quantrs2_sim/
parallel_tensor_optimization.rs

1//! Parallel Tensor Network Optimization
2//!
3//! This module provides advanced parallel processing strategies for tensor network
4//! contractions, optimizing for modern multi-core and distributed architectures.
5
6use crate::prelude::SimulatorError;
7use scirs2_core::ndarray::{ArrayD, Dimension, IxDyn};
8use scirs2_core::parallel_ops::*;
9use scirs2_core::Complex64;
10use std::collections::{HashMap, HashSet, VecDeque};
11use std::sync::{Arc, Mutex, RwLock};
12use std::thread;
13use std::time::{Duration, Instant};
14
15use crate::error::Result;
16
17/// Parallel processing configuration for tensor networks
18#[derive(Debug, Clone)]
19pub struct ParallelTensorConfig {
20    /// Number of worker threads
21    pub num_threads: usize,
22    /// Chunk size for parallel operations
23    pub chunk_size: usize,
24    /// Enable work-stealing between threads
25    pub enable_work_stealing: bool,
26    /// Memory threshold for switching to parallel mode
27    pub parallel_threshold_bytes: usize,
28    /// Load balancing strategy
29    pub load_balancing: LoadBalancingStrategy,
30    /// Enable NUMA-aware scheduling
31    pub numa_aware: bool,
32    /// Thread affinity settings
33    pub thread_affinity: ThreadAffinityConfig,
34}
35
36impl Default for ParallelTensorConfig {
37    fn default() -> Self {
38        Self {
39            num_threads: current_num_threads(), // SciRS2 POLICY compliant
40            chunk_size: 1024,
41            enable_work_stealing: true,
42            parallel_threshold_bytes: 1024 * 1024, // 1MB
43            load_balancing: LoadBalancingStrategy::DynamicWorkStealing,
44            numa_aware: true,
45            thread_affinity: ThreadAffinityConfig::default(),
46        }
47    }
48}
49
50/// Load balancing strategies for parallel tensor operations
51#[derive(Debug, Clone, Copy, PartialEq, Eq)]
52pub enum LoadBalancingStrategy {
53    /// Static round-robin distribution
54    RoundRobin,
55    /// Dynamic work-stealing
56    DynamicWorkStealing,
57    /// NUMA-aware distribution
58    NumaAware,
59    /// Cost-based distribution
60    CostBased,
61    /// Adaptive strategy selection
62    Adaptive,
63}
64
65/// Thread affinity configuration
66#[derive(Debug, Clone, Default)]
67pub struct ThreadAffinityConfig {
68    /// Enable CPU affinity
69    pub enable_affinity: bool,
70    /// CPU core mapping
71    pub core_mapping: Vec<usize>,
72    /// NUMA node preferences
73    pub numa_preferences: HashMap<usize, usize>,
74}
75
76/// Work unit for parallel tensor contraction
77#[derive(Debug, Clone)]
78pub struct TensorWorkUnit {
79    /// Unique identifier for the work unit
80    pub id: usize,
81    /// Input tensor indices
82    pub input_tensors: Vec<usize>,
83    /// Output tensor index
84    pub output_tensor: usize,
85    /// Contraction indices
86    pub contraction_indices: Vec<Vec<usize>>,
87    /// Estimated computational cost
88    pub estimated_cost: f64,
89    /// Memory requirement
90    pub memory_requirement: usize,
91    /// Dependencies (must complete before this unit)
92    pub dependencies: HashSet<usize>,
93    /// Priority level
94    pub priority: i32,
95}
96
97/// Work queue for managing parallel tensor operations
98#[derive(Debug)]
99pub struct TensorWorkQueue {
100    /// Pending work units
101    pending: Mutex<VecDeque<TensorWorkUnit>>,
102    /// Completed work units
103    completed: RwLock<HashSet<usize>>,
104    /// Work units in progress
105    in_progress: RwLock<HashMap<usize, Instant>>,
106    /// Total work units
107    total_units: usize,
108    /// Configuration
109    config: ParallelTensorConfig,
110}
111
112impl TensorWorkQueue {
113    /// Create new work queue
114    pub fn new(work_units: Vec<TensorWorkUnit>, config: ParallelTensorConfig) -> Self {
115        let total_units = work_units.len();
116        let mut pending = VecDeque::from(work_units);
117
118        // Sort by priority and dependencies
119        pending.make_contiguous().sort_by(|a, b| {
120            b.priority
121                .cmp(&a.priority)
122                .then_with(|| a.dependencies.len().cmp(&b.dependencies.len()))
123        });
124
125        Self {
126            pending: Mutex::new(pending),
127            completed: RwLock::new(HashSet::new()),
128            in_progress: RwLock::new(HashMap::new()),
129            total_units,
130            config,
131        }
132    }
133
134    /// Get next available work unit
135    pub fn get_work(&self) -> Option<TensorWorkUnit> {
136        let mut pending = self.pending.lock().unwrap();
137        let completed = self.completed.read().unwrap();
138
139        // Find a work unit whose dependencies are satisfied
140        for i in 0..pending.len() {
141            let work_unit = &pending[i];
142            let dependencies_satisfied = work_unit
143                .dependencies
144                .iter()
145                .all(|dep| completed.contains(dep));
146
147            if dependencies_satisfied {
148                let work_unit = pending.remove(i).unwrap();
149
150                // Mark as in progress
151                drop(completed);
152                let mut in_progress = self.in_progress.write().unwrap();
153                in_progress.insert(work_unit.id, Instant::now());
154
155                return Some(work_unit);
156            }
157        }
158
159        None
160    }
161
162    /// Mark work unit as completed
163    pub fn complete_work(&self, work_id: usize) {
164        let mut completed = self.completed.write().unwrap();
165        completed.insert(work_id);
166
167        let mut in_progress = self.in_progress.write().unwrap();
168        in_progress.remove(&work_id);
169    }
170
171    /// Check if all work is completed
172    pub fn is_complete(&self) -> bool {
173        let completed = self.completed.read().unwrap();
174        completed.len() == self.total_units
175    }
176
177    /// Get progress statistics
178    pub fn get_progress(&self) -> (usize, usize, usize) {
179        let completed = self.completed.read().unwrap().len();
180        let in_progress = self.in_progress.read().unwrap().len();
181        let pending = self.pending.lock().unwrap().len();
182        (completed, in_progress, pending)
183    }
184}
185
186/// Parallel tensor contraction engine
187pub struct ParallelTensorEngine {
188    /// Configuration
189    config: ParallelTensorConfig,
190    /// Worker thread pool
191    thread_pool: ThreadPool, // SciRS2 POLICY compliant
192    /// Performance statistics
193    stats: Arc<Mutex<ParallelTensorStats>>,
194}
195
196/// Performance statistics for parallel tensor operations
197#[derive(Debug, Clone, Default)]
198pub struct ParallelTensorStats {
199    /// Total contractions performed
200    pub total_contractions: u64,
201    /// Total computation time
202    pub total_computation_time: Duration,
203    /// Total parallel efficiency (0.0 to 1.0)
204    pub parallel_efficiency: f64,
205    /// Memory usage statistics
206    pub peak_memory_usage: usize,
207    /// Thread utilization statistics
208    pub thread_utilization: Vec<f64>,
209    /// Load balancing effectiveness
210    pub load_balance_factor: f64,
211    /// Cache hit rate for intermediate results
212    pub cache_hit_rate: f64,
213}
214
215impl ParallelTensorEngine {
216    /// Create new parallel tensor engine
217    pub fn new(config: ParallelTensorConfig) -> Result<Self> {
218        let thread_pool = ThreadPoolBuilder::new() // SciRS2 POLICY compliant
219            .num_threads(config.num_threads)
220            .build()
221            .map_err(|e| {
222                SimulatorError::InitializationFailed(format!("Thread pool creation failed: {e}"))
223            })?;
224
225        Ok(Self {
226            config,
227            thread_pool,
228            stats: Arc::new(Mutex::new(ParallelTensorStats::default())),
229        })
230    }
231
232    /// Perform parallel tensor network contraction
233    pub fn contract_network(
234        &self,
235        tensors: &[ArrayD<Complex64>],
236        contraction_sequence: &[ContractionPair],
237    ) -> Result<ArrayD<Complex64>> {
238        let start_time = Instant::now();
239
240        // Create work units from contraction sequence
241        let work_units = self.create_work_units(tensors, contraction_sequence)?;
242
243        // Create work queue
244        let work_queue = Arc::new(TensorWorkQueue::new(work_units, self.config.clone()));
245
246        // Storage for intermediate results
247        let intermediate_results =
248            Arc::new(RwLock::new(HashMap::<usize, ArrayD<Complex64>>::new()));
249
250        // Initialize with input tensors
251        {
252            let mut results = intermediate_results.write().unwrap();
253            for (i, tensor) in tensors.iter().enumerate() {
254                results.insert(i, tensor.clone());
255            }
256        }
257
258        // Execute contractions in parallel
259        let final_result = self.execute_parallel_contractions(work_queue, intermediate_results)?;
260
261        // Update statistics
262        let elapsed = start_time.elapsed();
263        let mut stats = self.stats.lock().unwrap();
264        stats.total_contractions += contraction_sequence.len() as u64;
265        stats.total_computation_time += elapsed;
266
267        // Calculate parallel efficiency (simplified)
268        let sequential_estimate = self.estimate_sequential_time(contraction_sequence);
269        stats.parallel_efficiency = sequential_estimate.as_secs_f64() / elapsed.as_secs_f64();
270
271        Ok(final_result)
272    }
273
274    /// Create work units from contraction sequence
275    fn create_work_units(
276        &self,
277        tensors: &[ArrayD<Complex64>],
278        contraction_sequence: &[ContractionPair],
279    ) -> Result<Vec<TensorWorkUnit>> {
280        let mut work_units: Vec<TensorWorkUnit> = Vec::new();
281        let mut next_tensor_id = tensors.len();
282
283        for (i, contraction) in contraction_sequence.iter().enumerate() {
284            let estimated_cost = self.estimate_contraction_cost(contraction, tensors)?;
285            let memory_requirement = self.estimate_memory_requirement(contraction, tensors)?;
286
287            // Determine dependencies
288            let mut dependencies = HashSet::new();
289            for &input_id in &[contraction.tensor1_id, contraction.tensor2_id] {
290                if input_id >= tensors.len() {
291                    // This is an intermediate result, find which work unit produces it
292                    for prev_unit in &work_units {
293                        if prev_unit.output_tensor == input_id {
294                            dependencies.insert(prev_unit.id);
295                            break;
296                        }
297                    }
298                }
299            }
300
301            let work_unit = TensorWorkUnit {
302                id: i,
303                input_tensors: vec![contraction.tensor1_id, contraction.tensor2_id],
304                output_tensor: next_tensor_id,
305                contraction_indices: vec![
306                    contraction.tensor1_indices.clone(),
307                    contraction.tensor2_indices.clone(),
308                ],
309                estimated_cost,
310                memory_requirement,
311                dependencies,
312                priority: self.calculate_priority(estimated_cost, memory_requirement),
313            };
314
315            work_units.push(work_unit);
316            next_tensor_id += 1;
317        }
318
319        Ok(work_units)
320    }
321
322    /// Execute parallel contractions using work queue
323    fn execute_parallel_contractions(
324        &self,
325        work_queue: Arc<TensorWorkQueue>,
326        intermediate_results: Arc<RwLock<HashMap<usize, ArrayD<Complex64>>>>,
327    ) -> Result<ArrayD<Complex64>> {
328        let num_threads = self.config.num_threads;
329        let mut handles = Vec::new();
330
331        // Spawn worker threads
332        for thread_id in 0..num_threads {
333            let work_queue = work_queue.clone();
334            let intermediate_results = intermediate_results.clone();
335            let config = self.config.clone();
336
337            let handle = thread::spawn(move || {
338                Self::worker_thread(thread_id, work_queue, intermediate_results, config)
339            });
340            handles.push(handle);
341        }
342
343        // Wait for all threads to complete
344        for handle in handles {
345            handle.join().map_err(|e| {
346                SimulatorError::ComputationError(format!("Thread join failed: {e:?}"))
347            })??;
348        }
349
350        // Find the final result (tensor with highest ID)
351        let results = intermediate_results.read().unwrap();
352        let max_id = results.keys().max().copied().unwrap_or(0);
353        Ok(results[&max_id].clone())
354    }
355
356    /// Worker thread function
357    fn worker_thread(
358        _thread_id: usize,
359        work_queue: Arc<TensorWorkQueue>,
360        intermediate_results: Arc<RwLock<HashMap<usize, ArrayD<Complex64>>>>,
361        _config: ParallelTensorConfig,
362    ) -> Result<()> {
363        while !work_queue.is_complete() {
364            if let Some(work_unit) = work_queue.get_work() {
365                // Get input tensors
366                let tensor1 = {
367                    let results = intermediate_results.read().unwrap();
368                    results[&work_unit.input_tensors[0]].clone()
369                };
370
371                let tensor2 = {
372                    let results = intermediate_results.read().unwrap();
373                    results[&work_unit.input_tensors[1]].clone()
374                };
375
376                // Perform contraction
377                let result = Self::perform_tensor_contraction(
378                    &tensor1,
379                    &tensor2,
380                    &work_unit.contraction_indices[0],
381                    &work_unit.contraction_indices[1],
382                )?;
383
384                // Store result
385                {
386                    let mut results = intermediate_results.write().unwrap();
387                    results.insert(work_unit.output_tensor, result);
388                }
389
390                // Mark work as completed
391                work_queue.complete_work(work_unit.id);
392            } else {
393                // No work available, wait briefly
394                thread::sleep(Duration::from_millis(1));
395            }
396        }
397
398        Ok(())
399    }
400
401    /// Perform actual tensor contraction
402    fn perform_tensor_contraction(
403        tensor1: &ArrayD<Complex64>,
404        tensor2: &ArrayD<Complex64>,
405        indices1: &[usize],
406        indices2: &[usize],
407    ) -> Result<ArrayD<Complex64>> {
408        // This is a simplified tensor contraction implementation
409        // In practice, this would use optimized BLAS operations
410
411        let shape1 = tensor1.shape();
412        let shape2 = tensor2.shape();
413
414        // Calculate output shape
415        let mut output_shape = Vec::new();
416        for (i, &size) in shape1.iter().enumerate() {
417            if !indices1.contains(&i) {
418                output_shape.push(size);
419            }
420        }
421        for (i, &size) in shape2.iter().enumerate() {
422            if !indices2.contains(&i) {
423                output_shape.push(size);
424            }
425        }
426
427        // Create output tensor
428        let output_dim = IxDyn(&output_shape);
429        let mut output = ArrayD::zeros(output_dim);
430
431        // Simplified contraction (this would be optimized in practice)
432        // For now, just return a placeholder
433        Ok(output)
434    }
435
436    /// Estimate computational cost of a contraction
437    fn estimate_contraction_cost(
438        &self,
439        contraction: &ContractionPair,
440        _tensors: &[ArrayD<Complex64>],
441    ) -> Result<f64> {
442        // Simplified cost estimation based on dimension products
443        let cost = contraction.tensor1_indices.len() as f64
444            * contraction.tensor2_indices.len() as f64
445            * 1000.0; // Base cost factor
446        Ok(cost)
447    }
448
449    /// Estimate memory requirement for a contraction
450    const fn estimate_memory_requirement(
451        &self,
452        _contraction: &ContractionPair,
453        _tensors: &[ArrayD<Complex64>],
454    ) -> Result<usize> {
455        // Simplified memory estimation
456        Ok(1024 * 1024) // 1MB placeholder
457    }
458
459    /// Calculate priority for work unit
460    fn calculate_priority(&self, cost: f64, memory: usize) -> i32 {
461        // Higher cost and lower memory = higher priority
462        let cost_factor = (cost / 1000.0) as i32;
463        let memory_factor = (1_000_000 / (memory + 1)) as i32;
464        cost_factor + memory_factor
465    }
466
467    /// Estimate sequential execution time
468    const fn estimate_sequential_time(&self, contraction_sequence: &[ContractionPair]) -> Duration {
469        let estimated_ops = contraction_sequence.len() as u64 * 1000; // Simplified
470        Duration::from_millis(estimated_ops)
471    }
472
473    /// Get performance statistics
474    pub fn get_stats(&self) -> ParallelTensorStats {
475        self.stats.lock().unwrap().clone()
476    }
477}
478
479/// Contraction pair specification
480#[derive(Debug, Clone)]
481pub struct ContractionPair {
482    /// First tensor ID
483    pub tensor1_id: usize,
484    /// Second tensor ID
485    pub tensor2_id: usize,
486    /// Indices to contract on first tensor
487    pub tensor1_indices: Vec<usize>,
488    /// Indices to contract on second tensor
489    pub tensor2_indices: Vec<usize>,
490}
491
492/// Advanced parallel tensor contraction strategies
493pub mod strategies {
494    use super::*;
495
496    /// Work-stealing parallel contraction
497    pub fn work_stealing_contraction(
498        tensors: &[ArrayD<Complex64>],
499        contraction_sequence: &[ContractionPair],
500        num_threads: usize,
501    ) -> Result<ArrayD<Complex64>> {
502        let config = ParallelTensorConfig {
503            num_threads,
504            load_balancing: LoadBalancingStrategy::DynamicWorkStealing,
505            ..Default::default()
506        };
507
508        let engine = ParallelTensorEngine::new(config)?;
509        engine.contract_network(tensors, contraction_sequence)
510    }
511
512    /// NUMA-aware parallel contraction
513    pub fn numa_aware_contraction(
514        tensors: &[ArrayD<Complex64>],
515        contraction_sequence: &[ContractionPair],
516        numa_topology: &NumaTopology,
517    ) -> Result<ArrayD<Complex64>> {
518        let config = ParallelTensorConfig {
519            load_balancing: LoadBalancingStrategy::NumaAware,
520            numa_aware: true,
521            ..Default::default()
522        };
523
524        let engine = ParallelTensorEngine::new(config)?;
525        engine.contract_network(tensors, contraction_sequence)
526    }
527
528    /// Adaptive parallel contraction with dynamic load balancing
529    pub fn adaptive_contraction(
530        tensors: &[ArrayD<Complex64>],
531        contraction_sequence: &[ContractionPair],
532    ) -> Result<ArrayD<Complex64>> {
533        let config = ParallelTensorConfig {
534            load_balancing: LoadBalancingStrategy::Adaptive,
535            enable_work_stealing: true,
536            ..Default::default()
537        };
538
539        let engine = ParallelTensorEngine::new(config)?;
540        engine.contract_network(tensors, contraction_sequence)
541    }
542}
543
544/// NUMA topology information
545#[derive(Debug, Clone)]
546pub struct NumaTopology {
547    /// Number of NUMA nodes
548    pub num_nodes: usize,
549    /// CPU cores per node
550    pub cores_per_node: Vec<usize>,
551    /// Memory per node (bytes)
552    pub memory_per_node: Vec<usize>,
553}
554
555impl Default for NumaTopology {
556    fn default() -> Self {
557        let num_cores = current_num_threads(); // SciRS2 POLICY compliant
558        Self {
559            num_nodes: 1,
560            cores_per_node: vec![num_cores],
561            memory_per_node: vec![8 * 1024 * 1024 * 1024], // 8GB default
562        }
563    }
564}
565
566#[cfg(test)]
567mod tests {
568    use super::*;
569    use scirs2_core::ndarray::Array;
570
571    #[test]
572    fn test_parallel_tensor_engine() {
573        let config = ParallelTensorConfig::default();
574        let engine = ParallelTensorEngine::new(config).unwrap();
575
576        // Create simple test tensors
577        let tensor1 = Array::zeros(IxDyn(&[2, 2]));
578        let tensor2 = Array::zeros(IxDyn(&[2, 2]));
579        let tensors = vec![tensor1, tensor2];
580
581        // Simple contraction sequence
582        let contraction = ContractionPair {
583            tensor1_id: 0,
584            tensor2_id: 1,
585            tensor1_indices: vec![1],
586            tensor2_indices: vec![0],
587        };
588
589        let result = engine.contract_network(&tensors, &[contraction]);
590        assert!(result.is_ok());
591    }
592
593    #[test]
594    fn test_work_queue() {
595        let work_unit = TensorWorkUnit {
596            id: 0,
597            input_tensors: vec![0, 1],
598            output_tensor: 2,
599            contraction_indices: vec![vec![0], vec![1]],
600            estimated_cost: 100.0,
601            memory_requirement: 1024,
602            dependencies: HashSet::new(),
603            priority: 1,
604        };
605
606        let config = ParallelTensorConfig::default();
607        let queue = TensorWorkQueue::new(vec![work_unit], config);
608
609        let work = queue.get_work();
610        assert!(work.is_some());
611
612        queue.complete_work(0);
613        assert!(queue.is_complete());
614    }
615
616    #[test]
617    fn test_parallel_strategies() {
618        let tensor1 = Array::ones(IxDyn(&[2, 2]));
619        let tensor2 = Array::ones(IxDyn(&[2, 2]));
620        let tensors = vec![tensor1, tensor2];
621
622        let contraction = ContractionPair {
623            tensor1_id: 0,
624            tensor2_id: 1,
625            tensor1_indices: vec![1],
626            tensor2_indices: vec![0],
627        };
628
629        let result = strategies::work_stealing_contraction(&tensors, &[contraction], 2);
630        assert!(result.is_ok());
631    }
632}