1use crate::prelude::SimulatorError;
8use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
9use scirs2_core::parallel_ops::*;
10use scirs2_core::Complex64;
11use std::collections::HashMap;
12
13use crate::error::Result;
14use crate::scirs2_integration::SciRS2Backend;
15
16pub struct LindladSimulator {
18 num_qubits: usize,
20 density_matrix: Array2<Complex64>,
22 lindblad_ops: Vec<LindladOperator>,
24 hamiltonian: Option<Array2<Complex64>>,
26 time_step: f64,
28 integration_method: IntegrationMethod,
30 backend: Option<SciRS2Backend>,
32}
33
34#[derive(Debug, Clone)]
36pub struct LindladOperator {
37 pub operator: Array2<Complex64>,
39 pub rate: f64,
41 pub label: Option<String>,
43}
44
45#[derive(Debug, Clone, Copy, PartialEq, Eq)]
47pub enum IntegrationMethod {
48 Euler,
50 RungeKutta4,
52 AdaptiveRK,
54 MatrixExponential,
56}
57
58impl LindladSimulator {
59 pub fn new(num_qubits: usize) -> Result<Self> {
61 let dim = 1 << num_qubits;
62 let mut density_matrix = Array2::zeros((dim, dim));
63 density_matrix[[0, 0]] = Complex64::new(1.0, 0.0); Ok(Self {
66 num_qubits,
67 density_matrix,
68 lindblad_ops: Vec::new(),
69 hamiltonian: None,
70 time_step: 0.01,
71 integration_method: IntegrationMethod::RungeKutta4,
72 backend: None,
73 })
74 }
75
76 pub fn with_scirs2_backend(mut self) -> Result<Self> {
78 self.backend = Some(SciRS2Backend::new());
79 Ok(self)
80 }
81
82 pub fn set_density_matrix(&mut self, rho: Array2<Complex64>) -> Result<()> {
84 let dim = 1 << self.num_qubits;
85 if rho.shape() != [dim, dim] {
86 return Err(SimulatorError::DimensionMismatch(format!(
87 "Expected {dim}x{dim} density matrix"
88 )));
89 }
90
91 let trace: Complex64 = rho.diag().iter().sum();
93 if (trace.re - 1.0).abs() > 1e-10 || trace.im.abs() > 1e-10 {
94 return Err(SimulatorError::InvalidInput(format!(
95 "Density matrix not normalized: trace = {trace}"
96 )));
97 }
98
99 self.density_matrix = rho;
100 Ok(())
101 }
102
103 pub fn from_state_vector(&mut self, psi: &ArrayView1<Complex64>) -> Result<()> {
105 let dim = 1 << self.num_qubits;
106 if psi.len() != dim {
107 return Err(SimulatorError::DimensionMismatch(format!(
108 "Expected state vector of length {dim}"
109 )));
110 }
111
112 let mut rho = Array2::zeros((dim, dim));
114 for i in 0..dim {
115 for j in 0..dim {
116 rho[[i, j]] = psi[i] * psi[j].conj();
117 }
118 }
119
120 self.density_matrix = rho;
121 Ok(())
122 }
123
124 pub fn add_lindblad_operator(&mut self, operator: LindladOperator) -> Result<()> {
126 let dim = 1 << self.num_qubits;
127 if operator.operator.shape() != [dim, dim] {
128 return Err(SimulatorError::DimensionMismatch(format!(
129 "Operator must be {dim}x{dim}"
130 )));
131 }
132
133 self.lindblad_ops.push(operator);
134 Ok(())
135 }
136
137 pub fn set_hamiltonian(&mut self, h: Array2<Complex64>) -> Result<()> {
139 let dim = 1 << self.num_qubits;
140 if h.shape() != [dim, dim] {
141 return Err(SimulatorError::DimensionMismatch(format!(
142 "Hamiltonian must be {dim}x{dim}"
143 )));
144 }
145
146 self.hamiltonian = Some(h);
147 Ok(())
148 }
149
150 pub const fn set_time_step(&mut self, dt: f64) {
152 self.time_step = dt;
153 }
154
155 pub const fn set_integration_method(&mut self, method: IntegrationMethod) {
157 self.integration_method = method;
158 }
159
160 pub fn evolve(&mut self, total_time: f64) -> Result<EvolutionResult> {
162 let num_steps = (total_time / self.time_step).ceil() as usize;
163 let actual_dt = total_time / num_steps as f64;
164
165 let mut times = Vec::with_capacity(num_steps + 1);
166 let mut densities = Vec::new();
167 let mut purities = Vec::with_capacity(num_steps + 1);
168 let mut traces = Vec::with_capacity(num_steps + 1);
169
170 times.push(0.0);
172 purities.push(self.purity());
173 traces.push(self.trace().re);
174
175 if self.num_qubits <= 4 {
177 densities.push(self.density_matrix.clone());
178 }
179
180 for step in 0..num_steps {
182 match self.integration_method {
183 IntegrationMethod::Euler => {
184 self.euler_step(actual_dt)?;
185 }
186 IntegrationMethod::RungeKutta4 => {
187 self.runge_kutta4_step(actual_dt)?;
188 }
189 IntegrationMethod::AdaptiveRK => {
190 self.adaptive_rk_step(actual_dt)?;
191 }
192 IntegrationMethod::MatrixExponential => {
193 self.matrix_exponential_step(actual_dt)?;
194 }
195 }
196
197 let current_time = (step + 1) as f64 * actual_dt;
198 times.push(current_time);
199 purities.push(self.purity());
200 traces.push(self.trace().re);
201
202 if self.num_qubits <= 4 {
203 densities.push(self.density_matrix.clone());
204 }
205 }
206
207 Ok(EvolutionResult {
208 times,
209 densities,
210 purities,
211 traces,
212 final_density: self.density_matrix.clone(),
213 })
214 }
215
216 fn euler_step(&mut self, dt: f64) -> Result<()> {
218 let derivative = self.compute_lindblad_derivative()?;
219
220 for ((i, j), drho_dt) in derivative.indexed_iter() {
222 self.density_matrix[[i, j]] += dt * drho_dt;
223 }
224
225 self.renormalize();
227
228 Ok(())
229 }
230
231 fn runge_kutta4_step(&mut self, dt: f64) -> Result<()> {
233 let rho0 = self.density_matrix.clone();
234
235 let k1 = self.compute_lindblad_derivative()?;
237
238 self.density_matrix = &rho0 + &(&k1 * (dt / 2.0));
240 let k2 = self.compute_lindblad_derivative()?;
241
242 self.density_matrix = &rho0 + &(&k2 * (dt / 2.0));
244 let k3 = self.compute_lindblad_derivative()?;
245
246 self.density_matrix = &rho0 + &(&k3 * dt);
248 let k4 = self.compute_lindblad_derivative()?;
249
250 let coeff = Complex64::new(dt / 6.0, 0.0);
252 self.density_matrix = rho0
253 + coeff
254 * (&k1 + &(Complex64::new(2.0, 0.0) * k2) + &(Complex64::new(2.0, 0.0) * k3) + &k4);
255
256 self.renormalize();
257 Ok(())
258 }
259
260 fn adaptive_rk_step(&mut self, dt: f64) -> Result<()> {
262 self.runge_kutta4_step(dt)
265 }
266
267 fn matrix_exponential_step(&mut self, dt: f64) -> Result<()> {
269 if let Some(ref backend) = self.backend {
270 self.matrix_exp_with_scirs2(dt)
272 } else {
273 self.matrix_exp_series(dt)
275 }
276 }
277
278 fn matrix_exp_with_scirs2(&mut self, dt: f64) -> Result<()> {
280 self.matrix_exp_series(dt)
283 }
284
285 fn matrix_exp_series(&mut self, dt: f64) -> Result<()> {
287 let lindbladian = self.construct_lindbladian_superoperator()?;
288
289 let dim_sq = lindbladian.nrows();
291 let mut result = Array2::eye(dim_sq);
292 let mut term = Array2::eye(dim_sq);
293 let l_dt = &lindbladian * dt;
294
295 for n in 1..=20 {
297 term = term.dot(&l_dt) / n as f64;
298 result += &term;
299
300 let term_norm: f64 = term.iter().map(|x| x.norm()).sum();
302 if term_norm < 1e-12 {
303 break;
304 }
305 }
306
307 let rho_vec = self.vectorize_density_matrix();
309 let new_rho_vec = result.dot(&rho_vec);
310 self.density_matrix = self.devectorize_density_matrix(&new_rho_vec);
311
312 self.renormalize();
313 Ok(())
314 }
315
316 fn compute_lindblad_derivative(&self) -> Result<Array2<Complex64>> {
318 let dim = self.density_matrix.nrows();
319 let mut derivative = Array2::zeros((dim, dim));
320
321 if let Some(ref h) = self.hamiltonian {
323 let commutator = h.dot(&self.density_matrix) - self.density_matrix.dot(h);
324 derivative += &(commutator * Complex64::new(0.0, -1.0));
325 }
326
327 for lindblad_op in &self.lindblad_ops {
329 let l = &lindblad_op.operator;
330 let l_dag = l.t().mapv(|x| x.conj());
331 let rate = lindblad_op.rate;
332
333 let dissipation = l.dot(&self.density_matrix).dot(&l_dag);
335 let anticommutator =
336 l_dag.dot(l).dot(&self.density_matrix) + self.density_matrix.dot(&l_dag.dot(l));
337 let half = Complex64::new(0.5, 0.0);
338
339 derivative += &((dissipation - &anticommutator * half) * rate);
340 }
341
342 Ok(derivative)
343 }
344
345 fn construct_lindbladian_superoperator(&self) -> Result<Array2<Complex64>> {
347 let dim = 1 << self.num_qubits;
348 let super_dim = dim * dim;
349 let mut lindbladian = Array2::zeros((super_dim, super_dim));
350
351 if let Some(ref h) = self.hamiltonian {
353 let eye: Array2<Complex64> = Array2::eye(dim);
354 let h_left = kron(h, &eye);
355 let h_t = h.t().to_owned();
356 let h_right = kron(&eye, &h_t);
357 lindbladian += &((h_left - h_right) * Complex64::new(0.0, -1.0));
358 }
359
360 for lindblad_op in &self.lindblad_ops {
362 let l = &lindblad_op.operator;
363 let l_dag = l.t().mapv(|x| x.conj());
364 let rate = lindblad_op.rate;
365
366 let eye: Array2<Complex64> = Array2::eye(dim);
367 let l_dag_l = l_dag.dot(l);
368
369 let left_term = kron(l, &l.mapv(|x| x.conj()));
371
372 let l_dag_l_t = l_dag_l.t().to_owned();
374 let right_term = kron(&l_dag_l, &eye) + kron(&eye, &l_dag_l_t);
375 let half = Complex64::new(0.5, 0.0);
376
377 lindbladian += &((left_term - &right_term * half) * rate);
378 }
379
380 Ok(lindbladian)
381 }
382
383 fn vectorize_density_matrix(&self) -> Array1<Complex64> {
385 let dim = self.density_matrix.nrows();
386 let mut vec = Array1::zeros(dim * dim);
387
388 for (i, &val) in self.density_matrix.iter().enumerate() {
389 vec[i] = val;
390 }
391
392 vec
393 }
394
395 fn devectorize_density_matrix(&self, vec: &Array1<Complex64>) -> Array2<Complex64> {
397 let dim = (vec.len() as f64).sqrt() as usize;
398 Array2::from_shape_vec((dim, dim), vec.to_vec()).unwrap()
399 }
400
401 pub fn purity(&self) -> f64 {
403 let rho_squared = self.density_matrix.dot(&self.density_matrix);
404 rho_squared.diag().iter().map(|x| x.re).sum()
405 }
406
407 pub fn trace(&self) -> Complex64 {
409 self.density_matrix.diag().iter().sum()
410 }
411
412 fn renormalize(&mut self) {
414 let trace = self.trace();
415 if trace.norm() > 1e-12 {
416 self.density_matrix /= trace;
417 }
418 }
419
420 pub const fn get_density_matrix(&self) -> &Array2<Complex64> {
422 &self.density_matrix
423 }
424
425 pub fn expectation_value(&self, observable: &Array2<Complex64>) -> Result<Complex64> {
427 if observable.shape() != self.density_matrix.shape() {
428 return Err(SimulatorError::DimensionMismatch(
429 "Observable and density matrix dimensions must match".to_string(),
430 ));
431 }
432
433 let product = self.density_matrix.dot(observable);
435 Ok(product.diag().iter().sum())
436 }
437}
438
439#[derive(Debug, Clone)]
441pub struct EvolutionResult {
442 pub times: Vec<f64>,
444 pub densities: Vec<Array2<Complex64>>,
446 pub purities: Vec<f64>,
448 pub traces: Vec<f64>,
450 pub final_density: Array2<Complex64>,
452}
453
454#[derive(Debug, Clone)]
456pub struct QuantumChannel {
457 pub kraus_operators: Vec<Array2<Complex64>>,
459 pub name: String,
461}
462
463impl QuantumChannel {
464 pub fn depolarizing(num_qubits: usize, probability: f64) -> Self {
466 let dim = 1 << num_qubits;
467 let mut kraus_ops = Vec::new();
468
469 let sqrt_p0 = (1.0 - probability).sqrt();
471 let eye: Array2<Complex64> = Array2::eye(dim) * Complex64::new(sqrt_p0, 0.0);
472 kraus_ops.push(eye);
473
474 if num_qubits == 1 {
476 let sqrt_p = (probability / 3.0).sqrt();
477
478 let mut pauli_x = Array2::zeros((2, 2));
480 pauli_x[[0, 1]] = Complex64::new(sqrt_p, 0.0);
481 pauli_x[[1, 0]] = Complex64::new(sqrt_p, 0.0);
482 kraus_ops.push(pauli_x);
483
484 let mut pauli_y = Array2::zeros((2, 2));
486 pauli_y[[0, 1]] = Complex64::new(0.0, -sqrt_p);
487 pauli_y[[1, 0]] = Complex64::new(0.0, sqrt_p);
488 kraus_ops.push(pauli_y);
489
490 let mut pauli_z = Array2::zeros((2, 2));
492 pauli_z[[0, 0]] = Complex64::new(sqrt_p, 0.0);
493 pauli_z[[1, 1]] = Complex64::new(-sqrt_p, 0.0);
494 kraus_ops.push(pauli_z);
495 }
496
497 Self {
498 kraus_operators: kraus_ops,
499 name: format!("Depolarizing({probability:.3})"),
500 }
501 }
502
503 pub fn amplitude_damping(gamma: f64) -> Self {
505 let mut kraus_ops = Vec::new();
506
507 let mut k0 = Array2::zeros((2, 2));
509 k0[[0, 0]] = Complex64::new(1.0, 0.0);
510 k0[[1, 1]] = Complex64::new((1.0 - gamma).sqrt(), 0.0);
511 kraus_ops.push(k0);
512
513 let mut k1 = Array2::zeros((2, 2));
515 k1[[0, 1]] = Complex64::new(gamma.sqrt(), 0.0);
516 kraus_ops.push(k1);
517
518 Self {
519 kraus_operators: kraus_ops,
520 name: format!("AmplitudeDamping({gamma:.3})"),
521 }
522 }
523
524 pub fn phase_damping(gamma: f64) -> Self {
526 let mut kraus_ops = Vec::new();
527
528 let mut k0 = Array2::zeros((2, 2));
530 k0[[0, 0]] = Complex64::new(1.0, 0.0);
531 k0[[1, 1]] = Complex64::new((1.0 - gamma).sqrt(), 0.0);
532 kraus_ops.push(k0);
533
534 let mut k1 = Array2::zeros((2, 2));
536 k1[[1, 1]] = Complex64::new(gamma.sqrt(), 0.0);
537 kraus_ops.push(k1);
538
539 Self {
540 kraus_operators: kraus_ops,
541 name: format!("PhaseDamping({gamma:.3})"),
542 }
543 }
544
545 pub fn apply(&self, rho: &Array2<Complex64>) -> Array2<Complex64> {
547 let dim = rho.nrows();
548 let mut result = Array2::zeros((dim, dim));
549
550 for kraus_op in &self.kraus_operators {
551 let k_dag = kraus_op.t().mapv(|x| x.conj());
552 result += &kraus_op.dot(rho).dot(&k_dag);
553 }
554
555 result
556 }
557
558 pub fn is_trace_preserving(&self) -> bool {
560 let dim = self.kraus_operators[0].nrows();
561 let mut sum = Array2::zeros((dim, dim));
562
563 for kraus_op in &self.kraus_operators {
564 let k_dag = kraus_op.t().mapv(|x| x.conj());
565 sum += &k_dag.dot(kraus_op);
566 }
567
568 let eye: Array2<Complex64> = Array2::eye(dim);
570 (&sum - &eye).iter().all(|&x| x.norm() < 1e-10)
571 }
572}
573
574pub struct ProcessTomography {
576 pub input_states: Vec<Array2<Complex64>>,
578 pub output_measurements: Vec<Array2<Complex64>>,
580 pub process_matrix: Option<Array2<Complex64>>,
582}
583
584impl ProcessTomography {
585 pub fn new(num_qubits: usize) -> Self {
587 let mut input_states = Vec::new();
588
589 if num_qubits == 1 {
591 let mut rho_0 = Array2::zeros((2, 2));
593 rho_0[[0, 0]] = Complex64::new(1.0, 0.0);
594 input_states.push(rho_0);
595
596 let mut rho_1 = Array2::zeros((2, 2));
597 rho_1[[1, 1]] = Complex64::new(1.0, 0.0);
598 input_states.push(rho_1);
599
600 let mut rho_plus = Array2::zeros((2, 2));
601 rho_plus[[0, 0]] = Complex64::new(0.5, 0.0);
602 rho_plus[[0, 1]] = Complex64::new(0.5, 0.0);
603 rho_plus[[1, 0]] = Complex64::new(0.5, 0.0);
604 rho_plus[[1, 1]] = Complex64::new(0.5, 0.0);
605 input_states.push(rho_plus);
606
607 let mut rho_plus_i = Array2::zeros((2, 2));
608 rho_plus_i[[0, 0]] = Complex64::new(0.5, 0.0);
609 rho_plus_i[[0, 1]] = Complex64::new(0.0, -0.5);
610 rho_plus_i[[1, 0]] = Complex64::new(0.0, 0.5);
611 rho_plus_i[[1, 1]] = Complex64::new(0.5, 0.0);
612 input_states.push(rho_plus_i);
613 }
614
615 Self {
616 input_states,
617 output_measurements: Vec::new(),
618 process_matrix: None,
619 }
620 }
621
622 pub fn characterize_channel(&mut self, channel: &QuantumChannel) -> Result<()> {
624 self.output_measurements.clear();
625
626 for input_state in &self.input_states {
627 let output = channel.apply(input_state);
628 self.output_measurements.push(output);
629 }
630
631 self.reconstruct_process_matrix()?;
632 Ok(())
633 }
634
635 fn reconstruct_process_matrix(&mut self) -> Result<()> {
637 let dim = self.input_states[0].nrows();
641 let process_dim = dim * dim;
642 let mut chi = Array2::zeros((process_dim, process_dim));
643
644 self.process_matrix = Some(chi);
647
648 Ok(())
649 }
650
651 pub fn process_fidelity(&self, ideal_channel: &QuantumChannel) -> Result<f64> {
653 if self.output_measurements.is_empty() {
654 return Err(SimulatorError::InvalidOperation(
655 "No measurements available for fidelity calculation".to_string(),
656 ));
657 }
658
659 let mut fidelity_sum = 0.0;
660
661 for (i, input_state) in self.input_states.iter().enumerate() {
662 let ideal_output = ideal_channel.apply(input_state);
663 let measured_output = &self.output_measurements[i];
664
665 let fidelity = quantum_fidelity(measured_output, &ideal_output);
667 fidelity_sum += fidelity;
668 }
669
670 Ok(fidelity_sum / self.input_states.len() as f64)
671 }
672}
673
674pub fn quantum_fidelity(rho1: &Array2<Complex64>, rho2: &Array2<Complex64>) -> f64 {
676 let trace_distance = (rho1 - rho2).iter().map(|x| x.norm()).sum::<f64>();
682 0.5f64.mul_add(-trace_distance, 1.0).max(0.0)
683}
684
685fn kron(a: &Array2<Complex64>, b: &Array2<Complex64>) -> Array2<Complex64> {
687 let (m1, n1) = a.dim();
688 let (m2, n2) = b.dim();
689 let mut result = Array2::zeros((m1 * m2, n1 * n2));
690
691 for i in 0..m1 {
692 for j in 0..n1 {
693 for k in 0..m2 {
694 for l in 0..n2 {
695 result[[i * m2 + k, j * n2 + l]] = a[[i, j]] * b[[k, l]];
696 }
697 }
698 }
699 }
700
701 result
702}
703
704pub struct NoiseModelBuilder {
706 channels: HashMap<String, QuantumChannel>,
707 application_order: Vec<String>,
708}
709
710impl Default for NoiseModelBuilder {
711 fn default() -> Self {
712 Self::new()
713 }
714}
715
716impl NoiseModelBuilder {
717 pub fn new() -> Self {
718 Self {
719 channels: HashMap::new(),
720 application_order: Vec::new(),
721 }
722 }
723
724 pub fn depolarizing(mut self, name: &str, probability: f64) -> Self {
726 let channel = QuantumChannel::depolarizing(1, probability);
727 self.channels.insert(name.to_string(), channel);
728 self.application_order.push(name.to_string());
729 self
730 }
731
732 pub fn amplitude_damping(mut self, name: &str, gamma: f64) -> Self {
734 let channel = QuantumChannel::amplitude_damping(gamma);
735 self.channels.insert(name.to_string(), channel);
736 self.application_order.push(name.to_string());
737 self
738 }
739
740 pub fn phase_damping(mut self, name: &str, gamma: f64) -> Self {
742 let channel = QuantumChannel::phase_damping(gamma);
743 self.channels.insert(name.to_string(), channel);
744 self.application_order.push(name.to_string());
745 self
746 }
747
748 pub fn build(self) -> CompositeNoiseModel {
750 CompositeNoiseModel {
751 channels: self.channels,
752 application_order: self.application_order,
753 }
754 }
755}
756
757#[derive(Debug, Clone)]
759pub struct CompositeNoiseModel {
760 channels: HashMap<String, QuantumChannel>,
761 application_order: Vec<String>,
762}
763
764impl CompositeNoiseModel {
765 pub fn apply(&self, rho: &Array2<Complex64>) -> Array2<Complex64> {
767 let mut result = rho.clone();
768
769 for channel_name in &self.application_order {
770 if let Some(channel) = self.channels.get(channel_name) {
771 result = channel.apply(&result);
772 }
773 }
774
775 result
776 }
777
778 pub fn get_channel(&self, name: &str) -> Option<&QuantumChannel> {
780 self.channels.get(name)
781 }
782}
783
784#[cfg(test)]
785mod tests {
786 use super::*;
787
788 #[test]
789 fn test_lindblad_simulator_creation() {
790 let sim = LindladSimulator::new(2).unwrap();
791 assert_eq!(sim.num_qubits, 2);
792 assert_eq!(sim.density_matrix.shape(), [4, 4]);
793 }
794
795 #[test]
796 fn test_depolarizing_channel() {
797 let channel = QuantumChannel::depolarizing(1, 0.1);
798 assert!(channel.is_trace_preserving());
799 assert_eq!(channel.kraus_operators.len(), 4);
800 }
801
802 #[test]
803 fn test_amplitude_damping() {
804 let channel = QuantumChannel::amplitude_damping(0.2);
805 assert!(channel.is_trace_preserving());
806
807 let mut rho_1 = Array2::zeros((2, 2));
809 rho_1[[1, 1]] = Complex64::new(1.0, 0.0);
810
811 let result = channel.apply(&rho_1);
812
813 assert!(result[[0, 0]].re > 0.0);
815 assert!(result[[1, 1]].re < 1.0);
816 }
817
818 #[test]
819 fn test_noise_model_builder() {
820 let noise_model = NoiseModelBuilder::new()
821 .depolarizing("depol", 0.01)
822 .amplitude_damping("amp_damp", 0.02)
823 .build();
824
825 assert!(noise_model.get_channel("depol").is_some());
826 assert!(noise_model.get_channel("amp_damp").is_some());
827 }
828}