quantrs2_sim/mixed_precision_impl/
simulator.rs

1//! Mixed-precision quantum simulator implementation.
2//!
3//! This module provides the main simulator class that automatically
4//! manages precision levels for optimal performance and accuracy.
5
6use crate::adaptive_gate_fusion::{FusedGateBlock, GateType, QuantumGate};
7use crate::error::{Result, SimulatorError};
8use crate::prelude::SciRS2Backend;
9use scirs2_core::ndarray::Array1;
10use scirs2_core::random::prelude::*;
11use scirs2_core::Complex64;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14
15use super::analysis::{PrecisionAnalysis, PrecisionAnalyzer};
16use super::config::{MixedPrecisionConfig, QuantumPrecision};
17use super::state_vector::MixedPrecisionStateVector;
18
19/// Mixed-precision quantum simulator
20pub struct MixedPrecisionSimulator {
21    /// Configuration
22    config: MixedPrecisionConfig,
23    /// Current state vector
24    state: Option<MixedPrecisionStateVector>,
25    /// Number of qubits
26    num_qubits: usize,
27    /// SciRS2 backend for advanced operations
28    #[cfg(feature = "advanced_math")]
29    backend: Option<SciRS2Backend>,
30    /// Performance statistics
31    stats: MixedPrecisionStats,
32    /// Precision analyzer
33    analyzer: PrecisionAnalyzer,
34}
35
36/// Performance statistics for mixed-precision simulation
37#[derive(Debug, Clone, Default, Serialize, Deserialize)]
38pub struct MixedPrecisionStats {
39    /// Total number of gates applied
40    pub total_gates: usize,
41    /// Number of precision adaptations
42    pub precision_adaptations: usize,
43    /// Total execution time in milliseconds
44    pub total_time_ms: f64,
45    /// Memory usage by precision level
46    pub memory_usage_by_precision: HashMap<QuantumPrecision, usize>,
47    /// Gate execution time by precision
48    pub gate_time_by_precision: HashMap<QuantumPrecision, f64>,
49    /// Error estimates by precision
50    pub error_estimates: HashMap<QuantumPrecision, f64>,
51}
52
53impl MixedPrecisionSimulator {
54    /// Create a new mixed-precision simulator
55    pub fn new(num_qubits: usize, config: MixedPrecisionConfig) -> Result<Self> {
56        config.validate()?;
57
58        let state = Some(MixedPrecisionStateVector::computational_basis(
59            num_qubits,
60            config.state_vector_precision,
61        ));
62
63        Ok(Self {
64            config,
65            state,
66            num_qubits,
67            #[cfg(feature = "advanced_math")]
68            backend: None,
69            stats: MixedPrecisionStats::default(),
70            analyzer: PrecisionAnalyzer::new(),
71        })
72    }
73
74    /// Initialize with SciRS2 backend
75    #[cfg(feature = "advanced_math")]
76    pub fn with_backend(mut self) -> Result<Self> {
77        self.backend = Some(SciRS2Backend::new());
78        Ok(self)
79    }
80
81    /// Apply a quantum gate with automatic precision selection
82    pub fn apply_gate(&mut self, gate: &QuantumGate) -> Result<()> {
83        let start_time = std::time::Instant::now();
84
85        // Select optimal precision for this gate
86        let gate_precision = self.select_gate_precision(gate)?;
87
88        // Ensure state vector is in the correct precision
89        self.adapt_state_precision(gate_precision)?;
90
91        // Apply the gate
92        self.apply_gate_with_precision(gate, gate_precision)?;
93
94        // Update statistics
95        let execution_time = start_time.elapsed().as_millis() as f64;
96        self.stats.total_gates += 1;
97        self.stats.total_time_ms += execution_time;
98        *self
99            .stats
100            .gate_time_by_precision
101            .entry(gate_precision)
102            .or_insert(0.0) += execution_time;
103
104        Ok(())
105    }
106
107    /// Apply multiple gates as a fused block
108    pub fn apply_fused_block(&mut self, block: &FusedGateBlock) -> Result<()> {
109        let optimal_precision = self.select_block_precision(block)?;
110        self.adapt_state_precision(optimal_precision)?;
111
112        // Apply each gate in the block
113        for gate in &block.gates {
114            self.apply_gate_with_precision(gate, optimal_precision)?;
115        }
116
117        Ok(())
118    }
119
120    /// Measure a qubit and return the result
121    pub fn measure_qubit(&mut self, qubit: usize) -> Result<bool> {
122        if qubit >= self.num_qubits {
123            return Err(SimulatorError::InvalidInput(format!(
124                "Qubit {} out of range for {}-qubit system",
125                qubit, self.num_qubits
126            )));
127        }
128
129        // Use measurement precision for this operation
130        self.adapt_state_precision(self.config.measurement_precision)?;
131
132        let state = self.state.as_ref().unwrap();
133
134        // Calculate probability of measuring |1⟩
135        let mut prob_one = 0.0;
136        let mask = 1 << qubit;
137        for i in 0..state.len() {
138            if i & mask != 0 {
139                prob_one += state.probability(i)?;
140            }
141        }
142
143        // Simulate random measurement
144        let result = thread_rng().gen::<f64>() < prob_one;
145
146        // Collapse the state vector
147        self.collapse_state(qubit, result)?;
148
149        Ok(result)
150    }
151
152    /// Measure all qubits and return the bit string
153    pub fn measure_all(&mut self) -> Result<Vec<bool>> {
154        let mut results = Vec::new();
155        for qubit in 0..self.num_qubits {
156            results.push(self.measure_qubit(qubit)?);
157        }
158        Ok(results)
159    }
160
161    /// Get the current state vector
162    pub const fn get_state(&self) -> Option<&MixedPrecisionStateVector> {
163        self.state.as_ref()
164    }
165
166    /// Calculate expectation value of a Pauli operator
167    pub fn expectation_value(&self, pauli_string: &str) -> Result<f64> {
168        if pauli_string.len() != self.num_qubits {
169            return Err(SimulatorError::InvalidInput(
170                "Pauli string length must match number of qubits".to_string(),
171            ));
172        }
173
174        let state = self.state.as_ref().unwrap();
175        let mut expectation = 0.0;
176
177        for i in 0..state.len() {
178            let mut sign = 1.0;
179            let mut amplitude = state.amplitude(i)?;
180
181            // Apply Pauli operators
182            for (qubit, pauli) in pauli_string.chars().enumerate() {
183                match pauli {
184                    'I' => {} // Identity - no change
185                    'X' => {
186                        // Flip bit
187                        let flipped = i ^ (1 << qubit);
188                        amplitude = state.amplitude(flipped)?;
189                    }
190                    'Y' => {
191                        // Flip bit and apply phase
192                        if i & (1 << qubit) != 0 {
193                            sign *= -1.0;
194                        }
195                        amplitude *= Complex64::new(0.0, sign);
196                    }
197                    'Z' => {
198                        // Apply phase
199                        if i & (1 << qubit) != 0 {
200                            sign *= -1.0;
201                        }
202                    }
203                    _ => {
204                        return Err(SimulatorError::InvalidInput(format!(
205                            "Invalid Pauli operator: {pauli}"
206                        )))
207                    }
208                }
209            }
210
211            expectation += (amplitude.conj() * amplitude * sign).re;
212        }
213
214        Ok(expectation)
215    }
216
217    /// Run precision analysis
218    pub fn analyze_precision(&mut self) -> Result<PrecisionAnalysis> {
219        Ok(self
220            .analyzer
221            .analyze_for_tolerance(self.config.error_tolerance))
222    }
223
224    /// Get performance statistics
225    pub const fn get_stats(&self) -> &MixedPrecisionStats {
226        &self.stats
227    }
228
229    /// Reset the simulator to initial state
230    pub fn reset(&mut self) -> Result<()> {
231        self.state = Some(MixedPrecisionStateVector::computational_basis(
232            self.num_qubits,
233            self.config.state_vector_precision,
234        ));
235        self.stats = MixedPrecisionStats::default();
236        self.analyzer.reset();
237        Ok(())
238    }
239
240    /// Select optimal precision for a gate
241    fn select_gate_precision(&self, gate: &QuantumGate) -> Result<QuantumPrecision> {
242        if !self.config.adaptive_precision {
243            return Ok(self.config.gate_precision);
244        }
245
246        // Use heuristics to select precision based on gate type
247        let precision = match gate.gate_type {
248            GateType::PauliX
249            | GateType::PauliY
250            | GateType::PauliZ
251            | GateType::Hadamard
252            | GateType::Phase
253            | GateType::T
254            | GateType::RotationX
255            | GateType::RotationY
256            | GateType::RotationZ
257            | GateType::Identity => {
258                // Single qubit gates are usually numerically stable
259                if self.config.gate_precision == QuantumPrecision::Adaptive {
260                    QuantumPrecision::Single
261                } else {
262                    self.config.gate_precision
263                }
264            }
265            GateType::CNOT | GateType::CZ | GateType::SWAP | GateType::ISwap => {
266                // Two qubit gates may require higher precision
267                if self.config.gate_precision == QuantumPrecision::Adaptive {
268                    if self.num_qubits > self.config.large_system_threshold {
269                        QuantumPrecision::Single
270                    } else {
271                        QuantumPrecision::Double
272                    }
273                } else {
274                    self.config.gate_precision
275                }
276            }
277            GateType::Toffoli | GateType::Fredkin => {
278                // Multi-qubit gates typically need higher precision
279                if self.config.gate_precision == QuantumPrecision::Adaptive {
280                    QuantumPrecision::Double
281                } else {
282                    self.config.gate_precision
283                }
284            }
285            GateType::Custom(_) => {
286                // Custom gates - use conservative precision
287                QuantumPrecision::Double
288            }
289        };
290
291        Ok(precision)
292    }
293
294    /// Select optimal precision for a fused gate block
295    const fn select_block_precision(&self, _block: &FusedGateBlock) -> Result<QuantumPrecision> {
296        // For fused blocks, use a conservative approach
297        if self.config.adaptive_precision {
298            Ok(QuantumPrecision::Single)
299        } else {
300            Ok(self.config.gate_precision)
301        }
302    }
303
304    /// Adapt state vector to the target precision
305    fn adapt_state_precision(&mut self, target_precision: QuantumPrecision) -> Result<()> {
306        if let Some(ref state) = self.state {
307            if state.precision() != target_precision {
308                let new_state = state.to_precision(target_precision)?;
309                self.state = Some(new_state);
310                self.stats.precision_adaptations += 1;
311            }
312        }
313        Ok(())
314    }
315
316    /// Apply a gate with a specific precision
317    fn apply_gate_with_precision(
318        &mut self,
319        gate: &QuantumGate,
320        _precision: QuantumPrecision,
321    ) -> Result<()> {
322        // This is a simplified implementation
323        // In practice, this would apply the actual gate operation
324        if let Some(ref mut state) = self.state {
325            // For demonstration, just record that we applied a gate
326            // Real implementation would perform matrix multiplication
327
328            // Update memory usage statistics
329            let memory_usage = state.memory_usage();
330            self.stats
331                .memory_usage_by_precision
332                .insert(state.precision(), memory_usage);
333        }
334
335        Ok(())
336    }
337
338    /// Collapse the state vector after measurement
339    fn collapse_state(&mut self, qubit: usize, result: bool) -> Result<()> {
340        if let Some(ref mut state) = self.state {
341            let mask = 1 << qubit;
342            let mut norm_factor = 0.0;
343
344            // Calculate normalization factor
345            for i in 0..state.len() {
346                let bit_value = (i & mask) != 0;
347                if bit_value == result {
348                    norm_factor += state.probability(i)?;
349                }
350            }
351
352            if norm_factor == 0.0 {
353                return Err(SimulatorError::InvalidInput(
354                    "Invalid measurement result: zero probability".to_string(),
355                ));
356            }
357
358            norm_factor = norm_factor.sqrt();
359
360            // Update amplitudes
361            for i in 0..state.len() {
362                let bit_value = (i & mask) != 0;
363                if bit_value == result {
364                    let amplitude = state.amplitude(i)?;
365                    state.set_amplitude(i, amplitude / norm_factor)?;
366                } else {
367                    state.set_amplitude(i, Complex64::new(0.0, 0.0))?;
368                }
369            }
370        }
371
372        Ok(())
373    }
374}
375
376impl MixedPrecisionStats {
377    /// Calculate average gate time
378    pub fn average_gate_time(&self) -> f64 {
379        if self.total_gates > 0 {
380            self.total_time_ms / self.total_gates as f64
381        } else {
382            0.0
383        }
384    }
385
386    /// Get total memory usage across all precisions
387    pub fn total_memory_usage(&self) -> usize {
388        self.memory_usage_by_precision.values().sum()
389    }
390
391    /// Get adaptation rate (adaptations per gate)
392    pub fn adaptation_rate(&self) -> f64 {
393        if self.total_gates > 0 {
394            self.precision_adaptations as f64 / self.total_gates as f64
395        } else {
396            0.0
397        }
398    }
399
400    /// Get performance summary
401    pub fn summary(&self) -> String {
402        format!(
403            "Gates: {}, Adaptations: {}, Avg Time: {:.2}ms, Total Memory: {}MB",
404            self.total_gates,
405            self.precision_adaptations,
406            self.average_gate_time(),
407            self.total_memory_usage() / (1024 * 1024)
408        )
409    }
410}
411
412/// Utility functions for mixed precision simulation
413pub mod utils {
414    use super::*;
415
416    /// Convert a regular state vector to mixed precision
417    pub fn convert_state_vector(
418        state: &Array1<Complex64>,
419        precision: QuantumPrecision,
420    ) -> Result<MixedPrecisionStateVector> {
421        let mut mp_state = MixedPrecisionStateVector::new(state.len(), precision);
422        for (i, &amplitude) in state.iter().enumerate() {
423            mp_state.set_amplitude(i, amplitude)?;
424        }
425        Ok(mp_state)
426    }
427
428    /// Extract a regular state vector from mixed precision
429    pub fn extract_state_vector(mp_state: &MixedPrecisionStateVector) -> Result<Array1<Complex64>> {
430        let mut state = Array1::zeros(mp_state.len());
431        for i in 0..mp_state.len() {
432            state[i] = mp_state.amplitude(i)?;
433        }
434        Ok(state)
435    }
436
437    /// Calculate memory savings compared to double precision
438    pub fn memory_savings(config: &MixedPrecisionConfig, num_qubits: usize) -> f64 {
439        let double_precision_size = (1 << num_qubits) * std::mem::size_of::<Complex64>();
440        let mixed_precision_size = config.estimate_memory_usage(num_qubits);
441        1.0 - (mixed_precision_size as f64 / double_precision_size as f64)
442    }
443
444    /// Estimate performance improvement factor
445    pub fn performance_improvement_factor(precision: QuantumPrecision) -> f64 {
446        1.0 / precision.computation_factor()
447    }
448}