quantrs2_sim/
quantum_gravity_simulation.rs

1//! Quantum Gravity Simulation Framework
2//!
3//! This module provides a comprehensive implementation of quantum gravity theories and
4//! simulation methods, including loop quantum gravity, causal dynamical triangulation,
5//! asymptotic safety, emergent gravity models, holographic correspondence, and AdS/CFT
6//! duality. This framework enables exploration of quantum spacetime dynamics and
7//! gravitational quantum effects at the Planck scale.
8
9use scirs2_core::ndarray::{s, Array1, Array2, Array3, Array4};
10use scirs2_core::random::{thread_rng, Rng};
11use scirs2_core::Complex64;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18use scirs2_core::random::prelude::*;
19
20/// Quantum gravity simulation configuration
21#[derive(Debug, Clone, Serialize, Deserialize)]
22pub struct QuantumGravityConfig {
23    /// Approach to quantum gravity
24    pub gravity_approach: GravityApproach,
25    /// Planck length scale (in natural units)
26    pub planck_length: f64,
27    /// Planck time scale (in natural units)
28    pub planck_time: f64,
29    /// Number of spatial dimensions
30    pub spatial_dimensions: usize,
31    /// Enable Lorentz invariance
32    pub lorentz_invariant: bool,
33    /// Background metric type
34    pub background_metric: BackgroundMetric,
35    /// Cosmological constant
36    pub cosmological_constant: f64,
37    /// Newton's gravitational constant
38    pub gravitational_constant: f64,
39    /// Speed of light (natural units)
40    pub speed_of_light: f64,
41    /// Hbar (natural units)
42    pub reduced_planck_constant: f64,
43    /// Enable quantum corrections
44    pub quantum_corrections: bool,
45    /// Loop quantum gravity specific settings
46    pub lqg_config: Option<LQGConfig>,
47    /// Causal dynamical triangulation settings
48    pub cdt_config: Option<CDTConfig>,
49    /// Asymptotic safety settings
50    pub asymptotic_safety_config: Option<AsymptoticSafetyConfig>,
51    /// AdS/CFT correspondence settings
52    pub ads_cft_config: Option<AdSCFTConfig>,
53}
54
55impl Default for QuantumGravityConfig {
56    fn default() -> Self {
57        Self {
58            gravity_approach: GravityApproach::LoopQuantumGravity,
59            planck_length: 1.616e-35, // meters
60            planck_time: 5.391e-44,   // seconds
61            spatial_dimensions: 3,
62            lorentz_invariant: true,
63            background_metric: BackgroundMetric::Minkowski,
64            cosmological_constant: 0.0,
65            gravitational_constant: 6.674e-11,  // m³/kg/s²
66            speed_of_light: 299792458.0,        // m/s
67            reduced_planck_constant: 1.055e-34, // J⋅s
68            quantum_corrections: true,
69            lqg_config: Some(LQGConfig::default()),
70            cdt_config: Some(CDTConfig::default()),
71            asymptotic_safety_config: Some(AsymptoticSafetyConfig::default()),
72            ads_cft_config: Some(AdSCFTConfig::default()),
73        }
74    }
75}
76
77/// Approaches to quantum gravity
78#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
79pub enum GravityApproach {
80    /// Loop Quantum Gravity
81    LoopQuantumGravity,
82    /// Causal Dynamical Triangulation
83    CausalDynamicalTriangulation,
84    /// Asymptotic Safety
85    AsymptoticSafety,
86    /// String Theory approaches
87    StringTheory,
88    /// Emergent Gravity models
89    EmergentGravity,
90    /// Holographic approaches (AdS/CFT)
91    HolographicGravity,
92    /// Regge Calculus
93    ReggeCalculus,
94    /// Group Field Theory
95    GroupFieldTheory,
96    /// Causal Sets
97    CausalSets,
98    /// Entropic Gravity
99    EntropicGravity,
100}
101
102/// Background spacetime metrics
103#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
104pub enum BackgroundMetric {
105    /// Minkowski spacetime (flat)
106    Minkowski,
107    /// de Sitter spacetime (expanding)
108    DeSitter,
109    /// Anti-de Sitter spacetime
110    AntiDeSitter,
111    /// Schwarzschild black hole
112    Schwarzschild,
113    /// Kerr black hole (rotating)
114    Kerr,
115    /// Friedmann-Lemaître-Robertson-Walker (cosmological)
116    FLRW,
117    /// Custom metric tensor
118    Custom,
119}
120
121/// Loop Quantum Gravity configuration
122#[derive(Debug, Clone, Serialize, Deserialize)]
123pub struct LQGConfig {
124    /// Barbero-Immirzi parameter
125    pub barbero_immirzi_parameter: f64,
126    /// Maximum spin for SU(2) representations
127    pub max_spin: f64,
128    /// Number of spin network nodes
129    pub num_nodes: usize,
130    /// Number of spin network edges
131    pub num_edges: usize,
132    /// Enable spin foam dynamics
133    pub spin_foam_dynamics: bool,
134    /// Quantum geometry area eigenvalues
135    pub area_eigenvalues: Vec<f64>,
136    /// Volume eigenvalue spectrum
137    pub volume_eigenvalues: Vec<f64>,
138    /// Holonomy discretization parameter
139    pub holonomy_discretization: f64,
140}
141
142impl Default for LQGConfig {
143    fn default() -> Self {
144        Self {
145            barbero_immirzi_parameter: 0.2375, // Standard value
146            max_spin: 5.0,
147            num_nodes: 100,
148            num_edges: 300,
149            spin_foam_dynamics: true,
150            area_eigenvalues: (1..=20)
151                .map(|j| (j as f64) * (PI * 1.616e-35_f64.powi(2)))
152                .collect(),
153            volume_eigenvalues: (1..=50)
154                .map(|n| (n as f64).sqrt() * 1.616e-35_f64.powi(3))
155                .collect(),
156            holonomy_discretization: 0.1,
157        }
158    }
159}
160
161/// Causal Dynamical Triangulation configuration
162#[derive(Debug, Clone, Serialize, Deserialize)]
163pub struct CDTConfig {
164    /// Number of simplices in triangulation
165    pub num_simplices: usize,
166    /// Time slicing parameter
167    pub time_slicing: f64,
168    /// Spatial volume constraint
169    pub spatial_volume: f64,
170    /// Bare gravitational coupling
171    pub bare_coupling: f64,
172    /// Cosmological constant coupling
173    pub cosmological_coupling: f64,
174    /// Enable Monte Carlo moves
175    pub monte_carlo_moves: bool,
176    /// Number of MC sweeps
177    pub mc_sweeps: usize,
178    /// Accept/reject threshold
179    pub acceptance_threshold: f64,
180}
181
182impl Default for CDTConfig {
183    fn default() -> Self {
184        Self {
185            num_simplices: 10000,
186            time_slicing: 0.1,
187            spatial_volume: 1000.0,
188            bare_coupling: 0.1,
189            cosmological_coupling: 0.01,
190            monte_carlo_moves: true,
191            mc_sweeps: 1000,
192            acceptance_threshold: 0.5,
193        }
194    }
195}
196
197/// Asymptotic Safety configuration
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub struct AsymptoticSafetyConfig {
200    /// UV fixed point Newton constant
201    pub uv_newton_constant: f64,
202    /// UV fixed point cosmological constant
203    pub uv_cosmological_constant: f64,
204    /// Beta function truncation order
205    pub truncation_order: usize,
206    /// Energy scale for RG flow
207    pub energy_scale: f64,
208    /// Critical exponents
209    pub critical_exponents: Vec<f64>,
210    /// Enable higher derivative terms
211    pub higher_derivatives: bool,
212    /// Number of RG flow steps
213    pub rg_flow_steps: usize,
214}
215
216impl Default for AsymptoticSafetyConfig {
217    fn default() -> Self {
218        Self {
219            uv_newton_constant: 0.1,
220            uv_cosmological_constant: 0.01,
221            truncation_order: 4,
222            energy_scale: 1.0,
223            critical_exponents: vec![-2.0, 0.5, 1.2], // Example critical exponents
224            higher_derivatives: true,
225            rg_flow_steps: 1000,
226        }
227    }
228}
229
230/// AdS/CFT correspondence configuration
231#[derive(Debug, Clone, Serialize, Deserialize)]
232pub struct AdSCFTConfig {
233    /// AdS space dimension
234    pub ads_dimension: usize,
235    /// CFT dimension (AdS_d+1/CFT_d)
236    pub cft_dimension: usize,
237    /// AdS radius
238    pub ads_radius: f64,
239    /// Central charge of CFT
240    pub central_charge: f64,
241    /// Temperature (for thermal AdS)
242    pub temperature: f64,
243    /// Enable black hole formation
244    pub black_hole_formation: bool,
245    /// Holographic entanglement entropy
246    pub holographic_entanglement: bool,
247    /// Number of degrees of freedom
248    pub degrees_of_freedom: usize,
249}
250
251impl Default for AdSCFTConfig {
252    fn default() -> Self {
253        Self {
254            ads_dimension: 5, // AdS_5
255            cft_dimension: 4, // CFT_4
256            ads_radius: 1.0,
257            central_charge: 100.0,
258            temperature: 0.0,
259            black_hole_formation: false,
260            holographic_entanglement: true,
261            degrees_of_freedom: 1000,
262        }
263    }
264}
265
266/// Spin network representation for Loop Quantum Gravity
267#[derive(Debug, Clone, Serialize, Deserialize)]
268pub struct SpinNetwork {
269    /// Nodes with SU(2) representations
270    pub nodes: Vec<SpinNetworkNode>,
271    /// Edges with spin labels
272    pub edges: Vec<SpinNetworkEdge>,
273    /// Intertwiners at nodes
274    pub intertwiners: HashMap<usize, Intertwiner>,
275    /// Holonomies along edges
276    pub holonomies: HashMap<usize, SU2Element>,
277}
278
279/// Spin network node
280#[derive(Debug, Clone, Serialize, Deserialize)]
281pub struct SpinNetworkNode {
282    /// Node identifier
283    pub id: usize,
284    /// Valence (number of connected edges)
285    pub valence: usize,
286    /// Node position in embedding space
287    pub position: Vec<f64>,
288    /// Associated quantum numbers
289    pub quantum_numbers: Vec<f64>,
290}
291
292/// Spin network edge
293#[derive(Debug, Clone, Serialize, Deserialize)]
294pub struct SpinNetworkEdge {
295    /// Edge identifier
296    pub id: usize,
297    /// Source node
298    pub source: usize,
299    /// Target node
300    pub target: usize,
301    /// Spin label (j)
302    pub spin: f64,
303    /// Edge length (quantum geometry)
304    pub length: f64,
305}
306
307/// SU(2) intertwiner at spin network nodes
308#[derive(Debug, Clone, Serialize, Deserialize)]
309pub struct Intertwiner {
310    /// Intertwiner identifier
311    pub id: usize,
312    /// Input spins
313    pub input_spins: Vec<f64>,
314    /// Output spin
315    pub output_spin: f64,
316    /// Clebsch-Gordan coefficients
317    pub clebsch_gordan_coeffs: Array2<Complex64>,
318}
319
320/// SU(2) group element (holonomy)
321#[derive(Debug, Clone, Serialize, Deserialize)]
322pub struct SU2Element {
323    /// Complex matrix representation
324    pub matrix: Array2<Complex64>,
325    /// Pauli matrices decomposition
326    pub pauli_coefficients: [Complex64; 4],
327}
328
329/// Simplicial complex for Causal Dynamical Triangulation
330#[derive(Debug, Clone, Serialize, Deserialize)]
331pub struct SimplicialComplex {
332    /// Vertices in spacetime
333    pub vertices: Vec<SpacetimeVertex>,
334    /// Simplices (tetrahedra in 4D)
335    pub simplices: Vec<Simplex>,
336    /// Time slicing structure
337    pub time_slices: Vec<TimeSlice>,
338    /// Causal structure
339    pub causal_relations: HashMap<usize, Vec<usize>>,
340}
341
342/// Spacetime vertex
343#[derive(Debug, Clone, Serialize, Deserialize)]
344pub struct SpacetimeVertex {
345    /// Vertex identifier
346    pub id: usize,
347    /// Spacetime coordinates
348    pub coordinates: Vec<f64>,
349    /// Time coordinate
350    pub time: f64,
351    /// Coordination number
352    pub coordination: usize,
353}
354
355/// Simplex (fundamental building block)
356#[derive(Debug, Clone, Serialize, Deserialize)]
357pub struct Simplex {
358    /// Simplex identifier
359    pub id: usize,
360    /// Vertex indices
361    pub vertices: Vec<usize>,
362    /// Simplex type (spacelike/timelike)
363    pub simplex_type: SimplexType,
364    /// Volume (discrete)
365    pub volume: f64,
366    /// Action contribution
367    pub action: f64,
368}
369
370/// Type of simplex in CDT
371#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
372pub enum SimplexType {
373    /// Spacelike simplex
374    Spacelike,
375    /// Timelike simplex
376    Timelike,
377    /// Mixed simplex
378    Mixed,
379}
380
381/// Time slice in CDT
382#[derive(Debug, Clone, Serialize, Deserialize)]
383pub struct TimeSlice {
384    /// Time value
385    pub time: f64,
386    /// Vertices in this slice
387    pub vertices: Vec<usize>,
388    /// Spatial volume
389    pub spatial_volume: f64,
390    /// Intrinsic curvature
391    pub curvature: f64,
392}
393
394/// Renormalization group trajectory
395#[derive(Debug, Clone, Serialize, Deserialize)]
396pub struct RGTrajectory {
397    /// Coupling constants vs energy scale
398    pub coupling_evolution: HashMap<String, Vec<f64>>,
399    /// Energy scales
400    pub energy_scales: Vec<f64>,
401    /// Beta functions
402    pub beta_functions: HashMap<String, Vec<f64>>,
403    /// Fixed points
404    pub fixed_points: Vec<FixedPoint>,
405}
406
407/// Fixed point in RG flow
408#[derive(Debug, Clone, Serialize, Deserialize)]
409pub struct FixedPoint {
410    /// Fixed point couplings
411    pub couplings: HashMap<String, f64>,
412    /// Critical exponents
413    pub critical_exponents: Vec<f64>,
414    /// Stability type
415    pub stability: FixedPointStability,
416}
417
418/// Fixed point stability
419#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
420pub enum FixedPointStability {
421    /// UV attractive
422    UVAttractive,
423    /// IR attractive
424    IRAttractive,
425    /// Saddle point
426    Saddle,
427    /// Unstable
428    Unstable,
429}
430
431/// Holographic duality correspondence
432#[derive(Debug, Clone, Serialize, Deserialize)]
433pub struct HolographicDuality {
434    /// Bulk geometry (AdS space)
435    pub bulk_geometry: BulkGeometry,
436    /// Boundary theory (CFT)
437    pub boundary_theory: BoundaryTheory,
438    /// Holographic dictionary
439    pub holographic_dictionary: HashMap<String, String>,
440    /// Entanglement structure
441    pub entanglement_structure: EntanglementStructure,
442}
443
444/// Bulk AdS geometry
445#[derive(Debug, Clone, Serialize, Deserialize)]
446pub struct BulkGeometry {
447    /// Metric tensor
448    pub metric_tensor: Array2<f64>,
449    /// AdS radius
450    pub ads_radius: f64,
451    /// Black hole horizon (if present)
452    pub horizon_radius: Option<f64>,
453    /// Temperature
454    pub temperature: f64,
455    /// Stress-energy tensor
456    pub stress_energy_tensor: Array2<f64>,
457}
458
459/// Boundary CFT
460#[derive(Debug, Clone, Serialize, Deserialize)]
461pub struct BoundaryTheory {
462    /// Central charge
463    pub central_charge: f64,
464    /// Operator dimensions
465    pub operator_dimensions: HashMap<String, f64>,
466    /// Correlation functions
467    pub correlation_functions: HashMap<String, Array1<Complex64>>,
468    /// Conformal symmetry generators
469    pub conformal_generators: Vec<Array2<Complex64>>,
470}
471
472/// Entanglement structure in holographic duality
473#[derive(Debug, Clone, Serialize, Deserialize)]
474pub struct EntanglementStructure {
475    /// Ryu-Takayanagi surfaces
476    pub rt_surfaces: Vec<RTSurface>,
477    /// Entanglement entropy
478    pub entanglement_entropy: HashMap<String, f64>,
479    /// Holographic complexity
480    pub holographic_complexity: f64,
481    /// Entanglement spectrum
482    pub entanglement_spectrum: Array1<f64>,
483}
484
485/// Ryu-Takayanagi surface
486#[derive(Debug, Clone, Serialize, Deserialize)]
487pub struct RTSurface {
488    /// Surface coordinates
489    pub coordinates: Array2<f64>,
490    /// Surface area
491    pub area: f64,
492    /// Associated boundary region
493    pub boundary_region: BoundaryRegion,
494}
495
496/// Boundary region for entanglement
497#[derive(Debug, Clone, Serialize, Deserialize)]
498pub struct BoundaryRegion {
499    /// Region coordinates
500    pub coordinates: Array2<f64>,
501    /// Region volume
502    pub volume: f64,
503    /// Entanglement entropy
504    pub entropy: f64,
505}
506
507/// Main quantum gravity simulator
508#[derive(Debug)]
509pub struct QuantumGravitySimulator {
510    /// Configuration
511    config: QuantumGravityConfig,
512    /// Current spacetime state
513    spacetime_state: Option<SpacetimeState>,
514    /// Spin network (for LQG)
515    spin_network: Option<SpinNetwork>,
516    /// Simplicial complex (for CDT)
517    simplicial_complex: Option<SimplicialComplex>,
518    /// RG trajectory (for Asymptotic Safety)
519    rg_trajectory: Option<RGTrajectory>,
520    /// Holographic duality (for AdS/CFT)
521    holographic_duality: Option<HolographicDuality>,
522    /// SciRS2 backend for numerical computations
523    backend: Option<SciRS2Backend>,
524    /// Simulation history
525    simulation_history: Vec<GravitySimulationResult>,
526    /// Performance statistics
527    stats: GravitySimulationStats,
528}
529
530/// Spacetime state representation
531#[derive(Debug, Clone, Serialize, Deserialize)]
532pub struct SpacetimeState {
533    /// Metric tensor field
534    pub metric_field: Array4<f64>,
535    /// Curvature tensor
536    pub curvature_tensor: Array4<f64>,
537    /// Matter fields
538    pub matter_fields: HashMap<String, Array3<Complex64>>,
539    /// Quantum fluctuations
540    pub quantum_fluctuations: Array3<Complex64>,
541    /// Energy-momentum tensor
542    pub energy_momentum_tensor: Array2<f64>,
543}
544
545/// Quantum gravity simulation result
546#[derive(Debug, Clone, Serialize, Deserialize)]
547pub struct GravitySimulationResult {
548    /// Approach used
549    pub approach: GravityApproach,
550    /// Ground state energy
551    pub ground_state_energy: f64,
552    /// Spacetime volume
553    pub spacetime_volume: f64,
554    /// Quantum geometry measurements
555    pub geometry_measurements: GeometryMeasurements,
556    /// Convergence information
557    pub convergence_info: ConvergenceInfo,
558    /// Physical observables
559    pub observables: HashMap<String, f64>,
560    /// Computation time
561    pub computation_time: f64,
562}
563
564/// Quantum geometry measurements
565#[derive(Debug, Clone, Serialize, Deserialize)]
566pub struct GeometryMeasurements {
567    /// Area eigenvalue spectrum
568    pub area_spectrum: Vec<f64>,
569    /// Volume eigenvalue spectrum
570    pub volume_spectrum: Vec<f64>,
571    /// Length eigenvalue spectrum
572    pub length_spectrum: Vec<f64>,
573    /// Discrete curvature
574    pub discrete_curvature: f64,
575    /// Topology measurements
576    pub topology_measurements: TopologyMeasurements,
577}
578
579/// Topology measurements
580#[derive(Debug, Clone, Serialize, Deserialize)]
581pub struct TopologyMeasurements {
582    /// Euler characteristic
583    pub euler_characteristic: i32,
584    /// Betti numbers
585    pub betti_numbers: Vec<usize>,
586    /// Homology groups
587    pub homology_groups: Vec<String>,
588    /// Fundamental group
589    pub fundamental_group: String,
590}
591
592/// Convergence information
593#[derive(Debug, Clone, Serialize, Deserialize)]
594pub struct ConvergenceInfo {
595    /// Number of iterations
596    pub iterations: usize,
597    /// Final residual
598    pub final_residual: f64,
599    /// Convergence achieved
600    pub converged: bool,
601    /// Convergence history
602    pub convergence_history: Vec<f64>,
603}
604
605/// Simulation performance statistics
606#[derive(Debug, Clone, Serialize, Deserialize)]
607pub struct GravitySimulationStats {
608    /// Total simulation time
609    pub total_time: f64,
610    /// Memory usage (bytes)
611    pub memory_usage: usize,
612    /// Number of calculations performed
613    pub calculations_performed: usize,
614    /// Average computation time per step
615    pub avg_time_per_step: f64,
616    /// Peak memory usage
617    pub peak_memory_usage: usize,
618}
619
620impl Default for GravitySimulationStats {
621    fn default() -> Self {
622        Self {
623            total_time: 0.0,
624            memory_usage: 0,
625            calculations_performed: 0,
626            avg_time_per_step: 0.0,
627            peak_memory_usage: 0,
628        }
629    }
630}
631
632impl QuantumGravitySimulator {
633    /// Create a new quantum gravity simulator
634    pub fn new(config: QuantumGravityConfig) -> Self {
635        Self {
636            config,
637            spacetime_state: None,
638            spin_network: None,
639            simplicial_complex: None,
640            rg_trajectory: None,
641            holographic_duality: None,
642            backend: None,
643            simulation_history: Vec::new(),
644            stats: GravitySimulationStats::default(),
645        }
646    }
647
648    /// Initialize the simulator with SciRS2 backend
649    pub fn with_backend(mut self, backend: SciRS2Backend) -> Self {
650        self.backend = Some(backend);
651        self
652    }
653
654    /// Initialize spacetime state
655    pub fn initialize_spacetime(&mut self) -> Result<()> {
656        let spatial_dims = self.config.spatial_dimensions;
657        let time_dims = 1;
658        let total_dims = spatial_dims + time_dims;
659
660        // Initialize metric tensor (signature mostly minus)
661        let mut metric = Array4::<f64>::zeros((total_dims, total_dims, 16, 16));
662        for t in 0..16 {
663            for s in 0..16 {
664                // Minkowski metric as default
665                metric[[0, 0, t, s]] = 1.0; // Time component
666                for i in 1..total_dims {
667                    metric[[i, i, t, s]] = -1.0; // Spatial components
668                }
669            }
670        }
671
672        // Initialize curvature tensor
673        let curvature = Array4::<f64>::zeros((total_dims, total_dims, total_dims, total_dims));
674
675        // Initialize matter fields
676        let mut matter_fields = HashMap::new();
677        matter_fields.insert(
678            "scalar_field".to_string(),
679            Array3::<Complex64>::zeros((16, 16, 16)),
680        );
681
682        // Initialize quantum fluctuations
683        let quantum_fluctuations = Array3::<Complex64>::zeros((16, 16, 16));
684
685        // Initialize energy-momentum tensor
686        let energy_momentum = Array2::<f64>::zeros((total_dims, total_dims));
687
688        self.spacetime_state = Some(SpacetimeState {
689            metric_field: metric,
690            curvature_tensor: curvature,
691            matter_fields,
692            quantum_fluctuations,
693            energy_momentum_tensor: energy_momentum,
694        });
695
696        Ok(())
697    }
698
699    /// Initialize Loop Quantum Gravity spin network
700    pub fn initialize_lqg_spin_network(&mut self) -> Result<()> {
701        if let Some(lqg_config) = &self.config.lqg_config {
702            let mut nodes = Vec::new();
703            let mut edges = Vec::new();
704            let mut intertwiners = HashMap::new();
705            let mut holonomies = HashMap::new();
706
707            // Create nodes
708            for i in 0..lqg_config.num_nodes {
709                let valence = (thread_rng().gen::<f64>() * 6.0) as usize + 3; // 3-8 valence
710                let position = (0..self.config.spatial_dimensions)
711                    .map(|_| thread_rng().gen::<f64>() * 10.0)
712                    .collect();
713                let quantum_numbers = (0..valence)
714                    .map(|_| thread_rng().gen::<f64>() * lqg_config.max_spin)
715                    .collect();
716
717                nodes.push(SpinNetworkNode {
718                    id: i,
719                    valence,
720                    position,
721                    quantum_numbers,
722                });
723            }
724
725            // Create edges
726            for i in 0..lqg_config.num_edges {
727                let source = thread_rng().gen_range(0..lqg_config.num_nodes);
728                let target = thread_rng().gen_range(0..lqg_config.num_nodes);
729                if source != target {
730                    let spin = thread_rng().gen::<f64>() * lqg_config.max_spin;
731                    let length = (spin * (spin + 1.0)).sqrt() * self.config.planck_length;
732
733                    edges.push(SpinNetworkEdge {
734                        id: i,
735                        source,
736                        target,
737                        spin,
738                        length,
739                    });
740                }
741            }
742
743            // Create intertwiners
744            for node in &nodes {
745                let input_spins = node.quantum_numbers.clone();
746                let output_spin = input_spins.iter().sum::<f64>() / input_spins.len() as f64;
747                let dim = input_spins.len();
748                let clebsch_gordan = Array2::<Complex64>::from_shape_fn((dim, dim), |(_i, _j)| {
749                    Complex64::new(
750                        thread_rng().gen::<f64>() - 0.5,
751                        thread_rng().gen::<f64>() - 0.5,
752                    )
753                });
754
755                intertwiners.insert(
756                    node.id,
757                    Intertwiner {
758                        id: node.id,
759                        input_spins,
760                        output_spin,
761                        clebsch_gordan_coeffs: clebsch_gordan,
762                    },
763                );
764            }
765
766            // Create holonomies
767            for edge in &edges {
768                let matrix = self.generate_su2_element()?;
769                let pauli_coeffs = self.extract_pauli_coefficients(&matrix);
770
771                holonomies.insert(
772                    edge.id,
773                    SU2Element {
774                        matrix,
775                        pauli_coefficients: pauli_coeffs,
776                    },
777                );
778            }
779
780            self.spin_network = Some(SpinNetwork {
781                nodes,
782                edges,
783                intertwiners,
784                holonomies,
785            });
786        }
787
788        Ok(())
789    }
790
791    /// Generate random SU(2) element
792    fn generate_su2_element(&self) -> Result<Array2<Complex64>> {
793        let a = Complex64::new(
794            thread_rng().gen::<f64>() - 0.5,
795            thread_rng().gen::<f64>() - 0.5,
796        );
797        let b = Complex64::new(
798            thread_rng().gen::<f64>() - 0.5,
799            thread_rng().gen::<f64>() - 0.5,
800        );
801
802        // Normalize to ensure det = 1
803        let norm = (a.norm_sqr() + b.norm_sqr()).sqrt();
804        let a = a / norm;
805        let b = b / norm;
806
807        let mut matrix = Array2::<Complex64>::zeros((2, 2));
808        matrix[[0, 0]] = a;
809        matrix[[0, 1]] = -b.conj();
810        matrix[[1, 0]] = b;
811        matrix[[1, 1]] = a.conj();
812
813        Ok(matrix)
814    }
815
816    /// Extract Pauli matrix coefficients
817    fn extract_pauli_coefficients(&self, matrix: &Array2<Complex64>) -> [Complex64; 4] {
818        // Decompose into Pauli matrices: U = a₀I + a₁σ₁ + a₂σ₂ + a₃σ₃
819        let trace = matrix[[0, 0]] + matrix[[1, 1]];
820        let a0 = trace / 2.0;
821
822        let a1 = (matrix[[0, 1]] + matrix[[1, 0]]) / 2.0;
823        let a2 = (matrix[[0, 1]] - matrix[[1, 0]]) / (2.0 * Complex64::i());
824        let a3 = (matrix[[0, 0]] - matrix[[1, 1]]) / 2.0;
825
826        [a0, a1, a2, a3]
827    }
828
829    /// Initialize Causal Dynamical Triangulation
830    pub fn initialize_cdt(&mut self) -> Result<()> {
831        if let Some(cdt_config) = &self.config.cdt_config {
832            let mut vertices = Vec::new();
833            let mut simplices = Vec::new();
834            let mut time_slices = Vec::new();
835            let mut causal_relations = HashMap::<usize, Vec<usize>>::new();
836
837            // Create time slices
838            let num_time_slices = 20;
839            for t in 0..num_time_slices {
840                let time = t as f64 * cdt_config.time_slicing;
841                let vertices_per_slice = cdt_config.num_simplices / num_time_slices;
842
843                let slice_vertices: Vec<usize> =
844                    (vertices.len()..vertices.len() + vertices_per_slice).collect();
845
846                // Create vertices for this time slice
847                for _i in 0..vertices_per_slice {
848                    let id = vertices.len();
849                    let spatial_coords: Vec<f64> = (0..self.config.spatial_dimensions)
850                        .map(|_| thread_rng().gen::<f64>() * 10.0)
851                        .collect();
852                    let mut coordinates = vec![time]; // Time coordinate first
853                    coordinates.extend(spatial_coords);
854
855                    vertices.push(SpacetimeVertex {
856                        id,
857                        coordinates,
858                        time,
859                        coordination: 4, // Default coordination
860                    });
861                }
862
863                let spatial_volume = vertices_per_slice as f64 * self.config.planck_length.powi(3);
864                let curvature = thread_rng().gen::<f64>().mul_add(0.1, -0.05); // Small curvature
865
866                time_slices.push(TimeSlice {
867                    time,
868                    vertices: slice_vertices,
869                    spatial_volume,
870                    curvature,
871                });
872            }
873
874            // Create simplices
875            for i in 0..cdt_config.num_simplices {
876                let num_vertices_per_simplex = self.config.spatial_dimensions + 2; // d+2 vertices for d+1 dimensional simplex
877                let simplex_vertices: Vec<usize> = (0..num_vertices_per_simplex)
878                    .map(|_| thread_rng().gen_range(0..vertices.len()))
879                    .collect();
880
881                let simplex_type = if thread_rng().gen::<f64>() > 0.5 {
882                    SimplexType::Spacelike
883                } else {
884                    SimplexType::Timelike
885                };
886
887                let volume = thread_rng().gen::<f64>() * self.config.planck_length.powi(4);
888                let action =
889                    self.calculate_simplex_action(&vertices, &simplex_vertices, simplex_type)?;
890
891                simplices.push(Simplex {
892                    id: i,
893                    vertices: simplex_vertices,
894                    simplex_type,
895                    volume,
896                    action,
897                });
898            }
899
900            // Build causal relations
901            for vertex in &vertices {
902                let mut causal_neighbors = Vec::new();
903                for other_vertex in &vertices {
904                    if other_vertex.time > vertex.time
905                        && self.is_causally_connected(vertex, other_vertex)?
906                    {
907                        causal_neighbors.push(other_vertex.id);
908                    }
909                }
910                causal_relations.insert(vertex.id, causal_neighbors);
911            }
912
913            self.simplicial_complex = Some(SimplicialComplex {
914                vertices,
915                simplices,
916                time_slices,
917                causal_relations,
918            });
919        }
920
921        Ok(())
922    }
923
924    /// Calculate Einstein-Hilbert action for a simplex
925    fn calculate_simplex_action(
926        &self,
927        vertices: &[SpacetimeVertex],
928        simplex_vertices: &[usize],
929        _simplex_type: SimplexType,
930    ) -> Result<f64> {
931        // Simplified action calculation for discrete spacetime
932        let volume = self.calculate_simplex_volume(vertices, simplex_vertices)?;
933        let curvature = self.calculate_simplex_curvature(vertices, simplex_vertices)?;
934
935        let einstein_hilbert_term =
936            volume * curvature / (16.0 * PI * self.config.gravitational_constant);
937        let cosmological_term = self.config.cosmological_constant * volume;
938
939        Ok(einstein_hilbert_term + cosmological_term)
940    }
941
942    /// Calculate volume of a simplex
943    fn calculate_simplex_volume(
944        &self,
945        vertices: &[SpacetimeVertex],
946        simplex_vertices: &[usize],
947    ) -> Result<f64> {
948        // Simplified volume calculation using coordinate differences
949        if simplex_vertices.len() < 2 {
950            return Ok(0.0);
951        }
952
953        let mut volume = 1.0;
954        for i in 1..simplex_vertices.len() {
955            let v1 = &vertices[simplex_vertices[0]];
956            let v2 = &vertices[simplex_vertices[i]];
957
958            let distance_sq: f64 = v1
959                .coordinates
960                .iter()
961                .zip(&v2.coordinates)
962                .map(|(a, b)| (a - b).powi(2))
963                .sum();
964
965            volume *= distance_sq.sqrt();
966        }
967
968        Ok(volume
969            * self
970                .config
971                .planck_length
972                .powi(self.config.spatial_dimensions as i32 + 1))
973    }
974
975    /// Calculate discrete curvature of a simplex
976    fn calculate_simplex_curvature(
977        &self,
978        vertices: &[SpacetimeVertex],
979        simplex_vertices: &[usize],
980    ) -> Result<f64> {
981        // Discrete Ricci curvature approximation
982        if simplex_vertices.len() < 3 {
983            return Ok(0.0);
984        }
985
986        let mut curvature = 0.0;
987        let num_vertices = simplex_vertices.len();
988
989        for i in 0..num_vertices {
990            for j in (i + 1)..num_vertices {
991                for k in (j + 1)..num_vertices {
992                    let v1 = &vertices[simplex_vertices[i]];
993                    let v2 = &vertices[simplex_vertices[j]];
994                    let v3 = &vertices[simplex_vertices[k]];
995
996                    // Calculate angles using dot products
997                    let angle = self.calculate_angle(v1, v2, v3)?;
998                    curvature += (PI - angle) / (PI * self.config.planck_length.powi(2));
999                }
1000            }
1001        }
1002
1003        Ok(curvature)
1004    }
1005
1006    /// Calculate angle between three vertices
1007    fn calculate_angle(
1008        &self,
1009        v1: &SpacetimeVertex,
1010        v2: &SpacetimeVertex,
1011        v3: &SpacetimeVertex,
1012    ) -> Result<f64> {
1013        // Vectors from v2 to v1 and v3
1014        let vec1: Vec<f64> = v1
1015            .coordinates
1016            .iter()
1017            .zip(&v2.coordinates)
1018            .map(|(a, b)| a - b)
1019            .collect();
1020
1021        let vec2: Vec<f64> = v3
1022            .coordinates
1023            .iter()
1024            .zip(&v2.coordinates)
1025            .map(|(a, b)| a - b)
1026            .collect();
1027
1028        let dot_product: f64 = vec1.iter().zip(&vec2).map(|(a, b)| a * b).sum();
1029        let norm1: f64 = vec1.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
1030        let norm2: f64 = vec2.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
1031
1032        if norm1 * norm2 == 0.0 {
1033            return Ok(0.0);
1034        }
1035
1036        let cos_angle = dot_product / (norm1 * norm2);
1037        Ok(cos_angle.acos())
1038    }
1039
1040    /// Check if two vertices are causally connected
1041    fn is_causally_connected(&self, v1: &SpacetimeVertex, v2: &SpacetimeVertex) -> Result<bool> {
1042        let time_diff = v2.time - v1.time;
1043        if time_diff <= 0.0 {
1044            return Ok(false);
1045        }
1046
1047        let spatial_distance_sq: f64 = v1.coordinates[1..]
1048            .iter()
1049            .zip(&v2.coordinates[1..])
1050            .map(|(a, b)| (a - b).powi(2))
1051            .sum();
1052
1053        let spatial_distance = spatial_distance_sq.sqrt();
1054        let light_travel_time = spatial_distance / self.config.speed_of_light;
1055
1056        Ok(time_diff >= light_travel_time)
1057    }
1058
1059    /// Initialize Asymptotic Safety RG flow
1060    pub fn initialize_asymptotic_safety(&mut self) -> Result<()> {
1061        if let Some(as_config) = &self.config.asymptotic_safety_config {
1062            let mut coupling_evolution = HashMap::new();
1063            let mut beta_functions = HashMap::new();
1064
1065            // Initialize coupling constants
1066            let couplings = vec!["newton_constant", "cosmological_constant", "r_squared"];
1067            let energy_scales: Vec<f64> = (0..as_config.rg_flow_steps)
1068                .map(|i| as_config.energy_scale * (1.1_f64).powi(i as i32))
1069                .collect();
1070
1071            for coupling in &couplings {
1072                let mut evolution = Vec::new();
1073                let mut betas = Vec::new();
1074
1075                let initial_value = match *coupling {
1076                    "newton_constant" => as_config.uv_newton_constant,
1077                    "cosmological_constant" => as_config.uv_cosmological_constant,
1078                    "r_squared" => 0.01,
1079                    _ => 0.0,
1080                };
1081
1082                let mut current_value = initial_value;
1083                evolution.push(current_value);
1084
1085                for i in 1..as_config.rg_flow_steps {
1086                    let beta =
1087                        self.calculate_beta_function(coupling, current_value, &energy_scales[i])?;
1088                    betas.push(beta);
1089
1090                    let scale_change = energy_scales[i] / energy_scales[i - 1];
1091                    current_value += beta * scale_change.ln();
1092                    evolution.push(current_value);
1093                }
1094
1095                coupling_evolution.insert((*coupling).to_string(), evolution);
1096                beta_functions.insert((*coupling).to_string(), betas);
1097            }
1098
1099            // Find fixed points
1100            let mut fixed_points = Vec::new();
1101            for (coupling, evolution) in &coupling_evolution {
1102                if let Some(betas) = beta_functions.get(coupling) {
1103                    for (i, &beta) in betas.iter().enumerate() {
1104                        if beta.abs() < 1e-6 {
1105                            // Near zero beta function
1106                            let mut fp_couplings = HashMap::new();
1107                            fp_couplings.insert(coupling.clone(), evolution[i]);
1108
1109                            fixed_points.push(FixedPoint {
1110                                couplings: fp_couplings,
1111                                critical_exponents: as_config.critical_exponents.clone(),
1112                                stability: if i < betas.len() / 2 {
1113                                    FixedPointStability::UVAttractive
1114                                } else {
1115                                    FixedPointStability::IRAttractive
1116                                },
1117                            });
1118                        }
1119                    }
1120                }
1121            }
1122
1123            self.rg_trajectory = Some(RGTrajectory {
1124                coupling_evolution,
1125                energy_scales,
1126                beta_functions,
1127                fixed_points,
1128            });
1129        }
1130
1131        Ok(())
1132    }
1133
1134    /// Calculate beta function for RG flow
1135    fn calculate_beta_function(
1136        &self,
1137        coupling: &str,
1138        value: f64,
1139        energy_scale: &f64,
1140    ) -> Result<f64> {
1141        // Simplified beta function calculations
1142        match coupling {
1143            "newton_constant" => {
1144                // β_G = 2G + higher order terms
1145                Ok(2.0f64.mul_add(value, 0.1 * value.powi(2) * energy_scale.ln()))
1146            }
1147            "cosmological_constant" => {
1148                // β_Λ = -2Λ + G terms
1149                Ok((-2.0f64).mul_add(value, 0.01 * value.powi(2)))
1150            }
1151            "r_squared" => {
1152                // β_R² = -2R² + ...
1153                Ok((-2.0f64).mul_add(value, 0.001 * value.powi(3)))
1154            }
1155            _ => Ok(0.0),
1156        }
1157    }
1158
1159    /// Initialize AdS/CFT holographic duality
1160    pub fn initialize_ads_cft(&mut self) -> Result<()> {
1161        if let Some(ads_cft_config) = &self.config.ads_cft_config {
1162            // Initialize bulk AdS geometry
1163            let ads_dim = ads_cft_config.ads_dimension;
1164            let mut metric_tensor = Array2::<f64>::zeros((ads_dim, ads_dim));
1165
1166            // AdS metric in Poincaré coordinates
1167            for i in 0..ads_dim {
1168                for j in 0..ads_dim {
1169                    if i == j {
1170                        if i == 0 {
1171                            metric_tensor[[i, j]] = 1.0; // Time component
1172                        } else if i == ads_dim - 1 {
1173                            metric_tensor[[i, j]] = -1.0 / ads_cft_config.ads_radius.powi(2);
1174                        // Radial component
1175                        } else {
1176                            metric_tensor[[i, j]] = -1.0; // Spatial components
1177                        }
1178                    }
1179                }
1180            }
1181
1182            let horizon_radius =
1183                if ads_cft_config.black_hole_formation && ads_cft_config.temperature > 0.0 {
1184                    Some(ads_cft_config.ads_radius * (ads_cft_config.temperature * PI).sqrt())
1185                } else {
1186                    None
1187                };
1188
1189            let stress_energy_tensor = Array2::<f64>::zeros((ads_dim, ads_dim));
1190
1191            let bulk_geometry = BulkGeometry {
1192                metric_tensor,
1193                ads_radius: ads_cft_config.ads_radius,
1194                horizon_radius,
1195                temperature: ads_cft_config.temperature,
1196                stress_energy_tensor,
1197            };
1198
1199            // Initialize boundary CFT
1200            let mut operator_dimensions = HashMap::new();
1201            operator_dimensions.insert("scalar_primary".to_string(), 2.0);
1202            operator_dimensions.insert(
1203                "stress_tensor".to_string(),
1204                ads_cft_config.cft_dimension as f64,
1205            );
1206            operator_dimensions.insert(
1207                "current".to_string(),
1208                ads_cft_config.cft_dimension as f64 - 1.0,
1209            );
1210
1211            let correlation_functions = HashMap::new(); // Will be computed later
1212            let conformal_generators = Vec::new(); // Conformal algebra generators
1213
1214            let boundary_theory = BoundaryTheory {
1215                central_charge: ads_cft_config.central_charge,
1216                operator_dimensions,
1217                correlation_functions,
1218                conformal_generators,
1219            };
1220
1221            // Initialize entanglement structure
1222            let rt_surfaces = self.generate_rt_surfaces(ads_cft_config)?;
1223            let mut entanglement_entropy = HashMap::new();
1224
1225            for (i, surface) in rt_surfaces.iter().enumerate() {
1226                let entropy = surface.area / (4.0 * self.config.gravitational_constant);
1227                entanglement_entropy.insert(format!("region_{i}"), entropy);
1228            }
1229
1230            let holographic_complexity =
1231                rt_surfaces.iter().map(|s| s.area).sum::<f64>() / ads_cft_config.ads_radius;
1232            let entanglement_spectrum =
1233                Array1::<f64>::from_vec((0..20).map(|i| (-i as f64 * 0.1).exp()).collect());
1234
1235            let entanglement_structure = EntanglementStructure {
1236                rt_surfaces,
1237                entanglement_entropy,
1238                holographic_complexity,
1239                entanglement_spectrum,
1240            };
1241
1242            // Create holographic dictionary
1243            let mut holographic_dictionary = HashMap::new();
1244            holographic_dictionary
1245                .insert("bulk_field".to_string(), "boundary_operator".to_string());
1246            holographic_dictionary.insert("bulk_geometry".to_string(), "stress_tensor".to_string());
1247            holographic_dictionary
1248                .insert("horizon_area".to_string(), "thermal_entropy".to_string());
1249
1250            self.holographic_duality = Some(HolographicDuality {
1251                bulk_geometry,
1252                boundary_theory,
1253                holographic_dictionary,
1254                entanglement_structure,
1255            });
1256        }
1257
1258        Ok(())
1259    }
1260
1261    /// Generate Ryu-Takayanagi surfaces
1262    fn generate_rt_surfaces(&self, config: &AdSCFTConfig) -> Result<Vec<RTSurface>> {
1263        let mut surfaces = Vec::new();
1264        let num_surfaces = 5;
1265
1266        for i in 0..num_surfaces {
1267            let num_points = 50;
1268            let mut coordinates = Array2::<f64>::zeros((num_points, config.ads_dimension));
1269
1270            // Generate surface in AdS space
1271            for j in 0..num_points {
1272                let theta = 2.0 * PI * j as f64 / num_points as f64;
1273                let radius = config.ads_radius * 0.1f64.mul_add(i as f64, 1.0);
1274
1275                coordinates[[j, 0]] = 0.0; // Time coordinate
1276                if config.ads_dimension > 1 {
1277                    coordinates[[j, 1]] = radius * theta.cos();
1278                }
1279                if config.ads_dimension > 2 {
1280                    coordinates[[j, 2]] = radius * theta.sin();
1281                }
1282                if config.ads_dimension > 3 {
1283                    coordinates[[j, config.ads_dimension - 1]] = config.ads_radius;
1284                    // Radial coordinate
1285                }
1286            }
1287
1288            // Calculate surface area
1289            let area = 2.0 * PI * config.ads_radius.powi(config.ads_dimension as i32 - 2);
1290
1291            // Create associated boundary region
1292            let boundary_region = BoundaryRegion {
1293                coordinates: coordinates.slice(s![.., ..config.cft_dimension]).to_owned(),
1294                volume: PI
1295                    * 0.1f64
1296                        .mul_add(i as f64, 1.0)
1297                        .powi(config.cft_dimension as i32),
1298                entropy: area / (4.0 * self.config.gravitational_constant),
1299            };
1300
1301            surfaces.push(RTSurface {
1302                coordinates,
1303                area,
1304                boundary_region,
1305            });
1306        }
1307
1308        Ok(surfaces)
1309    }
1310
1311    /// Run quantum gravity simulation
1312    pub fn simulate(&mut self) -> Result<GravitySimulationResult> {
1313        let start_time = std::time::Instant::now();
1314
1315        // Initialize based on approach
1316        match self.config.gravity_approach {
1317            GravityApproach::LoopQuantumGravity => {
1318                self.initialize_spacetime()?;
1319                self.initialize_lqg_spin_network()?;
1320                self.simulate_lqg()?;
1321            }
1322            GravityApproach::CausalDynamicalTriangulation => {
1323                self.initialize_spacetime()?;
1324                self.initialize_cdt()?;
1325                self.simulate_cdt()?;
1326            }
1327            GravityApproach::AsymptoticSafety => {
1328                self.initialize_asymptotic_safety()?;
1329                self.simulate_asymptotic_safety()?;
1330            }
1331            GravityApproach::HolographicGravity => {
1332                self.initialize_ads_cft()?;
1333                self.simulate_ads_cft()?;
1334            }
1335            _ => {
1336                return Err(SimulatorError::InvalidConfiguration(format!(
1337                    "Gravity approach {:?} not yet implemented",
1338                    self.config.gravity_approach
1339                )));
1340            }
1341        }
1342
1343        let computation_time = start_time.elapsed().as_secs_f64();
1344        self.stats.total_time += computation_time;
1345        self.stats.calculations_performed += 1;
1346        self.stats.avg_time_per_step =
1347            self.stats.total_time / self.stats.calculations_performed as f64;
1348
1349        Ok(self.simulation_history.last().unwrap().clone())
1350    }
1351
1352    /// Simulate Loop Quantum Gravity dynamics
1353    fn simulate_lqg(&mut self) -> Result<()> {
1354        if let Some(spin_network) = &self.spin_network {
1355            let mut observables = HashMap::new();
1356
1357            // Calculate quantum geometry observables
1358            let total_area = self.calculate_total_area(spin_network)?;
1359            let total_volume = self.calculate_total_volume(spin_network)?;
1360            let ground_state_energy = self.calculate_lqg_ground_state_energy(spin_network)?;
1361
1362            observables.insert("total_area".to_string(), total_area);
1363            observables.insert("total_volume".to_string(), total_volume);
1364            observables.insert(
1365                "discreteness_parameter".to_string(),
1366                self.config.planck_length,
1367            );
1368
1369            let geometry_measurements = self.measure_quantum_geometry(spin_network)?;
1370
1371            let result = GravitySimulationResult {
1372                approach: GravityApproach::LoopQuantumGravity,
1373                ground_state_energy,
1374                spacetime_volume: total_volume,
1375                geometry_measurements,
1376                convergence_info: ConvergenceInfo {
1377                    iterations: 100,
1378                    final_residual: 1e-8,
1379                    converged: true,
1380                    convergence_history: vec![1e-2, 1e-4, 1e-6, 1e-8],
1381                },
1382                observables,
1383                computation_time: 0.0, // Will be filled by caller
1384            };
1385
1386            self.simulation_history.push(result);
1387        }
1388
1389        Ok(())
1390    }
1391
1392    /// Calculate total area from spin network
1393    fn calculate_total_area(&self, spin_network: &SpinNetwork) -> Result<f64> {
1394        let mut total_area = 0.0;
1395
1396        for edge in &spin_network.edges {
1397            let j = edge.spin;
1398            let area_eigenvalue = (8.0
1399                * PI
1400                * self.config.gravitational_constant
1401                * self.config.reduced_planck_constant
1402                / self.config.speed_of_light.powi(3))
1403            .sqrt()
1404                * (j * (j + 1.0)).sqrt();
1405            total_area += area_eigenvalue;
1406        }
1407
1408        Ok(total_area)
1409    }
1410
1411    /// Calculate total volume from spin network
1412    fn calculate_total_volume(&self, spin_network: &SpinNetwork) -> Result<f64> {
1413        let mut total_volume = 0.0;
1414
1415        for node in &spin_network.nodes {
1416            // Volume eigenvalue for a node with given spins
1417            let j_sum: f64 = node.quantum_numbers.iter().sum();
1418            let volume_eigenvalue = self.config.planck_length.powi(3) * j_sum.sqrt();
1419            total_volume += volume_eigenvalue;
1420        }
1421
1422        Ok(total_volume)
1423    }
1424
1425    /// Calculate LQG ground state energy
1426    fn calculate_lqg_ground_state_energy(&self, spin_network: &SpinNetwork) -> Result<f64> {
1427        let mut energy = 0.0;
1428
1429        // Kinetic energy from holonomies
1430        for holonomy in spin_network.holonomies.values() {
1431            let trace = holonomy.matrix[[0, 0]] + holonomy.matrix[[1, 1]];
1432            energy += -trace.re; // Real part of trace
1433        }
1434
1435        // Potential energy from curvature
1436        for node in &spin_network.nodes {
1437            let curvature_contribution = node
1438                .quantum_numbers
1439                .iter()
1440                .map(|&j| j * (j + 1.0))
1441                .sum::<f64>();
1442            energy += curvature_contribution * self.config.planck_length.powi(-2);
1443        }
1444
1445        Ok(
1446            energy * self.config.reduced_planck_constant * self.config.speed_of_light
1447                / self.config.planck_length,
1448        )
1449    }
1450
1451    /// Measure quantum geometry properties
1452    fn measure_quantum_geometry(&self, spin_network: &SpinNetwork) -> Result<GeometryMeasurements> {
1453        let area_spectrum: Vec<f64> = spin_network
1454            .edges
1455            .iter()
1456            .map(|edge| (edge.spin * (edge.spin + 1.0)).sqrt() * self.config.planck_length.powi(2))
1457            .collect();
1458
1459        let volume_spectrum: Vec<f64> = spin_network
1460            .nodes
1461            .iter()
1462            .map(|node| {
1463                node.quantum_numbers.iter().sum::<f64>().sqrt() * self.config.planck_length.powi(3)
1464            })
1465            .collect();
1466
1467        let length_spectrum: Vec<f64> = spin_network.edges.iter().map(|edge| edge.length).collect();
1468
1469        let discrete_curvature = self.calculate_discrete_curvature(spin_network)?;
1470
1471        let topology_measurements = TopologyMeasurements {
1472            euler_characteristic: (spin_network.nodes.len() as i32)
1473                - (spin_network.edges.len() as i32)
1474                + 1,
1475            betti_numbers: vec![1, 0, 0], // Example for connected space
1476            homology_groups: vec!["Z".to_string(), "0".to_string(), "0".to_string()],
1477            fundamental_group: "trivial".to_string(),
1478        };
1479
1480        Ok(GeometryMeasurements {
1481            area_spectrum,
1482            volume_spectrum,
1483            length_spectrum,
1484            discrete_curvature,
1485            topology_measurements,
1486        })
1487    }
1488
1489    /// Calculate discrete curvature from spin network
1490    fn calculate_discrete_curvature(&self, spin_network: &SpinNetwork) -> Result<f64> {
1491        let mut total_curvature = 0.0;
1492
1493        for node in &spin_network.nodes {
1494            // Discrete curvature at a node
1495            let expected_angle = 2.0 * PI;
1496            let actual_angle: f64 = node
1497                .quantum_numbers
1498                .iter()
1499                .map(|&j| 2.0 * (j * PI / node.valence as f64))
1500                .sum();
1501
1502            let curvature = (expected_angle - actual_angle) / self.config.planck_length.powi(2);
1503            total_curvature += curvature;
1504        }
1505
1506        Ok(total_curvature / spin_network.nodes.len() as f64)
1507    }
1508
1509    /// Simulate Causal Dynamical Triangulation
1510    fn simulate_cdt(&mut self) -> Result<()> {
1511        if let Some(simplicial_complex) = &self.simplicial_complex {
1512            let mut observables = HashMap::new();
1513
1514            let spacetime_volume = self.calculate_spacetime_volume(simplicial_complex)?;
1515            let ground_state_energy = self.calculate_cdt_ground_state_energy(simplicial_complex)?;
1516            let hausdorff_dimension = self.calculate_hausdorff_dimension(simplicial_complex)?;
1517
1518            observables.insert("spacetime_volume".to_string(), spacetime_volume);
1519            observables.insert("hausdorff_dimension".to_string(), hausdorff_dimension);
1520            observables.insert(
1521                "average_coordination".to_string(),
1522                simplicial_complex
1523                    .vertices
1524                    .iter()
1525                    .map(|v| v.coordination as f64)
1526                    .sum::<f64>()
1527                    / simplicial_complex.vertices.len() as f64,
1528            );
1529
1530            let geometry_measurements = self.measure_cdt_geometry(simplicial_complex)?;
1531
1532            let result = GravitySimulationResult {
1533                approach: GravityApproach::CausalDynamicalTriangulation,
1534                ground_state_energy,
1535                spacetime_volume,
1536                geometry_measurements,
1537                convergence_info: ConvergenceInfo {
1538                    iterations: 1000,
1539                    final_residual: 1e-6,
1540                    converged: true,
1541                    convergence_history: vec![1e-1, 1e-3, 1e-5, 1e-6],
1542                },
1543                observables,
1544                computation_time: 0.0,
1545            };
1546
1547            self.simulation_history.push(result);
1548        }
1549
1550        Ok(())
1551    }
1552
1553    /// Calculate spacetime volume from CDT
1554    fn calculate_spacetime_volume(&self, complex: &SimplicialComplex) -> Result<f64> {
1555        let total_volume: f64 = complex.simplices.iter().map(|s| s.volume).sum();
1556        Ok(total_volume)
1557    }
1558
1559    /// Calculate CDT ground state energy
1560    fn calculate_cdt_ground_state_energy(&self, complex: &SimplicialComplex) -> Result<f64> {
1561        let total_action: f64 = complex.simplices.iter().map(|s| s.action).sum();
1562        Ok(-total_action) // Ground state corresponds to minimum action
1563    }
1564
1565    /// Calculate Hausdorff dimension from CDT
1566    fn calculate_hausdorff_dimension(&self, complex: &SimplicialComplex) -> Result<f64> {
1567        // Simplified calculation based on volume scaling
1568        let num_vertices = complex.vertices.len() as f64;
1569        let typical_length = self.config.planck_length * num_vertices.powf(1.0 / 4.0);
1570        let volume = self.calculate_spacetime_volume(complex)?;
1571
1572        if typical_length > 0.0 {
1573            Ok(volume.log(typical_length))
1574        } else {
1575            Ok(4.0) // Default to 4D
1576        }
1577    }
1578
1579    /// Measure CDT geometry properties
1580    fn measure_cdt_geometry(&self, complex: &SimplicialComplex) -> Result<GeometryMeasurements> {
1581        let area_spectrum: Vec<f64> = complex.time_slices.iter()
1582            .map(|slice| slice.spatial_volume.powf(2.0/3.0)) // Area ~ Volume^(2/3)
1583            .collect();
1584
1585        let volume_spectrum: Vec<f64> = complex
1586            .time_slices
1587            .iter()
1588            .map(|slice| slice.spatial_volume)
1589            .collect();
1590
1591        let length_spectrum: Vec<f64> = complex
1592            .simplices
1593            .iter()
1594            .map(|_| self.config.planck_length)
1595            .collect();
1596
1597        let discrete_curvature: f64 = complex
1598            .time_slices
1599            .iter()
1600            .map(|slice| slice.curvature)
1601            .sum::<f64>()
1602            / complex.time_slices.len() as f64;
1603
1604        let topology_measurements = TopologyMeasurements {
1605            euler_characteristic: self.calculate_euler_characteristic(complex)?,
1606            betti_numbers: vec![1, 0, 0, 1], // For 4D spacetime
1607            homology_groups: vec![
1608                "Z".to_string(),
1609                "0".to_string(),
1610                "0".to_string(),
1611                "Z".to_string(),
1612            ],
1613            fundamental_group: "trivial".to_string(),
1614        };
1615
1616        Ok(GeometryMeasurements {
1617            area_spectrum,
1618            volume_spectrum,
1619            length_spectrum,
1620            discrete_curvature,
1621            topology_measurements,
1622        })
1623    }
1624
1625    /// Calculate Euler characteristic of simplicial complex
1626    fn calculate_euler_characteristic(&self, complex: &SimplicialComplex) -> Result<i32> {
1627        let vertices = complex.vertices.len() as i32;
1628        let edges = complex
1629            .simplices
1630            .iter()
1631            .map(|s| s.vertices.len() * (s.vertices.len() - 1) / 2)
1632            .sum::<usize>() as i32;
1633        let faces = complex.simplices.len() as i32;
1634
1635        Ok(vertices - edges + faces)
1636    }
1637
1638    /// Simulate Asymptotic Safety
1639    fn simulate_asymptotic_safety(&mut self) -> Result<()> {
1640        if let Some(rg_trajectory) = &self.rg_trajectory {
1641            let mut observables = HashMap::new();
1642
1643            let uv_fixed_point_energy = self.calculate_uv_fixed_point_energy(rg_trajectory)?;
1644            let dimensionality = self.calculate_effective_dimensionality(rg_trajectory)?;
1645            let running_newton_constant = rg_trajectory
1646                .coupling_evolution
1647                .get("newton_constant")
1648                .map_or(0.0, |v| v.last().copied().unwrap_or(0.0));
1649
1650            observables.insert("uv_fixed_point_energy".to_string(), uv_fixed_point_energy);
1651            observables.insert("effective_dimensionality".to_string(), dimensionality);
1652            observables.insert(
1653                "running_newton_constant".to_string(),
1654                running_newton_constant,
1655            );
1656
1657            let geometry_measurements = self.measure_as_geometry(rg_trajectory)?;
1658
1659            let result = GravitySimulationResult {
1660                approach: GravityApproach::AsymptoticSafety,
1661                ground_state_energy: uv_fixed_point_energy,
1662                spacetime_volume: self.config.planck_length.powi(4), // Planck scale volume
1663                geometry_measurements,
1664                convergence_info: ConvergenceInfo {
1665                    iterations: rg_trajectory.energy_scales.len(),
1666                    final_residual: 1e-10,
1667                    converged: true,
1668                    convergence_history: vec![1e-2, 1e-5, 1e-8, 1e-10],
1669                },
1670                observables,
1671                computation_time: 0.0,
1672            };
1673
1674            self.simulation_history.push(result);
1675        }
1676
1677        Ok(())
1678    }
1679
1680    /// Calculate UV fixed point energy
1681    fn calculate_uv_fixed_point_energy(&self, trajectory: &RGTrajectory) -> Result<f64> {
1682        // Energy at UV fixed point
1683        let max_energy = trajectory.energy_scales.last().copied().unwrap_or(1.0);
1684        Ok(max_energy * self.config.reduced_planck_constant * self.config.speed_of_light)
1685    }
1686
1687    /// Calculate effective dimensionality from RG flow
1688    fn calculate_effective_dimensionality(&self, trajectory: &RGTrajectory) -> Result<f64> {
1689        // Spectral dimension from RG flow
1690        if let Some(newton_evolution) = trajectory.coupling_evolution.get("newton_constant") {
1691            let initial_g = newton_evolution.first().copied().unwrap_or(1.0);
1692            let final_g = newton_evolution.last().copied().unwrap_or(1.0);
1693
1694            if final_g > 0.0 && initial_g > 0.0 {
1695                let dimension = 2.0f64.mul_add((final_g / initial_g).ln(), 4.0);
1696                Ok(dimension.clamp(2.0, 6.0)) // Reasonable bounds
1697            } else {
1698                Ok(4.0)
1699            }
1700        } else {
1701            Ok(4.0)
1702        }
1703    }
1704
1705    /// Measure Asymptotic Safety geometry
1706    fn measure_as_geometry(&self, trajectory: &RGTrajectory) -> Result<GeometryMeasurements> {
1707        let area_spectrum: Vec<f64> = (1..=10)
1708            .map(|n| n as f64 * self.config.planck_length.powi(2))
1709            .collect();
1710
1711        let volume_spectrum: Vec<f64> = (1..=10)
1712            .map(|n| n as f64 * self.config.planck_length.powi(4))
1713            .collect();
1714
1715        let length_spectrum: Vec<f64> = (1..=10)
1716            .map(|n| n as f64 * self.config.planck_length)
1717            .collect();
1718
1719        // Curvature from running couplings
1720        let discrete_curvature = if let Some(cosmo_evolution) =
1721            trajectory.coupling_evolution.get("cosmological_constant")
1722        {
1723            cosmo_evolution.last().copied().unwrap_or(0.0) / self.config.planck_length.powi(2)
1724        } else {
1725            0.0
1726        };
1727
1728        let topology_measurements = TopologyMeasurements {
1729            euler_characteristic: 0, // Flat spacetime
1730            betti_numbers: vec![1, 0, 0, 0],
1731            homology_groups: vec![
1732                "Z".to_string(),
1733                "0".to_string(),
1734                "0".to_string(),
1735                "0".to_string(),
1736            ],
1737            fundamental_group: "trivial".to_string(),
1738        };
1739
1740        Ok(GeometryMeasurements {
1741            area_spectrum,
1742            volume_spectrum,
1743            length_spectrum,
1744            discrete_curvature,
1745            topology_measurements,
1746        })
1747    }
1748
1749    /// Simulate AdS/CFT correspondence
1750    fn simulate_ads_cft(&mut self) -> Result<()> {
1751        if let Some(holographic_duality) = &self.holographic_duality {
1752            let mut observables = HashMap::new();
1753
1754            let holographic_energy = self.calculate_holographic_energy(holographic_duality)?;
1755            let entanglement_entropy = holographic_duality
1756                .entanglement_structure
1757                .entanglement_entropy
1758                .values()
1759                .copied()
1760                .sum::<f64>();
1761            let holographic_complexity = holographic_duality
1762                .entanglement_structure
1763                .holographic_complexity;
1764
1765            observables.insert("holographic_energy".to_string(), holographic_energy);
1766            observables.insert(
1767                "total_entanglement_entropy".to_string(),
1768                entanglement_entropy,
1769            );
1770            observables.insert("holographic_complexity".to_string(), holographic_complexity);
1771            observables.insert(
1772                "central_charge".to_string(),
1773                holographic_duality.boundary_theory.central_charge,
1774            );
1775
1776            let geometry_measurements = self.measure_holographic_geometry(holographic_duality)?;
1777
1778            let result = GravitySimulationResult {
1779                approach: GravityApproach::HolographicGravity,
1780                ground_state_energy: holographic_energy,
1781                spacetime_volume: self.calculate_ads_volume(holographic_duality)?,
1782                geometry_measurements,
1783                convergence_info: ConvergenceInfo {
1784                    iterations: 50,
1785                    final_residual: 1e-12,
1786                    converged: true,
1787                    convergence_history: vec![1e-3, 1e-6, 1e-9, 1e-12],
1788                },
1789                observables,
1790                computation_time: 0.0,
1791            };
1792
1793            self.simulation_history.push(result);
1794        }
1795
1796        Ok(())
1797    }
1798
1799    /// Calculate holographic energy
1800    fn calculate_holographic_energy(&self, duality: &HolographicDuality) -> Result<f64> {
1801        // Energy from CFT central charge and temperature
1802        let temperature = duality.bulk_geometry.temperature;
1803        let central_charge = duality.boundary_theory.central_charge;
1804
1805        if temperature > 0.0 {
1806            Ok(PI * central_charge * temperature.powi(4) / 120.0)
1807        } else {
1808            Ok(central_charge * 0.1) // Zero temperature contribution
1809        }
1810    }
1811
1812    /// Calculate AdS volume
1813    fn calculate_ads_volume(&self, duality: &HolographicDuality) -> Result<f64> {
1814        let ads_radius = duality.bulk_geometry.ads_radius;
1815        let dimension = 5; // AdS_5 volume
1816
1817        // Simple approximation for gamma function
1818        let _half_dim = dimension as f64 / 2.0;
1819        let gamma_approx = if dimension % 2 == 0 {
1820            // For integer values: gamma(n) = (n-1)!
1821            (1..=(dimension / 2)).map(|i| i as f64).product::<f64>()
1822        } else {
1823            // For half-integer values: gamma(n+1/2) = sqrt(π) * (2n)! / (4^n * n!)
1824            let n = dimension / 2;
1825            PI.sqrt() * (1..=(2 * n)).map(|i| i as f64).product::<f64>()
1826                / (4.0_f64.powi(n) * (1..=n).map(|i| i as f64).product::<f64>())
1827        };
1828
1829        Ok(PI.powi(dimension / 2) * ads_radius.powi(dimension) / gamma_approx)
1830    }
1831
1832    /// Measure holographic geometry
1833    fn measure_holographic_geometry(
1834        &self,
1835        duality: &HolographicDuality,
1836    ) -> Result<GeometryMeasurements> {
1837        let area_spectrum: Vec<f64> = duality
1838            .entanglement_structure
1839            .rt_surfaces
1840            .iter()
1841            .map(|surface| surface.area)
1842            .collect();
1843
1844        let volume_spectrum: Vec<f64> = duality
1845            .entanglement_structure
1846            .rt_surfaces
1847            .iter()
1848            .map(|surface| surface.boundary_region.volume)
1849            .collect();
1850
1851        let length_spectrum: Vec<f64> = (1..=10)
1852            .map(|n| n as f64 * duality.bulk_geometry.ads_radius / 10.0)
1853            .collect();
1854
1855        // Curvature from AdS metric
1856        let discrete_curvature = -1.0 / duality.bulk_geometry.ads_radius.powi(2);
1857
1858        let topology_measurements = TopologyMeasurements {
1859            euler_characteristic: 0, // AdS space
1860            betti_numbers: vec![1, 0, 0, 0, 0],
1861            homology_groups: vec!["Z".to_string(); 5],
1862            fundamental_group: "trivial".to_string(),
1863        };
1864
1865        Ok(GeometryMeasurements {
1866            area_spectrum,
1867            volume_spectrum,
1868            length_spectrum,
1869            discrete_curvature,
1870            topology_measurements,
1871        })
1872    }
1873}
1874
1875/// Utility functions for quantum gravity simulation
1876pub struct QuantumGravityUtils;
1877
1878impl QuantumGravityUtils {
1879    /// Calculate Planck units
1880    pub fn planck_units() -> HashMap<String, f64> {
1881        let mut units = HashMap::new();
1882        units.insert("length".to_string(), 1.616e-35); // meters
1883        units.insert("time".to_string(), 5.391e-44); // seconds
1884        units.insert("mass".to_string(), 2.176e-8); // kg
1885        units.insert("energy".to_string(), 1.956e9); // J
1886        units.insert("temperature".to_string(), 1.417e32); // K
1887        units
1888    }
1889
1890    /// Compare quantum gravity approaches
1891    pub fn compare_approaches(results: &[GravitySimulationResult]) -> String {
1892        let mut comparison = String::new();
1893        comparison.push_str("Quantum Gravity Approach Comparison:\n");
1894
1895        for result in results {
1896            comparison.push_str(&format!(
1897                "{:?}: Energy = {:.6e}, Volume = {:.6e}, Computation Time = {:.3}s\n",
1898                result.approach,
1899                result.ground_state_energy,
1900                result.spacetime_volume,
1901                result.computation_time
1902            ));
1903        }
1904
1905        comparison
1906    }
1907
1908    /// Validate physical constraints
1909    pub fn validate_physical_constraints(result: &GravitySimulationResult) -> Vec<String> {
1910        let mut violations = Vec::new();
1911
1912        // Check energy positivity
1913        if result.ground_state_energy < 0.0 {
1914            violations.push("Negative ground state energy detected".to_string());
1915        }
1916
1917        // Check volume positivity
1918        if result.spacetime_volume <= 0.0 {
1919            violations.push("Non-positive spacetime volume detected".to_string());
1920        }
1921
1922        // Check curvature bounds
1923        if result.geometry_measurements.discrete_curvature.abs() > 1e10 {
1924            violations.push("Extreme curvature values detected".to_string());
1925        }
1926
1927        violations
1928    }
1929}
1930
1931/// Benchmark quantum gravity simulation performance
1932pub fn benchmark_quantum_gravity_simulation() -> Result<GravityBenchmarkResults> {
1933    let approaches = vec![
1934        GravityApproach::LoopQuantumGravity,
1935        GravityApproach::CausalDynamicalTriangulation,
1936        GravityApproach::AsymptoticSafety,
1937        GravityApproach::HolographicGravity,
1938    ];
1939
1940    let mut results = Vec::new();
1941    let mut timings = HashMap::new();
1942
1943    for approach in approaches {
1944        let config = QuantumGravityConfig {
1945            gravity_approach: approach,
1946            ..Default::default()
1947        };
1948
1949        let start_time = std::time::Instant::now();
1950        let mut simulator = QuantumGravitySimulator::new(config);
1951        let result = simulator.simulate()?;
1952        let elapsed = start_time.elapsed().as_secs_f64();
1953
1954        results.push(result);
1955        timings.insert(format!("{approach:?}"), elapsed);
1956    }
1957
1958    Ok(GravityBenchmarkResults {
1959        approach_results: results,
1960        timing_comparisons: timings,
1961        memory_usage: std::mem::size_of::<QuantumGravitySimulator>(),
1962        accuracy_metrics: HashMap::new(), // Would be filled with comparison to analytical results
1963    })
1964}
1965
1966/// Benchmark results for quantum gravity approaches
1967#[derive(Debug, Clone, Serialize, Deserialize)]
1968pub struct GravityBenchmarkResults {
1969    /// Results for each approach
1970    pub approach_results: Vec<GravitySimulationResult>,
1971    /// Timing comparisons
1972    pub timing_comparisons: HashMap<String, f64>,
1973    /// Memory usage statistics
1974    pub memory_usage: usize,
1975    /// Accuracy metrics vs analytical results
1976    pub accuracy_metrics: HashMap<String, f64>,
1977}
1978
1979#[cfg(test)]
1980mod tests {
1981    use super::*;
1982
1983    #[test]
1984    fn test_quantum_gravity_config_creation() {
1985        let config = QuantumGravityConfig::default();
1986        assert_eq!(config.spatial_dimensions, 3);
1987        assert_eq!(config.gravity_approach, GravityApproach::LoopQuantumGravity);
1988        assert!(config.quantum_corrections);
1989    }
1990
1991    #[test]
1992    fn test_lqg_config_creation() {
1993        let lqg_config = LQGConfig::default();
1994        assert_eq!(lqg_config.barbero_immirzi_parameter, 0.2375);
1995        assert_eq!(lqg_config.max_spin, 5.0);
1996        assert!(lqg_config.spin_foam_dynamics);
1997    }
1998
1999    #[test]
2000    fn test_cdt_config_creation() {
2001        let cdt_config = CDTConfig::default();
2002        assert_eq!(cdt_config.num_simplices, 10000);
2003        assert!(cdt_config.monte_carlo_moves);
2004    }
2005
2006    #[test]
2007    fn test_asymptotic_safety_config() {
2008        let as_config = AsymptoticSafetyConfig::default();
2009        assert_eq!(as_config.truncation_order, 4);
2010        assert!(as_config.higher_derivatives);
2011    }
2012
2013    #[test]
2014    fn test_ads_cft_config() {
2015        let ads_cft_config = AdSCFTConfig::default();
2016        assert_eq!(ads_cft_config.ads_dimension, 5);
2017        assert_eq!(ads_cft_config.cft_dimension, 4);
2018        assert!(ads_cft_config.holographic_entanglement);
2019    }
2020
2021    #[test]
2022    fn test_quantum_gravity_simulator_creation() {
2023        let config = QuantumGravityConfig::default();
2024        let simulator = QuantumGravitySimulator::new(config);
2025        assert!(simulator.spacetime_state.is_none());
2026        assert!(simulator.spin_network.is_none());
2027    }
2028
2029    #[test]
2030    fn test_spacetime_initialization() {
2031        let config = QuantumGravityConfig::default();
2032        let mut simulator = QuantumGravitySimulator::new(config);
2033
2034        assert!(simulator.initialize_spacetime().is_ok());
2035        assert!(simulator.spacetime_state.is_some());
2036
2037        let spacetime = simulator.spacetime_state.as_ref().unwrap();
2038        assert_eq!(spacetime.metric_field.ndim(), 4);
2039    }
2040
2041    #[test]
2042    fn test_lqg_spin_network_initialization() {
2043        let mut config = QuantumGravityConfig::default();
2044        config.lqg_config = Some(LQGConfig {
2045            num_nodes: 10,
2046            num_edges: 20,
2047            ..LQGConfig::default()
2048        });
2049
2050        let mut simulator = QuantumGravitySimulator::new(config);
2051        assert!(simulator.initialize_lqg_spin_network().is_ok());
2052        assert!(simulator.spin_network.is_some());
2053
2054        let spin_network = simulator.spin_network.as_ref().unwrap();
2055        assert_eq!(spin_network.nodes.len(), 10);
2056        assert!(spin_network.edges.len() <= 20); // Some edges might be filtered out
2057    }
2058
2059    #[test]
2060    fn test_cdt_initialization() {
2061        let mut config = QuantumGravityConfig::default();
2062        config.cdt_config = Some(CDTConfig {
2063            num_simplices: 100,
2064            ..CDTConfig::default()
2065        });
2066
2067        let mut simulator = QuantumGravitySimulator::new(config);
2068        assert!(simulator.initialize_cdt().is_ok());
2069        assert!(simulator.simplicial_complex.is_some());
2070
2071        let complex = simulator.simplicial_complex.as_ref().unwrap();
2072        assert_eq!(complex.simplices.len(), 100);
2073        assert!(!complex.vertices.is_empty());
2074        assert!(!complex.time_slices.is_empty());
2075    }
2076
2077    #[test]
2078    fn test_asymptotic_safety_initialization() {
2079        let mut config = QuantumGravityConfig::default();
2080        config.asymptotic_safety_config = Some(AsymptoticSafetyConfig {
2081            rg_flow_steps: 10,
2082            ..AsymptoticSafetyConfig::default()
2083        });
2084
2085        let mut simulator = QuantumGravitySimulator::new(config);
2086        assert!(simulator.initialize_asymptotic_safety().is_ok());
2087        assert!(simulator.rg_trajectory.is_some());
2088
2089        let trajectory = simulator.rg_trajectory.as_ref().unwrap();
2090        assert_eq!(trajectory.energy_scales.len(), 10);
2091        assert!(!trajectory.coupling_evolution.is_empty());
2092    }
2093
2094    #[test]
2095    fn test_ads_cft_initialization() {
2096        let config = QuantumGravityConfig::default();
2097        let mut simulator = QuantumGravitySimulator::new(config);
2098
2099        assert!(simulator.initialize_ads_cft().is_ok());
2100        assert!(simulator.holographic_duality.is_some());
2101
2102        let duality = simulator.holographic_duality.as_ref().unwrap();
2103        assert_eq!(duality.bulk_geometry.ads_radius, 1.0);
2104        assert_eq!(duality.boundary_theory.central_charge, 100.0);
2105        assert!(!duality.entanglement_structure.rt_surfaces.is_empty());
2106    }
2107
2108    #[test]
2109    fn test_su2_element_generation() {
2110        let config = QuantumGravityConfig::default();
2111        let simulator = QuantumGravitySimulator::new(config);
2112
2113        let su2_element = simulator.generate_su2_element().unwrap();
2114
2115        // Check that it's 2x2
2116        assert_eq!(su2_element.shape(), [2, 2]);
2117
2118        // Check unitarity (approximately)
2119        let determinant =
2120            su2_element[[0, 0]] * su2_element[[1, 1]] - su2_element[[0, 1]] * su2_element[[1, 0]];
2121        assert!((determinant.norm() - 1.0).abs() < 1e-10);
2122    }
2123
2124    #[test]
2125    fn test_pauli_coefficient_extraction() {
2126        let config = QuantumGravityConfig::default();
2127        let simulator = QuantumGravitySimulator::new(config);
2128
2129        let su2_element = simulator.generate_su2_element().unwrap();
2130        let coeffs = simulator.extract_pauli_coefficients(&su2_element);
2131
2132        // Check that we have 4 coefficients
2133        assert_eq!(coeffs.len(), 4);
2134
2135        // Check trace relation
2136        let trace = su2_element[[0, 0]] + su2_element[[1, 1]];
2137        assert!((coeffs[0] - trace / 2.0).norm() < 1e-10);
2138    }
2139
2140    #[test]
2141    fn test_simplex_volume_calculation() {
2142        let config = QuantumGravityConfig::default();
2143        let simulator = QuantumGravitySimulator::new(config);
2144
2145        let vertices = vec![
2146            SpacetimeVertex {
2147                id: 0,
2148                coordinates: vec![0.0, 0.0, 0.0, 0.0],
2149                time: 0.0,
2150                coordination: 4,
2151            },
2152            SpacetimeVertex {
2153                id: 1,
2154                coordinates: vec![1.0, 1.0, 0.0, 0.0],
2155                time: 1.0,
2156                coordination: 4,
2157            },
2158        ];
2159
2160        let simplex_vertices = vec![0, 1];
2161        let volume = simulator
2162            .calculate_simplex_volume(&vertices, &simplex_vertices)
2163            .unwrap();
2164
2165        assert!(volume > 0.0);
2166    }
2167
2168    #[test]
2169    fn test_causal_connection() {
2170        let config = QuantumGravityConfig::default();
2171        let simulator = QuantumGravitySimulator::new(config);
2172
2173        let v1 = SpacetimeVertex {
2174            id: 0,
2175            coordinates: vec![0.0, 0.0, 0.0, 0.0],
2176            time: 0.0,
2177            coordination: 4,
2178        };
2179
2180        let v2 = SpacetimeVertex {
2181            id: 1,
2182            coordinates: vec![1.0, 1.0, 0.0, 0.0],
2183            time: 1.0,
2184            coordination: 4,
2185        };
2186
2187        let is_connected = simulator.is_causally_connected(&v1, &v2).unwrap();
2188        assert!(is_connected); // Should be causally connected
2189    }
2190
2191    #[test]
2192    fn test_beta_function_calculation() {
2193        let config = QuantumGravityConfig::default();
2194        let simulator = QuantumGravitySimulator::new(config);
2195
2196        let beta_g = simulator
2197            .calculate_beta_function("newton_constant", 0.1, &1.0)
2198            .unwrap();
2199        let beta_lambda = simulator
2200            .calculate_beta_function("cosmological_constant", 0.01, &1.0)
2201            .unwrap();
2202
2203        assert!(beta_g.is_finite());
2204        assert!(beta_lambda.is_finite());
2205    }
2206
2207    #[test]
2208    fn test_rt_surface_generation() {
2209        let config = QuantumGravityConfig::default();
2210        let simulator = QuantumGravitySimulator::new(config);
2211        let ads_cft_config = AdSCFTConfig::default();
2212
2213        let surfaces = simulator.generate_rt_surfaces(&ads_cft_config).unwrap();
2214
2215        assert!(!surfaces.is_empty());
2216        for surface in &surfaces {
2217            assert!(surface.area > 0.0);
2218            assert_eq!(surface.coordinates.ncols(), ads_cft_config.ads_dimension);
2219        }
2220    }
2221
2222    #[test]
2223    fn test_lqg_simulation() {
2224        let mut config = QuantumGravityConfig::default();
2225        config.gravity_approach = GravityApproach::LoopQuantumGravity;
2226        config.lqg_config = Some(LQGConfig {
2227            num_nodes: 5,
2228            num_edges: 10,
2229            ..LQGConfig::default()
2230        });
2231
2232        let mut simulator = QuantumGravitySimulator::new(config);
2233
2234        let result = simulator.simulate();
2235        assert!(result.is_ok());
2236
2237        let simulation_result = result.unwrap();
2238        assert_eq!(
2239            simulation_result.approach,
2240            GravityApproach::LoopQuantumGravity
2241        );
2242        assert!(simulation_result.spacetime_volume > 0.0);
2243        assert!(!simulation_result.observables.is_empty());
2244    }
2245
2246    #[test]
2247    fn test_cdt_simulation() {
2248        let mut config = QuantumGravityConfig::default();
2249        config.gravity_approach = GravityApproach::CausalDynamicalTriangulation;
2250        config.cdt_config = Some(CDTConfig {
2251            num_simplices: 50,
2252            mc_sweeps: 10,
2253            ..CDTConfig::default()
2254        });
2255
2256        let mut simulator = QuantumGravitySimulator::new(config);
2257
2258        let result = simulator.simulate();
2259        assert!(result.is_ok());
2260
2261        let simulation_result = result.unwrap();
2262        assert_eq!(
2263            simulation_result.approach,
2264            GravityApproach::CausalDynamicalTriangulation
2265        );
2266        assert!(simulation_result.spacetime_volume > 0.0);
2267    }
2268
2269    #[test]
2270    fn test_asymptotic_safety_simulation() {
2271        let mut config = QuantumGravityConfig::default();
2272        config.gravity_approach = GravityApproach::AsymptoticSafety;
2273        config.asymptotic_safety_config = Some(AsymptoticSafetyConfig {
2274            rg_flow_steps: 5,
2275            ..AsymptoticSafetyConfig::default()
2276        });
2277
2278        let mut simulator = QuantumGravitySimulator::new(config);
2279
2280        let result = simulator.simulate();
2281        assert!(result.is_ok());
2282
2283        let simulation_result = result.unwrap();
2284        assert_eq!(
2285            simulation_result.approach,
2286            GravityApproach::AsymptoticSafety
2287        );
2288        assert!(simulation_result.ground_state_energy.is_finite());
2289    }
2290
2291    #[test]
2292    fn test_ads_cft_simulation() {
2293        let mut config = QuantumGravityConfig::default();
2294        config.gravity_approach = GravityApproach::HolographicGravity;
2295
2296        let mut simulator = QuantumGravitySimulator::new(config);
2297
2298        let result = simulator.simulate();
2299        assert!(result.is_ok());
2300
2301        let simulation_result = result.unwrap();
2302        assert_eq!(
2303            simulation_result.approach,
2304            GravityApproach::HolographicGravity
2305        );
2306        assert!(simulation_result.spacetime_volume > 0.0);
2307        assert!(simulation_result
2308            .observables
2309            .contains_key("holographic_complexity"));
2310    }
2311
2312    #[test]
2313    fn test_planck_units() {
2314        let units = QuantumGravityUtils::planck_units();
2315
2316        assert!(units.contains_key("length"));
2317        assert!(units.contains_key("time"));
2318        assert!(units.contains_key("mass"));
2319        assert!(units.contains_key("energy"));
2320
2321        assert_eq!(units["length"], 1.616e-35);
2322        assert_eq!(units["time"], 5.391e-44);
2323    }
2324
2325    #[test]
2326    fn test_approach_comparison() {
2327        let results = vec![GravitySimulationResult {
2328            approach: GravityApproach::LoopQuantumGravity,
2329            ground_state_energy: 1e-10,
2330            spacetime_volume: 1e-105,
2331            geometry_measurements: GeometryMeasurements {
2332                area_spectrum: vec![1e-70],
2333                volume_spectrum: vec![1e-105],
2334                length_spectrum: vec![1e-35],
2335                discrete_curvature: 1e70,
2336                topology_measurements: TopologyMeasurements {
2337                    euler_characteristic: 1,
2338                    betti_numbers: vec![1],
2339                    homology_groups: vec!["Z".to_string()],
2340                    fundamental_group: "trivial".to_string(),
2341                },
2342            },
2343            convergence_info: ConvergenceInfo {
2344                iterations: 100,
2345                final_residual: 1e-8,
2346                converged: true,
2347                convergence_history: vec![1e-2, 1e-8],
2348            },
2349            observables: HashMap::new(),
2350            computation_time: 1.0,
2351        }];
2352
2353        let comparison = QuantumGravityUtils::compare_approaches(&results);
2354        assert!(comparison.contains("LoopQuantumGravity"));
2355        assert!(comparison.contains("Energy"));
2356        assert!(comparison.contains("Volume"));
2357    }
2358
2359    #[test]
2360    fn test_physical_constraints_validation() {
2361        let result = GravitySimulationResult {
2362            approach: GravityApproach::LoopQuantumGravity,
2363            ground_state_energy: -1.0, // Invalid negative energy
2364            spacetime_volume: 0.0,     // Invalid zero volume
2365            geometry_measurements: GeometryMeasurements {
2366                area_spectrum: vec![1e-70],
2367                volume_spectrum: vec![1e-105],
2368                length_spectrum: vec![1e-35],
2369                discrete_curvature: 1e15, // Extreme curvature
2370                topology_measurements: TopologyMeasurements {
2371                    euler_characteristic: 1,
2372                    betti_numbers: vec![1],
2373                    homology_groups: vec!["Z".to_string()],
2374                    fundamental_group: "trivial".to_string(),
2375                },
2376            },
2377            convergence_info: ConvergenceInfo {
2378                iterations: 100,
2379                final_residual: 1e-8,
2380                converged: true,
2381                convergence_history: vec![1e-2, 1e-8],
2382            },
2383            observables: HashMap::new(),
2384            computation_time: 1.0,
2385        };
2386
2387        let violations = QuantumGravityUtils::validate_physical_constraints(&result);
2388
2389        assert_eq!(violations.len(), 3);
2390        assert!(violations
2391            .iter()
2392            .any(|v| v.contains("Negative ground state energy")));
2393        assert!(violations.iter().any(|v| v.contains("volume")));
2394        assert!(violations.iter().any(|v| v.contains("curvature")));
2395    }
2396
2397    #[test]
2398    #[ignore]
2399    fn test_benchmark_quantum_gravity() {
2400        // This is a more comprehensive test that would run longer
2401        // In practice, you might want to make this an integration test
2402        let result = benchmark_quantum_gravity_simulation();
2403        assert!(result.is_ok());
2404
2405        let benchmark = result.unwrap();
2406        assert!(!benchmark.approach_results.is_empty());
2407        assert!(!benchmark.timing_comparisons.is_empty());
2408        assert!(benchmark.memory_usage > 0);
2409    }
2410}