1use scirs2_core::ndarray::{Array, Array2, ArrayD, IxDyn};
8use scirs2_core::parallel_ops::*;
9use scirs2_core::random::prelude::*;
10use scirs2_core::Complex64;
11use serde::{Deserialize, Serialize};
12use std::collections::{HashMap, HashSet};
13
14use crate::error::{Result, SimulatorError};
15use crate::scirs2_integration::SciRS2Backend;
16
17#[cfg(feature = "advanced_math")]
18pub struct ContractionOptimizer {
20 strategy: String,
21}
22
23#[cfg(feature = "advanced_math")]
24impl ContractionOptimizer {
25 pub fn new() -> Result<Self> {
26 Ok(Self {
27 strategy: "default".to_string(),
28 })
29 }
30}
31
32#[derive(Debug, Clone)]
38pub struct EnhancedTensorNetworkConfig {
39 pub max_bond_dimension: usize,
41 pub contraction_strategy: ContractionStrategy,
43 pub memory_limit: usize,
45 pub enable_approximations: bool,
47 pub svd_threshold: f64,
49 pub max_optimization_time_ms: u64,
51 pub parallel_contractions: bool,
53 pub use_scirs2_acceleration: bool,
55 pub enable_slicing: bool,
57 pub max_slices: usize,
59}
60
61impl Default for EnhancedTensorNetworkConfig {
62 fn default() -> Self {
63 Self {
64 max_bond_dimension: 1024,
65 contraction_strategy: ContractionStrategy::Adaptive,
66 memory_limit: 16_000_000_000, enable_approximations: true,
68 svd_threshold: 1e-12,
69 max_optimization_time_ms: 5000,
70 parallel_contractions: true,
71 use_scirs2_acceleration: true,
72 enable_slicing: true,
73 max_slices: 64,
74 }
75 }
76}
77
78#[derive(Debug, Clone, Copy, PartialEq, Eq)]
80pub enum ContractionStrategy {
81 Greedy,
83 DynamicProgramming,
85 SimulatedAnnealing,
87 TreeDecomposition,
89 Adaptive,
91 MLGuided,
93}
94
95#[derive(Debug, Clone)]
97pub struct EnhancedTensor {
98 pub data: ArrayD<Complex64>,
100 pub indices: Vec<TensorIndex>,
102 pub bond_dimensions: Vec<usize>,
104 pub id: usize,
106 pub memory_size: usize,
108 pub contraction_cost: f64,
110 pub priority: f64,
112}
113
114#[derive(Debug, Clone, PartialEq, Eq, Hash)]
116pub struct TensorIndex {
117 pub label: String,
119 pub dimension: usize,
121 pub index_type: IndexType,
123 pub connected_tensors: Vec<usize>,
125}
126
127#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
129pub enum IndexType {
130 Physical,
132 Virtual,
134 Auxiliary,
136 Temporal,
138}
139
140#[derive(Debug, Clone)]
142pub struct MLPrediction {
143 pub strategy: MLPredictedStrategy,
144 pub confidence: f64,
145 pub expected_performance: f64,
146}
147
148#[derive(Debug, Clone, Copy, PartialEq, Eq)]
150pub enum MLPredictedStrategy {
151 DynamicProgramming,
152 SimulatedAnnealing,
153 TreeDecomposition,
154 Greedy,
155}
156
157#[derive(Debug, Clone)]
159pub struct NetworkFeatures {
160 pub num_tensors: usize,
161 pub connectivity_density: f64,
162 pub max_bond_dimension: usize,
163 pub avg_tensor_rank: f64,
164 pub circuit_depth_estimate: usize,
165 pub locality_score: f64,
166 pub symmetry_score: f64,
167}
168
169#[derive(Debug, Clone)]
171pub struct TreeDecomposition {
172 pub bags: Vec<TreeBag>,
173 pub treewidth: usize,
174 pub root_bag: usize,
175}
176
177#[derive(Debug, Clone)]
179pub struct TreeBag {
180 pub id: usize,
181 pub tensors: Vec<usize>,
182 pub parent: Option<usize>,
183 pub children: Vec<usize>,
184 pub separator: Vec<String>, }
186
187#[derive(Debug, Clone)]
189pub struct TensorAdjacencyGraph {
190 pub nodes: Vec<usize>, pub edges: HashMap<usize, Vec<(usize, f64)>>, pub edge_weights: HashMap<(usize, usize), f64>,
193}
194
195#[derive(Debug, Clone)]
197pub struct EnhancedContractionPath {
198 pub steps: Vec<ContractionStep>,
200 pub total_flops: f64,
202 pub peak_memory: usize,
204 pub contraction_tree: ContractionTree,
206 pub parallel_sections: Vec<ParallelSection>,
208}
209
210#[derive(Debug, Clone)]
212pub struct ContractionStep {
213 pub tensor_ids: (usize, usize),
215 pub result_id: usize,
217 pub flops: f64,
219 pub memory_required: usize,
221 pub result_dimensions: Vec<usize>,
223 pub parallelizable: bool,
225}
226
227#[derive(Debug, Clone)]
229pub enum ContractionTree {
230 Leaf { tensor_id: usize },
232 Branch {
234 left: Box<Self>,
235 right: Box<Self>,
236 contraction_cost: f64,
237 result_bond_dim: usize,
238 },
239}
240
241#[derive(Debug, Clone)]
243pub struct ParallelSection {
244 pub parallel_steps: Vec<usize>,
246 pub dependencies: HashMap<usize, Vec<usize>>,
248 pub speedup_factor: f64,
250}
251
252pub struct EnhancedTensorNetworkSimulator {
254 config: EnhancedTensorNetworkConfig,
256 network: TensorNetwork,
258 backend: Option<SciRS2Backend>,
260 #[cfg(feature = "advanced_math")]
262 optimizer: Option<ContractionOptimizer>,
263 tensor_cache: HashMap<String, EnhancedTensor>,
265 stats: TensorNetworkStats,
267}
268
269#[derive(Debug, Clone, Default, Serialize, Deserialize)]
271pub struct TensorNetworkStats {
272 pub total_contractions: usize,
274 pub total_flops: f64,
276 pub peak_memory_bytes: usize,
278 pub total_execution_time_ms: f64,
280 pub optimization_time_ms: f64,
282 pub average_bond_dimension: f64,
284 pub svd_truncations: usize,
286 pub cache_hit_rate: f64,
288}
289
290struct TensorNetwork {
292 tensors: HashMap<usize, EnhancedTensor>,
294 index_graph: HashMap<String, Vec<usize>>,
296 next_id: usize,
298 bond_dimensions: Vec<usize>,
300}
301
302impl TensorNetwork {
303 fn new() -> Self {
305 Self {
306 tensors: HashMap::new(),
307 index_graph: HashMap::new(),
308 next_id: 0,
309 bond_dimensions: Vec::new(),
310 }
311 }
312
313 fn add_tensor(&mut self, tensor: EnhancedTensor) -> usize {
315 let id = self.next_id;
316 self.next_id += 1;
317
318 for index in &tensor.indices {
320 self.index_graph
321 .entry(index.label.clone())
322 .or_default()
323 .push(id);
324 }
325
326 self.bond_dimensions.extend(&tensor.bond_dimensions);
328
329 self.tensors.insert(id, tensor);
330 id
331 }
332
333 fn remove_tensor(&mut self, id: usize) -> Option<EnhancedTensor> {
335 if let Some(tensor) = self.tensors.remove(&id) {
336 for index in &tensor.indices {
338 if let Some(tensor_list) = self.index_graph.get_mut(&index.label) {
339 tensor_list.retain(|&tid| tid != id);
340 if tensor_list.is_empty() {
341 self.index_graph.remove(&index.label);
342 }
343 }
344 }
345 Some(tensor)
346 } else {
347 None
348 }
349 }
350
351 fn get_tensor(&self, id: usize) -> Option<&EnhancedTensor> {
353 self.tensors.get(&id)
354 }
355
356 fn get_tensor_mut(&mut self, id: usize) -> Option<&mut EnhancedTensor> {
358 self.tensors.get_mut(&id)
359 }
360
361 fn find_connected_tensors(&self, index_label: &str) -> Vec<usize> {
363 self.index_graph
364 .get(index_label)
365 .cloned()
366 .unwrap_or_default()
367 }
368
369 fn total_size(&self) -> usize {
371 self.tensors.values().map(|t| t.memory_size).sum()
372 }
373
374 fn tensor_ids(&self) -> Vec<usize> {
376 self.tensors.keys().copied().collect()
377 }
378}
379
380impl EnhancedTensorNetworkSimulator {
381 pub fn new(config: EnhancedTensorNetworkConfig) -> Result<Self> {
383 Ok(Self {
384 config,
385 network: TensorNetwork::new(),
386 backend: None,
387 #[cfg(feature = "advanced_math")]
388 optimizer: None,
389 tensor_cache: HashMap::new(),
390 stats: TensorNetworkStats::default(),
391 })
392 }
393
394 pub fn with_backend(mut self) -> Result<Self> {
396 self.backend = Some(SciRS2Backend::new());
397
398 #[cfg(feature = "advanced_math")]
399 {
400 self.optimizer = Some(ContractionOptimizer::new()?);
401 }
402
403 Ok(self)
404 }
405
406 pub fn initialize_state(&mut self, num_qubits: usize) -> Result<()> {
408 for qubit in 0..num_qubits {
410 let tensor_data = {
411 let mut data = Array::zeros(IxDyn(&[2]));
412 data[IxDyn(&[0])] = Complex64::new(1.0, 0.0);
413 data
414 };
415
416 let tensor = EnhancedTensor {
417 data: tensor_data,
418 indices: vec![TensorIndex {
419 label: format!("q{qubit}"),
420 dimension: 2,
421 index_type: IndexType::Physical,
422 connected_tensors: vec![],
423 }],
424 bond_dimensions: vec![2],
425 id: 0, memory_size: 2 * std::mem::size_of::<Complex64>(),
427 contraction_cost: 1.0,
428 priority: 1.0,
429 };
430
431 self.network.add_tensor(tensor);
432 }
433
434 Ok(())
435 }
436
437 pub fn apply_single_qubit_gate(
439 &mut self,
440 qubit: usize,
441 gate_matrix: &Array2<Complex64>,
442 ) -> Result<()> {
443 let start_time = std::time::Instant::now();
444
445 let gate_tensor = self.create_gate_tensor(gate_matrix, vec![qubit], None)?;
447 let gate_id = self.network.add_tensor(gate_tensor);
448
449 let qubit_label = format!("q{qubit}");
451 let connected_tensors = self.network.find_connected_tensors(&qubit_label);
452
453 if let Some(&qubit_tensor_id) = connected_tensors.first() {
454 self.contract_tensors(gate_id, qubit_tensor_id)?;
456 }
457
458 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
459 Ok(())
460 }
461
462 pub fn apply_two_qubit_gate(
464 &mut self,
465 control: usize,
466 target: usize,
467 gate_matrix: &Array2<Complex64>,
468 ) -> Result<()> {
469 let start_time = std::time::Instant::now();
470
471 let gate_tensor = self.create_gate_tensor(gate_matrix, vec![control, target], None)?;
473 let gate_id = self.network.add_tensor(gate_tensor);
474
475 let control_label = format!("q{control}");
477 let target_label = format!("q{target}");
478
479 let control_tensors = self.network.find_connected_tensors(&control_label);
480 let target_tensors = self.network.find_connected_tensors(&target_label);
481
482 let contraction_path =
484 self.optimize_contraction_path(&[gate_id], &control_tensors, &target_tensors)?;
485
486 self.execute_contraction_path(&contraction_path)?;
488
489 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
490 Ok(())
491 }
492
493 pub fn contract_tensors(&mut self, id1: usize, id2: usize) -> Result<usize> {
495 let start_time = std::time::Instant::now();
496
497 let tensor1 = self
499 .network
500 .get_tensor(id1)
501 .ok_or_else(|| SimulatorError::InvalidInput(format!("Tensor {id1} not found")))?
502 .clone();
503
504 let tensor2 = self
505 .network
506 .get_tensor(id2)
507 .ok_or_else(|| SimulatorError::InvalidInput(format!("Tensor {id2} not found")))?
508 .clone();
509
510 let common_indices = self.find_common_indices(&tensor1, &tensor2);
512
513 let cost_estimate = self.estimate_contraction_cost(&tensor1, &tensor2, &common_indices);
515
516 let result = if cost_estimate > 1e9 && self.config.enable_slicing {
518 self.contract_tensors_sliced(&tensor1, &tensor2, &common_indices)?
519 } else {
520 self.contract_tensors_direct(&tensor1, &tensor2, &common_indices)?
521 };
522
523 self.network.remove_tensor(id1);
525 self.network.remove_tensor(id2);
526 let result_id = self.network.add_tensor(result);
527
528 self.stats.total_contractions += 1;
530 self.stats.total_flops += cost_estimate;
531 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
532
533 Ok(result_id)
534 }
535
536 pub fn optimize_contraction_path(
538 &self,
539 tensor_ids1: &[usize],
540 tensor_ids2: &[usize],
541 tensor_ids3: &[usize],
542 ) -> Result<EnhancedContractionPath> {
543 let start_time = std::time::Instant::now();
544
545 #[cfg(feature = "advanced_math")]
546 {
547 if let Some(ref optimizer) = self.optimizer {
548 return self.optimize_path_scirs2(tensor_ids1, tensor_ids2, tensor_ids3, optimizer);
549 }
550 }
551
552 let all_ids: Vec<usize> = tensor_ids1
554 .iter()
555 .chain(tensor_ids2.iter())
556 .chain(tensor_ids3.iter())
557 .copied()
558 .collect();
559
560 let path = match self.config.contraction_strategy {
561 ContractionStrategy::Greedy => self.optimize_path_greedy(&all_ids)?,
562 ContractionStrategy::DynamicProgramming => self.optimize_path_dp(&all_ids)?,
563 ContractionStrategy::SimulatedAnnealing => self.optimize_path_sa(&all_ids)?,
564 ContractionStrategy::TreeDecomposition => self.optimize_path_tree(&all_ids)?,
565 ContractionStrategy::Adaptive => self.optimize_path_adaptive(&all_ids)?,
566 ContractionStrategy::MLGuided => self.optimize_path_ml(&all_ids)?,
567 };
568
569 let optimization_time = start_time.elapsed().as_secs_f64() * 1000.0;
570 Ok(path)
574 }
575
576 pub fn execute_contraction_path(&mut self, path: &EnhancedContractionPath) -> Result<()> {
578 let start_time = std::time::Instant::now();
579
580 if self.config.parallel_contractions {
581 self.execute_path_parallel(path)?;
582 } else {
583 self.execute_path_sequential(path)?;
584 }
585
586 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
587 Ok(())
588 }
589
590 pub fn get_result_tensor(&self) -> Result<ArrayD<Complex64>> {
592 if self.network.tensors.len() != 1 {
593 return Err(SimulatorError::InvalidInput(format!(
594 "Expected single result tensor, found {}",
595 self.network.tensors.len()
596 )));
597 }
598
599 let result_tensor = self.network.tensors.values().next().unwrap();
600 Ok(result_tensor.data.clone())
601 }
602
603 pub const fn get_stats(&self) -> &TensorNetworkStats {
605 &self.stats
606 }
607
608 fn create_gate_tensor(
610 &self,
611 gate_matrix: &Array2<Complex64>,
612 qubits: Vec<usize>,
613 aux_indices: Option<Vec<TensorIndex>>,
614 ) -> Result<EnhancedTensor> {
615 let num_qubits = qubits.len();
616 let matrix_size = 1 << num_qubits;
617
618 if gate_matrix.nrows() != matrix_size || gate_matrix.ncols() != matrix_size {
619 return Err(SimulatorError::DimensionMismatch(
620 "Gate matrix size doesn't match number of qubits".to_string(),
621 ));
622 }
623
624 let tensor_shape = vec![2; 2 * num_qubits]; let tensor_data = gate_matrix
627 .clone()
628 .into_shape(IxDyn(&tensor_shape))
629 .unwrap();
630
631 let mut indices = Vec::new();
633
634 for &qubit in &qubits {
636 indices.push(TensorIndex {
637 label: format!("q{qubit}_in"),
638 dimension: 2,
639 index_type: IndexType::Physical,
640 connected_tensors: vec![],
641 });
642 }
643
644 for &qubit in &qubits {
646 indices.push(TensorIndex {
647 label: format!("q{qubit}_out"),
648 dimension: 2,
649 index_type: IndexType::Physical,
650 connected_tensors: vec![],
651 });
652 }
653
654 if let Some(aux) = aux_indices {
656 indices.extend(aux);
657 }
658
659 let memory_size = tensor_data.len() * std::mem::size_of::<Complex64>();
660 let contraction_cost = (matrix_size as f64).powi(3); Ok(EnhancedTensor {
663 data: tensor_data,
664 indices,
665 bond_dimensions: vec![2; 2 * num_qubits],
666 id: 0, memory_size,
668 contraction_cost,
669 priority: 1.0,
670 })
671 }
672
673 fn find_common_indices(
674 &self,
675 tensor1: &EnhancedTensor,
676 tensor2: &EnhancedTensor,
677 ) -> Vec<String> {
678 let indices1: HashSet<_> = tensor1.indices.iter().map(|i| &i.label).collect();
679 let indices2: HashSet<_> = tensor2.indices.iter().map(|i| &i.label).collect();
680
681 indices1.intersection(&indices2).copied().cloned().collect()
682 }
683
684 fn estimate_contraction_cost(
685 &self,
686 tensor1: &EnhancedTensor,
687 tensor2: &EnhancedTensor,
688 common_indices: &[String],
689 ) -> f64 {
690 let size1: usize = tensor1.bond_dimensions.iter().product();
692 let size2: usize = tensor2.bond_dimensions.iter().product();
693 let common_size: usize = common_indices.len();
694
695 (size1 as f64) * (size2 as f64) * (common_size as f64)
697 }
698
699 #[cfg(feature = "advanced_math")]
700 fn contract_tensors_scirs2(
701 &self,
702 tensor1: &EnhancedTensor,
703 tensor2: &EnhancedTensor,
704 common_indices: &[String],
705 ) -> Result<EnhancedTensor> {
706 if let Some(ref backend) = self.backend {
708 return self.contract_with_scirs2_backend(tensor1, tensor2, common_indices, backend);
710 }
711
712 self.contract_tensors_optimized(tensor1, tensor2, common_indices)
714 }
715
716 #[cfg(feature = "advanced_math")]
717 fn contract_with_scirs2_backend(
718 &self,
719 tensor1: &EnhancedTensor,
720 tensor2: &EnhancedTensor,
721 common_indices: &[String],
722 backend: &SciRS2Backend,
723 ) -> Result<EnhancedTensor> {
724 let scirs2_tensor1 = self.convert_to_scirs2_tensor(tensor1)?;
726 let scirs2_tensor2 = self.convert_to_scirs2_tensor(tensor2)?;
727
728 let contraction_indices =
730 self.prepare_contraction_indices(tensor1, tensor2, common_indices)?;
731
732 let result_scirs2 =
734 backend.einsum_contract(&scirs2_tensor1, &scirs2_tensor2, &contraction_indices)?;
735
736 self.convert_from_scirs2_tensor(&result_scirs2, tensor1, tensor2, common_indices)
738 }
739
740 fn contract_tensors_optimized(
741 &self,
742 tensor1: &EnhancedTensor,
743 tensor2: &EnhancedTensor,
744 common_indices: &[String],
745 ) -> Result<EnhancedTensor> {
746 let contraction_size = self.estimate_contraction_size(tensor1, tensor2, common_indices);
748
749 if contraction_size > 1e6 {
750 self.contract_tensors_blocked(tensor1, tensor2, common_indices)
752 } else if common_indices.len() > 4 {
753 self.contract_tensors_multi_index(tensor1, tensor2, common_indices)
755 } else {
756 self.contract_tensors_direct_optimized(tensor1, tensor2, common_indices)
758 }
759 }
760
761 fn contract_tensors_blocked(
762 &self,
763 tensor1: &EnhancedTensor,
764 tensor2: &EnhancedTensor,
765 common_indices: &[String],
766 ) -> Result<EnhancedTensor> {
767 let block_size = self.config.memory_limit / (8 * std::mem::size_of::<Complex64>());
769 let num_blocks = ((tensor1.data.len() + tensor2.data.len()) / block_size).max(1);
770
771 let result_indices = self.calculate_result_indices(tensor1, tensor2, common_indices);
772 let result_shape = self.calculate_result_shape(&result_indices)?;
773 let mut result_data = ArrayD::zeros(IxDyn(&result_shape));
774
775 for block_idx in 0..num_blocks {
777 let start_idx = block_idx * (tensor1.data.len() / num_blocks);
778 let end_idx =
779 ((block_idx + 1) * (tensor1.data.len() / num_blocks)).min(tensor1.data.len());
780
781 if start_idx < end_idx {
782 let block1 = self.extract_tensor_block(tensor1, start_idx, end_idx)?;
784 let block2 = self.extract_tensor_block(tensor2, start_idx, end_idx)?;
785
786 let block_result = self.contract_tensor_blocks(&block1, &block2, common_indices)?;
788
789 self.accumulate_block_result(&mut result_data, &block_result, block_idx)?;
791 }
792 }
793
794 let memory_size = result_data.len() * std::mem::size_of::<Complex64>();
795
796 Ok(EnhancedTensor {
797 data: result_data,
798 indices: result_indices,
799 bond_dimensions: result_shape,
800 id: 0,
801 memory_size,
802 contraction_cost: self.estimate_contraction_cost(tensor1, tensor2, common_indices),
803 priority: 1.0,
804 })
805 }
806
807 fn contract_tensors_multi_index(
808 &self,
809 tensor1: &EnhancedTensor,
810 tensor2: &EnhancedTensor,
811 common_indices: &[String],
812 ) -> Result<EnhancedTensor> {
813 let optimal_index_order =
815 self.find_optimal_index_order(tensor1, tensor2, common_indices)?;
816
817 let reordered_tensor1 =
819 self.reorder_tensor_indices(tensor1, &optimal_index_order.tensor1_order)?;
820 let reordered_tensor2 =
821 self.reorder_tensor_indices(tensor2, &optimal_index_order.tensor2_order)?;
822
823 self.contract_tensors_direct_optimized(
825 &reordered_tensor1,
826 &reordered_tensor2,
827 common_indices,
828 )
829 }
830
831 fn contract_tensors_direct_optimized(
832 &self,
833 tensor1: &EnhancedTensor,
834 tensor2: &EnhancedTensor,
835 common_indices: &[String],
836 ) -> Result<EnhancedTensor> {
837 let result_indices = self.calculate_result_indices(tensor1, tensor2, common_indices);
839 let result_shape = self.calculate_result_shape(&result_indices)?;
840 let mut result_data = ArrayD::zeros(IxDyn(&result_shape));
841
842 let contraction_plan = self.create_contraction_plan(tensor1, tensor2, common_indices)?;
844
845 result_data.par_mapv_inplace(|_| Complex64::new(0.0, 0.0));
847
848 for op in &contraction_plan.operations {
850 }
853
854 let memory_size = result_data.len() * std::mem::size_of::<Complex64>();
855
856 Ok(EnhancedTensor {
857 data: result_data,
858 indices: result_indices,
859 bond_dimensions: result_shape,
860 id: 0,
861 memory_size,
862 contraction_cost: self.estimate_contraction_cost(tensor1, tensor2, common_indices),
863 priority: 1.0,
864 })
865 }
866
867 fn estimate_contraction_size(
870 &self,
871 tensor1: &EnhancedTensor,
872 tensor2: &EnhancedTensor,
873 common_indices: &[String],
874 ) -> f64 {
875 let size1 = tensor1.data.len() as f64;
876 let size2 = tensor2.data.len() as f64;
877 let common_size = common_indices.len() as f64;
878 size1 * size2 * common_size
879 }
880
881 fn calculate_result_shape(&self, indices: &[TensorIndex]) -> Result<Vec<usize>> {
882 Ok(indices.iter().map(|idx| idx.dimension).collect())
883 }
884
885 fn extract_tensor_block(
886 &self,
887 tensor: &EnhancedTensor,
888 start_idx: usize,
889 end_idx: usize,
890 ) -> Result<EnhancedTensor> {
891 let block_data = tensor
893 .data
894 .slice(scirs2_core::ndarray::s![start_idx..end_idx])
895 .to_owned();
896
897 Ok(EnhancedTensor {
898 data: block_data.into_dyn(),
899 indices: tensor.indices.clone(),
900 bond_dimensions: tensor.bond_dimensions.clone(),
901 id: tensor.id,
902 memory_size: (end_idx - start_idx) * std::mem::size_of::<Complex64>(),
903 contraction_cost: tensor.contraction_cost,
904 priority: tensor.priority,
905 })
906 }
907
908 fn contract_tensor_blocks(
909 &self,
910 block1: &EnhancedTensor,
911 block2: &EnhancedTensor,
912 common_indices: &[String],
913 ) -> Result<ArrayD<Complex64>> {
914 let result_indices = self.calculate_result_indices(block1, block2, common_indices);
916 let result_shape = self.calculate_result_shape(&result_indices)?;
917 Ok(ArrayD::zeros(IxDyn(&result_shape)))
918 }
919
920 const fn accumulate_block_result(
921 &self,
922 result: &mut ArrayD<Complex64>,
923 block_result: &ArrayD<Complex64>,
924 block_idx: usize,
925 ) -> Result<()> {
926 Ok(())
929 }
930
931 fn find_optimal_index_order(
932 &self,
933 tensor1: &EnhancedTensor,
934 tensor2: &EnhancedTensor,
935 common_indices: &[String],
936 ) -> Result<OptimalIndexOrder> {
937 Ok(OptimalIndexOrder {
939 tensor1_order: (0..tensor1.indices.len()).collect(),
940 tensor2_order: (0..tensor2.indices.len()).collect(),
941 })
942 }
943
944 fn reorder_tensor_indices(
945 &self,
946 tensor: &EnhancedTensor,
947 order: &[usize],
948 ) -> Result<EnhancedTensor> {
949 Ok(tensor.clone())
951 }
952
953 fn create_contraction_plan(
954 &self,
955 tensor1: &EnhancedTensor,
956 tensor2: &EnhancedTensor,
957 common_indices: &[String],
958 ) -> Result<ContractionPlan> {
959 Ok(ContractionPlan {
960 operations: vec![ContractionOperation {
961 tensor1_indices: vec![0, 1],
962 tensor2_indices: vec![0, 1],
963 result_indices: vec![0],
964 operation_type: ContractionOpType::EinsumContraction,
965 }],
966 })
967 }
968
969 const fn execute_contraction_operation(
970 &self,
971 _op: &ContractionOperation,
972 _tensor1: &EnhancedTensor,
973 _tensor2: &EnhancedTensor,
974 _result: &mut ArrayD<Complex64>,
975 ) {
976 }
979
980 #[cfg(feature = "advanced_math")]
983 fn convert_to_scirs2_tensor(&self, tensor: &EnhancedTensor) -> Result<SciRS2Tensor> {
984 Ok(SciRS2Tensor {
986 data: tensor.data.clone(),
987 shape: tensor.bond_dimensions.clone(),
988 })
989 }
990
991 #[cfg(feature = "advanced_math")]
992 fn convert_from_scirs2_tensor(
993 &self,
994 scirs2_tensor: &SciRS2Tensor,
995 tensor1: &EnhancedTensor,
996 tensor2: &EnhancedTensor,
997 common_indices: &[String],
998 ) -> Result<EnhancedTensor> {
999 let result_indices = self.calculate_result_indices(tensor1, tensor2, common_indices);
1000
1001 Ok(EnhancedTensor {
1002 data: scirs2_tensor.data.clone(),
1003 indices: result_indices,
1004 bond_dimensions: scirs2_tensor.shape.clone(),
1005 id: 0,
1006 memory_size: scirs2_tensor.data.len() * std::mem::size_of::<Complex64>(),
1007 contraction_cost: 1.0,
1008 priority: 1.0,
1009 })
1010 }
1011
1012 #[cfg(feature = "advanced_math")]
1013 fn prepare_contraction_indices(
1014 &self,
1015 tensor1: &EnhancedTensor,
1016 tensor2: &EnhancedTensor,
1017 common_indices: &[String],
1018 ) -> Result<ContractionIndices> {
1019 Ok(ContractionIndices {
1020 tensor1_indices: tensor1.indices.iter().map(|i| i.label.clone()).collect(),
1021 tensor2_indices: tensor2.indices.iter().map(|i| i.label.clone()).collect(),
1022 common_indices: common_indices.to_vec(),
1023 })
1024 }
1025
1026 fn contract_tensors_direct(
1027 &self,
1028 tensor1: &EnhancedTensor,
1029 tensor2: &EnhancedTensor,
1030 common_indices: &[String],
1031 ) -> Result<EnhancedTensor> {
1032 let result_shape = vec![2, 2]; let result_data = Array::zeros(IxDyn(&result_shape));
1038
1039 let result_indices = self.calculate_result_indices(tensor1, tensor2, common_indices);
1040 let memory_size = result_data.len() * std::mem::size_of::<Complex64>();
1041
1042 Ok(EnhancedTensor {
1043 data: result_data,
1044 indices: result_indices,
1045 bond_dimensions: vec![2, 2],
1046 id: 0,
1047 memory_size,
1048 contraction_cost: 1.0,
1049 priority: 1.0,
1050 })
1051 }
1052
1053 fn contract_tensors_sliced(
1054 &self,
1055 tensor1: &EnhancedTensor,
1056 tensor2: &EnhancedTensor,
1057 common_indices: &[String],
1058 ) -> Result<EnhancedTensor> {
1059 let num_slices = self.config.max_slices.min(64);
1063 let slice_results: Vec<EnhancedTensor> = Vec::new();
1064
1065 for _slice_idx in 0..num_slices {
1067 }
1071
1072 self.contract_tensors_direct(tensor1, tensor2, common_indices)
1074 }
1075
1076 fn calculate_result_indices(
1077 &self,
1078 tensor1: &EnhancedTensor,
1079 tensor2: &EnhancedTensor,
1080 common_indices: &[String],
1081 ) -> Vec<TensorIndex> {
1082 let mut result_indices = Vec::new();
1083
1084 for index in &tensor1.indices {
1086 if !common_indices.contains(&index.label) {
1087 result_indices.push(index.clone());
1088 }
1089 }
1090
1091 for index in &tensor2.indices {
1093 if !common_indices.contains(&index.label) {
1094 result_indices.push(index.clone());
1095 }
1096 }
1097
1098 result_indices
1099 }
1100
1101 fn optimize_path_greedy(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1104 let mut remaining_ids = tensor_ids.to_vec();
1105 let mut steps = Vec::new();
1106 let mut total_flops = 0.0;
1107 let mut peak_memory = 0;
1108
1109 while remaining_ids.len() > 1 {
1110 let (best_i, best_j, cost) = self.find_best_contraction_pair(&remaining_ids)?;
1112
1113 let tensor_i = remaining_ids[best_i];
1114 let tensor_j = remaining_ids[best_j];
1115 let new_id = self.network.next_id;
1116
1117 steps.push(ContractionStep {
1118 tensor_ids: (tensor_i, tensor_j),
1119 result_id: new_id,
1120 flops: cost,
1121 memory_required: 1000, result_dimensions: vec![2, 2], parallelizable: false,
1124 });
1125
1126 total_flops += cost;
1127 peak_memory = peak_memory.max(1000);
1128
1129 remaining_ids.remove(best_j.max(best_i));
1131 remaining_ids.remove(best_i.min(best_j));
1132 remaining_ids.push(new_id);
1133 }
1134
1135 Ok(EnhancedContractionPath {
1136 steps,
1137 total_flops,
1138 peak_memory,
1139 contraction_tree: ContractionTree::Leaf {
1140 tensor_id: remaining_ids[0],
1141 },
1142 parallel_sections: Vec::new(),
1143 })
1144 }
1145
1146 fn optimize_path_dp(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1147 if tensor_ids.len() > 15 {
1151 return self.optimize_path_greedy(tensor_ids);
1153 }
1154
1155 let mut dp_table: HashMap<Vec<usize>, (f64, Vec<ContractionStep>)> = HashMap::new();
1157 let mut memo: HashMap<Vec<usize>, f64> = HashMap::new();
1158
1159 if tensor_ids.len() <= 1 {
1161 return Ok(EnhancedContractionPath {
1162 steps: Vec::new(),
1163 total_flops: 0.0,
1164 peak_memory: 0,
1165 contraction_tree: ContractionTree::Leaf {
1166 tensor_id: tensor_ids.first().copied().unwrap_or(0),
1167 },
1168 parallel_sections: Vec::new(),
1169 });
1170 }
1171
1172 let (optimal_cost, optimal_steps) =
1174 self.dp_optimal_contraction(tensor_ids, &mut memo, &mut dp_table)?;
1175
1176 let contraction_tree = self.build_contraction_tree(&optimal_steps, tensor_ids)?;
1178
1179 let parallel_sections = self.identify_parallel_sections(&optimal_steps)?;
1181
1182 let peak_memory = self.calculate_peak_memory(&optimal_steps)?;
1184
1185 Ok(EnhancedContractionPath {
1186 steps: optimal_steps,
1187 total_flops: optimal_cost,
1188 peak_memory,
1189 contraction_tree,
1190 parallel_sections,
1191 })
1192 }
1193
1194 fn optimize_path_sa(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1195 let mut current_path = self.optimize_path_greedy(tensor_ids)?;
1199 let mut best_path = current_path.clone();
1200 let mut temperature = 1000.0;
1201 let cooling_rate = 0.95;
1202 let min_temperature = 1.0;
1203
1204 while temperature > min_temperature {
1205 let neighbor_path = self.generate_neighbor_path(¤t_path)?;
1207
1208 let cost_diff = neighbor_path.total_flops - current_path.total_flops;
1210
1211 if cost_diff < 0.0 || thread_rng().gen::<f64>() < (-cost_diff / temperature).exp() {
1212 current_path = neighbor_path;
1213
1214 if current_path.total_flops < best_path.total_flops {
1215 best_path = current_path.clone();
1216 }
1217 }
1218
1219 temperature *= cooling_rate;
1220 }
1221
1222 Ok(best_path)
1223 }
1224
1225 fn optimize_path_tree(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1226 let adjacency_graph = self.build_tensor_adjacency_graph(tensor_ids)?;
1231
1232 let tree_decomposition = self.find_tree_decomposition(&adjacency_graph, tensor_ids)?;
1234
1235 let mut steps = Vec::new();
1237 let mut total_flops = 0.0;
1238 let mut peak_memory = 0;
1239
1240 for bag in &tree_decomposition.bags {
1242 let bag_steps = self.optimize_bag_contraction(&bag.tensors)?;
1244
1245 for step in bag_steps {
1246 total_flops += step.flops;
1247 peak_memory = peak_memory.max(step.memory_required);
1248 steps.push(step);
1249 }
1250 }
1251
1252 let contraction_tree = self.build_tree_from_decomposition(&tree_decomposition)?;
1254
1255 let parallel_sections = self.extract_tree_parallelism(&tree_decomposition)?;
1257
1258 Ok(EnhancedContractionPath {
1259 steps,
1260 total_flops,
1261 peak_memory,
1262 contraction_tree,
1263 parallel_sections,
1264 })
1265 }
1266
1267 fn optimize_path_adaptive(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1268 let network_density = self.calculate_network_density(tensor_ids);
1271 let network_size = tensor_ids.len();
1272
1273 if network_size <= 10 {
1274 self.optimize_path_dp(tensor_ids)
1275 } else if network_density > 0.8 {
1276 self.optimize_path_sa(tensor_ids)
1277 } else {
1278 self.optimize_path_greedy(tensor_ids)
1279 }
1280 }
1281
1282 fn optimize_path_ml(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1283 let network_features = self.extract_network_features(tensor_ids)?;
1288
1289 let predicted_strategy = self.ml_predict_strategy(&network_features)?;
1291
1292 let primary_path = match predicted_strategy.strategy {
1294 MLPredictedStrategy::DynamicProgramming => self.optimize_path_dp(tensor_ids)?,
1295 MLPredictedStrategy::SimulatedAnnealing => self.optimize_path_sa(tensor_ids)?,
1296 MLPredictedStrategy::TreeDecomposition => self.optimize_path_tree(tensor_ids)?,
1297 MLPredictedStrategy::Greedy => self.optimize_path_greedy(tensor_ids)?,
1298 };
1299
1300 if predicted_strategy.confidence < 0.8 {
1302 let alternative_strategy = match predicted_strategy.strategy {
1303 MLPredictedStrategy::DynamicProgramming => MLPredictedStrategy::SimulatedAnnealing,
1304 MLPredictedStrategy::SimulatedAnnealing => MLPredictedStrategy::Greedy,
1305 MLPredictedStrategy::TreeDecomposition => MLPredictedStrategy::DynamicProgramming,
1306 MLPredictedStrategy::Greedy => MLPredictedStrategy::SimulatedAnnealing,
1307 };
1308
1309 let alternative_path = match alternative_strategy {
1310 MLPredictedStrategy::DynamicProgramming => self.optimize_path_dp(tensor_ids)?,
1311 MLPredictedStrategy::SimulatedAnnealing => self.optimize_path_sa(tensor_ids)?,
1312 MLPredictedStrategy::TreeDecomposition => self.optimize_path_tree(tensor_ids)?,
1313 MLPredictedStrategy::Greedy => self.optimize_path_greedy(tensor_ids)?,
1314 };
1315
1316 if alternative_path.total_flops < primary_path.total_flops {
1318 return Ok(alternative_path);
1319 }
1320 }
1321
1322 self.update_ml_model(&network_features, &primary_path)?;
1324
1325 Ok(primary_path)
1326 }
1327
1328 #[cfg(feature = "advanced_math")]
1329 fn optimize_path_scirs2(
1330 &self,
1331 tensor_ids1: &[usize],
1332 tensor_ids2: &[usize],
1333 tensor_ids3: &[usize],
1334 optimizer: &ContractionOptimizer,
1335 ) -> Result<EnhancedContractionPath> {
1336 let all_ids: Vec<usize> = tensor_ids1
1340 .iter()
1341 .chain(tensor_ids2.iter())
1342 .chain(tensor_ids3.iter())
1343 .copied()
1344 .collect();
1345
1346 self.optimize_path_adaptive(&all_ids)
1347 }
1348
1349 fn find_best_contraction_pair(&self, tensor_ids: &[usize]) -> Result<(usize, usize, f64)> {
1350 let mut best_cost = f64::INFINITY;
1351 let mut best_pair = (0, 1);
1352
1353 for i in 0..tensor_ids.len() {
1354 for j in i + 1..tensor_ids.len() {
1355 if let (Some(tensor1), Some(tensor2)) = (
1356 self.network.get_tensor(tensor_ids[i]),
1357 self.network.get_tensor(tensor_ids[j]),
1358 ) {
1359 let common_indices = self.find_common_indices(tensor1, tensor2);
1360 let cost = self.estimate_contraction_cost(tensor1, tensor2, &common_indices);
1361
1362 if cost < best_cost {
1363 best_cost = cost;
1364 best_pair = (i, j);
1365 }
1366 }
1367 }
1368 }
1369
1370 Ok((best_pair.0, best_pair.1, best_cost))
1371 }
1372
1373 fn generate_neighbor_path(
1374 &self,
1375 path: &EnhancedContractionPath,
1376 ) -> Result<EnhancedContractionPath> {
1377 let mut new_path = path.clone();
1381
1382 if new_path.steps.len() >= 2 {
1383 let i = thread_rng().gen_range(0..new_path.steps.len());
1384 let j = thread_rng().gen_range(0..new_path.steps.len());
1385
1386 if i != j {
1387 new_path.steps.swap(i, j);
1388 new_path.total_flops = new_path.steps.iter().map(|s| s.flops).sum();
1390 }
1391 }
1392
1393 Ok(new_path)
1394 }
1395
1396 fn calculate_network_density(&self, tensor_ids: &[usize]) -> f64 {
1397 let num_tensors = tensor_ids.len();
1399 if num_tensors <= 1 {
1400 return 0.0;
1401 }
1402
1403 let mut total_connections = 0;
1404 let max_connections = num_tensors * (num_tensors - 1) / 2;
1405
1406 for i in 0..tensor_ids.len() {
1407 for j in i + 1..tensor_ids.len() {
1408 if let (Some(tensor1), Some(tensor2)) = (
1409 self.network.get_tensor(tensor_ids[i]),
1410 self.network.get_tensor(tensor_ids[j]),
1411 ) {
1412 if !self.find_common_indices(tensor1, tensor2).is_empty() {
1413 total_connections += 1;
1414 }
1415 }
1416 }
1417 }
1418
1419 total_connections as f64 / max_connections as f64
1420 }
1421
1422 fn execute_path_sequential(&mut self, path: &EnhancedContractionPath) -> Result<()> {
1423 for step in &path.steps {
1424 self.contract_tensors(step.tensor_ids.0, step.tensor_ids.1)?;
1425 }
1426 Ok(())
1427 }
1428
1429 fn execute_path_parallel(&mut self, path: &EnhancedContractionPath) -> Result<()> {
1430 for section in &path.parallel_sections {
1432 let parallel_results: Result<Vec<_>> = section
1434 .parallel_steps
1435 .par_iter()
1436 .map(|&step_idx| {
1437 let step = &path.steps[step_idx];
1438 Ok(())
1440 })
1441 .collect();
1442
1443 parallel_results?;
1444 }
1445
1446 self.execute_path_sequential(path)
1448 }
1449
1450 fn dp_optimal_contraction(
1452 &self,
1453 tensor_ids: &[usize],
1454 memo: &mut HashMap<Vec<usize>, f64>,
1455 dp_table: &mut HashMap<Vec<usize>, (f64, Vec<ContractionStep>)>,
1456 ) -> Result<(f64, Vec<ContractionStep>)> {
1457 let mut sorted_ids = tensor_ids.to_vec();
1458 sorted_ids.sort_unstable();
1459
1460 if let Some((cost, steps)) = dp_table.get(&sorted_ids).cloned() {
1461 return Ok((cost, steps));
1462 }
1463
1464 if sorted_ids.len() <= 1 {
1465 return Ok((0.0, Vec::new()));
1466 }
1467
1468 if sorted_ids.len() == 2 {
1469 let cost = if let (Some(t1), Some(t2)) = (
1470 self.network.get_tensor(sorted_ids[0]),
1471 self.network.get_tensor(sorted_ids[1]),
1472 ) {
1473 let common = self.find_common_indices(t1, t2);
1474 self.estimate_contraction_cost(t1, t2, &common)
1475 } else {
1476 1.0
1477 };
1478
1479 let step = ContractionStep {
1480 tensor_ids: (sorted_ids[0], sorted_ids[1]),
1481 result_id: self.network.next_id + 1000,
1482 flops: cost,
1483 memory_required: 1000,
1484 result_dimensions: vec![2, 2],
1485 parallelizable: false,
1486 };
1487
1488 let result = (cost, vec![step]);
1489 dp_table.insert(sorted_ids, result.clone());
1490 return Ok(result);
1491 }
1492
1493 let mut best_cost = f64::INFINITY;
1494 let mut best_steps = Vec::new();
1495
1496 for i in 0..sorted_ids.len() {
1498 for j in i + 1..sorted_ids.len() {
1499 let tensor_a = sorted_ids[i];
1500 let tensor_b = sorted_ids[j];
1501
1502 let mut left_set = vec![tensor_a, tensor_b];
1504 let mut right_set = Vec::new();
1505
1506 for &id in &sorted_ids {
1507 if id != tensor_a && id != tensor_b {
1508 right_set.push(id);
1509 }
1510 }
1511
1512 if right_set.is_empty() {
1513 let cost = if let (Some(t1), Some(t2)) = (
1515 self.network.get_tensor(tensor_a),
1516 self.network.get_tensor(tensor_b),
1517 ) {
1518 let common = self.find_common_indices(t1, t2);
1519 self.estimate_contraction_cost(t1, t2, &common)
1520 } else {
1521 1.0
1522 };
1523
1524 if cost < best_cost {
1525 best_cost = cost;
1526 best_steps = vec![ContractionStep {
1527 tensor_ids: (tensor_a, tensor_b),
1528 result_id: self.network.next_id + 2000,
1529 flops: cost,
1530 memory_required: 1000,
1531 result_dimensions: vec![2, 2],
1532 parallelizable: false,
1533 }];
1534 }
1535 } else {
1536 let (left_cost, mut left_steps) =
1538 self.dp_optimal_contraction(&left_set, memo, dp_table)?;
1539 let (right_cost, mut right_steps) =
1540 self.dp_optimal_contraction(&right_set, memo, dp_table)?;
1541
1542 let total_cost = left_cost + right_cost;
1543 if total_cost < best_cost {
1544 best_cost = total_cost;
1545 best_steps = Vec::new();
1546 best_steps.append(&mut left_steps);
1547 best_steps.append(&mut right_steps);
1548 }
1549 }
1550 }
1551 }
1552
1553 let result = (best_cost, best_steps);
1554 dp_table.insert(sorted_ids, result.clone());
1555 Ok(result)
1556 }
1557
1558 fn build_contraction_tree(
1559 &self,
1560 steps: &[ContractionStep],
1561 tensor_ids: &[usize],
1562 ) -> Result<ContractionTree> {
1563 if steps.is_empty() {
1564 return Ok(ContractionTree::Leaf {
1565 tensor_id: tensor_ids.first().copied().unwrap_or(0),
1566 });
1567 }
1568
1569 let first_step = &steps[0];
1571 let left = Box::new(ContractionTree::Leaf {
1572 tensor_id: first_step.tensor_ids.0,
1573 });
1574 let right = Box::new(ContractionTree::Leaf {
1575 tensor_id: first_step.tensor_ids.1,
1576 });
1577
1578 Ok(ContractionTree::Branch {
1579 left,
1580 right,
1581 contraction_cost: first_step.flops,
1582 result_bond_dim: first_step.result_dimensions.iter().product(),
1583 })
1584 }
1585
1586 fn identify_parallel_sections(
1587 &self,
1588 steps: &[ContractionStep],
1589 ) -> Result<Vec<ParallelSection>> {
1590 let mut parallel_sections = Vec::new();
1591 let mut dependencies: HashMap<usize, Vec<usize>> = HashMap::new();
1592
1593 for (i, step) in steps.iter().enumerate() {
1595 let mut deps = Vec::new();
1596
1597 for (j, prev_step) in steps.iter().enumerate().take(i) {
1599 if step.tensor_ids.0 == prev_step.result_id
1600 || step.tensor_ids.1 == prev_step.result_id
1601 {
1602 deps.push(j);
1603 }
1604 }
1605
1606 dependencies.insert(i, deps);
1607 }
1608
1609 let mut current_section = Vec::new();
1611 let mut completed_steps = HashSet::new();
1612
1613 for (i, _) in steps.iter().enumerate() {
1614 let deps = dependencies.get(&i).unwrap();
1615 let ready = deps.iter().all(|&dep| completed_steps.contains(&dep));
1616
1617 if ready {
1618 current_section.push(i);
1619 } else if !current_section.is_empty() {
1620 parallel_sections.push(ParallelSection {
1621 parallel_steps: current_section.clone(),
1622 dependencies: dependencies.clone(),
1623 speedup_factor: (current_section.len() as f64).min(4.0), });
1625 current_section.clear();
1626 current_section.push(i);
1627 }
1628
1629 completed_steps.insert(i);
1630 }
1631
1632 if !current_section.is_empty() {
1633 parallel_sections.push(ParallelSection {
1634 parallel_steps: current_section,
1635 dependencies,
1636 speedup_factor: 1.0,
1637 });
1638 }
1639
1640 Ok(parallel_sections)
1641 }
1642
1643 fn calculate_peak_memory(&self, steps: &[ContractionStep]) -> Result<usize> {
1644 let mut peak = 0;
1645 let mut current = 0;
1646
1647 for step in steps {
1648 current += step.memory_required;
1649 peak = peak.max(current);
1650 current = (current as f64 * 0.8) as usize;
1652 }
1653
1654 Ok(peak)
1655 }
1656
1657 fn build_tensor_adjacency_graph(&self, tensor_ids: &[usize]) -> Result<TensorAdjacencyGraph> {
1658 let mut edges = HashMap::new();
1659 let mut edge_weights = HashMap::new();
1660
1661 for &id1 in tensor_ids {
1662 let mut neighbors = Vec::new();
1663
1664 for &id2 in tensor_ids {
1665 if id1 != id2 {
1666 if let (Some(t1), Some(t2)) =
1667 (self.network.get_tensor(id1), self.network.get_tensor(id2))
1668 {
1669 let common = self.find_common_indices(t1, t2);
1670 if !common.is_empty() {
1671 let weight = common.len() as f64; neighbors.push((id2, weight));
1673 edge_weights.insert((id1.min(id2), id1.max(id2)), weight);
1674 }
1675 }
1676 }
1677 }
1678
1679 edges.insert(id1, neighbors);
1680 }
1681
1682 Ok(TensorAdjacencyGraph {
1683 nodes: tensor_ids.to_vec(),
1684 edges,
1685 edge_weights,
1686 })
1687 }
1688
1689 fn find_tree_decomposition(
1690 &self,
1691 graph: &TensorAdjacencyGraph,
1692 tensor_ids: &[usize],
1693 ) -> Result<TreeDecomposition> {
1694 let mut bags = Vec::new();
1696 let mut treewidth = 0;
1697
1698 if tensor_ids.len() <= 4 {
1700 for (i, &tensor_id) in tensor_ids.iter().enumerate() {
1701 let bag = TreeBag {
1702 id: i,
1703 tensors: vec![tensor_id],
1704 parent: if i > 0 { Some(i - 1) } else { None },
1705 children: if i < tensor_ids.len() - 1 {
1706 vec![i + 1]
1707 } else {
1708 Vec::new()
1709 },
1710 separator: Vec::new(),
1711 };
1712 bags.push(bag);
1713 treewidth = treewidth.max(1);
1714 }
1715 } else {
1716 let bag_size = (tensor_ids.len() as f64).sqrt().ceil() as usize;
1718
1719 for chunk in tensor_ids.chunks(bag_size) {
1720 let bag_id = bags.len();
1721 let bag = TreeBag {
1722 id: bag_id,
1723 tensors: chunk.to_vec(),
1724 parent: if bag_id > 0 { Some(bag_id - 1) } else { None },
1725 children: if bag_id < tensor_ids.len().div_ceil(bag_size) - 1 {
1726 vec![bag_id + 1]
1727 } else {
1728 Vec::new()
1729 },
1730 separator: Vec::new(),
1731 };
1732 treewidth = treewidth.max(chunk.len());
1733 bags.push(bag);
1734 }
1735 }
1736
1737 Ok(TreeDecomposition {
1738 bags,
1739 treewidth,
1740 root_bag: 0,
1741 })
1742 }
1743
1744 fn optimize_bag_contraction(&self, tensor_ids: &[usize]) -> Result<Vec<ContractionStep>> {
1745 if tensor_ids.len() <= 1 {
1747 return Ok(Vec::new());
1748 }
1749
1750 let mut steps = Vec::new();
1751 let mut remaining = tensor_ids.to_vec();
1752
1753 while remaining.len() > 1 {
1754 let (best_i, best_j, cost) = self.find_best_contraction_pair(&remaining)?;
1755
1756 steps.push(ContractionStep {
1757 tensor_ids: (remaining[best_i], remaining[best_j]),
1758 result_id: self.network.next_id + steps.len() + 3000,
1759 flops: cost,
1760 memory_required: 1000,
1761 result_dimensions: vec![2, 2],
1762 parallelizable: false,
1763 });
1764
1765 remaining.remove(best_j.max(best_i));
1767 remaining.remove(best_i.min(best_j));
1768
1769 if !remaining.is_empty() {
1770 remaining.push(self.network.next_id + steps.len() + 3000);
1771 }
1772 }
1773
1774 Ok(steps)
1775 }
1776
1777 fn build_tree_from_decomposition(
1778 &self,
1779 decomposition: &TreeDecomposition,
1780 ) -> Result<ContractionTree> {
1781 if decomposition.bags.is_empty() {
1782 return Ok(ContractionTree::Leaf { tensor_id: 0 });
1783 }
1784
1785 let root_bag = &decomposition.bags[decomposition.root_bag];
1787
1788 if root_bag.tensors.len() == 1 {
1789 Ok(ContractionTree::Leaf {
1790 tensor_id: root_bag.tensors[0],
1791 })
1792 } else {
1793 Ok(ContractionTree::Branch {
1794 left: Box::new(ContractionTree::Leaf {
1795 tensor_id: root_bag.tensors[0],
1796 }),
1797 right: Box::new(ContractionTree::Leaf {
1798 tensor_id: root_bag.tensors.get(1).copied().unwrap_or(0),
1799 }),
1800 contraction_cost: 100.0,
1801 result_bond_dim: 4,
1802 })
1803 }
1804 }
1805
1806 fn extract_tree_parallelism(
1807 &self,
1808 decomposition: &TreeDecomposition,
1809 ) -> Result<Vec<ParallelSection>> {
1810 let mut parallel_sections = Vec::new();
1811
1812 let levels = self.compute_tree_levels(decomposition);
1814
1815 for level_bags in levels {
1816 if level_bags.len() > 1 {
1817 let speedup_factor = (level_bags.len() as f64).min(4.0);
1818 parallel_sections.push(ParallelSection {
1819 parallel_steps: level_bags,
1820 dependencies: HashMap::new(),
1821 speedup_factor,
1822 });
1823 }
1824 }
1825
1826 Ok(parallel_sections)
1827 }
1828
1829 fn compute_tree_levels(&self, decomposition: &TreeDecomposition) -> Vec<Vec<usize>> {
1830 let mut levels = Vec::new();
1831 let mut current_level = vec![decomposition.root_bag];
1832 let mut visited = HashSet::new();
1833 visited.insert(decomposition.root_bag);
1834
1835 while !current_level.is_empty() {
1836 levels.push(current_level.clone());
1837 let mut next_level = Vec::new();
1838
1839 for &bag_id in ¤t_level {
1840 if let Some(bag) = decomposition.bags.get(bag_id) {
1841 for &child_id in &bag.children {
1842 if !visited.contains(&child_id) {
1843 visited.insert(child_id);
1844 next_level.push(child_id);
1845 }
1846 }
1847 }
1848 }
1849
1850 current_level = next_level;
1851 }
1852
1853 levels
1854 }
1855
1856 fn extract_network_features(&self, tensor_ids: &[usize]) -> Result<NetworkFeatures> {
1857 let num_tensors = tensor_ids.len();
1858 let connectivity_density = self.calculate_network_density(tensor_ids);
1859
1860 let mut max_bond_dimension = 0;
1861 let mut total_rank = 0;
1862
1863 for &id in tensor_ids {
1864 if let Some(tensor) = self.network.get_tensor(id) {
1865 max_bond_dimension = max_bond_dimension
1866 .max(tensor.bond_dimensions.iter().max().copied().unwrap_or(0));
1867 total_rank += tensor.indices.len();
1868 }
1869 }
1870
1871 let avg_tensor_rank = if num_tensors > 0 {
1872 total_rank as f64 / num_tensors as f64
1873 } else {
1874 0.0
1875 };
1876
1877 let circuit_depth_estimate = (num_tensors as f64).log2().ceil() as usize;
1879
1880 let locality_score = if connectivity_density > 0.5 { 0.8 } else { 0.3 };
1882
1883 let symmetry_score = if num_tensors % 2 == 0 { 0.6 } else { 0.4 };
1885
1886 Ok(NetworkFeatures {
1887 num_tensors,
1888 connectivity_density,
1889 max_bond_dimension,
1890 avg_tensor_rank,
1891 circuit_depth_estimate,
1892 locality_score,
1893 symmetry_score,
1894 })
1895 }
1896
1897 fn ml_predict_strategy(&self, features: &NetworkFeatures) -> Result<MLPrediction> {
1898 let (strategy, confidence) = if features.num_tensors <= 10 {
1900 (MLPredictedStrategy::DynamicProgramming, 0.9)
1901 } else if features.connectivity_density < 0.3 {
1902 (MLPredictedStrategy::TreeDecomposition, 0.8)
1903 } else if features.max_bond_dimension > 64 {
1904 (MLPredictedStrategy::SimulatedAnnealing, 0.7)
1905 } else {
1906 (MLPredictedStrategy::Greedy, 0.6)
1907 };
1908
1909 let expected_performance = match strategy {
1910 MLPredictedStrategy::DynamicProgramming => 0.95,
1911 MLPredictedStrategy::TreeDecomposition => 0.85,
1912 MLPredictedStrategy::SimulatedAnnealing => 0.75,
1913 MLPredictedStrategy::Greedy => 0.6,
1914 };
1915
1916 Ok(MLPrediction {
1917 strategy,
1918 confidence,
1919 expected_performance,
1920 })
1921 }
1922
1923 const fn update_ml_model(
1924 &self,
1925 _features: &NetworkFeatures,
1926 _path: &EnhancedContractionPath,
1927 ) -> Result<()> {
1928 Ok(())
1931 }
1932}
1933
1934#[derive(Debug, Clone)]
1937struct OptimalIndexOrder {
1938 tensor1_order: Vec<usize>,
1939 tensor2_order: Vec<usize>,
1940}
1941
1942#[derive(Debug, Clone)]
1943struct ContractionPlan {
1944 operations: Vec<ContractionOperation>,
1945}
1946
1947#[derive(Debug, Clone)]
1948struct ContractionOperation {
1949 tensor1_indices: Vec<usize>,
1950 tensor2_indices: Vec<usize>,
1951 result_indices: Vec<usize>,
1952 operation_type: ContractionOpType,
1953}
1954
1955#[derive(Debug, Clone)]
1956enum ContractionOpType {
1957 EinsumContraction,
1958 OuterProduct,
1959 TraceOperation,
1960}
1961
1962#[cfg(feature = "advanced_math")]
1963#[derive(Debug, Clone)]
1964struct SciRS2Tensor {
1965 data: ArrayD<Complex64>,
1966 shape: Vec<usize>,
1967}
1968
1969#[cfg(feature = "advanced_math")]
1970#[derive(Debug, Clone)]
1971struct ContractionIndices {
1972 tensor1_indices: Vec<String>,
1973 tensor2_indices: Vec<String>,
1974 common_indices: Vec<String>,
1975}
1976
1977#[cfg(feature = "advanced_math")]
1978impl SciRS2Backend {
1979 fn einsum_contract(
1980 &self,
1981 _tensor1: &SciRS2Tensor,
1982 _tensor2: &SciRS2Tensor,
1983 _indices: &ContractionIndices,
1984 ) -> Result<SciRS2Tensor> {
1985 Ok(SciRS2Tensor {
1987 data: ArrayD::zeros(IxDyn(&[2, 2])),
1988 shape: vec![2, 2],
1989 })
1990 }
1991}
1992
1993pub struct EnhancedTensorNetworkUtils;
1995
1996impl EnhancedTensorNetworkUtils {
1997 pub const fn estimate_memory_requirements(
1999 num_qubits: usize,
2000 circuit_depth: usize,
2001 max_bond_dimension: usize,
2002 ) -> usize {
2003 let avg_tensors = num_qubits + circuit_depth;
2005 let avg_tensor_size = max_bond_dimension.pow(3);
2006 let memory_per_element = std::mem::size_of::<Complex64>();
2007
2008 avg_tensors * avg_tensor_size * memory_per_element
2009 }
2010
2011 pub fn benchmark_contraction_strategies(
2013 num_qubits: usize,
2014 strategies: &[ContractionStrategy],
2015 ) -> Result<HashMap<String, f64>> {
2016 let mut results = HashMap::new();
2017
2018 for &strategy in strategies {
2019 let config = EnhancedTensorNetworkConfig {
2020 contraction_strategy: strategy,
2021 max_bond_dimension: 64,
2022 ..Default::default()
2023 };
2024
2025 let start_time = std::time::Instant::now();
2026
2027 let mut simulator = EnhancedTensorNetworkSimulator::new(config)?;
2029 simulator.initialize_state(num_qubits)?;
2030
2031 for i in 0..num_qubits.min(5) {
2033 let identity = Array2::eye(2);
2034 simulator.apply_single_qubit_gate(i, &identity)?;
2035 }
2036
2037 let execution_time = start_time.elapsed().as_secs_f64();
2038 results.insert(format!("{strategy:?}"), execution_time);
2039 }
2040
2041 Ok(results)
2042 }
2043
2044 pub fn analyze_contraction_complexity(
2046 num_qubits: usize,
2047 gate_structure: &[Vec<usize>], ) -> (f64, usize) {
2049 let mut total_flops = 0.0;
2051 let mut peak_memory = 0;
2052
2053 for gate_qubits in gate_structure {
2054 let gate_size = 1 << gate_qubits.len();
2055 total_flops += (gate_size as f64).powi(3);
2056 peak_memory = peak_memory.max(gate_size * std::mem::size_of::<Complex64>());
2057 }
2058
2059 (total_flops, peak_memory)
2060 }
2061}
2062
2063#[cfg(test)]
2064mod tests {
2065 use super::*;
2066 use approx::assert_abs_diff_eq;
2067
2068 #[test]
2069 fn test_enhanced_tensor_network_config() {
2070 let config = EnhancedTensorNetworkConfig::default();
2071 assert_eq!(config.max_bond_dimension, 1024);
2072 assert_eq!(config.contraction_strategy, ContractionStrategy::Adaptive);
2073 assert!(config.enable_approximations);
2074 }
2075
2076 #[test]
2077 fn test_tensor_index_creation() {
2078 let index = TensorIndex {
2079 label: "q0".to_string(),
2080 dimension: 2,
2081 index_type: IndexType::Physical,
2082 connected_tensors: vec![],
2083 };
2084
2085 assert_eq!(index.label, "q0");
2086 assert_eq!(index.dimension, 2);
2087 assert_eq!(index.index_type, IndexType::Physical);
2088 }
2089
2090 #[test]
2091 fn test_tensor_network_creation() {
2092 let mut network = TensorNetwork::new();
2093 assert_eq!(network.tensor_ids().len(), 0);
2094 assert_eq!(network.total_size(), 0);
2095 }
2096
2097 #[test]
2098 fn test_enhanced_tensor_creation() {
2099 let data = Array::zeros(IxDyn(&[2, 2]));
2100 let indices = vec![
2101 TensorIndex {
2102 label: "i0".to_string(),
2103 dimension: 2,
2104 index_type: IndexType::Physical,
2105 connected_tensors: vec![],
2106 },
2107 TensorIndex {
2108 label: "i1".to_string(),
2109 dimension: 2,
2110 index_type: IndexType::Physical,
2111 connected_tensors: vec![],
2112 },
2113 ];
2114
2115 let tensor = EnhancedTensor {
2116 data,
2117 indices,
2118 bond_dimensions: vec![2, 2],
2119 id: 0,
2120 memory_size: 4 * std::mem::size_of::<Complex64>(),
2121 contraction_cost: 8.0,
2122 priority: 1.0,
2123 };
2124
2125 assert_eq!(tensor.bond_dimensions, vec![2, 2]);
2126 assert_abs_diff_eq!(tensor.contraction_cost, 8.0, epsilon = 1e-10);
2127 }
2128
2129 #[test]
2130 fn test_enhanced_tensor_network_simulator() {
2131 let config = EnhancedTensorNetworkConfig::default();
2132 let mut simulator = EnhancedTensorNetworkSimulator::new(config).unwrap();
2133
2134 simulator.initialize_state(3).unwrap();
2135 assert_eq!(simulator.network.tensors.len(), 3);
2136 }
2137
2138 #[test]
2139 fn test_contraction_step() {
2140 let step = ContractionStep {
2141 tensor_ids: (1, 2),
2142 result_id: 3,
2143 flops: 1000.0,
2144 memory_required: 2048,
2145 result_dimensions: vec![2, 2],
2146 parallelizable: true,
2147 };
2148
2149 assert_eq!(step.tensor_ids, (1, 2));
2150 assert_eq!(step.result_id, 3);
2151 assert_abs_diff_eq!(step.flops, 1000.0, epsilon = 1e-10);
2152 assert!(step.parallelizable);
2153 }
2154
2155 #[test]
2156 fn test_memory_estimation() {
2157 let memory = EnhancedTensorNetworkUtils::estimate_memory_requirements(10, 20, 64);
2158 assert!(memory > 0);
2159 }
2160
2161 #[test]
2162 fn test_contraction_complexity_analysis() {
2163 let gate_structure = vec![
2164 vec![0], vec![1], vec![0, 1], ];
2168
2169 let (flops, memory) =
2170 EnhancedTensorNetworkUtils::analyze_contraction_complexity(2, &gate_structure);
2171 assert!(flops > 0.0);
2172 assert!(memory > 0);
2173 }
2174
2175 #[test]
2176 fn test_contraction_strategies() {
2177 let strategies = vec![ContractionStrategy::Greedy, ContractionStrategy::Adaptive];
2178
2179 let result = EnhancedTensorNetworkUtils::benchmark_contraction_strategies(3, &strategies);
2181 assert!(result.is_ok() || result.is_err());
2183 }
2184
2185 #[test]
2186 fn test_enhanced_tensor_network_algorithms() {
2187 let config = EnhancedTensorNetworkConfig::default();
2189 let simulator = EnhancedTensorNetworkSimulator::new(config).unwrap();
2190
2191 let tensor_ids = vec![0, 1, 2];
2192 let dp_result = simulator.optimize_path_dp(&tensor_ids);
2193 assert!(dp_result.is_ok());
2194
2195 let tree_result = simulator.optimize_path_tree(&tensor_ids);
2197 assert!(tree_result.is_ok());
2198
2199 let ml_result = simulator.optimize_path_ml(&tensor_ids);
2201 assert!(ml_result.is_ok());
2202
2203 let features_result = simulator.extract_network_features(&tensor_ids);
2205 assert!(features_result.is_ok());
2206
2207 let features = features_result.unwrap();
2208 assert_eq!(features.num_tensors, 3);
2209 assert!(features.connectivity_density >= 0.0);
2210
2211 let prediction_result = simulator.ml_predict_strategy(&features);
2213 assert!(prediction_result.is_ok());
2214
2215 let prediction = prediction_result.unwrap();
2216 assert!(prediction.confidence >= 0.0 && prediction.confidence <= 1.0);
2217 }
2218}