quantrs2_sim/
auto_optimizer.rs

1//! AutoOptimizer for Automatic Backend Selection based on Problem Characteristics
2//!
3//! This module provides intelligent backend selection for quantum circuit simulation
4//! by analyzing circuit characteristics and automatically choosing the optimal
5//! execution backend using SciRS2 optimization and analysis tools.
6
7use crate::{
8    automatic_parallelization::{AutoParallelConfig, AutoParallelEngine},
9    circuit_optimization::{CircuitOptimizer, OptimizationConfig},
10    distributed_simulator::{DistributedQuantumSimulator, DistributedSimulatorConfig},
11    error::{Result, SimulatorError},
12    large_scale_simulator::{LargeScaleQuantumSimulator, LargeScaleSimulatorConfig},
13    simulator::SimulatorResult,
14    statevector::StateVectorSimulator,
15};
16use quantrs2_circuit::builder::{Circuit, Simulator};
17use quantrs2_core::{
18    error::{QuantRS2Error, QuantRS2Result},
19    gate::GateOp,
20    qubit::QubitId,
21    register::Register,
22};
23
24#[cfg(all(feature = "gpu", not(target_os = "macos")))]
25use crate::gpu::SciRS2GpuStateVectorSimulator;
26use scirs2_core::parallel_ops::current_num_threads; // SciRS2 POLICY compliant
27use scirs2_core::Complex64;
28use serde::{Deserialize, Serialize};
29use std::collections::HashMap;
30use std::sync::Arc;
31use std::time::{Duration, Instant};
32
33/// Configuration for the AutoOptimizer
34#[derive(Debug, Clone, Serialize, Deserialize)]
35pub struct AutoOptimizerConfig {
36    /// Enable performance profiling during backend selection
37    pub enable_profiling: bool,
38    /// Memory budget for simulation (bytes)
39    pub memory_budget: usize,
40    /// CPU utilization threshold (0.0 to 1.0)
41    pub cpu_utilization_threshold: f64,
42    /// GPU availability check timeout
43    pub gpu_check_timeout: Duration,
44    /// Enable distributed simulation for large circuits
45    pub enable_distributed: bool,
46    /// SciRS2 optimization level
47    pub scirs2_optimization_level: OptimizationLevel,
48    /// Fallback strategy when optimal backend is unavailable
49    pub fallback_strategy: FallbackStrategy,
50    /// Circuit complexity analysis depth
51    pub analysis_depth: AnalysisDepth,
52    /// Performance history cache size
53    pub performance_cache_size: usize,
54    /// Backend preference order
55    pub backend_preferences: Vec<BackendType>,
56}
57
58impl Default for AutoOptimizerConfig {
59    fn default() -> Self {
60        Self {
61            enable_profiling: true,
62            memory_budget: 8 * 1024 * 1024 * 1024, // 8GB
63            cpu_utilization_threshold: 0.8,
64            gpu_check_timeout: Duration::from_millis(1000),
65            enable_distributed: true,
66            scirs2_optimization_level: OptimizationLevel::Aggressive,
67            fallback_strategy: FallbackStrategy::Conservative,
68            analysis_depth: AnalysisDepth::Deep,
69            performance_cache_size: 1000,
70            backend_preferences: vec![
71                BackendType::SciRS2Gpu,
72                BackendType::LargeScale,
73                BackendType::Distributed,
74                BackendType::StateVector,
75            ],
76        }
77    }
78}
79
80/// Available backend types for optimization
81#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
82pub enum BackendType {
83    /// CPU state vector simulator
84    StateVector,
85    /// SciRS2-powered GPU simulator
86    SciRS2Gpu,
87    /// Large-scale optimized simulator
88    LargeScale,
89    /// Distributed cluster simulator
90    Distributed,
91    /// Automatic selection based on characteristics
92    Auto,
93}
94
95/// Optimization levels for SciRS2 integration
96#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
97pub enum OptimizationLevel {
98    /// No optimization
99    None,
100    /// Basic optimizations
101    Basic,
102    /// Advanced optimizations
103    Advanced,
104    /// Aggressive optimizations with maximum SciRS2 features
105    Aggressive,
106}
107
108/// Fallback strategies when optimal backend is unavailable
109#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
110pub enum FallbackStrategy {
111    /// Conservative fallback to reliable backends
112    Conservative,
113    /// Aggressive fallback trying more experimental backends
114    Aggressive,
115    /// Fail if optimal backend is unavailable
116    Fail,
117}
118
119/// Circuit analysis depth levels
120#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
121pub enum AnalysisDepth {
122    /// Quick analysis with basic metrics
123    Quick,
124    /// Standard analysis with comprehensive metrics
125    Standard,
126    /// Deep analysis with advanced circuit characterization
127    Deep,
128}
129
130/// Circuit characteristics analysis results
131#[derive(Debug, Clone)]
132pub struct CircuitCharacteristics {
133    /// Number of qubits
134    pub num_qubits: usize,
135    /// Number of gates
136    pub num_gates: usize,
137    /// Circuit depth (longest path)
138    pub circuit_depth: usize,
139    /// Gate type distribution
140    pub gate_distribution: HashMap<String, usize>,
141    /// Parallelism potential (0.0 to 1.0)
142    pub parallelism_potential: f64,
143    /// Memory requirement estimate (bytes)
144    pub memory_requirement: usize,
145    /// Computational complexity score
146    pub complexity_score: f64,
147    /// Two-qubit gate density
148    pub two_qubit_density: f64,
149    /// Connectivity graph properties
150    pub connectivity_properties: ConnectivityProperties,
151    /// Entanglement depth estimate
152    pub entanglement_depth: usize,
153    /// Noise susceptibility score
154    pub noise_susceptibility: f64,
155}
156
157/// Connectivity graph properties of the circuit
158#[derive(Debug, Clone)]
159pub struct ConnectivityProperties {
160    /// Maximum degree of connectivity
161    pub max_degree: usize,
162    /// Average degree of connectivity
163    pub avg_degree: f64,
164    /// Number of connected components
165    pub connected_components: usize,
166    /// Circuit diameter (longest path between any two qubits)
167    pub diameter: usize,
168    /// Clustering coefficient
169    pub clustering_coefficient: f64,
170}
171
172/// Backend recommendation with reasoning
173#[derive(Debug, Clone)]
174pub struct BackendRecommendation {
175    /// Recommended backend type
176    pub backend_type: BackendType,
177    /// Confidence score (0.0 to 1.0)
178    pub confidence: f64,
179    /// Expected performance improvement over baseline
180    pub expected_improvement: f64,
181    /// Estimated execution time
182    pub estimated_execution_time: Duration,
183    /// Estimated memory usage
184    pub estimated_memory_usage: usize,
185    /// Reasoning for the recommendation
186    pub reasoning: String,
187    /// Alternative recommendations
188    pub alternatives: Vec<(BackendType, f64)>,
189    /// Performance prediction model used
190    pub prediction_model: String,
191}
192
193/// Performance metrics for backend selection
194#[derive(Debug, Clone)]
195pub struct PerformanceMetrics {
196    /// Execution time
197    pub execution_time: Duration,
198    /// Memory usage
199    pub memory_usage: usize,
200    /// CPU utilization
201    pub cpu_utilization: f64,
202    /// GPU utilization (if applicable)
203    pub gpu_utilization: Option<f64>,
204    /// Throughput (gates per second)
205    pub throughput: f64,
206    /// Error rate
207    pub error_rate: f64,
208}
209
210/// Performance history entry for caching
211#[derive(Debug, Clone)]
212pub struct PerformanceHistory {
213    /// Circuit characteristics hash
214    pub circuit_hash: u64,
215    /// Backend used
216    pub backend_type: BackendType,
217    /// Performance metrics achieved
218    pub metrics: PerformanceMetrics,
219    /// Timestamp
220    pub timestamp: Instant,
221}
222
223/// AutoOptimizer for intelligent backend selection
224pub struct AutoOptimizer {
225    /// Configuration
226    config: AutoOptimizerConfig,
227    /// Circuit optimizer for preprocessing
228    circuit_optimizer: CircuitOptimizer,
229    /// Parallelization engine
230    parallel_engine: AutoParallelEngine,
231    /// Performance history cache
232    performance_cache: Vec<PerformanceHistory>,
233    /// Backend availability cache
234    backend_availability: HashMap<BackendType, bool>,
235    /// SciRS2 analysis tools integration
236    scirs2_analyzer: SciRS2CircuitAnalyzer,
237}
238
239/// SciRS2-powered circuit analyzer
240struct SciRS2CircuitAnalyzer {
241    /// Enable advanced SciRS2 features
242    enable_advanced_features: bool,
243}
244
245impl AutoOptimizer {
246    /// Create a new AutoOptimizer with default configuration
247    pub fn new() -> Self {
248        Self::with_config(AutoOptimizerConfig::default())
249    }
250
251    /// Create a new AutoOptimizer with custom configuration
252    pub fn with_config(config: AutoOptimizerConfig) -> Self {
253        let optimization_config = OptimizationConfig {
254            enable_gate_fusion: true,
255            enable_redundant_elimination: true,
256            enable_commutation_reordering: true,
257            enable_single_qubit_optimization: true,
258            enable_two_qubit_optimization: true,
259            max_passes: 3,
260            enable_depth_reduction: true,
261        };
262
263        let parallel_config = AutoParallelConfig {
264            max_threads: current_num_threads(), // SciRS2 POLICY compliant
265            min_gates_for_parallel: 20,
266            strategy: crate::automatic_parallelization::ParallelizationStrategy::Hybrid,
267            ..Default::default()
268        };
269
270        Self {
271            config,
272            circuit_optimizer: CircuitOptimizer::with_config(optimization_config),
273            parallel_engine: AutoParallelEngine::new(parallel_config),
274            performance_cache: Vec::new(),
275            backend_availability: HashMap::new(),
276            scirs2_analyzer: SciRS2CircuitAnalyzer {
277                enable_advanced_features: true,
278            },
279        }
280    }
281
282    /// Analyze circuit characteristics using SciRS2 tools
283    pub fn analyze_circuit<const N: usize>(
284        &self,
285        circuit: &Circuit<N>,
286    ) -> QuantRS2Result<CircuitCharacteristics> {
287        let start_time = Instant::now();
288
289        // Basic circuit metrics
290        let num_qubits = circuit.num_qubits();
291        let num_gates = circuit.num_gates();
292        let circuit_depth = self.calculate_circuit_depth(circuit);
293
294        // Gate distribution analysis
295        let gate_distribution = self.analyze_gate_distribution(circuit);
296
297        // Parallelism analysis using SciRS2
298        let parallelism_potential = self.analyze_parallelism_potential(circuit)?;
299
300        // Memory requirement estimation
301        let memory_requirement = self.estimate_memory_requirement(num_qubits, num_gates);
302
303        // Complexity scoring using SciRS2 complexity analysis
304        let complexity_score = self.calculate_complexity_score(circuit)?;
305
306        // Two-qubit gate analysis
307        let two_qubit_density = self.calculate_two_qubit_density(circuit);
308
309        // Connectivity analysis
310        let connectivity_properties = self.analyze_connectivity(circuit)?;
311
312        // Entanglement depth estimation using SciRS2
313        let entanglement_depth = self.estimate_entanglement_depth(circuit)?;
314
315        // Noise susceptibility analysis
316        let noise_susceptibility = self.analyze_noise_susceptibility(circuit);
317
318        let analysis_time = start_time.elapsed();
319        if self.config.enable_profiling {
320            println!("Circuit analysis completed in {analysis_time:?}");
321        }
322
323        Ok(CircuitCharacteristics {
324            num_qubits,
325            num_gates,
326            circuit_depth,
327            gate_distribution,
328            parallelism_potential,
329            memory_requirement,
330            complexity_score,
331            two_qubit_density,
332            connectivity_properties,
333            entanglement_depth,
334            noise_susceptibility,
335        })
336    }
337
338    /// Recommend optimal backend based on circuit characteristics
339    pub fn recommend_backend<const N: usize>(
340        &mut self,
341        circuit: &Circuit<N>,
342    ) -> QuantRS2Result<BackendRecommendation> {
343        // Analyze circuit characteristics
344        let characteristics = self.analyze_circuit(circuit)?;
345
346        // Check backend availability
347        self.update_backend_availability()?;
348
349        // Check performance cache for similar circuits
350        if let Some(cached_result) = self.check_performance_cache(&characteristics) {
351            return Ok(self.build_recommendation_from_cache(cached_result));
352        }
353
354        // Generate recommendations based on characteristics
355        let recommendation = self.generate_backend_recommendation(&characteristics)?;
356
357        Ok(recommendation)
358    }
359
360    /// Execute circuit with automatic backend selection
361    pub fn execute_optimized<const N: usize>(
362        &mut self,
363        circuit: &Circuit<N>,
364    ) -> Result<SimulatorResult<N>> {
365        // Get backend recommendation
366        let recommendation = self
367            .recommend_backend(circuit)
368            .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
369
370        if self.config.enable_profiling {
371            println!(
372                "Using {} backend (confidence: {:.2})",
373                self.backend_type_name(recommendation.backend_type),
374                recommendation.confidence
375            );
376            println!("Reasoning: {}", recommendation.reasoning);
377        }
378
379        // Execute with recommended backend
380        let start_time = Instant::now();
381        let register = self.execute_with_backend(circuit, recommendation.backend_type)?;
382        let execution_time = start_time.elapsed();
383
384        // Convert Register to SimulatorResult
385        let result = self.register_to_simulator_result(register);
386
387        // Record performance metrics
388        if self.config.enable_profiling {
389            self.record_performance_metrics(circuit, recommendation.backend_type, execution_time);
390            println!("Execution completed in {execution_time:?}");
391        }
392
393        Ok(result)
394    }
395
396    /// Calculate circuit depth (critical path length)
397    fn calculate_circuit_depth<const N: usize>(&self, circuit: &Circuit<N>) -> usize {
398        let mut qubit_depths = HashMap::new();
399        let mut max_depth = 0;
400
401        for gate in circuit.gates() {
402            let qubits = gate.qubits();
403
404            // Find maximum depth among input qubits
405            let input_depth = qubits
406                .iter()
407                .map(|&q| qubit_depths.get(&q).copied().unwrap_or(0))
408                .max()
409                .unwrap_or(0);
410
411            let new_depth = input_depth + 1;
412
413            // Update depths for all output qubits
414            for &qubit in &qubits {
415                qubit_depths.insert(qubit, new_depth);
416            }
417
418            max_depth = max_depth.max(new_depth);
419        }
420
421        max_depth
422    }
423
424    /// Analyze gate distribution in the circuit
425    fn analyze_gate_distribution<const N: usize>(
426        &self,
427        circuit: &Circuit<N>,
428    ) -> HashMap<String, usize> {
429        let mut distribution = HashMap::new();
430
431        for gate in circuit.gates() {
432            let gate_name = gate.name().to_string();
433            *distribution.entry(gate_name).or_insert(0) += 1;
434        }
435
436        distribution
437    }
438
439    /// Analyze parallelism potential using SciRS2 parallel ops
440    fn analyze_parallelism_potential<const N: usize>(
441        &self,
442        circuit: &Circuit<N>,
443    ) -> QuantRS2Result<f64> {
444        // Use SciRS2-powered parallelization analysis
445        let analysis = self.parallel_engine.analyze_circuit(circuit)?;
446        Ok(analysis.efficiency)
447    }
448
449    /// Estimate memory requirement for circuit simulation
450    const fn estimate_memory_requirement(&self, num_qubits: usize, num_gates: usize) -> usize {
451        // State vector memory: 2^n complex numbers
452        let state_vector_size = (1 << num_qubits) * std::mem::size_of::<Complex64>();
453
454        // Additional overhead for gate operations and intermediate results
455        let overhead = num_gates * 64; // Rough estimate
456
457        state_vector_size + overhead
458    }
459
460    /// Calculate circuit complexity score using SciRS2 complexity analysis
461    fn calculate_complexity_score<const N: usize>(
462        &self,
463        circuit: &Circuit<N>,
464    ) -> QuantRS2Result<f64> {
465        let num_qubits = circuit.num_qubits() as f64;
466        let num_gates = circuit.num_gates() as f64;
467        let depth = self.calculate_circuit_depth(circuit) as f64;
468
469        // SciRS2-inspired complexity scoring
470        let gate_complexity = num_gates * (num_qubits.log2() + 1.0);
471        let depth_complexity = depth * num_qubits;
472        let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
473
474        Ok((gate_complexity + depth_complexity + entanglement_complexity) / 1000.0)
475    }
476
477    /// Estimate entanglement complexity
478    fn estimate_entanglement_complexity<const N: usize>(
479        &self,
480        circuit: &Circuit<N>,
481    ) -> QuantRS2Result<f64> {
482        let mut entanglement_score = 0.0;
483
484        for gate in circuit.gates() {
485            let qubits = gate.qubits();
486            if qubits.len() >= 2 {
487                // Two-qubit gates increase entanglement complexity
488                entanglement_score += qubits.len() as f64 * qubits.len() as f64;
489            }
490        }
491
492        Ok(entanglement_score)
493    }
494
495    /// Calculate two-qubit gate density
496    fn calculate_two_qubit_density<const N: usize>(&self, circuit: &Circuit<N>) -> f64 {
497        let total_gates = circuit.num_gates();
498        if total_gates == 0 {
499            return 0.0;
500        }
501
502        let two_qubit_gates = circuit
503            .gates()
504            .iter()
505            .filter(|gate| gate.qubits().len() >= 2)
506            .count();
507
508        two_qubit_gates as f64 / total_gates as f64
509    }
510
511    /// Analyze circuit connectivity using SciRS2 graph analysis
512    fn analyze_connectivity<const N: usize>(
513        &self,
514        circuit: &Circuit<N>,
515    ) -> QuantRS2Result<ConnectivityProperties> {
516        let mut qubit_connections: HashMap<QubitId, Vec<QubitId>> = HashMap::new();
517
518        // Build connectivity graph
519        for gate in circuit.gates() {
520            let qubits = gate.qubits();
521            if qubits.len() >= 2 {
522                for i in 0..qubits.len() {
523                    for j in (i + 1)..qubits.len() {
524                        qubit_connections
525                            .entry(qubits[i])
526                            .or_default()
527                            .push(qubits[j]);
528                        qubit_connections
529                            .entry(qubits[j])
530                            .or_default()
531                            .push(qubits[i]);
532                    }
533                }
534            }
535        }
536
537        // Calculate connectivity properties
538        let max_degree = qubit_connections
539            .values()
540            .map(|connections| connections.len())
541            .max()
542            .unwrap_or(0);
543
544        let avg_degree = if qubit_connections.is_empty() {
545            0.0
546        } else {
547            qubit_connections
548                .values()
549                .map(|connections| connections.len())
550                .sum::<usize>() as f64
551                / qubit_connections.len() as f64
552        };
553
554        // Simplified connected components analysis
555        let connected_components = 1; // Simplified for now
556
557        // Simplified diameter calculation
558        let diameter = circuit.num_qubits().min(6); // Cap at 6 for practical purposes
559
560        // Simplified clustering coefficient
561        let clustering_coefficient = 0.5; // Placeholder
562
563        Ok(ConnectivityProperties {
564            max_degree,
565            avg_degree,
566            connected_components,
567            diameter,
568            clustering_coefficient,
569        })
570    }
571
572    /// Estimate entanglement depth using SciRS2 analysis
573    fn estimate_entanglement_depth<const N: usize>(
574        &self,
575        circuit: &Circuit<N>,
576    ) -> QuantRS2Result<usize> {
577        // Simplified entanglement depth estimation
578        let two_qubit_gates = circuit
579            .gates()
580            .iter()
581            .filter(|gate| gate.qubits().len() >= 2)
582            .count();
583
584        // Rough estimate based on two-qubit gate count and circuit structure
585        let depth_estimate = (two_qubit_gates as f64).sqrt().ceil() as usize;
586        Ok(depth_estimate.min(circuit.num_qubits()))
587    }
588
589    /// Analyze noise susceptibility
590    fn analyze_noise_susceptibility<const N: usize>(&self, circuit: &Circuit<N>) -> f64 {
591        let depth = self.calculate_circuit_depth(circuit) as f64;
592        let two_qubit_density = self.calculate_two_qubit_density(circuit);
593
594        // Circuits with higher depth and more two-qubit gates are more susceptible to noise
595        (depth / 100.0 + two_qubit_density).min(1.0)
596    }
597
598    /// Update backend availability status
599    fn update_backend_availability(&mut self) -> QuantRS2Result<()> {
600        // Check GPU availability
601        #[cfg(all(feature = "gpu", not(target_os = "macos")))]
602        let gpu_available = SciRS2GpuStateVectorSimulator::is_available();
603        #[cfg(any(not(feature = "gpu"), target_os = "macos"))]
604        let gpu_available = false;
605
606        self.backend_availability
607            .insert(BackendType::SciRS2Gpu, gpu_available);
608
609        // CPU backends are always available
610        self.backend_availability
611            .insert(BackendType::StateVector, true);
612        self.backend_availability
613            .insert(BackendType::LargeScale, true);
614
615        // Distributed availability would require cluster check
616        self.backend_availability
617            .insert(BackendType::Distributed, false);
618
619        Ok(())
620    }
621
622    /// Check performance cache for similar circuits
623    fn check_performance_cache(
624        &self,
625        characteristics: &CircuitCharacteristics,
626    ) -> Option<&PerformanceHistory> {
627        // Simple cache lookup based on circuit characteristics
628        // In practice, would use more sophisticated similarity matching
629        self.performance_cache
630            .iter()
631            .find(|&entry| self.are_characteristics_similar(characteristics, entry))
632            .map(|v| v as _)
633    }
634
635    /// Check if circuit characteristics are similar to cached entry
636    const fn are_characteristics_similar(
637        &self,
638        characteristics: &CircuitCharacteristics,
639        entry: &PerformanceHistory,
640    ) -> bool {
641        // Simplified similarity check - in practice would be more sophisticated
642        false // Always return false for now to avoid cache hits during development
643    }
644
645    /// Build recommendation from cached performance data
646    fn build_recommendation_from_cache(
647        &self,
648        cache_entry: &PerformanceHistory,
649    ) -> BackendRecommendation {
650        BackendRecommendation {
651            backend_type: cache_entry.backend_type,
652            confidence: 0.9, // High confidence for cached results
653            expected_improvement: 0.0,
654            estimated_execution_time: cache_entry.metrics.execution_time,
655            estimated_memory_usage: cache_entry.metrics.memory_usage,
656            reasoning: "Based on cached performance data for similar circuits".to_string(),
657            alternatives: Vec::new(),
658            prediction_model: "Cache-based".to_string(),
659        }
660    }
661
662    /// Generate backend recommendation based on circuit characteristics
663    fn generate_backend_recommendation(
664        &self,
665        characteristics: &CircuitCharacteristics,
666    ) -> QuantRS2Result<BackendRecommendation> {
667        let mut scores: HashMap<BackendType, f64> = HashMap::new();
668        let mut reasoning = String::new();
669
670        // Score different backends based on circuit characteristics
671        for &backend_type in &self.config.backend_preferences {
672            if !self
673                .backend_availability
674                .get(&backend_type)
675                .unwrap_or(&false)
676            {
677                continue;
678            }
679
680            let score = self.score_backend_for_characteristics(backend_type, characteristics);
681            scores.insert(backend_type, score);
682        }
683
684        // Find the best backend
685        let (best_backend, best_score) = scores
686            .into_iter()
687            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
688            .unwrap_or((BackendType::StateVector, 0.5));
689
690        // Generate reasoning
691        reasoning = self.generate_recommendation_reasoning(best_backend, characteristics);
692
693        // Estimate performance
694        let estimated_execution_time = self.estimate_execution_time(best_backend, characteristics);
695        let estimated_memory_usage = characteristics.memory_requirement;
696
697        Ok(BackendRecommendation {
698            backend_type: best_backend,
699            confidence: best_score,
700            expected_improvement: (best_score - 0.5).max(0.0) * 2.0, // Normalize to improvement
701            estimated_execution_time,
702            estimated_memory_usage,
703            reasoning,
704            alternatives: Vec::new(),
705            prediction_model: "SciRS2-guided heuristic".to_string(),
706        })
707    }
708
709    /// Score a backend for given circuit characteristics
710    fn score_backend_for_characteristics(
711        &self,
712        backend_type: BackendType,
713        characteristics: &CircuitCharacteristics,
714    ) -> f64 {
715        let mut score: f64 = 0.5; // Base score
716
717        match backend_type {
718            BackendType::StateVector => {
719                // Good for small circuits
720                if characteristics.num_qubits <= 20 {
721                    score += 0.3;
722                }
723                if characteristics.num_gates <= 1000 {
724                    score += 0.2;
725                }
726            }
727            BackendType::SciRS2Gpu => {
728                // Good for medium to large circuits with high parallelism
729                if characteristics.num_qubits >= 10 && characteristics.num_qubits <= 30 {
730                    score += 0.4;
731                }
732                if characteristics.parallelism_potential > 0.5 {
733                    score += 0.3;
734                }
735                if characteristics.two_qubit_density > 0.3 {
736                    score += 0.2;
737                }
738            }
739            BackendType::LargeScale => {
740                // Good for large circuits
741                if characteristics.num_qubits >= 20 {
742                    score += 0.4;
743                }
744                if characteristics.complexity_score > 0.5 {
745                    score += 0.3;
746                }
747            }
748            BackendType::Distributed => {
749                // Good for very large circuits
750                if characteristics.num_qubits >= 30 {
751                    score += 0.5;
752                }
753                if characteristics.memory_requirement > self.config.memory_budget / 2 {
754                    score += 0.3;
755                }
756            }
757            BackendType::Auto => {
758                // Fallback case
759                score = 0.1;
760            }
761        }
762
763        score.min(1.0)
764    }
765
766    /// Generate recommendation reasoning text
767    fn generate_recommendation_reasoning(
768        &self,
769        backend_type: BackendType,
770        characteristics: &CircuitCharacteristics,
771    ) -> String {
772        match backend_type {
773            BackendType::StateVector => {
774                format!("CPU state vector simulator recommended for {} qubits, {} gates. Suitable for small circuits with straightforward execution.",
775                       characteristics.num_qubits, characteristics.num_gates)
776            }
777            BackendType::SciRS2Gpu => {
778                format!("SciRS2 GPU simulator recommended for {} qubits, {} gates. High parallelism potential ({:.2}) and two-qubit gate density ({:.2}) make GPU acceleration beneficial.",
779                       characteristics.num_qubits, characteristics.num_gates, characteristics.parallelism_potential, characteristics.two_qubit_density)
780            }
781            BackendType::LargeScale => {
782                format!("Large-scale simulator recommended for {} qubits, {} gates. Circuit complexity ({:.2}) and depth ({}) require optimized memory management.",
783                       characteristics.num_qubits, characteristics.num_gates, characteristics.complexity_score, characteristics.circuit_depth)
784            }
785            BackendType::Distributed => {
786                format!("Distributed simulator recommended for {} qubits, {} gates. Memory requirement ({:.1} MB) exceeds single-node capacity.",
787                       characteristics.num_qubits, characteristics.num_gates, characteristics.memory_requirement as f64 / (1024.0 * 1024.0))
788            }
789            BackendType::Auto => "Automatic backend selection".to_string(),
790        }
791    }
792
793    /// Estimate execution time for backend and characteristics
794    fn estimate_execution_time(
795        &self,
796        backend_type: BackendType,
797        characteristics: &CircuitCharacteristics,
798    ) -> Duration {
799        let base_time_ms = match backend_type {
800            BackendType::StateVector => characteristics.num_gates as u64 * 10,
801            BackendType::SciRS2Gpu => characteristics.num_gates as u64 * 2,
802            BackendType::LargeScale => characteristics.num_gates as u64 * 5,
803            BackendType::Distributed => characteristics.num_gates as u64 * 15,
804            BackendType::Auto => characteristics.num_gates as u64 * 10,
805        };
806
807        // Apply complexity factor
808        let complexity_factor = characteristics.complexity_score.mul_add(2.0, 1.0) as u64;
809        Duration::from_millis(base_time_ms * complexity_factor)
810    }
811
812    /// Execute circuit with specified backend
813    fn execute_with_backend<const N: usize>(
814        &self,
815        circuit: &Circuit<N>,
816        backend_type: BackendType,
817    ) -> Result<Register<N>> {
818        match backend_type {
819            BackendType::StateVector => {
820                let simulator = StateVectorSimulator::new();
821                simulator
822                    .run(circuit)
823                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
824                    .and_then(|result| {
825                        Register::with_amplitudes(result.amplitudes().to_vec())
826                            .map_err(|e| SimulatorError::ComputationError(e.to_string()))
827                    })
828            }
829            BackendType::SciRS2Gpu => {
830                #[cfg(all(feature = "gpu", not(target_os = "macos")))]
831                {
832                    let mut simulator = SciRS2GpuStateVectorSimulator::new()
833                        .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
834                    use crate::simulator::Simulator;
835                    simulator
836                        .run(circuit)
837                        .map_err(|e| SimulatorError::ComputationError(e.to_string()))
838                        .and_then(|result| {
839                            Register::with_amplitudes(result.amplitudes().to_vec())
840                                .map_err(|e| SimulatorError::ComputationError(e.to_string()))
841                        })
842                }
843                #[cfg(any(not(feature = "gpu"), target_os = "macos"))]
844                {
845                    // Fallback to state vector if GPU not available
846                    let simulator = StateVectorSimulator::new();
847                    simulator
848                        .run(circuit)
849                        .map_err(|e| SimulatorError::ComputationError(e.to_string()))
850                        .and_then(|result| {
851                            Register::with_amplitudes(result.amplitudes().to_vec())
852                                .map_err(|e| SimulatorError::ComputationError(e.to_string()))
853                        })
854                }
855            }
856            BackendType::LargeScale => {
857                // Create large-scale simulator with optimized configuration
858                let config = LargeScaleSimulatorConfig::default();
859                let simulator = LargeScaleQuantumSimulator::new(config)
860                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
861                simulator
862                    .run(circuit)
863                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
864            }
865            BackendType::Distributed => {
866                // Fallback to large-scale for now
867                let config = LargeScaleSimulatorConfig::default();
868                let simulator = LargeScaleQuantumSimulator::new(config)
869                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))?;
870                simulator
871                    .run(circuit)
872                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
873            }
874            BackendType::Auto => {
875                // This should not happen, but fallback to state vector
876                let simulator = StateVectorSimulator::new();
877                simulator
878                    .run(circuit)
879                    .map_err(|e| SimulatorError::ComputationError(e.to_string()))
880            }
881        }
882    }
883
884    /// Convert Register to SimulatorResult
885    fn register_to_simulator_result<const N: usize>(
886        &self,
887        register: Register<N>,
888    ) -> SimulatorResult<N> {
889        // Extract amplitudes from register
890        let amplitudes = register.amplitudes().to_vec();
891
892        SimulatorResult {
893            amplitudes,
894            num_qubits: N,
895        }
896    }
897
898    /// Record performance metrics for future optimization
899    fn record_performance_metrics<const N: usize>(
900        &mut self,
901        circuit: &Circuit<N>,
902        backend_type: BackendType,
903        execution_time: Duration,
904    ) {
905        let metrics = PerformanceMetrics {
906            execution_time,
907            memory_usage: 0,      // Would be measured in practice
908            cpu_utilization: 0.0, // Would be measured in practice
909            gpu_utilization: None,
910            throughput: circuit.num_gates() as f64 / execution_time.as_secs_f64(),
911            error_rate: 0.0,
912        };
913
914        let history_entry = PerformanceHistory {
915            circuit_hash: self.compute_circuit_hash(circuit),
916            backend_type,
917            metrics,
918            timestamp: Instant::now(),
919        };
920
921        self.performance_cache.push(history_entry);
922
923        // Maintain cache size limit
924        if self.performance_cache.len() > self.config.performance_cache_size {
925            self.performance_cache.remove(0);
926        }
927    }
928
929    /// Compute hash for circuit caching
930    fn compute_circuit_hash<const N: usize>(&self, circuit: &Circuit<N>) -> u64 {
931        use std::collections::hash_map::DefaultHasher;
932        use std::hash::{Hash, Hasher};
933
934        let mut hasher = DefaultHasher::new();
935        circuit.num_gates().hash(&mut hasher);
936        circuit.num_qubits().hash(&mut hasher);
937
938        for gate in circuit.gates() {
939            gate.name().hash(&mut hasher);
940            gate.qubits().len().hash(&mut hasher);
941        }
942
943        hasher.finish()
944    }
945
946    /// Get human-readable backend type name
947    const fn backend_type_name(&self, backend_type: BackendType) -> &'static str {
948        match backend_type {
949            BackendType::StateVector => "CPU StateVector",
950            BackendType::SciRS2Gpu => "SciRS2 GPU",
951            BackendType::LargeScale => "Large-Scale",
952            BackendType::Distributed => "Distributed",
953            BackendType::Auto => "Auto",
954        }
955    }
956
957    /// Get optimization statistics
958    pub fn get_performance_summary(&self) -> String {
959        let total_circuits = self.performance_cache.len();
960        if total_circuits == 0 {
961            return "No performance data available".to_string();
962        }
963
964        let avg_execution_time = self
965            .performance_cache
966            .iter()
967            .map(|entry| entry.metrics.execution_time.as_millis())
968            .sum::<u128>()
969            / total_circuits as u128;
970
971        let backend_usage: HashMap<BackendType, usize> =
972            self.performance_cache
973                .iter()
974                .fold(HashMap::new(), |mut acc, entry| {
975                    *acc.entry(entry.backend_type).or_insert(0) += 1;
976                    acc
977                });
978
979        let mut summary = "AutoOptimizer Performance Summary\n".to_string();
980        summary.push_str(&format!("Total circuits processed: {total_circuits}\n"));
981        summary.push_str(&format!("Average execution time: {avg_execution_time}ms\n"));
982        summary.push_str("Backend usage:\n");
983
984        for (backend, count) in backend_usage {
985            let percentage = (count as f64 / total_circuits as f64) * 100.0;
986            summary.push_str(&format!(
987                "  {}: {} ({:.1}%)\n",
988                self.backend_type_name(backend),
989                count,
990                percentage
991            ));
992        }
993
994        summary
995    }
996}
997
998impl Default for AutoOptimizer {
999    fn default() -> Self {
1000        Self::new()
1001    }
1002}
1003
1004impl SciRS2CircuitAnalyzer {
1005    /// Analyze circuit using SciRS2 tools (placeholder for future SciRS2 integration)
1006    const fn analyze_circuit_with_scirs2<const N: usize>(
1007        &self,
1008        _circuit: &Circuit<N>,
1009    ) -> QuantRS2Result<f64> {
1010        // Placeholder for SciRS2-specific circuit analysis
1011        // Would use scirs2_core analysis tools when available
1012        Ok(0.7) // Mock analysis result
1013    }
1014}
1015
1016/// Convenience function to execute a circuit with automatic optimization
1017pub fn execute_with_auto_optimization<const N: usize>(
1018    circuit: &Circuit<N>,
1019) -> Result<SimulatorResult<N>> {
1020    let mut optimizer = AutoOptimizer::new();
1021    optimizer.execute_optimized(circuit)
1022}
1023
1024/// Convenience function to get backend recommendation for a circuit
1025pub fn recommend_backend_for_circuit<const N: usize>(
1026    circuit: &Circuit<N>,
1027) -> QuantRS2Result<BackendRecommendation> {
1028    let mut optimizer = AutoOptimizer::new();
1029    optimizer.recommend_backend(circuit)
1030}
1031
1032#[cfg(test)]
1033mod tests {
1034    use super::*;
1035    use quantrs2_circuit::builder::CircuitBuilder;
1036
1037    #[test]
1038    fn test_auto_optimizer_creation() {
1039        let optimizer = AutoOptimizer::new();
1040        assert!(optimizer.config.enable_profiling);
1041    }
1042
1043    #[test]
1044    fn test_circuit_characteristics_analysis() {
1045        let optimizer = AutoOptimizer::new();
1046
1047        // Create a simple test circuit
1048        let mut builder = CircuitBuilder::<4>::new();
1049        let _ = builder.h(0);
1050        let _ = builder.cnot(0, 1);
1051        let _ = builder.h(2);
1052        let _ = builder.cnot(2, 3);
1053        let circuit = builder.build();
1054
1055        let characteristics = optimizer.analyze_circuit(&circuit).unwrap();
1056
1057        assert_eq!(characteristics.num_qubits, 4);
1058        assert_eq!(characteristics.num_gates, 4);
1059        assert!(characteristics.circuit_depth > 0);
1060        assert!(characteristics.two_qubit_density > 0.0);
1061    }
1062
1063    #[test]
1064    fn test_backend_recommendation() {
1065        let mut optimizer = AutoOptimizer::new();
1066
1067        // Create a small circuit
1068        let mut builder = CircuitBuilder::<2>::new();
1069        let _ = builder.h(0);
1070        let _ = builder.cnot(0, 1);
1071        let circuit = builder.build();
1072
1073        let recommendation = optimizer.recommend_backend(&circuit).unwrap();
1074
1075        assert!(recommendation.confidence > 0.0);
1076        assert!(!recommendation.reasoning.is_empty());
1077    }
1078
1079    #[test]
1080    fn test_execute_with_optimization() {
1081        let mut optimizer = AutoOptimizer::new();
1082
1083        // Create a simple circuit
1084        let mut builder = CircuitBuilder::<2>::new();
1085        let _ = builder.h(0);
1086        let _ = builder.cnot(0, 1);
1087        let circuit = builder.build();
1088
1089        let result = optimizer.execute_optimized(&circuit);
1090        assert!(result.is_ok());
1091
1092        if let Ok(sim_result) = result {
1093            assert_eq!(sim_result.num_qubits, 2);
1094            assert_eq!(sim_result.amplitudes.len(), 4);
1095        }
1096    }
1097
1098    #[test]
1099    fn test_convenience_functions() {
1100        // Create a simple circuit
1101        let mut builder = CircuitBuilder::<2>::new();
1102        let _ = builder.h(0);
1103        let _ = builder.cnot(0, 1);
1104        let circuit = builder.build();
1105
1106        // Test recommendation function
1107        let recommendation = recommend_backend_for_circuit(&circuit);
1108        assert!(recommendation.is_ok());
1109
1110        // Test execution function
1111        let result = execute_with_auto_optimization(&circuit);
1112        assert!(result.is_ok());
1113    }
1114}