodes[var_id]
851                    .incoming_messages
852                    .insert(check_node.id, damped_message);
853            }
854        }
855    }
856
857    /// Update variable node beliefs
858    fn update_variable_beliefs(&mut self) {
859        for var_node in &mut self.tanner_graph.variable_nodes {
860            var_node.update_belief();
861        }
862    }
863
864    /// Check convergence of belief propagation
865    fn check_convergence(&self) -> bool {
866        // Check if syndrome is satisfied
867        let decoded_bits = self.extract_decoded_bits();
868        let syndrome = self.calculate_syndrome(&decoded_bits);
869
870        syndrome.iter().all(|&s| !s)
871    }
872
873    /// Extract decoded bits from current beliefs
874    fn extract_decoded_bits(&self) -> Vec<bool> {
875        self.tanner_graph
876            .variable_nodes
877            .iter()
878            .map(|node| node.belief < 0.0)
879            .collect()
880    }
881
882    /// Calculate syndrome for given codeword
883    fn calculate_syndrome(&self, codeword: &[bool]) -> Vec<bool> {
884        let mut syndrome = vec![false; self.tanner_graph.check_nodes.len()];
885
886        for (check_id, check_node) in self.tanner_graph.check_nodes.iter().enumerate() {
887            let mut parity = false;
888            for &var_id in &check_node.connected_variables {
889                if var_id < codeword.len() && codeword[var_id] {
890                    parity = !parity;
891                }
892            }
893            syndrome[check_id] = parity;
894        }
895
896        syndrome
897    }
898
899    /// Generate syndrome extraction circuit
900    pub fn syndrome_circuit(&self) -> Result<InterfaceCircuit> {
901        let num_data_qubits = self.config.n;
902        let num_syndrome_qubits = self.config.m;
903        let total_qubits = num_data_qubits + num_syndrome_qubits;
904
905        let mut circuit = InterfaceCircuit::new(total_qubits, num_syndrome_qubits);
906
907        // Add syndrome extraction gates based on parity check matrix
908        for (check_id, check_node) in self.tanner_graph.check_nodes.iter().enumerate() {
909            let syndrome_qubit = num_data_qubits + check_id;
910
911            for &var_id in &check_node.connected_variables {
912                if var_id < num_data_qubits {
913                    circuit.add_gate(InterfaceGate::new(
914                        InterfaceGateType::CNOT,
915                        vec![var_id, syndrome_qubit],
916                    ));
917                }
918            }
919        }
920
921        Ok(circuit)
922    }
923
924    /// Estimate error threshold
925    pub fn estimate_threshold(
926        &mut self,
927        noise_range: (f64, f64),
928        num_trials: usize,
929    ) -> Result<f64> {
930        let (min_noise, max_noise) = noise_range;
931        let mut threshold = f64::midpoint(min_noise, max_noise);
932        let mut search_range = max_noise - min_noise;
933
934        // Binary search for threshold
935        while search_range > 0.001 {
936            self.config.noise_variance = threshold;
937
938            let mut successes = 0;
939            for _ in 0..num_trials {
940                // Generate random errors
941                let errors: Vec<bool> = (0..self.config.n)
942                    .map(|_| fastrand::f64() < threshold)
943                    .collect();
944
945                // Generate LLRs from errors
946                let llrs: Vec<f64> = errors
947                    .iter()
948                    .map(|&error| {
949                        if error {
950                            -2.0 / self.config.noise_variance
951                        } else {
952                            2.0 / self.config.noise_variance
953                        }
954                    })
955                    .collect();
956
957                // Calculate syndrome
958                let syndrome = self.calculate_syndrome(&errors);
959
960                // Attempt decoding
961                if let Ok(result) = self.decode_belief_propagation(&llrs, &syndrome) {
962                    if result.success {
963                        successes += 1;
964                    }
965                }
966            }
967
968            let success_rate = successes as f64 / num_trials as f64;
969
970            if success_rate > 0.5 {
971                threshold = f64::midpoint(threshold, max_noise);
972            } else {
973                threshold = f64::midpoint(min_noise, threshold);
974            }
975
976            search_range /= 2.0;
977        }
978
979        self.stats.threshold_estimate = threshold;
980        Ok(threshold)
981    }
982
983    /// Get current statistics
984    pub const fn get_stats(&self) -> &LDPCStats {
985        &self.stats
986    }
987
988    /// Reset statistics
989    pub fn reset_stats(&mut self) {
990        self.stats = LDPCStats::default();
991    }
992
993    /// Get code parameters
994    pub const fn get_parameters(&self) -> (usize, usize, usize) {
995        (self.config.n, self.config.k, self.config.m)
996    }
997
998    /// Get Tanner graph
999    pub const fn get_tanner_graph(&self) -> &TannerGraph {
1000        &self.tanner_graph
1001    }
1002}
1003
1004/// Benchmark quantum LDPC codes performance
1005pub fn benchmark_quantum_ldpc_codes() -> Result<HashMap<String, f64>> {
1006    let mut results = HashMap::new();
1007
1008    // Test different LDPC configurations
1009    let configs = vec![
1010        LDPCConfig {
1011            k: 10,
1012            n: 20,
1013            m: 10,
1014            construction_method: LDPCConstructionMethod::RandomRegular,
1015            bp_algorithm: BeliefPropagationAlgorithm::SumProduct,
1016            ..Default::default()
1017        },
1018        LDPCConfig {
1019            k: 15,
1020            n: 30,
1021            m: 15,
1022            construction_method: LDPCConstructionMethod::ProgressiveEdgeGrowth,
1023            bp_algorithm: BeliefPropagationAlgorithm::MinSum,
1024            ..Default::default()
1025        },
1026        LDPCConfig {
1027            k: 20,
1028            n: 40,
1029            m: 20,
1030            construction_method: LDPCConstructionMethod::QuantumBicycle,
1031            bp_algorithm: BeliefPropagationAlgorithm::NormalizedMinSum,
1032            ..Default::default()
1033        },
1034    ];
1035
1036    for (i, config) in configs.into_iter().enumerate() {
1037        let start = std::time::Instant::now();
1038
1039        let mut ldpc_code = QuantumLDPCCode::new(config)?;
1040
1041        // Perform multiple decoding tests
1042        for _ in 0..50 {
1043            // Generate test errors
1044            let errors: Vec<bool> = (0..ldpc_code.config.n)
1045                .map(|_| fastrand::f64() < 0.05)
1046                .collect();
1047
1048            // Generate LLRs
1049            let llrs: Vec<f64> = errors
1050                .iter()
1051                .map(|&error| if error { -1.0 } else { 1.0 })
1052                .collect();
1053
1054            // Calculate syndrome
1055            let syndrome = ldpc_code.calculate_syndrome(&errors);
1056
1057            // Decode
1058            let _result = ldpc_code.decode_belief_propagation(&llrs, &syndrome)?;
1059        }
1060
1061        let time = start.elapsed().as_secs_f64() * 1000.0;
1062        results.insert(format!("config_{i}"), time);
1063
1064        // Add performance metrics
1065        let stats = ldpc_code.get_stats();
1066        results.insert(format!("config_{i}_success_rate"), stats.convergence_rate);
1067        results.insert(
1068            format!("config_{i}_avg_iterations"),
1069            stats.avg_bp_iterations,
1070        );
1071    }
1072
1073    Ok(results)
1074}
1075
1076#[cfg(test)]
1077mod tests {
1078    use super::*;
1079    use approx::assert_abs_diff_eq;
1080
1081    #[test]
1082    fn test_ldpc_code_creation() {
1083        let config = LDPCConfig::default();
1084        let ldpc_code = QuantumLDPCCode::new(config);
1085        assert!(ldpc_code.is_ok());
1086    }
1087
1088    #[test]
1089    fn test_tanner_graph_construction() {
1090        let config = LDPCConfig {
1091            k: 5,
1092            n: 10,
1093            m: 5,
1094            dv: 2,
1095            dc: 4,
1096            ..Default::default()
1097        };
1098
1099        let tanner_graph = QuantumLDPCCode::construct_random_regular(&config);
1100        assert!(tanner_graph.is_ok());
1101
1102        let graph = tanner_graph.unwrap();
1103        assert_eq!(graph.variable_nodes.len(), 10);
1104        assert_eq!(graph.check_nodes.len(), 5);
1105    }
1106
1107    #[test]
1108    fn test_variable_node_operations() {
1109        let mut var_node = VariableNode::new(0);
1110        var_node.channel_llr = 1.0;
1111        var_node.incoming_messages.insert(1, 0.5);
1112        var_node.incoming_messages.insert(2, -0.3);
1113
1114        var_node.update_belief();
1115        assert_abs_diff_eq!(var_node.belief, 1.2, epsilon = 1e-10);
1116
1117        let outgoing = var_node.compute_outgoing_message(1);
1118        assert_abs_diff_eq!(outgoing, 0.7, epsilon = 1e-10);
1119    }
1120
1121    #[test]
1122    fn test_check_node_operations() {
1123        let mut check_node = CheckNode::new(0);
1124        check_node.incoming_messages.insert(1, 0.8);
1125        check_node.incoming_messages.insert(2, -0.6);
1126        check_node.incoming_messages.insert(3, 1.2);
1127
1128        let sum_product_msg = check_node.compute_outgoing_message_sum_product(1);
1129        assert!(sum_product_msg.is_finite());
1130
1131        let min_sum_msg = check_node.compute_outgoing_message_min_sum(1);
1132        assert_abs_diff_eq!(min_sum_msg.abs(), 0.6, epsilon = 1e-10);
1133    }
1134
1135    #[test]
1136    fn test_belief_propagation_decoding() {
1137        let config = LDPCConfig {
1138            k: 3,
1139            n: 6,
1140            m: 3,
1141            max_bp_iterations: 10,
1142            ..Default::default()
1143        };
1144
1145        let mut ldpc_code = QuantumLDPCCode::new(config).unwrap();
1146
1147        let llrs = vec![1.0, -1.0, 1.0, 1.0, -1.0, 1.0];
1148        let syndrome = vec![false, true, false];
1149
1150        let result = ldpc_code.decode_belief_propagation(&llrs, &syndrome);
1151        assert!(result.is_ok());
1152
1153        let bp_result = result.unwrap();
1154        assert_eq!(bp_result.decoded_bits.len(), 6);
1155        assert!(bp_result.iterations <= 10);
1156    }
1157
1158    #[test]
1159    fn test_syndrome_calculation() {
1160        let config = LDPCConfig {
1161            k: 2,
1162            n: 4,
1163            m: 2,
1164            ..Default::default()
1165        };
1166
1167        let ldpc_code = QuantumLDPCCode::new(config).unwrap();
1168
1169        let codeword = vec![false, true, false, true];
1170        let syndrome = ldpc_code.calculate_syndrome(&codeword);
1171
1172        assert_eq!(syndrome.len(), 2);
1173    }
1174
1175    #[test]
1176    fn test_syndrome_circuit_generation() {
1177        let config = LDPCConfig {
1178            k: 3,
1179            n: 6,
1180            m: 3,
1181            ..Default::default()
1182        };
1183
1184        let ldpc_code = QuantumLDPCCode::new(config).unwrap();
1185        let circuit = ldpc_code.syndrome_circuit();
1186
1187        assert!(circuit.is_ok());
1188        let syndrome_circuit = circuit.unwrap();
1189        assert_eq!(syndrome_circuit.num_qubits, 9); // 6 data + 3 syndrome
1190    }
1191
1192    #[test]
1193    fn test_different_construction_methods() {
1194        let base_config = LDPCConfig {
1195            k: 3,
1196            n: 6,
1197            m: 3,
1198            ..Default::default()
1199        };
1200
1201        let methods = vec![
1202            LDPCConstructionMethod::RandomRegular,
1203            LDPCConstructionMethod::ProgressiveEdgeGrowth,
1204            LDPCConstructionMethod::QuantumBicycle,
1205            LDPCConstructionMethod::SurfaceCode,
1206        ];
1207
1208        for method in methods {
1209            let mut config = base_config.clone();
1210            config.construction_method = method;
1211
1212            let ldpc_code = QuantumLDPCCode::new(config);
1213            assert!(ldpc_code.is_ok(), "Failed for method: {method:?}");
1214        }
1215    }
1216
1217    #[test]
1218    fn test_different_bp_algorithms() {
1219        let base_config = LDPCConfig {
1220            k: 3,
1221            n: 6,
1222            m: 3,
1223            ..Default::default()
1224        };
1225
1226        let algorithms = vec![
1227            BeliefPropagationAlgorithm::SumProduct,
1228            BeliefPropagationAlgorithm::MinSum,
1229            BeliefPropagationAlgorithm::NormalizedMinSum,
1230            BeliefPropagationAlgorithm::OffsetMinSum,
1231        ];
1232
1233        for algorithm in algorithms {
1234            let mut config = base_config.clone();
1235            config.bp_algorithm = algorithm;
1236
1237            let mut ldpc_code = QuantumLDPCCode::new(config).unwrap();
1238
1239            let llrs = vec![1.0, -1.0, 1.0, 1.0, -1.0, 1.0];
1240            let syndrome = vec![false, true, false];
1241
1242            let result = ldpc_code.decode_belief_propagation(&llrs, &syndrome);
1243            assert!(result.is_ok(), "Failed for algorithm: {algorithm:?}");
1244        }
1245    }
1246
1247    #[test]
1248    fn test_stats_updates() {
1249        let mut stats = LDPCStats::default();
1250
1251        stats.update_after_decoding(true, 5, 10.0);
1252        assert_eq!(stats.total_decodings, 1);
1253        assert_eq!(stats.successful_decodings, 1);
1254        assert_abs_diff_eq!(stats.avg_bp_iterations, 5.0, epsilon = 1e-10);
1255        assert_abs_diff_eq!(stats.block_error_rate, 0.0, epsilon = 1e-10);
1256
1257        stats.update_after_decoding(false, 8, 15.0);
1258        assert_eq!(stats.total_decodings, 2);
1259        assert_eq!(stats.successful_decodings, 1);
1260        assert_abs_diff_eq!(stats.avg_bp_iterations, 6.5, epsilon = 1e-10);
1261        assert_abs_diff_eq!(stats.block_error_rate, 0.5, epsilon = 1e-10);
1262    }
1263}