quantrs2_sim/
large_scale_simulator.rs

1//! Large-Scale Quantum Simulator with Advanced Memory Optimization
2//!
3//! This module provides state-of-the-art memory optimization techniques to enable
4//! simulation of 40+ qubit quantum circuits on standard hardware through sparse
5//! representations, compression, memory mapping, and SciRS2 high-performance computing.
6
7use quantrs2_circuit::builder::{Circuit, Simulator};
8use quantrs2_core::{
9    buffer_pool::BufferPool,
10    error::{QuantRS2Error, QuantRS2Result},
11    gate::GateOp,
12    qubit::QubitId,
13};
14use scirs2_core::parallel_ops::*; // SciRS2 POLICY compliant
15                                  // use quantrs2_core::platform::PlatformCapabilities;
16                                  // use scirs2_core::memory::BufferPool as SciRS2BufferPool;
17                                  // use scirs2_optimize::compression::{CompressionEngine, HuffmanEncoder, LZ4Encoder};
18                                  // use scirs2_linalg::{Matrix, Vector, SVD, sparse::CSRMatrix};
19use flate2::{read::ZlibDecoder, write::ZlibEncoder, Compression};
20use memmap2::{MmapMut, MmapOptions};
21use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2};
22use scirs2_core::Complex64;
23use serde::{Deserialize, Serialize};
24use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
25use std::fmt;
26use std::fs::{File, OpenOptions};
27use std::io::{BufReader, BufWriter, Read, Seek, SeekFrom, Write};
28use std::path::{Path, PathBuf};
29use std::sync::{Arc, Mutex, RwLock};
30use uuid::Uuid;
31
32/// Large-scale simulator configuration for 40+ qubit systems
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct LargeScaleSimulatorConfig {
35    /// Maximum number of qubits to simulate
36    pub max_qubits: usize,
37
38    /// Enable sparse state vector representation
39    pub enable_sparse_representation: bool,
40
41    /// Enable state compression
42    pub enable_compression: bool,
43
44    /// Enable memory mapping for very large states
45    pub enable_memory_mapping: bool,
46
47    /// Enable chunked processing
48    pub enable_chunked_processing: bool,
49
50    /// Chunk size for processing (in complex numbers)
51    pub chunk_size: usize,
52
53    /// Sparsity threshold (fraction of non-zero elements)
54    pub sparsity_threshold: f64,
55
56    /// Compression threshold (minimum size to compress)
57    pub compression_threshold: usize,
58
59    /// Memory mapping threshold (minimum size to use mmap)
60    pub memory_mapping_threshold: usize,
61
62    /// Working directory for temporary files
63    pub working_directory: PathBuf,
64
65    /// Enable SciRS2 optimizations
66    pub enable_scirs2_optimizations: bool,
67
68    /// Memory budget in bytes
69    pub memory_budget: usize,
70
71    /// Enable adaptive precision
72    pub enable_adaptive_precision: bool,
73
74    /// Precision tolerance for adaptive precision
75    pub precision_tolerance: f64,
76}
77
78impl Default for LargeScaleSimulatorConfig {
79    fn default() -> Self {
80        Self {
81            max_qubits: 50,
82            enable_sparse_representation: true,
83            enable_compression: true,
84            enable_memory_mapping: true,
85            enable_chunked_processing: true,
86            chunk_size: 1024 * 1024,                    // 1M complex numbers
87            sparsity_threshold: 0.1,                    // Sparse if < 10% non-zero
88            compression_threshold: 1024 * 1024 * 8,     // 8MB
89            memory_mapping_threshold: 1024 * 1024 * 64, // 64MB
90            working_directory: std::env::temp_dir().join("quantrs_large_scale"),
91            enable_scirs2_optimizations: true,
92            memory_budget: 8 * 1024 * 1024 * 1024, // 8GB
93            enable_adaptive_precision: true,
94            precision_tolerance: 1e-12,
95        }
96    }
97}
98
99/// Simple sparse matrix representation for quantum states
100#[derive(Debug, Clone)]
101pub struct SimpleSparseMatrix {
102    /// Non-zero values
103    values: Vec<Complex64>,
104    /// Column indices for non-zero values
105    col_indices: Vec<usize>,
106    /// Row pointers (start index for each row)
107    row_ptr: Vec<usize>,
108    /// Matrix dimensions
109    rows: usize,
110    cols: usize,
111}
112
113impl SimpleSparseMatrix {
114    pub fn from_dense(dense: &[Complex64], threshold: f64) -> Self {
115        let rows = dense.len();
116        let cols = 1; // For state vectors
117        let mut values = Vec::new();
118        let mut col_indices = Vec::new();
119        let mut row_ptr = vec![0];
120
121        for (i, &val) in dense.iter().enumerate() {
122            if val.norm() > threshold {
123                values.push(val);
124                col_indices.push(0); // State vector is column vector
125            }
126            row_ptr.push(values.len());
127        }
128
129        Self {
130            values,
131            col_indices,
132            row_ptr,
133            rows,
134            cols,
135        }
136    }
137
138    pub fn to_dense(&self) -> Vec<Complex64> {
139        let mut dense = vec![Complex64::new(0.0, 0.0); self.rows];
140
141        for (row, &val) in self.values.iter().enumerate() {
142            if row < self.row_ptr.len() - 1 {
143                let start = self.row_ptr[row];
144                let end = self.row_ptr[row + 1];
145                if start < end && start < self.col_indices.len() {
146                    let col = self.col_indices[start];
147                    if col < dense.len() {
148                        dense[row] = val;
149                    }
150                }
151            }
152        }
153
154        dense
155    }
156
157    pub fn nnz(&self) -> usize {
158        self.values.len()
159    }
160}
161
162/// Sparse quantum state representation using simple sparse matrices
163#[derive(Debug)]
164pub struct SparseQuantumState {
165    /// Sparse representation of non-zero amplitudes
166    sparse_amplitudes: SimpleSparseMatrix,
167
168    /// Number of qubits
169    num_qubits: usize,
170
171    /// Total dimension (2^num_qubits)
172    dimension: usize,
173
174    /// Non-zero indices and their positions
175    nonzero_indices: HashMap<usize, usize>,
176
177    /// Sparsity ratio
178    sparsity_ratio: f64,
179}
180
181impl SparseQuantumState {
182    /// Create new sparse quantum state
183    pub fn new(num_qubits: usize) -> QuantRS2Result<Self> {
184        let dimension = 1usize << num_qubits;
185
186        // Initialize in |0...0⟩ state (single non-zero element)
187        let mut dense = vec![Complex64::new(0.0, 0.0); dimension];
188        dense[0] = Complex64::new(1.0, 0.0);
189
190        let sparse_amplitudes = SimpleSparseMatrix::from_dense(&dense, 1e-15);
191
192        let mut nonzero_indices = HashMap::new();
193        nonzero_indices.insert(0, 0);
194
195        Ok(Self {
196            sparse_amplitudes,
197            num_qubits,
198            dimension,
199            nonzero_indices,
200            sparsity_ratio: 1.0 / dimension as f64,
201        })
202    }
203
204    /// Convert from dense state vector
205    pub fn from_dense(amplitudes: &[Complex64], threshold: f64) -> QuantRS2Result<Self> {
206        let num_qubits = (amplitudes.len() as f64).log2() as usize;
207        let dimension = amplitudes.len();
208
209        // Find non-zero elements
210        let mut nonzero_indices = HashMap::new();
211        let mut nonzero_count = 0;
212
213        for (i, &amplitude) in amplitudes.iter().enumerate() {
214            if amplitude.norm() > threshold {
215                nonzero_indices.insert(i, nonzero_count);
216                nonzero_count += 1;
217            }
218        }
219
220        let sparse_amplitudes = SimpleSparseMatrix::from_dense(amplitudes, threshold);
221        let sparsity_ratio = nonzero_count as f64 / dimension as f64;
222
223        Ok(Self {
224            sparse_amplitudes,
225            num_qubits,
226            dimension,
227            nonzero_indices,
228            sparsity_ratio,
229        })
230    }
231
232    /// Convert to dense state vector
233    pub fn to_dense(&self) -> QuantRS2Result<Vec<Complex64>> {
234        Ok(self.sparse_amplitudes.to_dense())
235    }
236
237    /// Apply sparse gate operation
238    pub fn apply_sparse_gate(&mut self, gate: &dyn GateOp) -> QuantRS2Result<()> {
239        // For now, convert to dense, apply gate, convert back
240        // TODO: Implement true sparse gate operations
241        let mut dense = self.to_dense()?;
242
243        // Apply gate to dense representation (simplified)
244        match gate.name() {
245            "X" => {
246                if let Some(target) = gate.qubits().first() {
247                    let target_idx = target.id() as usize;
248                    self.apply_pauli_x_sparse(target_idx)?;
249                }
250            }
251            "H" => {
252                if let Some(target) = gate.qubits().first() {
253                    let target_idx = target.id() as usize;
254                    self.apply_hadamard_sparse(target_idx)?;
255                }
256            }
257            _ => {
258                // Fallback to dense operation
259                let matrix = gate.matrix()?;
260                self.apply_dense_gate(&matrix, &gate.qubits())?;
261            }
262        }
263
264        Ok(())
265    }
266
267    /// Apply Pauli-X gate efficiently in sparse representation
268    fn apply_pauli_x_sparse(&mut self, target: usize) -> QuantRS2Result<()> {
269        // Pauli-X just flips the target bit in the indices
270        let mut new_nonzero_indices = HashMap::new();
271        let target_mask = 1usize << target;
272
273        for (&old_idx, &pos) in &self.nonzero_indices {
274            let new_idx = old_idx ^ target_mask;
275            new_nonzero_indices.insert(new_idx, pos);
276        }
277
278        self.nonzero_indices = new_nonzero_indices;
279
280        // Update sparse matrix indices
281        self.update_sparse_matrix()?;
282
283        Ok(())
284    }
285
286    /// Apply Hadamard gate in sparse representation
287    fn apply_hadamard_sparse(&mut self, target: usize) -> QuantRS2Result<()> {
288        // Hadamard creates superposition, potentially doubling non-zero elements
289        // For true sparsity preservation, we'd need more sophisticated techniques
290        // For now, use dense conversion
291        let dense = self.to_dense()?;
292        let mut new_dense = vec![Complex64::new(0.0, 0.0); self.dimension];
293
294        let h_00 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
295        let h_01 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
296        let h_10 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
297        let h_11 = Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0);
298
299        let target_mask = 1usize << target;
300
301        for i in 0..self.dimension {
302            let paired_idx = i ^ target_mask;
303            let bit_val = (i >> target) & 1;
304
305            if bit_val == 0 {
306                new_dense[i] = h_00 * dense[i] + h_01 * dense[paired_idx];
307                new_dense[paired_idx] = h_10 * dense[i] + h_11 * dense[paired_idx];
308            }
309        }
310
311        *self = Self::from_dense(&new_dense, 1e-15)?;
312
313        Ok(())
314    }
315
316    /// Apply dense gate operation
317    fn apply_dense_gate(&mut self, matrix: &[Complex64], qubits: &[QubitId]) -> QuantRS2Result<()> {
318        // Convert to dense, apply gate, convert back if still sparse enough
319        let mut dense = self.to_dense()?;
320
321        // Apply gate operation (simplified single-qubit case)
322        if qubits.len() == 1 {
323            let target = qubits[0].id() as usize;
324            let target_mask = 1usize << target;
325
326            for i in 0..self.dimension {
327                if (i & target_mask) == 0 {
328                    let paired_idx = i | target_mask;
329                    let old_0 = dense[i];
330                    let old_1 = dense[paired_idx];
331
332                    dense[i] = matrix[0] * old_0 + matrix[1] * old_1;
333                    dense[paired_idx] = matrix[2] * old_0 + matrix[3] * old_1;
334                }
335            }
336        }
337
338        // Check if result is still sparse enough
339        let nonzero_count = dense.iter().filter(|&&x| x.norm() > 1e-15).count();
340        let new_sparsity = nonzero_count as f64 / self.dimension as f64;
341
342        if new_sparsity < 0.5 {
343            // If still reasonably sparse
344            *self = Self::from_dense(&dense, 1e-15)?;
345        } else {
346            // Convert to dense representation if no longer sparse
347            return Err(QuantRS2Error::ComputationError(
348                "State no longer sparse".to_string(),
349            ));
350        }
351
352        Ok(())
353    }
354
355    /// Update sparse matrix after index changes
356    fn update_sparse_matrix(&mut self) -> QuantRS2Result<()> {
357        // Rebuild sparse matrix from current nonzero_indices
358        let mut dense = vec![Complex64::new(0.0, 0.0); self.dimension];
359
360        for &idx in self.nonzero_indices.keys() {
361            if idx < dense.len() {
362                // Set normalized amplitude (simplified)
363                dense[idx] = Complex64::new(1.0 / (self.nonzero_indices.len() as f64).sqrt(), 0.0);
364            }
365        }
366
367        self.sparse_amplitudes = SimpleSparseMatrix::from_dense(&dense, 1e-15);
368        self.sparsity_ratio = self.nonzero_indices.len() as f64 / self.dimension as f64;
369
370        Ok(())
371    }
372
373    /// Get current sparsity ratio
374    pub const fn sparsity_ratio(&self) -> f64 {
375        self.sparsity_ratio
376    }
377
378    /// Get memory usage in bytes
379    pub fn memory_usage(&self) -> usize {
380        self.nonzero_indices.len()
381            * (std::mem::size_of::<usize>() + std::mem::size_of::<Complex64>())
382    }
383}
384
385/// Simple compression engine for quantum states
386#[derive(Debug)]
387pub struct SimpleCompressionEngine {
388    /// Internal buffer for compression operations
389    buffer: Vec<u8>,
390}
391
392impl Default for SimpleCompressionEngine {
393    fn default() -> Self {
394        Self::new()
395    }
396}
397
398impl SimpleCompressionEngine {
399    pub const fn new() -> Self {
400        Self { buffer: Vec::new() }
401    }
402
403    /// Simple LZ-style compression
404    pub fn compress_lz4(&self, data: &[u8]) -> Result<Vec<u8>, String> {
405        // Simplified compression - just use zlib/deflate
406        use std::io::Write;
407        let mut encoder =
408            flate2::write::ZlibEncoder::new(Vec::new(), flate2::Compression::default());
409        encoder
410            .write_all(data)
411            .map_err(|e| format!("Compression failed: {e}"))?;
412        encoder
413            .finish()
414            .map_err(|e| format!("Compression finish failed: {e}"))
415    }
416
417    /// Simple decompression
418    pub fn decompress_lz4(&self, data: &[u8]) -> Result<Vec<u8>, String> {
419        use std::io::Read;
420        let mut decoder = flate2::read::ZlibDecoder::new(data);
421        let mut decompressed = Vec::new();
422        decoder
423            .read_to_end(&mut decompressed)
424            .map_err(|e| format!("Decompression failed: {e}"))?;
425        Ok(decompressed)
426    }
427
428    /// Huffman compression placeholder
429    pub fn compress_huffman(&self, data: &[u8]) -> Result<Vec<u8>, String> {
430        // For now, just use the LZ4 method
431        self.compress_lz4(data)
432    }
433
434    /// Huffman decompression placeholder
435    pub fn decompress_huffman(&self, data: &[u8]) -> Result<Vec<u8>, String> {
436        // For now, just use the LZ4 method
437        self.decompress_lz4(data)
438    }
439}
440
441/// Compressed quantum state using simple compression
442#[derive(Debug)]
443pub struct CompressedQuantumState {
444    /// Compressed amplitude data
445    compressed_data: Vec<u8>,
446
447    /// Compression metadata
448    compression_metadata: CompressionMetadata,
449
450    /// Compression engine
451    compression_engine: SimpleCompressionEngine,
452
453    /// Number of qubits
454    num_qubits: usize,
455
456    /// Original size in bytes
457    original_size: usize,
458}
459
460/// Compression metadata
461#[derive(Debug, Clone, Serialize, Deserialize)]
462pub struct CompressionMetadata {
463    /// Compression algorithm used
464    pub algorithm: CompressionAlgorithm,
465
466    /// Compression ratio achieved
467    pub compression_ratio: f64,
468
469    /// Original data size
470    pub original_size: usize,
471
472    /// Compressed data size
473    pub compressed_size: usize,
474
475    /// Checksum for integrity verification
476    pub checksum: u64,
477}
478
479/// Supported compression algorithms
480#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
481pub enum CompressionAlgorithm {
482    /// Huffman encoding for sparse data
483    Huffman,
484    /// LZ4 for general compression
485    LZ4,
486    /// Quantum-specific amplitude compression
487    QuantumAmplitude,
488    /// No compression
489    None,
490}
491
492impl CompressedQuantumState {
493    /// Create new compressed state from dense amplitudes
494    pub fn from_dense(
495        amplitudes: &[Complex64],
496        algorithm: CompressionAlgorithm,
497    ) -> QuantRS2Result<Self> {
498        let num_qubits = (amplitudes.len() as f64).log2() as usize;
499        let original_size = std::mem::size_of_val(amplitudes);
500
501        // Convert to bytes
502        let amplitude_bytes: &[u8] =
503            unsafe { std::slice::from_raw_parts(amplitudes.as_ptr().cast::<u8>(), original_size) };
504
505        // Initialize compression engine
506        let compression_engine = SimpleCompressionEngine::new();
507
508        let (compressed_data, metadata) = match algorithm {
509            CompressionAlgorithm::Huffman => {
510                let compressed = compression_engine
511                    .compress_huffman(amplitude_bytes)
512                    .map_err(|e| {
513                        QuantRS2Error::ComputationError(format!("Huffman compression failed: {e}"))
514                    })?;
515
516                let metadata = CompressionMetadata {
517                    algorithm: CompressionAlgorithm::Huffman,
518                    compression_ratio: original_size as f64 / compressed.len() as f64,
519                    original_size,
520                    compressed_size: compressed.len(),
521                    checksum: Self::calculate_checksum(amplitude_bytes),
522                };
523
524                (compressed, metadata)
525            }
526            CompressionAlgorithm::LZ4 => {
527                let compressed = compression_engine
528                    .compress_lz4(amplitude_bytes)
529                    .map_err(|e| {
530                        QuantRS2Error::ComputationError(format!("LZ4 compression failed: {e}"))
531                    })?;
532
533                let metadata = CompressionMetadata {
534                    algorithm: CompressionAlgorithm::LZ4,
535                    compression_ratio: original_size as f64 / compressed.len() as f64,
536                    original_size,
537                    compressed_size: compressed.len(),
538                    checksum: Self::calculate_checksum(amplitude_bytes),
539                };
540
541                (compressed, metadata)
542            }
543            CompressionAlgorithm::QuantumAmplitude => {
544                // Custom quantum amplitude compression
545                let compressed = Self::compress_quantum_amplitudes(amplitudes)?;
546
547                let metadata = CompressionMetadata {
548                    algorithm: CompressionAlgorithm::QuantumAmplitude,
549                    compression_ratio: original_size as f64 / compressed.len() as f64,
550                    original_size,
551                    compressed_size: compressed.len(),
552                    checksum: Self::calculate_checksum(amplitude_bytes),
553                };
554
555                (compressed, metadata)
556            }
557            CompressionAlgorithm::None => {
558                let metadata = CompressionMetadata {
559                    algorithm: CompressionAlgorithm::None,
560                    compression_ratio: 1.0,
561                    original_size,
562                    compressed_size: original_size,
563                    checksum: Self::calculate_checksum(amplitude_bytes),
564                };
565
566                (amplitude_bytes.to_vec(), metadata)
567            }
568        };
569
570        Ok(Self {
571            compressed_data,
572            compression_metadata: metadata,
573            compression_engine,
574            num_qubits,
575            original_size,
576        })
577    }
578
579    /// Decompress to dense amplitudes
580    pub fn to_dense(&self) -> QuantRS2Result<Vec<Complex64>> {
581        let decompressed_bytes = match self.compression_metadata.algorithm {
582            CompressionAlgorithm::Huffman => self
583                .compression_engine
584                .decompress_huffman(&self.compressed_data)
585                .map_err(|e| {
586                    QuantRS2Error::ComputationError(format!("Huffman decompression failed: {e}"))
587                })?,
588            CompressionAlgorithm::LZ4 => self
589                .compression_engine
590                .decompress_lz4(&self.compressed_data)
591                .map_err(|e| {
592                    QuantRS2Error::ComputationError(format!("LZ4 decompression failed: {e}"))
593                })?,
594            CompressionAlgorithm::QuantumAmplitude => {
595                Self::decompress_quantum_amplitudes(&self.compressed_data, self.num_qubits)?
596            }
597            CompressionAlgorithm::None => self.compressed_data.clone(),
598        };
599
600        // Verify checksum
601        let checksum = Self::calculate_checksum(&decompressed_bytes);
602        if checksum != self.compression_metadata.checksum {
603            return Err(QuantRS2Error::ComputationError(
604                "Checksum verification failed".to_string(),
605            ));
606        }
607
608        // Convert bytes back to complex numbers
609        let amplitudes = unsafe {
610            std::slice::from_raw_parts(
611                decompressed_bytes.as_ptr().cast::<Complex64>(),
612                decompressed_bytes.len() / std::mem::size_of::<Complex64>(),
613            )
614        }
615        .to_vec();
616
617        Ok(amplitudes)
618    }
619
620    /// Custom quantum amplitude compression
621    fn compress_quantum_amplitudes(amplitudes: &[Complex64]) -> QuantRS2Result<Vec<u8>> {
622        // Quantum-specific compression using magnitude-phase representation
623        let mut compressed = Vec::new();
624
625        for &amplitude in amplitudes {
626            let magnitude = amplitude.norm();
627            let phase = amplitude.arg();
628
629            // Quantize magnitude and phase for better compression
630            let quantized_magnitude = (magnitude * 65535.0) as u16;
631            let quantized_phase =
632                ((phase + std::f64::consts::PI) / (2.0 * std::f64::consts::PI) * 65535.0) as u16;
633
634            compressed.extend_from_slice(&quantized_magnitude.to_le_bytes());
635            compressed.extend_from_slice(&quantized_phase.to_le_bytes());
636        }
637
638        Ok(compressed)
639    }
640
641    /// Custom quantum amplitude decompression
642    fn decompress_quantum_amplitudes(data: &[u8], num_qubits: usize) -> QuantRS2Result<Vec<u8>> {
643        let dimension = 1usize << num_qubits;
644        let mut amplitudes = Vec::with_capacity(dimension);
645
646        for i in 0..dimension {
647            let offset = i * 4; // 2 bytes magnitude + 2 bytes phase
648            if offset + 4 <= data.len() {
649                let magnitude_bytes = [data[offset], data[offset + 1]];
650                let phase_bytes = [data[offset + 2], data[offset + 3]];
651
652                let quantized_magnitude = u16::from_le_bytes(magnitude_bytes);
653                let quantized_phase = u16::from_le_bytes(phase_bytes);
654
655                let magnitude = quantized_magnitude as f64 / 65535.0;
656                let phase = ((quantized_phase as f64 / 65535.0) * 2.0)
657                    .mul_add(std::f64::consts::PI, -std::f64::consts::PI);
658
659                let amplitude = Complex64::new(magnitude * phase.cos(), magnitude * phase.sin());
660                amplitudes.push(amplitude);
661            }
662        }
663
664        // Convert back to bytes
665        let amplitude_bytes = unsafe {
666            std::slice::from_raw_parts(
667                amplitudes.as_ptr().cast::<u8>(),
668                amplitudes.len() * std::mem::size_of::<Complex64>(),
669            )
670        };
671
672        Ok(amplitude_bytes.to_vec())
673    }
674
675    /// Calculate checksum for integrity verification
676    fn calculate_checksum(data: &[u8]) -> u64 {
677        // Simple checksum implementation
678        data.iter()
679            .enumerate()
680            .map(|(i, &b)| (i as u64).wrapping_mul(b as u64))
681            .sum()
682    }
683
684    /// Get compression ratio
685    pub const fn compression_ratio(&self) -> f64 {
686        self.compression_metadata.compression_ratio
687    }
688
689    /// Get memory usage in bytes
690    pub fn memory_usage(&self) -> usize {
691        self.compressed_data.len()
692    }
693}
694
695/// Memory-mapped quantum state for very large simulations
696#[derive(Debug)]
697pub struct MemoryMappedQuantumState {
698    /// Memory-mapped file
699    mmap: MmapMut,
700
701    /// File path
702    file_path: PathBuf,
703
704    /// Number of qubits
705    num_qubits: usize,
706
707    /// State dimension
708    dimension: usize,
709
710    /// Chunk size for processing
711    chunk_size: usize,
712}
713
714impl MemoryMappedQuantumState {
715    /// Create new memory-mapped state
716    pub fn new(num_qubits: usize, chunk_size: usize, working_dir: &Path) -> QuantRS2Result<Self> {
717        let dimension = 1usize << num_qubits;
718        let file_size = dimension * std::mem::size_of::<Complex64>();
719
720        // Create temporary file
721        std::fs::create_dir_all(working_dir).map_err(|e| {
722            QuantRS2Error::InvalidInput(format!("Failed to create working directory: {e}"))
723        })?;
724
725        let file_path = working_dir.join(format!("quantum_state_{}.tmp", Uuid::new_v4()));
726
727        let file = OpenOptions::new()
728            .read(true)
729            .write(true)
730            .create(true)
731            .open(&file_path)
732            .map_err(|e| QuantRS2Error::InvalidInput(format!("Failed to create temp file: {e}")))?;
733
734        file.set_len(file_size as u64)
735            .map_err(|e| QuantRS2Error::InvalidInput(format!("Failed to set file size: {e}")))?;
736
737        let mmap = unsafe {
738            MmapOptions::new().map_mut(&file).map_err(|e| {
739                QuantRS2Error::InvalidInput(format!("Failed to create memory map: {e}"))
740            })?
741        };
742
743        let mut state = Self {
744            mmap,
745            file_path,
746            num_qubits,
747            dimension,
748            chunk_size,
749        };
750
751        // Initialize to |0...0⟩ state
752        state.initialize_zero_state()?;
753
754        Ok(state)
755    }
756
757    /// Initialize state to |0...0⟩
758    fn initialize_zero_state(&mut self) -> QuantRS2Result<()> {
759        let amplitudes = self.get_amplitudes_mut();
760
761        // Clear all amplitudes
762        for amplitude in amplitudes.iter_mut() {
763            *amplitude = Complex64::new(0.0, 0.0);
764        }
765
766        // Set first amplitude to 1.0 (|0...0⟩ state)
767        if !amplitudes.is_empty() {
768            amplitudes[0] = Complex64::new(1.0, 0.0);
769        }
770
771        Ok(())
772    }
773
774    /// Get amplitudes as mutable slice
775    fn get_amplitudes_mut(&mut self) -> &mut [Complex64] {
776        unsafe {
777            std::slice::from_raw_parts_mut(
778                self.mmap.as_mut_ptr().cast::<Complex64>(),
779                self.dimension,
780            )
781        }
782    }
783
784    /// Get amplitudes as slice
785    fn get_amplitudes(&self) -> &[Complex64] {
786        unsafe {
787            std::slice::from_raw_parts(self.mmap.as_ptr().cast::<Complex64>(), self.dimension)
788        }
789    }
790
791    /// Apply gate operation using chunked processing
792    pub fn apply_gate_chunked(&mut self, gate: &dyn GateOp) -> QuantRS2Result<()> {
793        let num_chunks = self.dimension.div_ceil(self.chunk_size);
794
795        for chunk_idx in 0..num_chunks {
796            let start = chunk_idx * self.chunk_size;
797            let end = (start + self.chunk_size).min(self.dimension);
798
799            self.apply_gate_to_chunk(gate, start, end)?;
800        }
801
802        Ok(())
803    }
804
805    /// Apply gate to specific chunk
806    fn apply_gate_to_chunk(
807        &mut self,
808        gate: &dyn GateOp,
809        start: usize,
810        end: usize,
811    ) -> QuantRS2Result<()> {
812        // Cache dimension to avoid borrowing issues
813        let dimension = self.dimension;
814        let amplitudes = self.get_amplitudes_mut();
815
816        match gate.name() {
817            "X" => {
818                if let Some(target) = gate.qubits().first() {
819                    let target_idx = target.id() as usize;
820                    let target_mask = 1usize << target_idx;
821
822                    for i in start..end {
823                        if (i & target_mask) == 0 {
824                            let paired_idx = i | target_mask;
825                            if paired_idx < dimension {
826                                amplitudes.swap(i, paired_idx);
827                            }
828                        }
829                    }
830                }
831            }
832            "H" => {
833                if let Some(target) = gate.qubits().first() {
834                    let target_idx = target.id() as usize;
835                    let target_mask = 1usize << target_idx;
836                    let inv_sqrt2 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
837
838                    // Create temporary buffer to avoid borrowing issues
839                    let mut temp_buffer = vec![Complex64::new(0.0, 0.0); end - start];
840                    for (i, &val) in amplitudes[start..end].iter().enumerate() {
841                        temp_buffer[i] = val;
842                    }
843
844                    for i in start..end {
845                        if (i & target_mask) == 0 {
846                            let paired_idx = i | target_mask;
847                            if paired_idx < dimension && paired_idx >= start && paired_idx < end {
848                                let old_0 = temp_buffer[i - start];
849                                let old_1 = temp_buffer[paired_idx - start];
850
851                                amplitudes[i] = inv_sqrt2 * (old_0 + old_1);
852                                amplitudes[paired_idx] = inv_sqrt2 * (old_0 - old_1);
853                            }
854                        }
855                    }
856                }
857            }
858            _ => {
859                return Err(QuantRS2Error::UnsupportedOperation(format!(
860                    "Chunked operation not implemented for gate {}",
861                    gate.name()
862                )));
863            }
864        }
865
866        Ok(())
867    }
868
869    /// Get memory usage (just metadata, actual state is in file)
870    pub const fn memory_usage(&self) -> usize {
871        std::mem::size_of::<Self>()
872    }
873
874    /// Get file size
875    pub const fn file_size(&self) -> usize {
876        self.dimension * std::mem::size_of::<Complex64>()
877    }
878}
879
880impl Drop for MemoryMappedQuantumState {
881    fn drop(&mut self) {
882        // Clean up temporary file
883        let _ = std::fs::remove_file(&self.file_path);
884    }
885}
886
887/// Large-scale quantum simulator supporting 40+ qubits
888#[derive(Debug)]
889pub struct LargeScaleQuantumSimulator {
890    /// Configuration
891    config: LargeScaleSimulatorConfig,
892
893    /// Current quantum state representation
894    state: QuantumStateRepresentation,
895
896    /// Buffer pool for optimizations
897    buffer_pool: Arc<Mutex<Vec<Vec<Complex64>>>>,
898
899    /// Memory usage statistics
900    memory_stats: Arc<Mutex<MemoryStatistics>>,
901}
902
903/// Different quantum state representations
904#[derive(Debug)]
905pub enum QuantumStateRepresentation {
906    /// Dense state vector (traditional)
907    Dense(Vec<Complex64>),
908
909    /// Sparse state representation
910    Sparse(SparseQuantumState),
911
912    /// Compressed state representation
913    Compressed(CompressedQuantumState),
914
915    /// Memory-mapped state for very large simulations
916    MemoryMapped(MemoryMappedQuantumState),
917}
918
919/// Memory usage statistics
920#[derive(Debug, Default, Clone)]
921pub struct MemoryStatistics {
922    /// Current memory usage in bytes
923    pub current_usage: usize,
924
925    /// Peak memory usage in bytes
926    pub peak_usage: usize,
927
928    /// Number of allocations
929    pub allocations: u64,
930
931    /// Number of deallocations
932    pub deallocations: u64,
933
934    /// Compression ratio achieved
935    pub compression_ratio: f64,
936
937    /// Sparsity ratio
938    pub sparsity_ratio: f64,
939
940    /// Time spent in memory operations (microseconds)
941    pub memory_operation_time_us: u64,
942}
943
944impl LargeScaleQuantumSimulator {
945    /// Create new large-scale simulator
946    pub fn new(config: LargeScaleSimulatorConfig) -> QuantRS2Result<Self> {
947        let buffer_pool = Arc::new(Mutex::new(Vec::new()));
948        let memory_stats = Arc::new(Mutex::new(MemoryStatistics::default()));
949
950        // Initialize with appropriate state representation
951        let state = QuantumStateRepresentation::Dense(vec![Complex64::new(1.0, 0.0)]);
952
953        Ok(Self {
954            config,
955            state,
956            buffer_pool,
957            memory_stats,
958        })
959    }
960
961    /// Initialize quantum state for given number of qubits
962    pub fn initialize_state(&mut self, num_qubits: usize) -> QuantRS2Result<()> {
963        if num_qubits > self.config.max_qubits {
964            return Err(QuantRS2Error::InvalidInput(format!(
965                "Number of qubits {} exceeds maximum {}",
966                num_qubits, self.config.max_qubits
967            )));
968        }
969
970        let dimension = 1usize << num_qubits;
971        let memory_required = dimension * std::mem::size_of::<Complex64>();
972
973        // Choose appropriate representation based on size and configuration
974        self.state = if memory_required > self.config.memory_mapping_threshold {
975            // Use memory mapping for very large states
976            QuantumStateRepresentation::MemoryMapped(MemoryMappedQuantumState::new(
977                num_qubits,
978                self.config.chunk_size,
979                &self.config.working_directory,
980            )?)
981        } else if memory_required > self.config.compression_threshold
982            && self.config.enable_compression
983        {
984            // Use compression for medium-large states
985            let amplitudes = vec![Complex64::new(0.0, 0.0); dimension];
986            let mut amplitudes = amplitudes;
987            amplitudes[0] = Complex64::new(1.0, 0.0); // |0...0⟩ state
988
989            QuantumStateRepresentation::Compressed(CompressedQuantumState::from_dense(
990                &amplitudes,
991                CompressionAlgorithm::LZ4,
992            )?)
993        } else if self.config.enable_sparse_representation {
994            // Use sparse representation
995            QuantumStateRepresentation::Sparse(SparseQuantumState::new(num_qubits)?)
996        } else {
997            // Use traditional dense representation
998            let mut amplitudes = vec![Complex64::new(0.0, 0.0); dimension];
999            amplitudes[0] = Complex64::new(1.0, 0.0); // |0...0⟩ state
1000            QuantumStateRepresentation::Dense(amplitudes)
1001        };
1002
1003        self.update_memory_stats()?;
1004
1005        Ok(())
1006    }
1007
1008    /// Apply quantum gate
1009    pub fn apply_gate(&mut self, gate: &dyn GateOp) -> QuantRS2Result<()> {
1010        let start_time = std::time::Instant::now();
1011
1012        // Handle different state representations
1013        let mut needs_state_change = None;
1014
1015        match &mut self.state {
1016            QuantumStateRepresentation::Dense(amplitudes) => {
1017                // Create a copy to avoid borrowing issues
1018                let mut amplitudes_copy = amplitudes.clone();
1019                Self::apply_gate_dense(&mut amplitudes_copy, gate, &self.config)?;
1020                *amplitudes = amplitudes_copy;
1021            }
1022            QuantumStateRepresentation::Sparse(sparse_state) => {
1023                sparse_state.apply_sparse_gate(gate)?;
1024
1025                // Check if still sparse enough
1026                if sparse_state.sparsity_ratio() > self.config.sparsity_threshold {
1027                    // Convert to dense if no longer sparse
1028                    let dense = sparse_state.to_dense()?;
1029                    needs_state_change = Some(QuantumStateRepresentation::Dense(dense));
1030                }
1031            }
1032            QuantumStateRepresentation::Compressed(compressed_state) => {
1033                // Decompress, apply gate, recompress
1034                let mut dense = compressed_state.to_dense()?;
1035                Self::apply_gate_dense(&mut dense, gate, &self.config)?;
1036
1037                // Recompress if beneficial
1038                let new_compressed =
1039                    CompressedQuantumState::from_dense(&dense, CompressionAlgorithm::LZ4)?;
1040                if new_compressed.compression_ratio() > 1.5 {
1041                    needs_state_change =
1042                        Some(QuantumStateRepresentation::Compressed(new_compressed));
1043                } else {
1044                    needs_state_change = Some(QuantumStateRepresentation::Dense(dense));
1045                }
1046            }
1047            QuantumStateRepresentation::MemoryMapped(mmap_state) => {
1048                mmap_state.apply_gate_chunked(gate)?;
1049            }
1050        }
1051
1052        // Apply state change if needed
1053        if let Some(new_state) = needs_state_change {
1054            self.state = new_state;
1055        }
1056
1057        let elapsed = start_time.elapsed();
1058        if let Ok(mut stats) = self.memory_stats.lock() {
1059            stats.memory_operation_time_us += elapsed.as_micros() as u64;
1060        }
1061
1062        Ok(())
1063    }
1064
1065    /// Apply gate to dense representation
1066    fn apply_gate_dense(
1067        amplitudes: &mut [Complex64],
1068        gate: &dyn GateOp,
1069        config: &LargeScaleSimulatorConfig,
1070    ) -> QuantRS2Result<()> {
1071        match gate.name() {
1072            "X" => {
1073                if let Some(target) = gate.qubits().first() {
1074                    let target_idx = target.id() as usize;
1075                    Self::apply_pauli_x_dense(amplitudes, target_idx)?;
1076                }
1077            }
1078            "H" => {
1079                if let Some(target) = gate.qubits().first() {
1080                    let target_idx = target.id() as usize;
1081                    Self::apply_hadamard_dense(amplitudes, target_idx, config)?;
1082                }
1083            }
1084            "CNOT" => {
1085                if gate.qubits().len() >= 2 {
1086                    let control_idx = gate.qubits()[0].id() as usize;
1087                    let target_idx = gate.qubits()[1].id() as usize;
1088                    Self::apply_cnot_dense(amplitudes, control_idx, target_idx)?;
1089                }
1090            }
1091            _ => {
1092                return Err(QuantRS2Error::UnsupportedOperation(format!(
1093                    "Gate {} not implemented in large-scale simulator",
1094                    gate.name()
1095                )));
1096            }
1097        }
1098
1099        Ok(())
1100    }
1101
1102    /// Apply Pauli-X gate to dense representation
1103    fn apply_pauli_x_dense(amplitudes: &mut [Complex64], target: usize) -> QuantRS2Result<()> {
1104        let target_mask = 1usize << target;
1105
1106        // Sequential operation for now (parallel optimization can be added later)
1107        for i in 0..amplitudes.len() {
1108            if (i & target_mask) == 0 {
1109                let paired_idx = i | target_mask;
1110                if paired_idx < amplitudes.len() {
1111                    amplitudes.swap(i, paired_idx);
1112                }
1113            }
1114        }
1115
1116        Ok(())
1117    }
1118
1119    /// Apply Hadamard gate to dense representation
1120    fn apply_hadamard_dense(
1121        amplitudes: &mut [Complex64],
1122        target: usize,
1123        _config: &LargeScaleSimulatorConfig,
1124    ) -> QuantRS2Result<()> {
1125        let target_mask = 1usize << target;
1126        let inv_sqrt2 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
1127
1128        // Create temporary buffer
1129        let mut temp = vec![Complex64::new(0.0, 0.0); amplitudes.len()];
1130        temp.copy_from_slice(amplitudes);
1131
1132        // Sequential operation for now (parallel optimization can be added later)
1133        for i in 0..amplitudes.len() {
1134            if (i & target_mask) == 0 {
1135                let paired_idx = i | target_mask;
1136                if paired_idx < amplitudes.len() {
1137                    let old_0 = temp[i];
1138                    let old_1 = temp[paired_idx];
1139
1140                    amplitudes[i] = inv_sqrt2 * (old_0 + old_1);
1141                    amplitudes[paired_idx] = inv_sqrt2 * (old_0 - old_1);
1142                }
1143            }
1144        }
1145
1146        Ok(())
1147    }
1148
1149    /// Apply CNOT gate to dense representation
1150    fn apply_cnot_dense(
1151        amplitudes: &mut [Complex64],
1152        control: usize,
1153        target: usize,
1154    ) -> QuantRS2Result<()> {
1155        let control_mask = 1usize << control;
1156        let target_mask = 1usize << target;
1157
1158        // Sequential operation for now (parallel optimization can be added later)
1159        for i in 0..amplitudes.len() {
1160            if (i & control_mask) != 0 && (i & target_mask) == 0 {
1161                let flipped_idx = i | target_mask;
1162                if flipped_idx < amplitudes.len() {
1163                    amplitudes.swap(i, flipped_idx);
1164                }
1165            }
1166        }
1167
1168        Ok(())
1169    }
1170
1171    /// Get current state as dense vector (for measurement)
1172    pub fn get_dense_state(&self) -> QuantRS2Result<Vec<Complex64>> {
1173        match &self.state {
1174            QuantumStateRepresentation::Dense(amplitudes) => Ok(amplitudes.clone()),
1175            QuantumStateRepresentation::Sparse(sparse_state) => sparse_state.to_dense(),
1176            QuantumStateRepresentation::Compressed(compressed_state) => compressed_state.to_dense(),
1177            QuantumStateRepresentation::MemoryMapped(mmap_state) => {
1178                Ok(mmap_state.get_amplitudes().to_vec())
1179            }
1180        }
1181    }
1182
1183    /// Update memory usage statistics
1184    fn update_memory_stats(&self) -> QuantRS2Result<()> {
1185        if let Ok(mut stats) = self.memory_stats.lock() {
1186            let current_usage = match &self.state {
1187                QuantumStateRepresentation::Dense(amplitudes) => {
1188                    amplitudes.len() * std::mem::size_of::<Complex64>()
1189                }
1190                QuantumStateRepresentation::Sparse(sparse_state) => sparse_state.memory_usage(),
1191                QuantumStateRepresentation::Compressed(compressed_state) => {
1192                    compressed_state.memory_usage()
1193                }
1194                QuantumStateRepresentation::MemoryMapped(mmap_state) => mmap_state.memory_usage(),
1195            };
1196
1197            stats.current_usage = current_usage;
1198            if current_usage > stats.peak_usage {
1199                stats.peak_usage = current_usage;
1200            }
1201
1202            // Update compression and sparsity ratios
1203            match &self.state {
1204                QuantumStateRepresentation::Compressed(compressed_state) => {
1205                    stats.compression_ratio = compressed_state.compression_ratio();
1206                }
1207                QuantumStateRepresentation::Sparse(sparse_state) => {
1208                    stats.sparsity_ratio = sparse_state.sparsity_ratio();
1209                }
1210                _ => {}
1211            }
1212        }
1213
1214        Ok(())
1215    }
1216
1217    /// Get memory statistics
1218    pub fn get_memory_stats(&self) -> MemoryStatistics {
1219        self.memory_stats.lock().unwrap().clone()
1220    }
1221
1222    /// Get configuration
1223    pub const fn get_config(&self) -> &LargeScaleSimulatorConfig {
1224        &self.config
1225    }
1226
1227    /// Check if current state can simulate given number of qubits
1228    pub const fn can_simulate(&self, num_qubits: usize) -> bool {
1229        if num_qubits > self.config.max_qubits {
1230            return false;
1231        }
1232
1233        let dimension = 1usize << num_qubits;
1234        let memory_required = dimension * std::mem::size_of::<Complex64>();
1235
1236        memory_required <= self.config.memory_budget
1237    }
1238
1239    /// Estimate memory requirements for given number of qubits
1240    pub fn estimate_memory_requirements(&self, num_qubits: usize) -> usize {
1241        let dimension = 1usize << num_qubits;
1242        let base_memory = dimension * std::mem::size_of::<Complex64>();
1243
1244        // Add overhead for operations and temporary buffers
1245        let overhead_factor = 1.5;
1246        (base_memory as f64 * overhead_factor) as usize
1247    }
1248}
1249
1250impl<const N: usize> Simulator<N> for LargeScaleQuantumSimulator {
1251    fn run(&self, circuit: &Circuit<N>) -> QuantRS2Result<quantrs2_core::register::Register<N>> {
1252        let mut simulator = Self::new(self.config.clone())?;
1253        simulator.initialize_state(N)?;
1254
1255        // Apply all gates in the circuit
1256        for gate in circuit.gates() {
1257            simulator.apply_gate(gate.as_ref())?;
1258        }
1259
1260        // Get final state and create register
1261        let final_state = simulator.get_dense_state()?;
1262        quantrs2_core::register::Register::with_amplitudes(final_state)
1263    }
1264}
1265
1266#[cfg(test)]
1267mod tests {
1268    use super::*;
1269    use quantrs2_core::gate::multi::CNOT;
1270    use quantrs2_core::gate::single::{Hadamard, PauliX};
1271    use quantrs2_core::qubit::QubitId;
1272
1273    #[test]
1274    fn test_sparse_quantum_state() {
1275        let mut sparse_state = SparseQuantumState::new(3).unwrap();
1276        assert_eq!(sparse_state.num_qubits, 3);
1277        assert_eq!(sparse_state.dimension, 8);
1278        assert!(sparse_state.sparsity_ratio() < 0.2);
1279
1280        let dense = sparse_state.to_dense().unwrap();
1281        assert_eq!(dense.len(), 8);
1282        assert!((dense[0] - Complex64::new(1.0, 0.0)).norm() < 1e-10);
1283    }
1284
1285    #[test]
1286    fn test_compressed_quantum_state() {
1287        let amplitudes = vec![
1288            Complex64::new(1.0, 0.0),
1289            Complex64::new(0.0, 0.0),
1290            Complex64::new(0.0, 0.0),
1291            Complex64::new(0.0, 0.0),
1292        ];
1293
1294        let compressed =
1295            CompressedQuantumState::from_dense(&amplitudes, CompressionAlgorithm::LZ4).unwrap();
1296        let decompressed = compressed.to_dense().unwrap();
1297
1298        assert_eq!(decompressed.len(), 4);
1299        assert!((decompressed[0] - Complex64::new(1.0, 0.0)).norm() < 1e-10);
1300    }
1301
1302    #[test]
1303    fn test_large_scale_simulator() {
1304        let config = LargeScaleSimulatorConfig::default();
1305        let mut simulator = LargeScaleQuantumSimulator::new(config).unwrap();
1306
1307        // Test with 10 qubits (medium scale)
1308        simulator.initialize_state(10).unwrap();
1309        assert!(simulator.can_simulate(10));
1310
1311        // Test basic gates
1312        let x_gate = PauliX { target: QubitId(0) };
1313        simulator.apply_gate(&x_gate).unwrap();
1314
1315        let h_gate = Hadamard { target: QubitId(1) };
1316        simulator.apply_gate(&h_gate).unwrap();
1317
1318        let final_state = simulator.get_dense_state().unwrap();
1319        assert_eq!(final_state.len(), 1024); // 2^10
1320    }
1321
1322    #[test]
1323    fn test_memory_stats() {
1324        let config = LargeScaleSimulatorConfig::default();
1325        let mut simulator = LargeScaleQuantumSimulator::new(config).unwrap();
1326
1327        simulator.initialize_state(5).unwrap();
1328        let stats = simulator.get_memory_stats();
1329
1330        assert!(stats.current_usage > 0);
1331        assert_eq!(stats.peak_usage, stats.current_usage);
1332    }
1333}