quantrs2_sim/
quantum_advantage_demonstration.rs

1//! Quantum Advantage Demonstration Framework
2//!
3//! This module provides comprehensive tools for demonstrating and verifying
4//! quantum computational advantages across various problem domains, including
5//! quantum supremacy tests, quantum advantage benchmarks, and comparative
6//! analysis with classical algorithms.
7
8use crate::prelude::SimulatorError;
9use scirs2_core::ndarray::{Array1, Array2};
10use scirs2_core::parallel_ops::*;
11use scirs2_core::Complex64;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::sync::{Arc, Mutex};
15use std::time::{Duration, Instant};
16
17use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
18use crate::error::Result;
19use scirs2_core::random::prelude::*;
20
21/// Types of quantum advantage demonstrations
22#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
23pub enum QuantumAdvantageType {
24    /// Quantum supremacy (computational task impossible for classical computers)
25    QuantumSupremacy,
26    /// Quantum advantage (speedup over best known classical algorithm)
27    ComputationalAdvantage,
28    /// Sample complexity advantage
29    SampleComplexityAdvantage,
30    /// Communication complexity advantage
31    CommunicationAdvantage,
32    /// Query complexity advantage
33    QueryComplexityAdvantage,
34    /// Memory advantage
35    MemoryAdvantage,
36    /// Energy efficiency advantage
37    EnergyAdvantage,
38    /// Noise resilience advantage
39    NoiseResilienceAdvantage,
40}
41
42/// Quantum advantage problem domains
43#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
44pub enum ProblemDomain {
45    /// Random circuit sampling
46    RandomCircuitSampling,
47    /// Boson sampling
48    BosonSampling,
49    /// IQP (Instantaneous Quantum Polynomial-time) circuits
50    IQPCircuits,
51    /// Quantum approximate optimization
52    QAOA,
53    /// Variational quantum algorithms
54    VQE,
55    /// Quantum machine learning
56    QML,
57    /// Quantum simulation
58    QuantumSimulation,
59    /// Quantum cryptography
60    QuantumCryptography,
61    /// Quantum search
62    QuantumSearch,
63    /// Factor decomposition
64    Factoring,
65    /// Discrete logarithm
66    DiscreteLogarithm,
67    /// Graph problems
68    GraphProblems,
69    /// Linear algebra
70    LinearAlgebra,
71    /// Optimization
72    Optimization,
73    /// Custom domain
74    Custom,
75}
76
77/// Classical algorithm types for comparison
78#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
79pub enum ClassicalAlgorithmType {
80    /// Brute force search
81    BruteForce,
82    /// Monte Carlo sampling
83    MonteCarlo,
84    /// Markov chain Monte Carlo
85    MCMC,
86    /// Simulated annealing
87    SimulatedAnnealing,
88    /// Genetic algorithms
89    GeneticAlgorithm,
90    /// Branch and bound
91    BranchAndBound,
92    /// Dynamic programming
93    DynamicProgramming,
94    /// Approximation algorithms
95    Approximation,
96    /// Heuristic algorithms
97    Heuristic,
98    /// Machine learning
99    MachineLearning,
100    /// Tensor network methods
101    TensorNetwork,
102    /// Best known classical algorithm
103    BestKnown,
104}
105
106/// Quantum advantage metrics
107#[derive(Debug, Clone, Serialize, Deserialize)]
108pub struct QuantumAdvantageMetrics {
109    /// Quantum algorithm runtime
110    pub quantum_time: Duration,
111    /// Classical algorithm runtime
112    pub classical_time: Duration,
113    /// Speedup factor (classical_time / quantum_time)
114    pub speedup_factor: f64,
115    /// Quantum algorithm accuracy/fidelity
116    pub quantum_accuracy: f64,
117    /// Classical algorithm accuracy
118    pub classical_accuracy: f64,
119    /// Quantum resource requirements
120    pub quantum_resources: QuantumResources,
121    /// Classical resource requirements
122    pub classical_resources: ClassicalResources,
123    /// Statistical significance of advantage
124    pub statistical_significance: f64,
125    /// Confidence interval
126    pub confidence_interval: (f64, f64),
127    /// Problem size scaling
128    pub scaling_analysis: ScalingAnalysis,
129}
130
131/// Quantum resource requirements
132#[derive(Debug, Clone, Serialize, Deserialize)]
133pub struct QuantumResources {
134    /// Number of qubits required
135    pub qubits: usize,
136    /// Circuit depth
137    pub depth: usize,
138    /// Number of gates
139    pub gate_count: usize,
140    /// Coherence time required
141    pub coherence_time: Duration,
142    /// Gate fidelity required
143    pub gate_fidelity: f64,
144    /// Measurement shots
145    pub shots: usize,
146    /// Quantum volume required
147    pub quantum_volume: usize,
148}
149
150/// Classical resource requirements
151#[derive(Debug, Clone, Serialize, Deserialize)]
152pub struct ClassicalResources {
153    /// CPU time
154    pub cpu_time: Duration,
155    /// Memory usage (bytes)
156    pub memory_usage: usize,
157    /// Number of cores used
158    pub cores: usize,
159    /// Energy consumption (joules)
160    pub energy_consumption: f64,
161    /// Storage requirements (bytes)
162    pub storage: usize,
163    /// Network bandwidth (if distributed)
164    pub network_bandwidth: f64,
165}
166
167/// Scaling analysis
168#[derive(Debug, Clone, Serialize, Deserialize)]
169pub struct ScalingAnalysis {
170    /// Problem sizes tested
171    pub problem_sizes: Vec<usize>,
172    /// Quantum scaling exponent
173    pub quantum_scaling: f64,
174    /// Classical scaling exponent
175    pub classical_scaling: f64,
176    /// Crossover point where quantum becomes advantageous
177    pub crossover_point: Option<usize>,
178    /// Asymptotic advantage factor
179    pub asymptotic_advantage: f64,
180}
181
182/// Quantum advantage configuration
183#[derive(Debug, Clone)]
184pub struct QuantumAdvantageConfig {
185    /// Type of advantage to demonstrate
186    pub advantage_type: QuantumAdvantageType,
187    /// Problem domain
188    pub domain: ProblemDomain,
189    /// Classical algorithms to compare against
190    pub classical_algorithms: Vec<ClassicalAlgorithmType>,
191    /// Problem sizes to test
192    pub problem_sizes: Vec<usize>,
193    /// Number of trials for statistical analysis
194    pub num_trials: usize,
195    /// Confidence level for statistical tests
196    pub confidence_level: f64,
197    /// Maximum runtime for classical algorithms
198    pub classical_timeout: Duration,
199    /// Hardware specifications
200    pub hardware_specs: HardwareSpecs,
201    /// Enable detailed profiling
202    pub enable_profiling: bool,
203    /// Save intermediate results
204    pub save_results: bool,
205}
206
207/// Hardware specifications
208#[derive(Debug, Clone)]
209pub struct HardwareSpecs {
210    /// Quantum hardware specifications
211    pub quantum_hardware: QuantumHardwareSpecs,
212    /// Classical hardware specifications
213    pub classical_hardware: ClassicalHardwareSpecs,
214}
215
216/// Quantum hardware specifications
217#[derive(Debug, Clone)]
218pub struct QuantumHardwareSpecs {
219    /// Number of available qubits
220    pub num_qubits: usize,
221    /// Gate fidelities
222    pub gate_fidelities: HashMap<String, f64>,
223    /// Coherence times
224    pub coherence_times: HashMap<String, Duration>,
225    /// Connectivity graph
226    pub connectivity: Vec<Vec<bool>>,
227    /// Gate times
228    pub gate_times: HashMap<String, Duration>,
229    /// Readout fidelity
230    pub readout_fidelity: f64,
231}
232
233/// Classical hardware specifications
234#[derive(Debug, Clone)]
235pub struct ClassicalHardwareSpecs {
236    /// Number of CPU cores
237    pub cpu_cores: usize,
238    /// CPU frequency (GHz)
239    pub cpu_frequency: f64,
240    /// RAM size (bytes)
241    pub ram_size: usize,
242    /// Cache sizes
243    pub cache_sizes: Vec<usize>,
244    /// GPU specifications (if available)
245    pub gpu_specs: Option<GPUSpecs>,
246}
247
248/// GPU specifications
249#[derive(Debug, Clone)]
250pub struct GPUSpecs {
251    /// Number of compute units
252    pub compute_units: usize,
253    /// Memory size (bytes)
254    pub memory_size: usize,
255    /// Memory bandwidth (GB/s)
256    pub memory_bandwidth: f64,
257    /// Peak FLOPS
258    pub peak_flops: f64,
259}
260
261/// Quantum advantage demonstration result
262#[derive(Debug, Clone, Serialize, Deserialize)]
263pub struct QuantumAdvantageResult {
264    /// Whether quantum advantage was demonstrated
265    pub advantage_demonstrated: bool,
266    /// Advantage metrics
267    pub metrics: QuantumAdvantageMetrics,
268    /// Detailed results for each problem size
269    pub detailed_results: Vec<DetailedResult>,
270    /// Statistical analysis
271    pub statistical_analysis: StatisticalAnalysis,
272    /// Verification results
273    pub verification: VerificationResult,
274    /// Cost analysis
275    pub cost_analysis: CostAnalysis,
276    /// Future projections
277    pub projections: FutureProjections,
278}
279
280/// Detailed result for a specific problem size
281#[derive(Debug, Clone, Serialize, Deserialize)]
282pub struct DetailedResult {
283    /// Problem size
284    pub problem_size: usize,
285    /// Quantum results
286    pub quantum_results: AlgorithmResult,
287    /// Classical results
288    pub classical_results: Vec<AlgorithmResult>,
289    /// Comparative analysis
290    pub comparison: ComparisonResult,
291}
292
293/// Algorithm execution result
294#[derive(Debug, Clone, Serialize, Deserialize)]
295pub struct AlgorithmResult {
296    /// Algorithm type
297    pub algorithm_type: String,
298    /// Execution time
299    pub execution_time: Duration,
300    /// Solution quality/accuracy
301    pub solution_quality: f64,
302    /// Resource usage
303    pub resource_usage: ResourceUsage,
304    /// Success rate (for probabilistic algorithms)
305    pub success_rate: f64,
306    /// Output distribution (for sampling problems)
307    pub output_distribution: Option<HashMap<String, f64>>,
308}
309
310/// Resource usage tracking
311#[derive(Debug, Clone, Serialize, Deserialize)]
312pub struct ResourceUsage {
313    /// Memory peak usage
314    pub peak_memory: usize,
315    /// Energy consumption
316    pub energy: f64,
317    /// Number of operations
318    pub operations: usize,
319    /// Communication cost (for distributed algorithms)
320    pub communication: f64,
321}
322
323/// Comparison result between quantum and classical
324#[derive(Debug, Clone, Serialize, Deserialize)]
325pub struct ComparisonResult {
326    /// Best classical algorithm
327    pub best_classical: String,
328    /// Speedup vs best classical
329    pub speedup: f64,
330    /// Quality improvement
331    pub quality_improvement: f64,
332    /// Resource efficiency
333    pub resource_efficiency: f64,
334    /// Statistical significance
335    pub significance: f64,
336}
337
338/// Statistical analysis of results
339#[derive(Debug, Clone, Serialize, Deserialize)]
340pub struct StatisticalAnalysis {
341    /// Hypothesis test results
342    pub hypothesis_tests: Vec<HypothesisTest>,
343    /// Confidence intervals
344    pub confidence_intervals: HashMap<String, (f64, f64)>,
345    /// Effect sizes
346    pub effect_sizes: HashMap<String, f64>,
347    /// Power analysis
348    pub power_analysis: PowerAnalysis,
349}
350
351/// Hypothesis test result
352#[derive(Debug, Clone, Serialize, Deserialize)]
353pub struct HypothesisTest {
354    /// Test name
355    pub test_name: String,
356    /// Null hypothesis
357    pub null_hypothesis: String,
358    /// Test statistic
359    pub test_statistic: f64,
360    /// P-value
361    pub p_value: f64,
362    /// Reject null hypothesis
363    pub reject_null: bool,
364}
365
366/// Power analysis for statistical tests
367#[derive(Debug, Clone, Serialize, Deserialize)]
368pub struct PowerAnalysis {
369    /// Statistical power
370    pub power: f64,
371    /// Effect size
372    pub effect_size: f64,
373    /// Sample size required for desired power
374    pub required_sample_size: usize,
375}
376
377/// Verification of quantum advantage claims
378#[derive(Debug, Clone, Serialize, Deserialize)]
379pub struct VerificationResult {
380    /// Classical verification methods used
381    pub verification_methods: Vec<String>,
382    /// Verification success rate
383    pub verification_success_rate: f64,
384    /// Spoofing resistance
385    pub spoofing_resistance: f64,
386    /// Independent verification
387    pub independent_verification: Option<IndependentVerification>,
388}
389
390/// Independent verification by third parties
391#[derive(Debug, Clone, Serialize, Deserialize)]
392pub struct IndependentVerification {
393    /// Verifying institutions
394    pub verifiers: Vec<String>,
395    /// Verification results
396    pub results: Vec<bool>,
397    /// Consensus level
398    pub consensus: f64,
399}
400
401/// Cost analysis of quantum vs classical approaches
402#[derive(Debug, Clone, Serialize, Deserialize)]
403pub struct CostAnalysis {
404    /// Quantum hardware cost
405    pub quantum_hardware_cost: f64,
406    /// Classical hardware cost
407    pub classical_hardware_cost: f64,
408    /// Operational costs
409    pub operational_costs: OperationalCosts,
410    /// Total cost of ownership
411    pub total_cost_ownership: f64,
412    /// Cost per solution
413    pub cost_per_solution: f64,
414}
415
416/// Operational costs breakdown
417#[derive(Debug, Clone, Serialize, Deserialize)]
418pub struct OperationalCosts {
419    /// Energy costs
420    pub energy: f64,
421    /// Maintenance costs
422    pub maintenance: f64,
423    /// Personnel costs
424    pub personnel: f64,
425    /// Infrastructure costs
426    pub infrastructure: f64,
427}
428
429/// Future projections for quantum advantage
430#[derive(Debug, Clone, Serialize, Deserialize)]
431pub struct FutureProjections {
432    /// Projected quantum improvements
433    pub quantum_improvements: TechnologyProjection,
434    /// Projected classical improvements
435    pub classical_improvements: TechnologyProjection,
436    /// Timeline predictions
437    pub timeline: TimelineProjection,
438    /// Market impact assessment
439    pub market_impact: MarketImpact,
440}
441
442/// Technology improvement projections
443#[derive(Debug, Clone, Serialize, Deserialize)]
444pub struct TechnologyProjection {
445    /// Performance improvement factor per year
446    pub performance_improvement: f64,
447    /// Cost reduction factor per year
448    pub cost_reduction: f64,
449    /// Reliability improvement
450    pub reliability_improvement: f64,
451    /// Scalability projections
452    pub scalability: Vec<(usize, f64)>, // (year, capability)
453}
454
455/// Timeline for quantum advantage milestones
456#[derive(Debug, Clone, Serialize, Deserialize)]
457pub struct TimelineProjection {
458    /// Milestones and expected years
459    pub milestones: Vec<(String, usize)>,
460    /// Confidence in projections
461    pub confidence: f64,
462    /// Key uncertainty factors
463    pub uncertainties: Vec<String>,
464}
465
466/// Market impact assessment
467#[derive(Debug, Clone, Serialize, Deserialize)]
468pub struct MarketImpact {
469    /// Industries affected
470    pub affected_industries: Vec<String>,
471    /// Economic impact estimates
472    pub economic_impact: f64,
473    /// Job displacement/creation
474    pub employment_impact: EmploymentImpact,
475    /// Investment projections
476    pub investment_projections: Vec<(usize, f64)>, // (year, investment)
477}
478
479/// Employment impact analysis
480#[derive(Debug, Clone, Serialize, Deserialize)]
481pub struct EmploymentImpact {
482    /// Jobs displaced
483    pub jobs_displaced: usize,
484    /// Jobs created
485    pub jobs_created: usize,
486    /// Reskilling requirements
487    pub reskilling_needed: usize,
488}
489
490/// Main quantum advantage demonstration framework
491pub struct QuantumAdvantageDemonstrator {
492    /// Configuration
493    config: QuantumAdvantageConfig,
494    /// Quantum algorithm implementations
495    quantum_algorithms: HashMap<ProblemDomain, Box<dyn QuantumAlgorithm + Send + Sync>>,
496    /// Classical algorithm implementations
497    classical_algorithms:
498        HashMap<ClassicalAlgorithmType, Box<dyn ClassicalAlgorithm + Send + Sync>>,
499    /// Results database
500    results_database: Arc<Mutex<ResultsDatabase>>,
501    /// Performance profiler
502    profiler: Arc<Mutex<PerformanceProfiler>>,
503}
504
505/// Quantum algorithm trait
506pub trait QuantumAlgorithm: Send + Sync {
507    /// Execute quantum algorithm
508    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult>;
509
510    /// Get resource requirements
511    fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources;
512
513    /// Get theoretical scaling
514    fn get_theoretical_scaling(&self) -> f64;
515
516    /// Algorithm name
517    fn name(&self) -> &str;
518}
519
520/// Classical algorithm trait
521pub trait ClassicalAlgorithm: Send + Sync {
522    /// Execute classical algorithm
523    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult>;
524
525    /// Get resource requirements
526    fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources;
527
528    /// Get theoretical scaling
529    fn get_theoretical_scaling(&self) -> f64;
530
531    /// Algorithm name
532    fn name(&self) -> &str;
533}
534
535/// Problem instance representation
536#[derive(Debug, Clone)]
537pub struct ProblemInstance {
538    /// Problem domain
539    pub domain: ProblemDomain,
540    /// Problem size
541    pub size: usize,
542    /// Problem-specific data
543    pub data: ProblemData,
544    /// Difficulty parameters
545    pub difficulty: DifficultyParameters,
546}
547
548/// Problem-specific data
549#[derive(Debug, Clone)]
550pub enum ProblemData {
551    /// Random circuit sampling data
552    RandomCircuit {
553        circuit: InterfaceCircuit,
554        target_distribution: HashMap<String, f64>,
555    },
556    /// Graph problem data
557    Graph {
558        adjacency_matrix: Array2<f64>,
559        vertex_weights: Vec<f64>,
560        edge_weights: HashMap<(usize, usize), f64>,
561    },
562    /// Optimization problem data
563    Optimization {
564        objective_function: Vec<f64>,
565        constraints: Vec<Vec<f64>>,
566        bounds: Vec<(f64, f64)>,
567    },
568    /// Search problem data
569    Search {
570        search_space: Vec<Vec<f64>>,
571        target_function: Vec<f64>,
572        oracle_queries: usize,
573    },
574    /// Simulation problem data
575    Simulation {
576        hamiltonian: Array2<Complex64>,
577        initial_state: Array1<Complex64>,
578        evolution_time: f64,
579    },
580    /// Custom problem data
581    Custom { data: HashMap<String, Vec<f64>> },
582}
583
584/// Difficulty parameters
585#[derive(Debug, Clone)]
586pub struct DifficultyParameters {
587    /// Instance hardness (0.0 = easy, 1.0 = hard)
588    pub hardness: f64,
589    /// Noise level
590    pub noise_level: f64,
591    /// Time constraints
592    pub time_limit: Option<Duration>,
593    /// Accuracy requirements
594    pub accuracy_threshold: f64,
595}
596
597/// Results database
598#[derive(Debug, Clone)]
599pub struct ResultsDatabase {
600    /// Stored results by configuration
601    pub results: HashMap<String, Vec<QuantumAdvantageResult>>,
602    /// Metadata
603    pub metadata: HashMap<String, String>,
604}
605
606/// Performance profiler
607#[derive(Debug, Clone)]
608pub struct PerformanceProfiler {
609    /// Timing data
610    pub timing_data: HashMap<String, Vec<Duration>>,
611    /// Memory usage data
612    pub memory_data: HashMap<String, Vec<usize>>,
613    /// Energy consumption data
614    pub energy_data: HashMap<String, Vec<f64>>,
615}
616
617impl QuantumAdvantageDemonstrator {
618    /// Create new quantum advantage demonstrator
619    pub fn new(config: QuantumAdvantageConfig) -> Self {
620        let mut demonstrator = Self {
621            config,
622            quantum_algorithms: HashMap::new(),
623            classical_algorithms: HashMap::new(),
624            results_database: Arc::new(Mutex::new(ResultsDatabase {
625                results: HashMap::new(),
626                metadata: HashMap::new(),
627            })),
628            profiler: Arc::new(Mutex::new(PerformanceProfiler {
629                timing_data: HashMap::new(),
630                memory_data: HashMap::new(),
631                energy_data: HashMap::new(),
632            })),
633        };
634
635        // Register default algorithms
636        demonstrator.register_default_algorithms();
637        demonstrator
638    }
639
640    /// Demonstrate quantum advantage
641    pub fn demonstrate_advantage(&mut self) -> Result<QuantumAdvantageResult> {
642        let mut detailed_results = Vec::new();
643        let mut all_speedups = Vec::new();
644        let mut all_accuracies = Vec::new();
645
646        println!(
647            "Starting quantum advantage demonstration for {:?} in {:?} domain",
648            self.config.advantage_type, self.config.domain
649        );
650
651        // Test each problem size
652        let problem_sizes = self.config.problem_sizes.clone();
653        for problem_size in problem_sizes {
654            println!("Testing problem size: {problem_size}");
655
656            let detailed_result = self.test_problem_size(problem_size)?;
657
658            all_speedups.push(detailed_result.comparison.speedup);
659            all_accuracies.push(detailed_result.quantum_results.solution_quality);
660
661            detailed_results.push(detailed_result);
662        }
663
664        // Perform scaling analysis
665        let scaling_analysis = self.analyze_scaling(&detailed_results)?;
666
667        // Statistical analysis
668        let statistical_analysis = self.perform_statistical_analysis(&detailed_results)?;
669
670        // Verification
671        let verification = self.verify_results(&detailed_results)?;
672
673        // Cost analysis
674        let cost_analysis = self.analyze_costs(&detailed_results)?;
675
676        // Future projections
677        let projections = self.generate_projections(&detailed_results)?;
678
679        // Overall metrics
680        let overall_speedup = all_speedups
681            .iter()
682            .fold(1.0, |acc, &x| acc * x)
683            .powf(1.0 / all_speedups.len() as f64);
684        let avg_accuracy = all_accuracies.iter().sum::<f64>() / all_accuracies.len() as f64;
685
686        let quantum_time = detailed_results
687            .iter()
688            .map(|r| r.quantum_results.execution_time)
689            .sum::<Duration>()
690            / detailed_results.len() as u32;
691
692        let best_classical_time = detailed_results
693            .iter()
694            .map(|r| {
695                r.classical_results
696                    .iter()
697                    .map(|c| c.execution_time)
698                    .min()
699                    .unwrap_or(Duration::new(0, 0))
700            })
701            .sum::<Duration>()
702            / detailed_results.len() as u32;
703
704        let metrics = QuantumAdvantageMetrics {
705            quantum_time,
706            classical_time: best_classical_time,
707            speedup_factor: overall_speedup,
708            quantum_accuracy: avg_accuracy,
709            classical_accuracy: detailed_results
710                .iter()
711                .map(|r| {
712                    r.classical_results
713                        .iter()
714                        .map(|c| c.solution_quality)
715                        .max_by(|a, b| a.partial_cmp(b).unwrap())
716                        .unwrap_or(0.0)
717                })
718                .sum::<f64>()
719                / detailed_results.len() as f64,
720            quantum_resources: self.aggregate_quantum_resources(&detailed_results),
721            classical_resources: self.aggregate_classical_resources(&detailed_results),
722            statistical_significance: statistical_analysis
723                .hypothesis_tests
724                .iter()
725                .find(|t| t.test_name == "quantum_advantage")
726                .map_or(0.0, |t| 1.0 - t.p_value),
727            confidence_interval: (overall_speedup * 0.9, overall_speedup * 1.1), // Simplified
728            scaling_analysis,
729        };
730
731        let advantage_demonstrated = overall_speedup > 1.0
732            && statistical_analysis
733                .hypothesis_tests
734                .iter()
735                .any(|t| t.test_name == "quantum_advantage" && t.reject_null);
736
737        let result = QuantumAdvantageResult {
738            advantage_demonstrated,
739            metrics,
740            detailed_results,
741            statistical_analysis,
742            verification,
743            cost_analysis,
744            projections,
745        };
746
747        // Store results
748        self.store_results(&result)?;
749
750        Ok(result)
751    }
752
753    /// Test a specific problem size
754    fn test_problem_size(&mut self, problem_size: usize) -> Result<DetailedResult> {
755        // Generate problem instance
756        let problem_instance = self.generate_problem_instance(problem_size)?;
757
758        // Execute quantum algorithm
759        let quantum_start = Instant::now();
760        let quantum_algorithm = self
761            .quantum_algorithms
762            .get(&self.config.domain)
763            .ok_or_else(|| {
764                SimulatorError::UnsupportedOperation(format!(
765                    "No quantum algorithm registered for domain {:?}",
766                    self.config.domain
767                ))
768            })?;
769
770        let quantum_results = quantum_algorithm.execute(&problem_instance)?;
771        let quantum_time = quantum_start.elapsed();
772
773        // Execute classical algorithms
774        let mut classical_results = Vec::new();
775        for &classical_type in &self.config.classical_algorithms {
776            if let Some(classical_algorithm) = self.classical_algorithms.get(&classical_type) {
777                let classical_start = Instant::now();
778
779                // Set timeout for classical algorithms
780                let result = if classical_start.elapsed() < self.config.classical_timeout {
781                    classical_algorithm.execute(&problem_instance)?
782                } else {
783                    // Timeout result
784                    AlgorithmResult {
785                        algorithm_type: classical_algorithm.name().to_string(),
786                        execution_time: self.config.classical_timeout,
787                        solution_quality: 0.0,
788                        resource_usage: ResourceUsage {
789                            peak_memory: 0,
790                            energy: 0.0,
791                            operations: 0,
792                            communication: 0.0,
793                        },
794                        success_rate: 0.0,
795                        output_distribution: None,
796                    }
797                };
798
799                classical_results.push(result);
800            }
801        }
802
803        // Compare results
804        let comparison = self.compare_results(&quantum_results, &classical_results)?;
805
806        Ok(DetailedResult {
807            problem_size,
808            quantum_results,
809            classical_results,
810            comparison,
811        })
812    }
813
814    /// Generate problem instance for given size
815    fn generate_problem_instance(&self, size: usize) -> Result<ProblemInstance> {
816        let data = match self.config.domain {
817            ProblemDomain::RandomCircuitSampling => {
818                let circuit = self.generate_random_circuit(size)?;
819                ProblemData::RandomCircuit {
820                    circuit,
821                    target_distribution: HashMap::new(), // Would compute actual distribution
822                }
823            }
824            ProblemDomain::GraphProblems => {
825                let adjacency_matrix = Array2::from_shape_fn((size, size), |(i, j)| {
826                    if i != j && thread_rng().gen::<f64>() < 0.3 {
827                        thread_rng().gen::<f64>()
828                    } else {
829                        0.0
830                    }
831                });
832                ProblemData::Graph {
833                    adjacency_matrix,
834                    vertex_weights: (0..size).map(|_| thread_rng().gen::<f64>()).collect(),
835                    edge_weights: HashMap::new(),
836                }
837            }
838            ProblemDomain::Optimization => {
839                ProblemData::Optimization {
840                    objective_function: (0..size).map(|_| thread_rng().gen::<f64>()).collect(),
841                    constraints: vec![vec![1.0; size]], // Sum constraint
842                    bounds: vec![(0.0, 1.0); size],
843                }
844            }
845            ProblemDomain::QuantumSimulation => {
846                let hamiltonian = Array2::from_shape_fn((1 << size, 1 << size), |(i, j)| {
847                    if i == j {
848                        Complex64::new(thread_rng().gen::<f64>(), 0.0)
849                    } else if (i ^ j).is_power_of_two() {
850                        Complex64::new(thread_rng().gen::<f64>() * 0.1, 0.0)
851                    } else {
852                        Complex64::new(0.0, 0.0)
853                    }
854                });
855                let initial_state = {
856                    let mut state = Array1::zeros(1 << size);
857                    state[0] = Complex64::new(1.0, 0.0);
858                    state
859                };
860                ProblemData::Simulation {
861                    hamiltonian,
862                    initial_state,
863                    evolution_time: 1.0,
864                }
865            }
866            _ => ProblemData::Custom {
867                data: HashMap::new(),
868            },
869        };
870
871        Ok(ProblemInstance {
872            domain: self.config.domain,
873            size,
874            data,
875            difficulty: DifficultyParameters {
876                hardness: 0.5,
877                noise_level: 0.01,
878                time_limit: Some(Duration::from_secs(3600)),
879                accuracy_threshold: 0.95,
880            },
881        })
882    }
883
884    /// Generate random circuit for supremacy testing
885    fn generate_random_circuit(&self, num_qubits: usize) -> Result<InterfaceCircuit> {
886        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
887        let depth = num_qubits * 10; // Scaled depth
888
889        for layer in 0..depth {
890            // Single-qubit gates
891            for qubit in 0..num_qubits {
892                let gate_type = match layer % 3 {
893                    0 => InterfaceGateType::RX(
894                        thread_rng().gen::<f64>() * 2.0 * std::f64::consts::PI,
895                    ),
896                    1 => InterfaceGateType::RY(
897                        thread_rng().gen::<f64>() * 2.0 * std::f64::consts::PI,
898                    ),
899                    _ => InterfaceGateType::RZ(
900                        thread_rng().gen::<f64>() * 2.0 * std::f64::consts::PI,
901                    ),
902                };
903                circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
904            }
905
906            // Two-qubit gates
907            if layer % 2 == 1 {
908                for qubit in 0..num_qubits - 1 {
909                    if thread_rng().gen::<f64>() < 0.5 {
910                        circuit.add_gate(InterfaceGate::new(
911                            InterfaceGateType::CNOT,
912                            vec![qubit, qubit + 1],
913                        ));
914                    }
915                }
916            }
917        }
918
919        Ok(circuit)
920    }
921
922    /// Compare quantum and classical results
923    fn compare_results(
924        &self,
925        quantum: &AlgorithmResult,
926        classical_results: &[AlgorithmResult],
927    ) -> Result<ComparisonResult> {
928        let best_classical = classical_results
929            .iter()
930            .min_by(|a, b| a.execution_time.cmp(&b.execution_time))
931            .ok_or_else(|| SimulatorError::InvalidInput("No classical results".to_string()))?;
932
933        let speedup =
934            best_classical.execution_time.as_secs_f64() / quantum.execution_time.as_secs_f64();
935        let quality_improvement = quantum.solution_quality / best_classical.solution_quality;
936        let resource_efficiency = (best_classical.resource_usage.peak_memory as f64)
937            / (quantum.resource_usage.peak_memory as f64);
938
939        // Simplified statistical significance calculation
940        let significance = if speedup > 1.0 { 0.95 } else { 0.05 };
941
942        Ok(ComparisonResult {
943            best_classical: best_classical.algorithm_type.clone(),
944            speedup,
945            quality_improvement,
946            resource_efficiency,
947            significance,
948        })
949    }
950
951    /// Analyze scaling behavior
952    fn analyze_scaling(&self, results: &[DetailedResult]) -> Result<ScalingAnalysis> {
953        let problem_sizes: Vec<usize> = results.iter().map(|r| r.problem_size).collect();
954        let quantum_times: Vec<f64> = results
955            .iter()
956            .map(|r| r.quantum_results.execution_time.as_secs_f64())
957            .collect();
958        let classical_times: Vec<f64> = results
959            .iter()
960            .map(|r| {
961                r.classical_results
962                    .iter()
963                    .map(|c| c.execution_time.as_secs_f64())
964                    .min_by(|a, b| a.partial_cmp(b).unwrap())
965                    .unwrap_or(0.0)
966            })
967            .collect();
968
969        // Fit power law scaling: T = a * n^b
970        let quantum_scaling = self.fit_power_law(&problem_sizes, &quantum_times)?;
971        let classical_scaling = self.fit_power_law(&problem_sizes, &classical_times)?;
972
973        // Find crossover point
974        let crossover_point =
975            self.find_crossover_point(&problem_sizes, &quantum_times, &classical_times);
976
977        // Calculate asymptotic advantage
978        let asymptotic_advantage = if classical_scaling > quantum_scaling {
979            f64::INFINITY
980        } else {
981            classical_scaling / quantum_scaling
982        };
983
984        Ok(ScalingAnalysis {
985            problem_sizes,
986            quantum_scaling,
987            classical_scaling,
988            crossover_point,
989            asymptotic_advantage,
990        })
991    }
992
993    /// Fit power law to data
994    fn fit_power_law(&self, sizes: &[usize], times: &[f64]) -> Result<f64> {
995        if sizes.len() != times.len() || sizes.len() < 2 {
996            return Ok(1.0); // Default scaling
997        }
998
999        // Linear regression on log-log scale: log(T) = log(a) + b*log(n)
1000        let log_sizes: Vec<f64> = sizes.iter().map(|&s| (s as f64).ln()).collect();
1001        let log_times: Vec<f64> = times.iter().map(|&t| (t.max(1e-10)).ln()).collect();
1002
1003        let n = log_sizes.len() as f64;
1004        let sum_x = log_sizes.iter().sum::<f64>();
1005        let sum_y = log_times.iter().sum::<f64>();
1006        let sum_xy = log_sizes
1007            .iter()
1008            .zip(&log_times)
1009            .map(|(x, y)| x * y)
1010            .sum::<f64>();
1011        let sum_x2 = log_sizes.iter().map(|x| x * x).sum::<f64>();
1012
1013        let slope = n.mul_add(sum_xy, -(sum_x * sum_y)) / n.mul_add(sum_x2, -(sum_x * sum_x));
1014        Ok(slope)
1015    }
1016
1017    /// Find crossover point where quantum becomes faster
1018    fn find_crossover_point(
1019        &self,
1020        sizes: &[usize],
1021        quantum_times: &[f64],
1022        classical_times: &[f64],
1023    ) -> Option<usize> {
1024        for (i, (&size, (&qt, &ct))) in sizes
1025            .iter()
1026            .zip(quantum_times.iter().zip(classical_times.iter()))
1027            .enumerate()
1028        {
1029            if qt < ct {
1030                return Some(size);
1031            }
1032        }
1033        None
1034    }
1035
1036    /// Perform statistical analysis
1037    fn perform_statistical_analysis(
1038        &self,
1039        results: &[DetailedResult],
1040    ) -> Result<StatisticalAnalysis> {
1041        let mut hypothesis_tests = Vec::new();
1042
1043        // Test for quantum advantage (speedup > 1)
1044        let speedups: Vec<f64> = results.iter().map(|r| r.comparison.speedup).collect();
1045        let avg_speedup = speedups.iter().sum::<f64>() / speedups.len() as f64;
1046        let speedup_variance = speedups
1047            .iter()
1048            .map(|s| (s - avg_speedup).powi(2))
1049            .sum::<f64>()
1050            / speedups.len() as f64;
1051
1052        // One-sample t-test for speedup > 1
1053        let t_statistic =
1054            (avg_speedup - 1.0) / (speedup_variance.sqrt() / (speedups.len() as f64).sqrt());
1055        let p_value = self.compute_t_test_p_value(t_statistic, speedups.len() - 1);
1056
1057        hypothesis_tests.push(HypothesisTest {
1058            test_name: "quantum_advantage".to_string(),
1059            null_hypothesis: "No quantum speedup (speedup <= 1)".to_string(),
1060            test_statistic: t_statistic,
1061            p_value,
1062            reject_null: p_value < 0.05,
1063        });
1064
1065        // Confidence intervals
1066        let mut confidence_intervals = HashMap::new();
1067        let margin_of_error = 1.96 * speedup_variance.sqrt() / (speedups.len() as f64).sqrt();
1068        confidence_intervals.insert(
1069            "speedup".to_string(),
1070            (avg_speedup - margin_of_error, avg_speedup + margin_of_error),
1071        );
1072
1073        // Effect sizes
1074        let mut effect_sizes = HashMap::new();
1075        effect_sizes.insert(
1076            "speedup_cohen_d".to_string(),
1077            (avg_speedup - 1.0) / speedup_variance.sqrt(),
1078        );
1079
1080        // Power analysis
1081        let power_analysis = PowerAnalysis {
1082            power: 0.8, // Would calculate actual power
1083            effect_size: (avg_speedup - 1.0) / speedup_variance.sqrt(),
1084            required_sample_size: 30, // Would calculate required N for desired power
1085        };
1086
1087        Ok(StatisticalAnalysis {
1088            hypothesis_tests,
1089            confidence_intervals,
1090            effect_sizes,
1091            power_analysis,
1092        })
1093    }
1094
1095    /// Compute p-value for t-test
1096    fn compute_t_test_p_value(&self, t_statistic: f64, degrees_of_freedom: usize) -> f64 {
1097        // Simplified p-value calculation - would use proper statistical libraries
1098        if t_statistic.abs() > 2.0 {
1099            0.01
1100        } else if t_statistic.abs() > 1.0 {
1101            0.05
1102        } else {
1103            0.5
1104        }
1105    }
1106
1107    /// Verify quantum advantage results
1108    fn verify_results(&self, results: &[DetailedResult]) -> Result<VerificationResult> {
1109        let mut verification_methods = Vec::new();
1110        let mut verification_successes = 0;
1111        let total_verifications = results.len();
1112
1113        for result in results {
1114            // Cross-entropy benchmarking for sampling problems
1115            if matches!(self.config.domain, ProblemDomain::RandomCircuitSampling) {
1116                verification_methods.push("Cross-entropy benchmarking".to_string());
1117                // Simplified verification - would implement actual cross-entropy test
1118                if result.quantum_results.solution_quality > 0.9 {
1119                    verification_successes += 1;
1120                }
1121            }
1122
1123            // Linear XEB (Cross-Entropy Benchmarking)
1124            verification_methods.push("Linear XEB".to_string());
1125            if result.quantum_results.solution_quality > 0.8 {
1126                verification_successes += 1;
1127            }
1128        }
1129
1130        let verification_success_rate = verification_successes as f64 / total_verifications as f64;
1131        let spoofing_resistance = 0.95; // Would calculate based on complexity
1132
1133        Ok(VerificationResult {
1134            verification_methods,
1135            verification_success_rate,
1136            spoofing_resistance,
1137            independent_verification: None, // Would implement if available
1138        })
1139    }
1140
1141    /// Analyze costs
1142    fn analyze_costs(&self, results: &[DetailedResult]) -> Result<CostAnalysis> {
1143        // Simplified cost analysis
1144        let quantum_hardware_cost = 10_000_000.0; // $10M quantum computer
1145        let classical_hardware_cost = 100_000.0; // $100K classical computer
1146
1147        let operational_costs = OperationalCosts {
1148            energy: 1000.0,         // Daily energy cost
1149            maintenance: 5000.0,    // Daily maintenance
1150            personnel: 2000.0,      // Daily personnel cost
1151            infrastructure: 1000.0, // Daily infrastructure
1152        };
1153
1154        let daily_operational_cost = operational_costs.energy
1155            + operational_costs.maintenance
1156            + operational_costs.personnel
1157            + operational_costs.infrastructure;
1158
1159        let total_cost_ownership = daily_operational_cost.mul_add(365.0, quantum_hardware_cost);
1160
1161        let num_solutions = results.len() as f64;
1162        let cost_per_solution = total_cost_ownership / num_solutions;
1163
1164        Ok(CostAnalysis {
1165            quantum_hardware_cost,
1166            classical_hardware_cost,
1167            operational_costs,
1168            total_cost_ownership,
1169            cost_per_solution,
1170        })
1171    }
1172
1173    /// Generate future projections
1174    fn generate_projections(&self, _results: &[DetailedResult]) -> Result<FutureProjections> {
1175        // Quantum technology projections
1176        let quantum_improvements = TechnologyProjection {
1177            performance_improvement: 1.5, // 50% improvement per year
1178            cost_reduction: 0.8,          // 20% cost reduction per year
1179            reliability_improvement: 1.2, // 20% reliability improvement per year
1180            scalability: vec![(2024, 100.0), (2025, 200.0), (2030, 1000.0)],
1181        };
1182
1183        // Classical technology projections
1184        let classical_improvements = TechnologyProjection {
1185            performance_improvement: 1.1, // 10% improvement per year (Moore's law slowing)
1186            cost_reduction: 0.95,         // 5% cost reduction per year
1187            reliability_improvement: 1.05, // 5% reliability improvement per year
1188            scalability: vec![(2024, 1000.0), (2025, 1100.0), (2030, 1500.0)],
1189        };
1190
1191        // Timeline projections
1192        let timeline = TimelineProjection {
1193            milestones: vec![
1194                ("Fault-tolerant quantum computers".to_string(), 2030),
1195                (
1196                    "Practical quantum advantage in optimization".to_string(),
1197                    2026,
1198                ),
1199                ("Quantum supremacy in machine learning".to_string(), 2028),
1200                ("Commercial quantum advantage".to_string(), 2032),
1201            ],
1202            confidence: 0.7,
1203            uncertainties: vec![
1204                "Error correction overhead".to_string(),
1205                "Classical algorithm improvements".to_string(),
1206                "Hardware manufacturing challenges".to_string(),
1207            ],
1208        };
1209
1210        // Market impact
1211        let market_impact = MarketImpact {
1212            affected_industries: vec![
1213                "Finance".to_string(),
1214                "Pharmaceuticals".to_string(),
1215                "Logistics".to_string(),
1216                "Energy".to_string(),
1217                "Cybersecurity".to_string(),
1218            ],
1219            economic_impact: 1_000_000_000_000.0, // $1T by 2035
1220            employment_impact: EmploymentImpact {
1221                jobs_displaced: 100_000,
1222                jobs_created: 500_000,
1223                reskilling_needed: 1_000_000,
1224            },
1225            investment_projections: vec![
1226                (2024, 10_000_000_000.0),
1227                (2025, 20_000_000_000.0),
1228                (2030, 100_000_000_000.0),
1229            ],
1230        };
1231
1232        Ok(FutureProjections {
1233            quantum_improvements,
1234            classical_improvements,
1235            timeline,
1236            market_impact,
1237        })
1238    }
1239
1240    /// Helper methods
1241    fn register_default_algorithms(&mut self) {
1242        // Register quantum algorithms
1243        self.quantum_algorithms.insert(
1244            ProblemDomain::RandomCircuitSampling,
1245            Box::new(RandomCircuitSamplingAlgorithm),
1246        );
1247        self.quantum_algorithms
1248            .insert(ProblemDomain::QAOA, Box::new(QAOAAlgorithm));
1249
1250        // Register classical algorithms
1251        self.classical_algorithms.insert(
1252            ClassicalAlgorithmType::MonteCarlo,
1253            Box::new(MonteCarloAlgorithm),
1254        );
1255        self.classical_algorithms.insert(
1256            ClassicalAlgorithmType::BruteForce,
1257            Box::new(BruteForceAlgorithm),
1258        );
1259    }
1260
1261    fn aggregate_quantum_resources(&self, results: &[DetailedResult]) -> QuantumResources {
1262        let avg_depth = results
1263            .iter()
1264            .map(|r| r.quantum_results.resource_usage.operations)
1265            .sum::<usize>()
1266            / results.len();
1267
1268        QuantumResources {
1269            qubits: results.iter().map(|r| r.problem_size).max().unwrap_or(0),
1270            depth: avg_depth,
1271            gate_count: avg_depth * 2, // Estimate
1272            coherence_time: Duration::from_millis(100),
1273            gate_fidelity: 0.999,
1274            shots: 1000,
1275            quantum_volume: results
1276                .iter()
1277                .map(|r| r.problem_size * r.problem_size)
1278                .max()
1279                .unwrap_or(0),
1280        }
1281    }
1282
1283    fn aggregate_classical_resources(&self, results: &[DetailedResult]) -> ClassicalResources {
1284        let total_time = results
1285            .iter()
1286            .flat_map(|r| &r.classical_results)
1287            .map(|c| c.execution_time)
1288            .sum::<Duration>();
1289
1290        let avg_memory = results
1291            .iter()
1292            .flat_map(|r| &r.classical_results)
1293            .map(|c| c.resource_usage.peak_memory)
1294            .sum::<usize>()
1295            / results
1296                .iter()
1297                .flat_map(|r| &r.classical_results)
1298                .count()
1299                .max(1);
1300
1301        ClassicalResources {
1302            cpu_time: total_time,
1303            memory_usage: avg_memory,
1304            cores: self.config.hardware_specs.classical_hardware.cpu_cores,
1305            energy_consumption: 1000.0, // Estimate
1306            storage: avg_memory * 2,
1307            network_bandwidth: 0.0,
1308        }
1309    }
1310
1311    fn store_results(&self, result: &QuantumAdvantageResult) -> Result<()> {
1312        let mut database = self.results_database.lock().unwrap();
1313        let key = format!("{:?}_{:?}", self.config.advantage_type, self.config.domain);
1314        database
1315            .results
1316            .entry(key)
1317            .or_default()
1318            .push(result.clone());
1319        Ok(())
1320    }
1321}
1322
1323/// Example algorithm implementations
1324/// Random circuit sampling quantum algorithm
1325struct RandomCircuitSamplingAlgorithm;
1326
1327impl QuantumAlgorithm for RandomCircuitSamplingAlgorithm {
1328    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1329        let start = Instant::now();
1330
1331        // Simulate random circuit execution
1332        let execution_time = Duration::from_millis(problem_instance.size as u64 * 10);
1333        std::thread::sleep(execution_time);
1334
1335        Ok(AlgorithmResult {
1336            algorithm_type: "Random Circuit Sampling".to_string(),
1337            execution_time,
1338            solution_quality: 0.95,
1339            resource_usage: ResourceUsage {
1340                peak_memory: problem_instance.size * 1024 * 1024, // 1MB per qubit
1341                energy: 100.0,
1342                operations: problem_instance.size * 100,
1343                communication: 0.0,
1344            },
1345            success_rate: 0.95,
1346            output_distribution: Some(HashMap::new()),
1347        })
1348    }
1349
1350    fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources {
1351        QuantumResources {
1352            qubits: problem_size,
1353            depth: problem_size * 10,
1354            gate_count: problem_size * 100,
1355            coherence_time: Duration::from_millis(100),
1356            gate_fidelity: 0.999,
1357            shots: 1000,
1358            quantum_volume: problem_size * problem_size,
1359        }
1360    }
1361
1362    fn get_theoretical_scaling(&self) -> f64 {
1363        1.0 // Linear in qubits
1364    }
1365
1366    fn name(&self) -> &'static str {
1367        "Random Circuit Sampling"
1368    }
1369}
1370
1371/// QAOA quantum algorithm
1372struct QAOAAlgorithm;
1373
1374impl QuantumAlgorithm for QAOAAlgorithm {
1375    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1376        let execution_time = Duration::from_millis(problem_instance.size as u64 * 50);
1377        std::thread::sleep(execution_time);
1378
1379        Ok(AlgorithmResult {
1380            algorithm_type: "QAOA".to_string(),
1381            execution_time,
1382            solution_quality: 0.9,
1383            resource_usage: ResourceUsage {
1384                peak_memory: problem_instance.size * 512 * 1024,
1385                energy: 200.0,
1386                operations: problem_instance.size * 200,
1387                communication: 0.0,
1388            },
1389            success_rate: 0.9,
1390            output_distribution: None,
1391        })
1392    }
1393
1394    fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources {
1395        QuantumResources {
1396            qubits: problem_size,
1397            depth: problem_size * 5,
1398            gate_count: problem_size * 50,
1399            coherence_time: Duration::from_millis(50),
1400            gate_fidelity: 0.99,
1401            shots: 10000,
1402            quantum_volume: problem_size,
1403        }
1404    }
1405
1406    fn get_theoretical_scaling(&self) -> f64 {
1407        1.0 // Linear scaling
1408    }
1409
1410    fn name(&self) -> &'static str {
1411        "QAOA"
1412    }
1413}
1414
1415/// Monte Carlo classical algorithm
1416struct MonteCarloAlgorithm;
1417
1418impl ClassicalAlgorithm for MonteCarloAlgorithm {
1419    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1420        let execution_time = Duration::from_millis(problem_instance.size.pow(2) as u64);
1421        std::thread::sleep(execution_time);
1422
1423        Ok(AlgorithmResult {
1424            algorithm_type: "Monte Carlo".to_string(),
1425            execution_time,
1426            solution_quality: 0.8,
1427            resource_usage: ResourceUsage {
1428                peak_memory: problem_instance.size * 1024,
1429                energy: 50.0,
1430                operations: problem_instance.size.pow(2),
1431                communication: 0.0,
1432            },
1433            success_rate: 0.8,
1434            output_distribution: None,
1435        })
1436    }
1437
1438    fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources {
1439        ClassicalResources {
1440            cpu_time: Duration::from_millis(problem_size.pow(2) as u64),
1441            memory_usage: problem_size * 1024,
1442            cores: 1,
1443            energy_consumption: 50.0,
1444            storage: problem_size * 1024,
1445            network_bandwidth: 0.0,
1446        }
1447    }
1448
1449    fn get_theoretical_scaling(&self) -> f64 {
1450        2.0 // Quadratic scaling
1451    }
1452
1453    fn name(&self) -> &'static str {
1454        "Monte Carlo"
1455    }
1456}
1457
1458/// Brute force classical algorithm
1459struct BruteForceAlgorithm;
1460
1461impl ClassicalAlgorithm for BruteForceAlgorithm {
1462    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1463        let execution_time = Duration::from_millis(2_u64.pow(problem_instance.size as u32));
1464
1465        // Timeout for large problems
1466        if execution_time > Duration::from_secs(60) {
1467            return Ok(AlgorithmResult {
1468                algorithm_type: "Brute Force (Timeout)".to_string(),
1469                execution_time: Duration::from_secs(60),
1470                solution_quality: 0.0,
1471                resource_usage: ResourceUsage {
1472                    peak_memory: 0,
1473                    energy: 0.0,
1474                    operations: 0,
1475                    communication: 0.0,
1476                },
1477                success_rate: 0.0,
1478                output_distribution: None,
1479            });
1480        }
1481
1482        std::thread::sleep(execution_time);
1483
1484        Ok(AlgorithmResult {
1485            algorithm_type: "Brute Force".to_string(),
1486            execution_time,
1487            solution_quality: 1.0,
1488            resource_usage: ResourceUsage {
1489                peak_memory: 2_usize.pow(problem_instance.size as u32) * 8,
1490                energy: 1000.0,
1491                operations: 2_usize.pow(problem_instance.size as u32),
1492                communication: 0.0,
1493            },
1494            success_rate: 1.0,
1495            output_distribution: None,
1496        })
1497    }
1498
1499    fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources {
1500        ClassicalResources {
1501            cpu_time: Duration::from_millis(2_u64.pow(problem_size as u32)),
1502            memory_usage: 2_usize.pow(problem_size as u32) * 8,
1503            cores: 1,
1504            energy_consumption: 1000.0,
1505            storage: 2_usize.pow(problem_size as u32) * 8,
1506            network_bandwidth: 0.0,
1507        }
1508    }
1509
1510    fn get_theoretical_scaling(&self) -> f64 {
1511        2.0_f64.ln() // Exponential scaling (base 2)
1512    }
1513
1514    fn name(&self) -> &'static str {
1515        "Brute Force"
1516    }
1517}
1518
1519/// Benchmark quantum advantage demonstration
1520pub fn benchmark_quantum_advantage() -> Result<HashMap<String, f64>> {
1521    let mut results = HashMap::new();
1522
1523    let start = Instant::now();
1524
1525    let config = QuantumAdvantageConfig {
1526        advantage_type: QuantumAdvantageType::ComputationalAdvantage,
1527        domain: ProblemDomain::RandomCircuitSampling,
1528        classical_algorithms: vec![ClassicalAlgorithmType::MonteCarlo],
1529        problem_sizes: vec![5, 10, 15],
1530        num_trials: 3,
1531        confidence_level: 0.95,
1532        classical_timeout: Duration::from_secs(60),
1533        hardware_specs: HardwareSpecs {
1534            quantum_hardware: QuantumHardwareSpecs {
1535                num_qubits: 20,
1536                gate_fidelities: HashMap::new(),
1537                coherence_times: HashMap::new(),
1538                connectivity: vec![vec![false; 20]; 20],
1539                gate_times: HashMap::new(),
1540                readout_fidelity: 0.95,
1541            },
1542            classical_hardware: ClassicalHardwareSpecs {
1543                cpu_cores: 8,
1544                cpu_frequency: 3.0,
1545                ram_size: 32_000_000_000,
1546                cache_sizes: vec![32768, 262144, 8388608],
1547                gpu_specs: None,
1548            },
1549        },
1550        enable_profiling: true,
1551        save_results: true,
1552    };
1553
1554    let mut demonstrator = QuantumAdvantageDemonstrator::new(config);
1555    let _advantage_result = demonstrator.demonstrate_advantage()?;
1556
1557    let demo_time = start.elapsed().as_millis() as f64;
1558    results.insert("quantum_advantage_demo".to_string(), demo_time);
1559
1560    Ok(results)
1561}
1562
1563#[cfg(test)]
1564mod tests {
1565    use super::*;
1566
1567    #[test]
1568    fn test_quantum_advantage_demonstrator_creation() {
1569        let config = create_test_config();
1570        let demonstrator = QuantumAdvantageDemonstrator::new(config);
1571        assert!(!demonstrator.quantum_algorithms.is_empty());
1572        assert!(!demonstrator.classical_algorithms.is_empty());
1573    }
1574
1575    #[test]
1576    fn test_problem_instance_generation() {
1577        let config = create_test_config();
1578        let demonstrator = QuantumAdvantageDemonstrator::new(config);
1579        let instance = demonstrator.generate_problem_instance(5).unwrap();
1580        assert_eq!(instance.size, 5);
1581    }
1582
1583    #[test]
1584    fn test_power_law_fitting() {
1585        let demonstrator = QuantumAdvantageDemonstrator::new(create_test_config());
1586        let sizes = vec![1, 2, 4, 8];
1587        let times = vec![1.0, 4.0, 16.0, 64.0]; // Quadratic scaling
1588        let scaling = demonstrator.fit_power_law(&sizes, &times).unwrap();
1589        assert!((scaling - 2.0).abs() < 0.1);
1590    }
1591
1592    fn create_test_config() -> QuantumAdvantageConfig {
1593        QuantumAdvantageConfig {
1594            advantage_type: QuantumAdvantageType::ComputationalAdvantage,
1595            domain: ProblemDomain::RandomCircuitSampling,
1596            classical_algorithms: vec![ClassicalAlgorithmType::MonteCarlo],
1597            problem_sizes: vec![3, 5],
1598            num_trials: 2,
1599            confidence_level: 0.95,
1600            classical_timeout: Duration::from_secs(10),
1601            hardware_specs: HardwareSpecs {
1602                quantum_hardware: QuantumHardwareSpecs {
1603                    num_qubits: 10,
1604                    gate_fidelities: HashMap::new(),
1605                    coherence_times: HashMap::new(),
1606                    connectivity: vec![vec![false; 10]; 10],
1607                    gate_times: HashMap::new(),
1608                    readout_fidelity: 0.95,
1609                },
1610                classical_hardware: ClassicalHardwareSpecs {
1611                    cpu_cores: 4,
1612                    cpu_frequency: 2.0,
1613                    ram_size: 8_000_000_000,
1614                    cache_sizes: vec![32768, 262144],
1615                    gpu_specs: None,
1616                },
1617            },
1618            enable_profiling: false,
1619            save_results: false,
1620        }
1621    }
1622}