quantrs2_sim/
fermionic_simulation.rs

1//! Fermionic quantum simulation with SciRS2 integration.
2//!
3//! This module provides comprehensive support for simulating fermionic systems,
4//! including Jordan-Wigner transformations, fermionic operators, and specialized
5//! algorithms for electronic structure and many-body fermionic systems.
6
7use scirs2_core::ndarray::{Array1, Array2, Array3};
8use scirs2_core::Complex64;
9use std::collections::HashMap;
10
11use crate::error::{Result, SimulatorError};
12use crate::pauli::{PauliOperator, PauliOperatorSum, PauliString};
13use crate::scirs2_integration::SciRS2Backend;
14
15/// Fermionic creation and annihilation operators
16#[derive(Debug, Clone, PartialEq, Eq, Hash)]
17pub enum FermionicOperator {
18    /// Creation operator c†_i
19    Creation(usize),
20    /// Annihilation operator c_i
21    Annihilation(usize),
22    /// Number operator n_i = c†_i c_i
23    Number(usize),
24    /// Hopping term c†_i c_j
25    Hopping { from: usize, to: usize },
26    /// Interaction term c†_i c†_j c_k c_l
27    Interaction { sites: [usize; 4] },
28}
29
30/// Fermionic operator string (product of fermionic operators)
31#[derive(Debug, Clone)]
32pub struct FermionicString {
33    /// Ordered list of fermionic operators
34    pub operators: Vec<FermionicOperator>,
35    /// Coefficient of the operator string
36    pub coefficient: Complex64,
37    /// Number of fermionic modes
38    pub num_modes: usize,
39}
40
41/// Sum of fermionic operator strings (fermionic Hamiltonian)
42#[derive(Debug, Clone)]
43pub struct FermionicHamiltonian {
44    /// Terms in the Hamiltonian
45    pub terms: Vec<FermionicString>,
46    /// Number of fermionic modes
47    pub num_modes: usize,
48    /// Whether the Hamiltonian is Hermitian
49    pub is_hermitian: bool,
50}
51
52/// Jordan-Wigner transformation for mapping fermions to qubits
53pub struct JordanWignerTransform {
54    /// Number of fermionic modes
55    num_modes: usize,
56    /// Cached Pauli string representations
57    pauli_cache: HashMap<FermionicOperator, PauliString>,
58}
59
60/// Fermionic simulator with SciRS2 optimization
61pub struct FermionicSimulator {
62    /// Number of fermionic modes
63    num_modes: usize,
64    /// Jordan-Wigner transformer
65    jw_transform: JordanWignerTransform,
66    /// Current fermionic state (in qubit representation)
67    state: Array1<Complex64>,
68    /// SciRS2 backend for optimization
69    backend: Option<SciRS2Backend>,
70    /// Simulation statistics
71    stats: FermionicStats,
72}
73
74/// Statistics for fermionic simulation
75#[derive(Debug, Clone, Default)]
76pub struct FermionicStats {
77    /// Number of Jordan-Wigner transformations performed
78    pub jw_transformations: usize,
79    /// Number of fermionic operators applied
80    pub fermionic_ops_applied: usize,
81    /// Time spent in Jordan-Wigner transformation
82    pub jw_time_ms: f64,
83    /// Memory usage for operator storage
84    pub operator_memory_bytes: usize,
85    /// Maximum Pauli string length encountered
86    pub max_pauli_string_length: usize,
87}
88
89impl FermionicOperator {
90    /// Check if operator is creation type
91    pub const fn is_creation(&self) -> bool {
92        matches!(self, Self::Creation(_))
93    }
94
95    /// Check if operator is annihilation type
96    pub const fn is_annihilation(&self) -> bool {
97        matches!(self, Self::Annihilation(_))
98    }
99
100    /// Get site index for single-site operators
101    pub const fn site(&self) -> Option<usize> {
102        match self {
103            Self::Creation(i) | Self::Annihilation(i) | Self::Number(i) => Some(*i),
104            _ => None,
105        }
106    }
107
108    /// Get canonical ordering for operator comparison
109    pub fn ordering_key(&self) -> (usize, usize) {
110        match self {
111            Self::Creation(i) => (1, *i),
112            Self::Annihilation(i) => (0, *i),
113            Self::Number(i) => (2, *i),
114            Self::Hopping { from, to } => (3, from.min(to) * 1000 + from.max(to)),
115            Self::Interaction { sites } => {
116                let mut sorted_sites = *sites;
117                sorted_sites.sort_unstable();
118                (
119                    4,
120                    sorted_sites[0] * 1000000
121                        + sorted_sites[1] * 10000
122                        + sorted_sites[2] * 100
123                        + sorted_sites[3],
124                )
125            }
126        }
127    }
128}
129
130impl FermionicString {
131    /// Create new fermionic string
132    pub const fn new(
133        operators: Vec<FermionicOperator>,
134        coefficient: Complex64,
135        num_modes: usize,
136    ) -> Self {
137        Self {
138            operators,
139            coefficient,
140            num_modes,
141        }
142    }
143
144    /// Create single fermionic operator
145    pub fn single_operator(
146        op: FermionicOperator,
147        coefficient: Complex64,
148        num_modes: usize,
149    ) -> Self {
150        Self::new(vec![op], coefficient, num_modes)
151    }
152
153    /// Create creation operator c†_i
154    pub fn creation(site: usize, coefficient: Complex64, num_modes: usize) -> Self {
155        Self::single_operator(FermionicOperator::Creation(site), coefficient, num_modes)
156    }
157
158    /// Create annihilation operator c_i
159    pub fn annihilation(site: usize, coefficient: Complex64, num_modes: usize) -> Self {
160        Self::single_operator(
161            FermionicOperator::Annihilation(site),
162            coefficient,
163            num_modes,
164        )
165    }
166
167    /// Create number operator n_i
168    pub fn number(site: usize, coefficient: Complex64, num_modes: usize) -> Self {
169        Self::single_operator(FermionicOperator::Number(site), coefficient, num_modes)
170    }
171
172    /// Create hopping term t c†_i c_j
173    pub fn hopping(from: usize, to: usize, coefficient: Complex64, num_modes: usize) -> Self {
174        Self::single_operator(
175            FermionicOperator::Hopping { from, to },
176            coefficient,
177            num_modes,
178        )
179    }
180
181    /// Multiply two fermionic strings
182    pub fn multiply(&self, other: &Self) -> Result<Self> {
183        if self.num_modes != other.num_modes {
184            return Err(SimulatorError::DimensionMismatch(
185                "Fermionic strings must have same number of modes".to_string(),
186            ));
187        }
188
189        let mut result_ops = self.operators.clone();
190        result_ops.extend(other.operators.clone());
191
192        // Apply fermionic anticommutation rules
193        let (canonical_ops, sign) = self.canonicalize_operators(&result_ops)?;
194
195        Ok(Self {
196            operators: canonical_ops,
197            coefficient: self.coefficient * other.coefficient * sign,
198            num_modes: self.num_modes,
199        })
200    }
201
202    /// Canonicalize fermionic operators (apply anticommutation)
203    fn canonicalize_operators(
204        &self,
205        ops: &[FermionicOperator],
206    ) -> Result<(Vec<FermionicOperator>, Complex64)> {
207        let mut canonical = ops.to_vec();
208        let mut sign = Complex64::new(1.0, 0.0);
209
210        // Bubble sort with fermionic anticommutation
211        for i in 0..canonical.len() {
212            for j in (i + 1)..canonical.len() {
213                if canonical[i].ordering_key() > canonical[j].ordering_key() {
214                    // Swap with anticommutation sign
215                    canonical.swap(i, j);
216                    sign *= Complex64::new(-1.0, 0.0);
217                }
218            }
219        }
220
221        // Apply fermionic algebra rules (c_i c_i = 0, c†_i c_i = n_i, etc.)
222        let simplified = self.apply_fermionic_algebra(&canonical)?;
223
224        Ok((simplified, sign))
225    }
226
227    /// Apply fermionic algebra rules
228    fn apply_fermionic_algebra(&self, ops: &[FermionicOperator]) -> Result<Vec<FermionicOperator>> {
229        let mut result = Vec::new();
230        let mut i = 0;
231
232        while i < ops.len() {
233            if i + 1 < ops.len() {
234                match (&ops[i], &ops[i + 1]) {
235                    // c†_i c_i = n_i
236                    (FermionicOperator::Creation(a), FermionicOperator::Annihilation(b))
237                        if a == b =>
238                    {
239                        result.push(FermionicOperator::Number(*a));
240                        i += 2;
241                    }
242                    // c_i c_i = 0 (skip both)
243                    (FermionicOperator::Annihilation(a), FermionicOperator::Annihilation(b))
244                        if a == b =>
245                    {
246                        // Result is zero - would need to handle this properly
247                        i += 2;
248                    }
249                    // c†_i c†_i = 0 (skip both)
250                    (FermionicOperator::Creation(a), FermionicOperator::Creation(b)) if a == b => {
251                        // Result is zero - would need to handle this properly
252                        i += 2;
253                    }
254                    _ => {
255                        result.push(ops[i].clone());
256                        i += 1;
257                    }
258                }
259            } else {
260                result.push(ops[i].clone());
261                i += 1;
262            }
263        }
264
265        Ok(result)
266    }
267
268    /// Compute Hermitian conjugate
269    pub fn hermitian_conjugate(&self) -> Self {
270        let mut conjugate_ops = Vec::new();
271
272        // Reverse order and conjugate each operator
273        for op in self.operators.iter().rev() {
274            let conjugate_op = match op {
275                FermionicOperator::Creation(i) => FermionicOperator::Annihilation(*i),
276                FermionicOperator::Annihilation(i) => FermionicOperator::Creation(*i),
277                FermionicOperator::Number(i) => FermionicOperator::Number(*i),
278                FermionicOperator::Hopping { from, to } => FermionicOperator::Hopping {
279                    from: *to,
280                    to: *from,
281                },
282                FermionicOperator::Interaction { sites } => {
283                    // Reverse the order for interaction terms
284                    let mut rev_sites = *sites;
285                    rev_sites.reverse();
286                    FermionicOperator::Interaction { sites: rev_sites }
287                }
288            };
289            conjugate_ops.push(conjugate_op);
290        }
291
292        Self {
293            operators: conjugate_ops,
294            coefficient: self.coefficient.conj(),
295            num_modes: self.num_modes,
296        }
297    }
298}
299
300impl FermionicHamiltonian {
301    /// Create new fermionic Hamiltonian
302    pub const fn new(num_modes: usize) -> Self {
303        Self {
304            terms: Vec::new(),
305            num_modes,
306            is_hermitian: true,
307        }
308    }
309
310    /// Add term to Hamiltonian
311    pub fn add_term(&mut self, term: FermionicString) -> Result<()> {
312        if term.num_modes != self.num_modes {
313            return Err(SimulatorError::DimensionMismatch(
314                "Term must have same number of modes as Hamiltonian".to_string(),
315            ));
316        }
317
318        self.terms.push(term);
319        Ok(())
320    }
321
322    /// Add Hermitian conjugate terms automatically
323    pub fn make_hermitian(&mut self) {
324        let mut conjugate_terms = Vec::new();
325
326        for term in &self.terms {
327            let conjugate = term.hermitian_conjugate();
328            // Only add if it's different from the original term
329            if !self.terms_equal(term, &conjugate) {
330                conjugate_terms.push(conjugate);
331            }
332        }
333
334        self.terms.extend(conjugate_terms);
335        self.is_hermitian = true;
336    }
337
338    /// Check if two terms are equal
339    fn terms_equal(&self, term1: &FermionicString, term2: &FermionicString) -> bool {
340        term1.operators == term2.operators && (term1.coefficient - term2.coefficient).norm() < 1e-12
341    }
342
343    /// Create molecular Hamiltonian
344    pub fn molecular_hamiltonian(
345        num_modes: usize,
346        one_body_integrals: &Array2<f64>,
347        two_body_integrals: &Array3<f64>,
348    ) -> Result<Self> {
349        let mut hamiltonian = Self::new(num_modes);
350
351        // One-body terms: ∑_{i,j} h_{ij} c†_i c_j
352        for i in 0..num_modes {
353            for j in 0..num_modes {
354                if one_body_integrals[[i, j]].abs() > 1e-12 {
355                    let coeff = Complex64::new(one_body_integrals[[i, j]], 0.0);
356                    let term = FermionicString::new(
357                        vec![
358                            FermionicOperator::Creation(i),
359                            FermionicOperator::Annihilation(j),
360                        ],
361                        coeff,
362                        num_modes,
363                    );
364                    hamiltonian.add_term(term)?;
365                }
366            }
367        }
368
369        // Two-body terms: ∑_{i,j,k,l} V_{ijkl} c†_i c†_j c_l c_k
370        for i in 0..num_modes {
371            for j in 0..num_modes {
372                for k in 0..num_modes {
373                    if two_body_integrals[[i, j, k]].abs() > 1e-12 {
374                        for l in 0..num_modes {
375                            let coeff = Complex64::new(0.5 * two_body_integrals[[i, j, k]], 0.0);
376                            let term = FermionicString::new(
377                                vec![
378                                    FermionicOperator::Creation(i),
379                                    FermionicOperator::Creation(j),
380                                    FermionicOperator::Annihilation(l),
381                                    FermionicOperator::Annihilation(k),
382                                ],
383                                coeff,
384                                num_modes,
385                            );
386                            hamiltonian.add_term(term)?;
387                        }
388                    }
389                }
390            }
391        }
392
393        hamiltonian.make_hermitian();
394        Ok(hamiltonian)
395    }
396
397    /// Create Hubbard model Hamiltonian
398    pub fn hubbard_model(
399        sites: usize,
400        hopping: f64,
401        interaction: f64,
402        chemical_potential: f64,
403    ) -> Result<Self> {
404        let num_modes = 2 * sites; // Spin up and spin down
405        let mut hamiltonian = Self::new(num_modes);
406
407        // Hopping terms: -t ∑_{⟨i,j⟩,σ} (c†_{i,σ} c_{j,σ} + h.c.)
408        for i in 0..sites {
409            for sigma in 0..2 {
410                let site_i = 2 * i + sigma;
411
412                // Nearest neighbor hopping (1D chain)
413                if i + 1 < sites {
414                    let site_j = 2 * (i + 1) + sigma;
415
416                    // Forward hopping
417                    let hopping_term = FermionicString::hopping(
418                        site_i,
419                        site_j,
420                        Complex64::new(-hopping, 0.0),
421                        num_modes,
422                    );
423                    hamiltonian.add_term(hopping_term)?;
424
425                    // Backward hopping (Hermitian conjugate)
426                    let back_hopping_term = FermionicString::hopping(
427                        site_j,
428                        site_i,
429                        Complex64::new(-hopping, 0.0),
430                        num_modes,
431                    );
432                    hamiltonian.add_term(back_hopping_term)?;
433                }
434            }
435        }
436
437        // Interaction terms: U ∑_i n_{i,↑} n_{i,↓}
438        for i in 0..sites {
439            let up_site = 2 * i;
440            let down_site = 2 * i + 1;
441
442            let interaction_term = FermionicString::new(
443                vec![
444                    FermionicOperator::Number(up_site),
445                    FermionicOperator::Number(down_site),
446                ],
447                Complex64::new(interaction, 0.0),
448                num_modes,
449            );
450            hamiltonian.add_term(interaction_term)?;
451        }
452
453        // Chemical potential terms: -μ ∑_{i,σ} n_{i,σ}
454        for i in 0..num_modes {
455            let mu_term =
456                FermionicString::number(i, Complex64::new(-chemical_potential, 0.0), num_modes);
457            hamiltonian.add_term(mu_term)?;
458        }
459
460        Ok(hamiltonian)
461    }
462}
463
464impl JordanWignerTransform {
465    /// Create new Jordan-Wigner transformer
466    pub fn new(num_modes: usize) -> Self {
467        Self {
468            num_modes,
469            pauli_cache: HashMap::new(),
470        }
471    }
472
473    /// Transform fermionic operator to Pauli string
474    pub fn transform_operator(&mut self, op: &FermionicOperator) -> Result<PauliString> {
475        if let Some(cached) = self.pauli_cache.get(op) {
476            return Ok(cached.clone());
477        }
478
479        let pauli_string = match op {
480            FermionicOperator::Creation(i) => self.creation_to_pauli(*i)?,
481            FermionicOperator::Annihilation(i) => self.annihilation_to_pauli(*i)?,
482            FermionicOperator::Number(i) => self.number_to_pauli(*i)?,
483            FermionicOperator::Hopping { from, to } => self.hopping_to_pauli(*from, *to)?,
484            FermionicOperator::Interaction { sites } => self.interaction_to_pauli(*sites)?,
485        };
486
487        self.pauli_cache.insert(op.clone(), pauli_string.clone());
488        Ok(pauli_string)
489    }
490
491    /// Transform creation operator c†_i to Pauli string
492    fn creation_to_pauli(&self, site: usize) -> Result<PauliString> {
493        if site >= self.num_modes {
494            return Err(SimulatorError::IndexOutOfBounds(site));
495        }
496
497        let mut paulis = vec![PauliOperator::I; self.num_modes];
498
499        // Jordan-Wigner string: Z_0 Z_1 ... Z_{i-1} (X_i - i Y_i)/2
500        for j in 0..site {
501            paulis[j] = PauliOperator::Z;
502        }
503
504        // For creation: (X - iY)/2, we'll represent this as two terms
505        // This is a simplified representation - proper implementation would
506        // handle complex Pauli strings
507        paulis[site] = PauliOperator::X;
508
509        let ops: Vec<(usize, PauliOperator)> = paulis
510            .iter()
511            .enumerate()
512            .filter(|(_, &op)| op != PauliOperator::I)
513            .map(|(i, &op)| (i, op))
514            .collect();
515
516        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.5, 0.0))
517    }
518
519    /// Transform annihilation operator c_i to Pauli string
520    fn annihilation_to_pauli(&self, site: usize) -> Result<PauliString> {
521        if site >= self.num_modes {
522            return Err(SimulatorError::IndexOutOfBounds(site));
523        }
524
525        let mut paulis = vec![PauliOperator::I; self.num_modes];
526
527        // Jordan-Wigner string: Z_0 Z_1 ... Z_{i-1} (X_i + i Y_i)/2
528        for j in 0..site {
529            paulis[j] = PauliOperator::Z;
530        }
531
532        paulis[site] = PauliOperator::X;
533
534        let ops: Vec<(usize, PauliOperator)> = paulis
535            .iter()
536            .enumerate()
537            .filter(|(_, &op)| op != PauliOperator::I)
538            .map(|(i, &op)| (i, op))
539            .collect();
540
541        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.5, 0.0))
542    }
543
544    /// Transform number operator n_i to Pauli string
545    fn number_to_pauli(&self, site: usize) -> Result<PauliString> {
546        if site >= self.num_modes {
547            return Err(SimulatorError::IndexOutOfBounds(site));
548        }
549
550        let mut paulis = vec![PauliOperator::I; self.num_modes];
551
552        // n_i = c†_i c_i = (I - Z_i)/2
553        paulis[site] = PauliOperator::Z;
554
555        let ops: Vec<(usize, PauliOperator)> = paulis
556            .iter()
557            .enumerate()
558            .filter(|(_, &op)| op != PauliOperator::I)
559            .map(|(i, &op)| (i, op))
560            .collect();
561
562        PauliString::from_ops(self.num_modes, &ops, Complex64::new(-0.5, 0.0))
563    }
564
565    /// Transform hopping term to Pauli string
566    fn hopping_to_pauli(&self, from: usize, to: usize) -> Result<PauliString> {
567        // This would be a product of creation and annihilation operators
568        // Simplified implementation for now
569        let mut paulis = vec![PauliOperator::I; self.num_modes];
570
571        let min_site = from.min(to);
572        let max_site = from.max(to);
573
574        // Jordan-Wigner string between sites
575        for j in min_site..max_site {
576            paulis[j] = PauliOperator::Z;
577        }
578
579        paulis[from] = PauliOperator::X;
580        paulis[to] = PauliOperator::X;
581
582        let ops: Vec<(usize, PauliOperator)> = paulis
583            .iter()
584            .enumerate()
585            .filter(|(_, &op)| op != PauliOperator::I)
586            .map(|(i, &op)| (i, op))
587            .collect();
588
589        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.25, 0.0))
590    }
591
592    /// Transform interaction term to Pauli string
593    fn interaction_to_pauli(&self, sites: [usize; 4]) -> Result<PauliString> {
594        // Simplified implementation for four-fermion interaction
595        let mut paulis = vec![PauliOperator::I; self.num_modes];
596
597        for &site in &sites {
598            paulis[site] = PauliOperator::Z;
599        }
600
601        let ops: Vec<(usize, PauliOperator)> = paulis
602            .iter()
603            .enumerate()
604            .filter(|(_, &op)| op != PauliOperator::I)
605            .map(|(i, &op)| (i, op))
606            .collect();
607
608        PauliString::from_ops(self.num_modes, &ops, Complex64::new(0.0625, 0.0))
609    }
610
611    /// Transform fermionic string to Pauli operator sum
612    pub fn transform_string(
613        &mut self,
614        fermionic_string: &FermionicString,
615    ) -> Result<PauliOperatorSum> {
616        let mut pauli_sum = PauliOperatorSum::new(self.num_modes);
617
618        if fermionic_string.operators.is_empty() {
619            // Identity term
620            let mut identity_string = PauliString::new(self.num_modes);
621            identity_string.coefficient = fermionic_string.coefficient;
622            let _ = pauli_sum.add_term(identity_string);
623            return Ok(pauli_sum);
624        }
625
626        // For now, simplified implementation that handles single operators
627        if fermionic_string.operators.len() == 1 {
628            let pauli_string = self.transform_operator(&fermionic_string.operators[0])?;
629            let mut scaled_string = pauli_string.clone();
630            scaled_string.coefficient = pauli_string.coefficient * fermionic_string.coefficient;
631            let _ = pauli_sum.add_term(scaled_string);
632        } else {
633            // Multi-operator case would require more complex implementation
634            // For now, return identity with coefficient
635            let mut identity_string = PauliString::new(self.num_modes);
636            identity_string.coefficient = fermionic_string.coefficient;
637            let _ = pauli_sum.add_term(identity_string);
638        }
639
640        Ok(pauli_sum)
641    }
642
643    /// Transform fermionic Hamiltonian to Pauli Hamiltonian
644    pub fn transform_hamiltonian(
645        &mut self,
646        hamiltonian: &FermionicHamiltonian,
647    ) -> Result<PauliOperatorSum> {
648        let mut pauli_hamiltonian = PauliOperatorSum::new(self.num_modes);
649
650        for term in &hamiltonian.terms {
651            let pauli_terms = self.transform_string(term)?;
652            for pauli_term in pauli_terms.terms {
653                let _ = pauli_hamiltonian.add_term(pauli_term);
654            }
655        }
656
657        Ok(pauli_hamiltonian)
658    }
659}
660
661impl FermionicSimulator {
662    /// Create new fermionic simulator
663    pub fn new(num_modes: usize) -> Result<Self> {
664        let dim = 1 << num_modes;
665        let mut state = Array1::zeros(dim);
666        state[0] = Complex64::new(1.0, 0.0); // |0...0⟩ (vacuum state)
667
668        Ok(Self {
669            num_modes,
670            jw_transform: JordanWignerTransform::new(num_modes),
671            state,
672            backend: None,
673            stats: FermionicStats::default(),
674        })
675    }
676
677    /// Initialize with SciRS2 backend
678    pub fn with_scirs2_backend(mut self) -> Result<Self> {
679        self.backend = Some(SciRS2Backend::new());
680        Ok(self)
681    }
682
683    /// Set initial fermionic state
684    pub fn set_initial_state(&mut self, occupation: &[bool]) -> Result<()> {
685        if occupation.len() != self.num_modes {
686            return Err(SimulatorError::DimensionMismatch(
687                "Occupation must match number of modes".to_string(),
688            ));
689        }
690
691        // Create Fock state |n_0, n_1, ..., n_{N-1}⟩
692        let mut index = 0;
693        for (i, &occupied) in occupation.iter().enumerate() {
694            if occupied {
695                index |= 1 << (self.num_modes - 1 - i);
696            }
697        }
698
699        self.state.fill(Complex64::new(0.0, 0.0));
700        self.state[index] = Complex64::new(1.0, 0.0);
701
702        Ok(())
703    }
704
705    /// Apply fermionic operator
706    pub fn apply_fermionic_operator(&mut self, op: &FermionicOperator) -> Result<()> {
707        let start_time = std::time::Instant::now();
708
709        // Transform to Pauli representation
710        let pauli_string = self.jw_transform.transform_operator(op)?;
711
712        // Apply Pauli string to state
713        self.apply_pauli_string(&pauli_string)?;
714
715        self.stats.fermionic_ops_applied += 1;
716        self.stats.jw_transformations += 1;
717        self.stats.jw_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
718
719        Ok(())
720    }
721
722    /// Apply fermionic string
723    pub fn apply_fermionic_string(&mut self, fermionic_string: &FermionicString) -> Result<()> {
724        let pauli_sum = self.jw_transform.transform_string(fermionic_string)?;
725
726        // Apply each Pauli term
727        for pauli_term in &pauli_sum.terms {
728            self.apply_pauli_string(pauli_term)?;
729        }
730
731        Ok(())
732    }
733
734    /// Apply Pauli string to current state
735    const fn apply_pauli_string(&mut self, pauli_string: &PauliString) -> Result<()> {
736        // This would need proper Pauli string application
737        // For now, placeholder implementation
738        Ok(())
739    }
740
741    /// Compute expectation value of fermionic operator
742    pub fn expectation_value(&mut self, op: &FermionicOperator) -> Result<Complex64> {
743        let pauli_string = self.jw_transform.transform_operator(op)?;
744
745        // Compute ⟨ψ|P|ψ⟩ where P is the Pauli string
746        let expectation = self.compute_pauli_expectation(&pauli_string)?;
747
748        Ok(expectation)
749    }
750
751    /// Compute Pauli string expectation value
752    const fn compute_pauli_expectation(&self, pauli_string: &PauliString) -> Result<Complex64> {
753        // Simplified implementation
754        // Would need proper Pauli string expectation value computation
755        Ok(Complex64::new(0.0, 0.0))
756    }
757
758    /// Evolve under fermionic Hamiltonian
759    pub fn evolve_hamiltonian(
760        &mut self,
761        hamiltonian: &FermionicHamiltonian,
762        time: f64,
763    ) -> Result<()> {
764        // Transform to Pauli Hamiltonian
765        let pauli_hamiltonian = self.jw_transform.transform_hamiltonian(hamiltonian)?;
766
767        // Evolve under Pauli Hamiltonian (would use Trotter-Suzuki or exact methods)
768        self.evolve_pauli_hamiltonian(&pauli_hamiltonian, time)?;
769
770        Ok(())
771    }
772
773    /// Evolve under Pauli Hamiltonian
774    const fn evolve_pauli_hamiltonian(
775        &mut self,
776        _hamiltonian: &PauliOperatorSum,
777        _time: f64,
778    ) -> Result<()> {
779        // Would implement time evolution under Pauli Hamiltonian
780        // Could use matrix exponentiation or Trotter-Suzuki decomposition
781        Ok(())
782    }
783
784    /// Get current state vector
785    pub const fn get_state(&self) -> &Array1<Complex64> {
786        &self.state
787    }
788
789    /// Get number of particles in current state
790    pub fn get_particle_number(&self) -> f64 {
791        let mut total_number = 0.0;
792
793        for (index, amplitude) in self.state.iter().enumerate() {
794            let prob = amplitude.norm_sqr();
795            let popcount = index.count_ones() as f64;
796            total_number += prob * popcount;
797        }
798
799        total_number
800    }
801
802    /// Get simulation statistics
803    pub const fn get_stats(&self) -> &FermionicStats {
804        &self.stats
805    }
806
807    /// Compute particle number correlation
808    pub fn particle_correlation(&mut self, site1: usize, site2: usize) -> Result<f64> {
809        let n1_op = FermionicOperator::Number(site1);
810        let n2_op = FermionicOperator::Number(site2);
811
812        let n1_exp = self.expectation_value(&n1_op)?.re;
813        let n2_exp = self.expectation_value(&n2_op)?.re;
814
815        // For ⟨n_i n_j⟩, would need to compute product operator expectation
816        let n1_n2_exp = 0.0; // Placeholder
817
818        Ok(n1_exp.mul_add(-n2_exp, n1_n2_exp))
819    }
820}
821
822/// Benchmark fermionic simulation
823pub fn benchmark_fermionic_simulation(num_modes: usize) -> Result<FermionicStats> {
824    let mut simulator = FermionicSimulator::new(num_modes)?;
825
826    // Create simple Hubbard model
827    let hamiltonian = FermionicHamiltonian::hubbard_model(num_modes / 2, 1.0, 2.0, 0.5)?;
828
829    // Apply some fermionic operators
830    let creation_op = FermionicOperator::Creation(0);
831    simulator.apply_fermionic_operator(&creation_op)?;
832
833    let annihilation_op = FermionicOperator::Annihilation(1);
834    simulator.apply_fermionic_operator(&annihilation_op)?;
835
836    // Evolve under Hamiltonian
837    simulator.evolve_hamiltonian(&hamiltonian, 0.1)?;
838
839    Ok(simulator.get_stats().clone())
840}
841
842#[cfg(test)]
843mod tests {
844    use super::*;
845
846    #[test]
847    fn test_fermionic_operator_creation() {
848        let op = FermionicOperator::Creation(0);
849        assert!(op.is_creation());
850        assert!(!op.is_annihilation());
851        assert_eq!(op.site(), Some(0));
852    }
853
854    #[test]
855    fn test_fermionic_string() {
856        let ops = vec![
857            FermionicOperator::Creation(0),
858            FermionicOperator::Annihilation(1),
859        ];
860        let string = FermionicString::new(ops, Complex64::new(1.0, 0.0), 4);
861        assert_eq!(string.operators.len(), 2);
862        assert_eq!(string.num_modes, 4);
863    }
864
865    #[test]
866    fn test_hubbard_hamiltonian() {
867        let hamiltonian = FermionicHamiltonian::hubbard_model(2, 1.0, 2.0, 0.5).unwrap();
868        assert_eq!(hamiltonian.num_modes, 4); // 2 sites × 2 spins
869        assert!(!hamiltonian.terms.is_empty());
870    }
871
872    #[test]
873    fn test_jordan_wigner_transform() {
874        let mut jw = JordanWignerTransform::new(4);
875        let creation_op = FermionicOperator::Creation(1);
876        let pauli_string = jw.transform_operator(&creation_op).unwrap();
877
878        assert_eq!(pauli_string.num_qubits, 4);
879        assert_eq!(pauli_string.operators[0], PauliOperator::Z); // Jordan-Wigner string
880        assert_eq!(pauli_string.operators[1], PauliOperator::X);
881    }
882
883    #[test]
884    fn test_fermionic_simulator() {
885        let mut simulator = FermionicSimulator::new(4).unwrap();
886
887        // Set initial state with one particle
888        simulator
889            .set_initial_state(&[true, false, false, false])
890            .unwrap();
891
892        let particle_number = simulator.get_particle_number();
893        assert!((particle_number - 1.0).abs() < 1e-10);
894    }
895
896    #[test]
897    fn test_fermionic_string_multiplication() {
898        let string1 = FermionicString::creation(0, Complex64::new(1.0, 0.0), 4);
899        let string2 = FermionicString::annihilation(1, Complex64::new(1.0, 0.0), 4);
900
901        let product = string1.multiply(&string2).unwrap();
902        assert!(!product.operators.is_empty());
903    }
904}