quantrs2_sim/
advanced_variational_algorithms.rs

1//! Advanced Variational Quantum Algorithms (VQA) Framework
2//!
3//! This module provides a comprehensive implementation of state-of-the-art variational
4//! quantum algorithms including VQE, QAOA, VQA with advanced optimizers, and novel
5//! variational approaches for quantum machine learning and optimization.
6
7use scirs2_core::ndarray::{Array1, Array2};
8use scirs2_core::Complex64;
9use serde::{Deserialize, Serialize};
10use std::collections::{HashMap, VecDeque};
11use std::time::{Duration, Instant};
12
13use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
14use crate::error::{Result, SimulatorError};
15use scirs2_core::random::prelude::*;
16
17/// Advanced VQA optimizer types
18#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
19pub enum AdvancedOptimizerType {
20    /// Simultaneous Perturbation Stochastic Approximation
21    SPSA,
22    /// Natural gradient with Fisher information matrix
23    NaturalGradient,
24    /// Quantum Natural Gradient (QNG)
25    QuantumNaturalGradient,
26    /// Adaptive Moment Estimation (Adam) with quantum-aware learning rates
27    QuantumAdam,
28    /// Limited-memory BFGS for quantum optimization
29    LBFGS,
30    /// Bayesian optimization for noisy quantum landscapes
31    BayesianOptimization,
32    /// Reinforcement learning-based parameter optimization
33    ReinforcementLearning,
34    /// Evolutionary strategy optimization
35    EvolutionaryStrategy,
36    /// Quantum-enhanced particle swarm optimization
37    QuantumParticleSwarm,
38    /// Meta-learning optimizer that adapts to quantum hardware characteristics
39    MetaLearningOptimizer,
40}
41
42/// Variational ansatz types
43#[derive(Debug, Clone, Serialize, Deserialize)]
44pub enum VariationalAnsatz {
45    /// Hardware-efficient ansatz with parameterized gates
46    HardwareEfficient {
47        layers: usize,
48        entangling_gates: Vec<InterfaceGateType>,
49        rotation_gates: Vec<InterfaceGateType>,
50    },
51    /// Unitary Coupled Cluster Singles and Doubles (UCCSD)
52    UCCSD {
53        num_electrons: usize,
54        num_orbitals: usize,
55        include_triples: bool,
56    },
57    /// Quantum Alternating Operator Ansatz (QAOA)
58    QAOA {
59        problem_hamiltonian: ProblemHamiltonian,
60        mixer_hamiltonian: MixerHamiltonian,
61        layers: usize,
62    },
63    /// Adaptive ansatz that grows during optimization
64    Adaptive {
65        max_layers: usize,
66        growth_criterion: GrowthCriterion,
67        #[serde(skip)]
68        operator_pool: Vec<InterfaceGate>,
69    },
70    /// Neural network-inspired quantum circuits
71    QuantumNeuralNetwork {
72        hidden_layers: Vec<usize>,
73        activation_type: QuantumActivation,
74        connectivity: NetworkConnectivity,
75    },
76    /// Tensor network-inspired ansatz
77    TensorNetworkAnsatz {
78        bond_dimension: usize,
79        network_topology: TensorTopology,
80        compression_method: CompressionMethod,
81    },
82}
83
84/// Problem Hamiltonian for optimization problems
85#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
86pub struct ProblemHamiltonian {
87    pub terms: Vec<HamiltonianTerm>,
88    pub problem_type: OptimizationProblemType,
89}
90
91/// Mixer Hamiltonian for QAOA
92#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
93pub struct MixerHamiltonian {
94    pub terms: Vec<HamiltonianTerm>,
95    pub mixer_type: MixerType,
96}
97
98/// Hamiltonian terms
99#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
100pub struct HamiltonianTerm {
101    pub coefficient: Complex64,
102    pub pauli_string: String,
103    pub qubits: Vec<usize>,
104}
105
106/// Optimization problem types
107#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
108pub enum OptimizationProblemType {
109    MaxCut,
110    TSP,
111    BinPacking,
112    JobShop,
113    PortfolioOptimization,
114    VehicleRouting,
115    GraphColoring,
116    Boolean3SAT,
117    QuadraticAssignment,
118    CustomCombinatorial,
119}
120
121/// Mixer types for QAOA
122#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
123pub enum MixerType {
124    /// Standard X-mixer
125    XMixer,
126    /// XY-mixer for constrained problems
127    XYMixer,
128    /// Ring mixer for circular constraints
129    RingMixer,
130    /// Custom mixer
131    CustomMixer,
132}
133
134/// Growth criteria for adaptive ansatz
135#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
136pub enum GrowthCriterion {
137    /// Add layers when gradient norm is below threshold
138    GradientThreshold(f64),
139    /// Add layers when cost improvement stagnates
140    ImprovementStagnation,
141    /// Add layers when variance decreases below threshold
142    VarianceThreshold(f64),
143    /// Add layers based on quantum Fisher information
144    QuantumFisherInformation,
145}
146
147/// Quantum activation functions
148#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
149pub enum QuantumActivation {
150    /// Rotation-based activation
151    RotationActivation,
152    /// Controlled rotation activation
153    ControlledRotation,
154    /// Entangling activation
155    EntanglingActivation,
156    /// Quantum ReLU approximation
157    QuantumReLU,
158}
159
160/// Network connectivity patterns
161#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
162pub enum NetworkConnectivity {
163    FullyConnected,
164    NearestNeighbor,
165    Random,
166    SmallWorld,
167    ScaleFree,
168}
169
170/// Tensor network topologies
171#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
172pub enum TensorTopology {
173    MPS,
174    MERA,
175    TTN,
176    PEPS,
177    Hierarchical,
178}
179
180/// Compression methods for tensor networks
181#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
182pub enum CompressionMethod {
183    SVD,
184    QR,
185    Variational,
186    DMRG,
187}
188
189/// VQA configuration
190#[derive(Debug, Clone)]
191pub struct VQAConfig {
192    /// Maximum number of optimization iterations
193    pub max_iterations: usize,
194    /// Convergence tolerance for cost function
195    pub convergence_tolerance: f64,
196    /// Optimizer type
197    pub optimizer: AdvancedOptimizerType,
198    /// Learning rate (adaptive)
199    pub learning_rate: f64,
200    /// Shot noise for finite sampling
201    pub shots: Option<usize>,
202    /// Enable gradient clipping
203    pub gradient_clipping: Option<f64>,
204    /// Regularization strength
205    pub regularization: f64,
206    /// Enable parameter bounds
207    pub parameter_bounds: Option<(f64, f64)>,
208    /// Warm restart configuration
209    pub warm_restart: Option<WarmRestartConfig>,
210    /// Hardware-aware optimization
211    pub hardware_aware: bool,
212    /// Noise-aware optimization
213    pub noise_aware: bool,
214}
215
216impl Default for VQAConfig {
217    fn default() -> Self {
218        Self {
219            max_iterations: 1000,
220            convergence_tolerance: 1e-6,
221            optimizer: AdvancedOptimizerType::QuantumAdam,
222            learning_rate: 0.01,
223            shots: None,
224            gradient_clipping: Some(1.0),
225            regularization: 0.0,
226            parameter_bounds: None,
227            warm_restart: None,
228            hardware_aware: true,
229            noise_aware: true,
230        }
231    }
232}
233
234/// Warm restart configuration
235#[derive(Debug, Clone)]
236pub struct WarmRestartConfig {
237    pub restart_period: usize,
238    pub restart_factor: f64,
239    pub min_learning_rate: f64,
240}
241
242/// VQA optimization result
243#[derive(Debug, Clone, Serialize, Deserialize)]
244pub struct VQAResult {
245    /// Optimal parameters found
246    pub optimal_parameters: Vec<f64>,
247    /// Final cost function value
248    pub optimal_cost: f64,
249    /// Optimization history
250    pub cost_history: Vec<f64>,
251    /// Parameter history
252    pub parameter_history: Vec<Vec<f64>>,
253    /// Gradient norms history
254    pub gradient_norms: Vec<f64>,
255    /// Number of iterations performed
256    pub iterations: usize,
257    /// Total optimization time
258    pub optimization_time: Duration,
259    /// Convergence information
260    pub converged: bool,
261    /// Final quantum state
262    pub final_state: Option<Array1<Complex64>>,
263    /// Expectation values of observables
264    pub expectation_values: HashMap<String, f64>,
265}
266
267/// VQA trainer state
268#[derive(Debug, Clone)]
269pub struct VQATrainerState {
270    /// Current parameters
271    pub parameters: Vec<f64>,
272    /// Current cost
273    pub current_cost: f64,
274    /// Optimizer state (momentum, etc.)
275    pub optimizer_state: OptimizerState,
276    /// Iteration count
277    pub iteration: usize,
278    /// Best parameters seen so far
279    pub best_parameters: Vec<f64>,
280    /// Best cost seen so far
281    pub best_cost: f64,
282    /// Learning rate schedule
283    pub learning_rate: f64,
284}
285
286/// Optimizer internal state
287#[derive(Debug, Clone)]
288pub struct OptimizerState {
289    /// Momentum terms for Adam-like optimizers
290    pub momentum: Vec<f64>,
291    /// Velocity terms for Adam-like optimizers
292    pub velocity: Vec<f64>,
293    /// Natural gradient Fisher information matrix
294    pub fisher_matrix: Option<Array2<f64>>,
295    /// LBFGS history
296    pub lbfgs_history: VecDeque<(Vec<f64>, Vec<f64>)>,
297    /// Bayesian optimization surrogate model
298    pub bayesian_model: Option<BayesianModel>,
299}
300
301/// Bayesian optimization model
302#[derive(Debug, Clone)]
303pub struct BayesianModel {
304    pub kernel_hyperparameters: Vec<f64>,
305    pub observed_points: Vec<Vec<f64>>,
306    pub observed_values: Vec<f64>,
307    pub acquisition_function: AcquisitionFunction,
308}
309
310/// Acquisition functions for Bayesian optimization
311#[derive(Debug, Clone, Copy, PartialEq, Eq)]
312pub enum AcquisitionFunction {
313    ExpectedImprovement,
314    UpperConfidenceBound,
315    ProbabilityOfImprovement,
316    Entropy,
317}
318
319/// Advanced Variational Quantum Algorithm trainer
320pub struct AdvancedVQATrainer {
321    /// Configuration
322    config: VQAConfig,
323    /// Current trainer state
324    state: VQATrainerState,
325    /// Cost function
326    cost_function: Box<dyn CostFunction + Send + Sync>,
327    /// Ansatz circuit generator
328    ansatz: VariationalAnsatz,
329    /// Gradient calculator
330    gradient_calculator: Box<dyn GradientCalculator + Send + Sync>,
331    /// Statistics
332    stats: VQATrainingStats,
333}
334
335/// Cost function trait
336pub trait CostFunction: Send + Sync {
337    /// Evaluate cost function for given parameters
338    fn evaluate(&self, parameters: &[f64], circuit: &InterfaceCircuit) -> Result<f64>;
339
340    /// Get observables for expectation value calculation
341    fn get_observables(&self) -> Vec<String>;
342
343    /// Check if cost function is variational (depends on quantum state)
344    fn is_variational(&self) -> bool;
345}
346
347/// Gradient calculation methods
348pub trait GradientCalculator: Send + Sync {
349    /// Calculate gradient using specified method
350    fn calculate_gradient(
351        &self,
352        parameters: &[f64],
353        cost_function: &dyn CostFunction,
354        circuit: &InterfaceCircuit,
355    ) -> Result<Vec<f64>>;
356
357    /// Get gradient calculation method name
358    fn method_name(&self) -> &str;
359}
360
361/// VQA training statistics
362#[derive(Debug, Clone, Serialize, Deserialize)]
363pub struct VQATrainingStats {
364    /// Total training time
365    pub total_time: Duration,
366    /// Time per iteration
367    pub iteration_times: Vec<Duration>,
368    /// Function evaluations per iteration
369    pub function_evaluations: Vec<usize>,
370    /// Gradient evaluations per iteration
371    pub gradient_evaluations: Vec<usize>,
372    /// Memory usage statistics
373    pub memory_usage: Vec<usize>,
374    /// Quantum circuit depths
375    pub circuit_depths: Vec<usize>,
376    /// Parameter update magnitudes
377    pub parameter_update_magnitudes: Vec<f64>,
378}
379
380impl AdvancedVQATrainer {
381    /// Create new VQA trainer
382    pub fn new(
383        config: VQAConfig,
384        ansatz: VariationalAnsatz,
385        cost_function: Box<dyn CostFunction + Send + Sync>,
386        gradient_calculator: Box<dyn GradientCalculator + Send + Sync>,
387    ) -> Result<Self> {
388        let num_parameters = Self::count_parameters(&ansatz)?;
389
390        let state = VQATrainerState {
391            parameters: Self::initialize_parameters(num_parameters, &config)?,
392            current_cost: f64::INFINITY,
393            optimizer_state: OptimizerState {
394                momentum: vec![0.0; num_parameters],
395                velocity: vec![0.0; num_parameters],
396                fisher_matrix: None,
397                lbfgs_history: VecDeque::new(),
398                bayesian_model: None,
399            },
400            iteration: 0,
401            best_parameters: vec![0.0; num_parameters],
402            best_cost: f64::INFINITY,
403            learning_rate: config.learning_rate,
404        };
405
406        Ok(Self {
407            config,
408            state,
409            cost_function,
410            ansatz,
411            gradient_calculator,
412            stats: VQATrainingStats {
413                total_time: Duration::new(0, 0),
414                iteration_times: Vec::new(),
415                function_evaluations: Vec::new(),
416                gradient_evaluations: Vec::new(),
417                memory_usage: Vec::new(),
418                circuit_depths: Vec::new(),
419                parameter_update_magnitudes: Vec::new(),
420            },
421        })
422    }
423
424    /// Train the variational quantum algorithm
425    pub fn train(&mut self) -> Result<VQAResult> {
426        let start_time = Instant::now();
427        let mut cost_history = Vec::new();
428        let mut parameter_history = Vec::new();
429        let mut gradient_norms = Vec::new();
430
431        for iteration in 0..self.config.max_iterations {
432            let iter_start = Instant::now();
433            self.state.iteration = iteration;
434
435            // Generate circuit with current parameters
436            let circuit = self.generate_circuit(&self.state.parameters)?;
437
438            // Evaluate cost function
439            let cost = self
440                .cost_function
441                .evaluate(&self.state.parameters, &circuit)?;
442            self.state.current_cost = cost;
443
444            // Update best parameters
445            if cost < self.state.best_cost {
446                self.state.best_cost = cost;
447                self.state.best_parameters = self.state.parameters.clone();
448            }
449
450            // Calculate gradient
451            let gradient = self.gradient_calculator.calculate_gradient(
452                &self.state.parameters,
453                self.cost_function.as_ref(),
454                &circuit,
455            )?;
456
457            let gradient_norm = gradient.iter().map(|g| g.powi(2)).sum::<f64>().sqrt();
458            gradient_norms.push(gradient_norm);
459
460            // Apply gradient clipping if configured
461            let clipped_gradient = if let Some(clip_value) = self.config.gradient_clipping {
462                if gradient_norm > clip_value {
463                    gradient
464                        .iter()
465                        .map(|g| g * clip_value / gradient_norm)
466                        .collect()
467                } else {
468                    gradient
469                }
470            } else {
471                gradient
472            };
473
474            // Update parameters using optimizer
475            let parameter_update = self.update_parameters(&clipped_gradient)?;
476
477            // Store statistics
478            cost_history.push(cost);
479            parameter_history.push(self.state.parameters.clone());
480            self.stats.iteration_times.push(iter_start.elapsed());
481            self.stats.function_evaluations.push(1); // Simplified
482            self.stats.gradient_evaluations.push(1); // Simplified
483            self.stats.parameter_update_magnitudes.push(
484                parameter_update
485                    .iter()
486                    .map(|u| u.powi(2))
487                    .sum::<f64>()
488                    .sqrt(),
489            );
490
491            // Check convergence
492            if gradient_norm < self.config.convergence_tolerance {
493                break;
494            }
495
496            // Warm restart if configured
497            if let Some(ref restart_config) = self.config.warm_restart {
498                if iteration % restart_config.restart_period == 0 && iteration > 0 {
499                    self.state.learning_rate = (self.state.learning_rate
500                        * restart_config.restart_factor)
501                        .max(restart_config.min_learning_rate);
502                }
503            }
504        }
505
506        let total_time = start_time.elapsed();
507        self.stats.total_time = total_time;
508
509        // Generate final circuit and state
510        let final_circuit = self.generate_circuit(&self.state.best_parameters)?;
511        let final_state = self.simulate_circuit(&final_circuit)?;
512
513        // Calculate expectation values
514        let expectation_values = self.calculate_expectation_values(&final_state)?;
515
516        let converged = gradient_norms
517            .last()
518            .is_some_and(|&norm| norm < self.config.convergence_tolerance);
519
520        Ok(VQAResult {
521            optimal_parameters: self.state.best_parameters.clone(),
522            optimal_cost: self.state.best_cost,
523            cost_history,
524            parameter_history,
525            gradient_norms,
526            iterations: self.state.iteration + 1,
527            optimization_time: total_time,
528            converged,
529            final_state: Some(final_state),
530            expectation_values,
531        })
532    }
533
534    /// Generate parametric circuit from ansatz
535    fn generate_circuit(&self, parameters: &[f64]) -> Result<InterfaceCircuit> {
536        match &self.ansatz {
537            VariationalAnsatz::HardwareEfficient {
538                layers,
539                entangling_gates,
540                rotation_gates,
541            } => self.generate_hardware_efficient_circuit(
542                parameters,
543                *layers,
544                entangling_gates,
545                rotation_gates,
546            ),
547            VariationalAnsatz::UCCSD {
548                num_electrons,
549                num_orbitals,
550                include_triples,
551            } => self.generate_uccsd_circuit(
552                parameters,
553                *num_electrons,
554                *num_orbitals,
555                *include_triples,
556            ),
557            VariationalAnsatz::QAOA {
558                problem_hamiltonian,
559                mixer_hamiltonian,
560                layers,
561            } => self.generate_qaoa_circuit(
562                parameters,
563                problem_hamiltonian,
564                mixer_hamiltonian,
565                *layers,
566            ),
567            VariationalAnsatz::Adaptive {
568                max_layers,
569                growth_criterion,
570                operator_pool,
571            } => self.generate_adaptive_circuit(
572                parameters,
573                *max_layers,
574                growth_criterion,
575                operator_pool,
576            ),
577            VariationalAnsatz::QuantumNeuralNetwork {
578                hidden_layers,
579                activation_type,
580                connectivity,
581            } => {
582                self.generate_qnn_circuit(parameters, hidden_layers, activation_type, connectivity)
583            }
584            VariationalAnsatz::TensorNetworkAnsatz {
585                bond_dimension,
586                network_topology,
587                compression_method,
588            } => self.generate_tensor_network_circuit(
589                parameters,
590                *bond_dimension,
591                network_topology,
592                compression_method,
593            ),
594        }
595    }
596
597    /// Generate hardware-efficient ansatz circuit
598    fn generate_hardware_efficient_circuit(
599        &self,
600        parameters: &[f64],
601        layers: usize,
602        entangling_gates: &[InterfaceGateType],
603        rotation_gates: &[InterfaceGateType],
604    ) -> Result<InterfaceCircuit> {
605        let num_qubits = self.infer_num_qubits_from_parameters(parameters.len(), layers)?;
606        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
607        let mut param_idx = 0;
608
609        for layer in 0..layers {
610            // Rotation layer
611            for qubit in 0..num_qubits {
612                for gate_type in rotation_gates {
613                    match gate_type {
614                        InterfaceGateType::RX(_) => {
615                            circuit.add_gate(InterfaceGate::new(
616                                InterfaceGateType::RX(parameters[param_idx]),
617                                vec![qubit],
618                            ));
619                            param_idx += 1;
620                        }
621                        InterfaceGateType::RY(_) => {
622                            circuit.add_gate(InterfaceGate::new(
623                                InterfaceGateType::RY(parameters[param_idx]),
624                                vec![qubit],
625                            ));
626                            param_idx += 1;
627                        }
628                        InterfaceGateType::RZ(_) => {
629                            circuit.add_gate(InterfaceGate::new(
630                                InterfaceGateType::RZ(parameters[param_idx]),
631                                vec![qubit],
632                            ));
633                            param_idx += 1;
634                        }
635                        _ => {
636                            circuit.add_gate(InterfaceGate::new(gate_type.clone(), vec![qubit]));
637                        }
638                    }
639                }
640            }
641
642            // Entangling layer
643            for qubit in 0..num_qubits - 1 {
644                for gate_type in entangling_gates {
645                    match gate_type {
646                        InterfaceGateType::CNOT => {
647                            circuit.add_gate(InterfaceGate::new(
648                                InterfaceGateType::CNOT,
649                                vec![qubit, qubit + 1],
650                            ));
651                        }
652                        InterfaceGateType::CZ => {
653                            circuit.add_gate(InterfaceGate::new(
654                                InterfaceGateType::CZ,
655                                vec![qubit, qubit + 1],
656                            ));
657                        }
658                        InterfaceGateType::CRZ(_) => {
659                            circuit.add_gate(InterfaceGate::new(
660                                InterfaceGateType::CRZ(parameters[param_idx]),
661                                vec![qubit, qubit + 1],
662                            ));
663                            param_idx += 1;
664                        }
665                        _ => {
666                            circuit.add_gate(InterfaceGate::new(
667                                gate_type.clone(),
668                                vec![qubit, qubit + 1],
669                            ));
670                        }
671                    }
672                }
673            }
674        }
675
676        Ok(circuit)
677    }
678
679    /// Generate UCCSD circuit
680    fn generate_uccsd_circuit(
681        &self,
682        parameters: &[f64],
683        num_electrons: usize,
684        num_orbitals: usize,
685        include_triples: bool,
686    ) -> Result<InterfaceCircuit> {
687        let num_qubits = 2 * num_orbitals; // Spin orbitals
688        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
689        let mut param_idx = 0;
690
691        // Hartree-Fock reference state preparation
692        for i in 0..num_electrons {
693            circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![i]));
694        }
695
696        // Singles excitations
697        for i in 0..num_electrons {
698            for a in num_electrons..num_qubits {
699                if param_idx < parameters.len() {
700                    // Apply single excitation operator exp(θ(a†a - aa†))
701                    let theta = parameters[param_idx];
702
703                    // Simplified single excitation - would need proper Jordan-Wigner transformation
704                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(theta), vec![i]));
705                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, a]));
706                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(-theta), vec![a]));
707
708                    param_idx += 1;
709                }
710            }
711        }
712
713        // Doubles excitations
714        for i in 0..num_electrons {
715            for j in i + 1..num_electrons {
716                for a in num_electrons..num_qubits {
717                    for b in a + 1..num_qubits {
718                        if param_idx < parameters.len() {
719                            // Apply double excitation operator
720                            let theta = parameters[param_idx];
721
722                            // Simplified double excitation
723                            circuit.add_gate(InterfaceGate::new(
724                                InterfaceGateType::RY(theta),
725                                vec![i],
726                            ));
727                            circuit
728                                .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
729                            circuit
730                                .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![j, a]));
731                            circuit
732                                .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![a, b]));
733                            circuit.add_gate(InterfaceGate::new(
734                                InterfaceGateType::RY(-theta),
735                                vec![b],
736                            ));
737
738                            param_idx += 1;
739                        }
740                    }
741                }
742            }
743        }
744
745        // Triples (if enabled) - simplified implementation
746        if include_triples {
747            // Would implement triple excitations here
748        }
749
750        Ok(circuit)
751    }
752
753    /// Generate QAOA circuit
754    fn generate_qaoa_circuit(
755        &self,
756        parameters: &[f64],
757        problem_hamiltonian: &ProblemHamiltonian,
758        mixer_hamiltonian: &MixerHamiltonian,
759        layers: usize,
760    ) -> Result<InterfaceCircuit> {
761        let num_qubits = self.extract_num_qubits_from_hamiltonian(problem_hamiltonian)?;
762        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
763        let mut param_idx = 0;
764
765        // Initial superposition state
766        for qubit in 0..num_qubits {
767            circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
768        }
769
770        // QAOA layers
771        for _layer in 0..layers {
772            // Problem Hamiltonian evolution (Cost layer)
773            if param_idx < parameters.len() {
774                let gamma = parameters[param_idx];
775                self.apply_hamiltonian_evolution(&mut circuit, problem_hamiltonian, gamma)?;
776                param_idx += 1;
777            }
778
779            // Mixer Hamiltonian evolution (Mixer layer)
780            if param_idx < parameters.len() {
781                let beta = parameters[param_idx];
782                self.apply_hamiltonian_evolution_mixer(&mut circuit, mixer_hamiltonian, beta)?;
783                param_idx += 1;
784            }
785        }
786
787        Ok(circuit)
788    }
789
790    /// Apply Hamiltonian evolution to circuit
791    fn apply_hamiltonian_evolution(
792        &self,
793        circuit: &mut InterfaceCircuit,
794        hamiltonian: &ProblemHamiltonian,
795        parameter: f64,
796    ) -> Result<()> {
797        for term in &hamiltonian.terms {
798            let angle = parameter * term.coefficient.re;
799
800            // Apply Pauli string evolution exp(-i*angle*P)
801            // This is a simplified implementation - would need proper Pauli string decomposition
802            match term.pauli_string.as_str() {
803                "ZZ" if term.qubits.len() == 2 => {
804                    circuit.add_gate(InterfaceGate::new(
805                        InterfaceGateType::CNOT,
806                        term.qubits.clone(),
807                    ));
808                    circuit.add_gate(InterfaceGate::new(
809                        InterfaceGateType::RZ(angle),
810                        vec![term.qubits[1]],
811                    ));
812                    circuit.add_gate(InterfaceGate::new(
813                        InterfaceGateType::CNOT,
814                        term.qubits.clone(),
815                    ));
816                }
817                "Z" if term.qubits.len() == 1 => {
818                    circuit.add_gate(InterfaceGate::new(
819                        InterfaceGateType::RZ(angle),
820                        term.qubits.clone(),
821                    ));
822                }
823                _ => {
824                    // More complex Pauli strings would be decomposed here
825                }
826            }
827        }
828        Ok(())
829    }
830
831    /// Apply mixer Hamiltonian evolution
832    fn apply_hamiltonian_evolution_mixer(
833        &self,
834        circuit: &mut InterfaceCircuit,
835        mixer: &MixerHamiltonian,
836        parameter: f64,
837    ) -> Result<()> {
838        match mixer.mixer_type {
839            MixerType::XMixer => {
840                // Standard X mixer: sum_i X_i
841                for i in 0..circuit.num_qubits {
842                    circuit.add_gate(InterfaceGate::new(
843                        InterfaceGateType::RX(parameter),
844                        vec![i],
845                    ));
846                }
847            }
848            MixerType::XYMixer => {
849                // XY mixer for preserving particle number
850                for i in 0..circuit.num_qubits - 1 {
851                    // Implement XY evolution: (X_i X_{i+1} + Y_i Y_{i+1})
852                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
853                    circuit.add_gate(InterfaceGate::new(
854                        InterfaceGateType::RY(parameter),
855                        vec![i + 1],
856                    ));
857                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
858                }
859            }
860            MixerType::RingMixer => {
861                // Ring mixer with periodic boundary conditions
862                for i in 0..circuit.num_qubits {
863                    let next = (i + 1) % circuit.num_qubits;
864                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
865                    circuit.add_gate(InterfaceGate::new(
866                        InterfaceGateType::RY(parameter),
867                        vec![next],
868                    ));
869                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
870                }
871            }
872            MixerType::CustomMixer => {
873                // Apply custom mixer terms
874                for term in &mixer.terms {
875                    let angle = parameter * term.coefficient.re;
876                    // Apply term evolution (simplified)
877                    if !term.qubits.is_empty() {
878                        circuit.add_gate(InterfaceGate::new(
879                            InterfaceGateType::RX(angle),
880                            vec![term.qubits[0]],
881                        ));
882                    }
883                }
884            }
885        }
886        Ok(())
887    }
888
889    /// Generate adaptive ansatz circuit
890    fn generate_adaptive_circuit(
891        &self,
892        parameters: &[f64],
893        max_layers: usize,
894        growth_criterion: &GrowthCriterion,
895        operator_pool: &[InterfaceGate],
896    ) -> Result<InterfaceCircuit> {
897        let num_qubits = self.infer_num_qubits_from_pool(operator_pool)?;
898        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
899        let mut param_idx = 0;
900
901        // Determine current number of layers based on gradient criterion
902        let current_layers = self.determine_adaptive_layers(max_layers, growth_criterion)?;
903
904        for layer in 0..current_layers {
905            if param_idx < parameters.len() {
906                // Select operator from pool (simplified selection)
907                let operator_idx = (layer * 13) % operator_pool.len(); // Deterministic but varied
908                let mut selected_gate = operator_pool[operator_idx].clone();
909
910                // Parameterize the gate if it's parameterized
911                match &mut selected_gate.gate_type {
912                    InterfaceGateType::RX(_) => {
913                        selected_gate.gate_type = InterfaceGateType::RX(parameters[param_idx]);
914                    }
915                    InterfaceGateType::RY(_) => {
916                        selected_gate.gate_type = InterfaceGateType::RY(parameters[param_idx]);
917                    }
918                    InterfaceGateType::RZ(_) => {
919                        selected_gate.gate_type = InterfaceGateType::RZ(parameters[param_idx]);
920                    }
921                    _ => {}
922                }
923
924                circuit.add_gate(selected_gate);
925                param_idx += 1;
926            }
927        }
928
929        Ok(circuit)
930    }
931
932    /// Generate quantum neural network circuit
933    fn generate_qnn_circuit(
934        &self,
935        parameters: &[f64],
936        hidden_layers: &[usize],
937        activation_type: &QuantumActivation,
938        connectivity: &NetworkConnectivity,
939    ) -> Result<InterfaceCircuit> {
940        let num_qubits = *hidden_layers.iter().max().unwrap_or(&4).max(&4);
941        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
942        let mut param_idx = 0;
943
944        // Input encoding layer
945        for qubit in 0..num_qubits {
946            if param_idx < parameters.len() {
947                circuit.add_gate(InterfaceGate::new(
948                    InterfaceGateType::RY(parameters[param_idx]),
949                    vec![qubit],
950                ));
951                param_idx += 1;
952            }
953        }
954
955        // Hidden layers
956        for (layer_idx, &layer_size) in hidden_layers.iter().enumerate() {
957            for neuron in 0..layer_size.min(num_qubits) {
958                // Apply quantum activation
959                match activation_type {
960                    QuantumActivation::RotationActivation => {
961                        if param_idx < parameters.len() {
962                            circuit.add_gate(InterfaceGate::new(
963                                InterfaceGateType::RY(parameters[param_idx]),
964                                vec![neuron],
965                            ));
966                            param_idx += 1;
967                        }
968                    }
969                    QuantumActivation::ControlledRotation => {
970                        if neuron > 0 && param_idx < parameters.len() {
971                            circuit.add_gate(InterfaceGate::new(
972                                InterfaceGateType::CRY(parameters[param_idx]),
973                                vec![neuron - 1, neuron],
974                            ));
975                            param_idx += 1;
976                        }
977                    }
978                    QuantumActivation::EntanglingActivation => {
979                        if neuron < num_qubits - 1 {
980                            circuit.add_gate(InterfaceGate::new(
981                                InterfaceGateType::CNOT,
982                                vec![neuron, neuron + 1],
983                            ));
984                        }
985                    }
986                    QuantumActivation::QuantumReLU => {
987                        // Quantum ReLU approximation using controlled gates
988                        if param_idx < parameters.len() {
989                            circuit.add_gate(InterfaceGate::new(
990                                InterfaceGateType::RY(parameters[param_idx].max(0.0)),
991                                vec![neuron],
992                            ));
993                            param_idx += 1;
994                        }
995                    }
996                }
997
998                // Apply connectivity
999                match connectivity {
1000                    NetworkConnectivity::FullyConnected => {
1001                        for other in 0..num_qubits {
1002                            if other != neuron {
1003                                circuit.add_gate(InterfaceGate::new(
1004                                    InterfaceGateType::CNOT,
1005                                    vec![neuron, other],
1006                                ));
1007                            }
1008                        }
1009                    }
1010                    NetworkConnectivity::NearestNeighbor => {
1011                        if neuron > 0 {
1012                            circuit.add_gate(InterfaceGate::new(
1013                                InterfaceGateType::CNOT,
1014                                vec![neuron - 1, neuron],
1015                            ));
1016                        }
1017                        if neuron < num_qubits - 1 {
1018                            circuit.add_gate(InterfaceGate::new(
1019                                InterfaceGateType::CNOT,
1020                                vec![neuron, neuron + 1],
1021                            ));
1022                        }
1023                    }
1024                    _ => {
1025                        // Other connectivity patterns would be implemented here
1026                    }
1027                }
1028            }
1029        }
1030
1031        Ok(circuit)
1032    }
1033
1034    /// Generate tensor network ansatz circuit
1035    fn generate_tensor_network_circuit(
1036        &self,
1037        parameters: &[f64],
1038        bond_dimension: usize,
1039        network_topology: &TensorTopology,
1040        compression_method: &CompressionMethod,
1041    ) -> Result<InterfaceCircuit> {
1042        let num_qubits = (parameters.len() as f64).sqrt().ceil() as usize;
1043        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
1044        let mut param_idx = 0;
1045
1046        match network_topology {
1047            TensorTopology::MPS => {
1048                // Matrix Product State inspired ansatz
1049                for qubit in 0..num_qubits {
1050                    if param_idx < parameters.len() {
1051                        circuit.add_gate(InterfaceGate::new(
1052                            InterfaceGateType::RY(parameters[param_idx]),
1053                            vec![qubit],
1054                        ));
1055                        param_idx += 1;
1056                    }
1057
1058                    if qubit < num_qubits - 1 {
1059                        circuit.add_gate(InterfaceGate::new(
1060                            InterfaceGateType::CNOT,
1061                            vec![qubit, qubit + 1],
1062                        ));
1063
1064                        if param_idx < parameters.len() {
1065                            circuit.add_gate(InterfaceGate::new(
1066                                InterfaceGateType::RY(parameters[param_idx]),
1067                                vec![qubit + 1],
1068                            ));
1069                            param_idx += 1;
1070                        }
1071                    }
1072                }
1073            }
1074            TensorTopology::MERA => {
1075                // Multi-scale Entanglement Renormalization Ansatz
1076                let mut current_level = num_qubits;
1077                while current_level > 1 {
1078                    for i in (0..current_level).step_by(2) {
1079                        if i + 1 < current_level && param_idx < parameters.len() {
1080                            circuit.add_gate(InterfaceGate::new(
1081                                InterfaceGateType::RY(parameters[param_idx]),
1082                                vec![i],
1083                            ));
1084                            param_idx += 1;
1085                            circuit.add_gate(InterfaceGate::new(
1086                                InterfaceGateType::CNOT,
1087                                vec![i, i + 1],
1088                            ));
1089                        }
1090                    }
1091                    current_level = current_level.div_ceil(2);
1092                }
1093            }
1094            _ => {
1095                // Other tensor network topologies would be implemented here
1096                return Err(SimulatorError::UnsupportedOperation(format!(
1097                    "Tensor network topology {network_topology:?} not implemented"
1098                )));
1099            }
1100        }
1101
1102        Ok(circuit)
1103    }
1104
1105    /// Update parameters using the configured optimizer
1106    fn update_parameters(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1107        match self.config.optimizer {
1108            AdvancedOptimizerType::SPSA => self.update_spsa(gradient),
1109            AdvancedOptimizerType::QuantumAdam => self.update_quantum_adam(gradient),
1110            AdvancedOptimizerType::NaturalGradient => self.update_natural_gradient(gradient),
1111            AdvancedOptimizerType::QuantumNaturalGradient => {
1112                self.update_quantum_natural_gradient(gradient)
1113            }
1114            AdvancedOptimizerType::LBFGS => self.update_lbfgs(gradient),
1115            AdvancedOptimizerType::BayesianOptimization => self.update_bayesian(gradient),
1116            AdvancedOptimizerType::ReinforcementLearning => {
1117                self.update_reinforcement_learning(gradient)
1118            }
1119            AdvancedOptimizerType::EvolutionaryStrategy => {
1120                self.update_evolutionary_strategy(gradient)
1121            }
1122            AdvancedOptimizerType::QuantumParticleSwarm => {
1123                self.update_quantum_particle_swarm(gradient)
1124            }
1125            AdvancedOptimizerType::MetaLearningOptimizer => self.update_meta_learning(gradient),
1126        }
1127    }
1128
1129    /// SPSA parameter update
1130    fn update_spsa(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1131        let learning_rate = self.state.learning_rate;
1132        let mut updates = Vec::new();
1133
1134        // SPSA uses simultaneous perturbation
1135        for i in 0..self.state.parameters.len() {
1136            let perturbation = if thread_rng().gen::<f64>() > 0.5 {
1137                1.0
1138            } else {
1139                -1.0
1140            };
1141            let update = learning_rate * perturbation;
1142            self.state.parameters[i] += update;
1143            updates.push(update);
1144        }
1145
1146        Ok(updates)
1147    }
1148
1149    /// Quantum Adam parameter update
1150    fn update_quantum_adam(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1151        let beta1 = 0.9;
1152        let beta2 = 0.999;
1153        let epsilon = 1e-8;
1154        let learning_rate = self.state.learning_rate;
1155        let mut updates = Vec::new();
1156
1157        for i in 0..self.state.parameters.len() {
1158            // Update biased first moment estimate
1159            self.state.optimizer_state.momentum[i] =
1160                beta1 * self.state.optimizer_state.momentum[i] + (1.0 - beta1) * gradient[i];
1161
1162            // Update biased second raw moment estimate
1163            self.state.optimizer_state.velocity[i] = beta2 * self.state.optimizer_state.velocity[i]
1164                + (1.0 - beta2) * gradient[i].powi(2);
1165
1166            // Compute bias-corrected first moment estimate
1167            let m_hat = self.state.optimizer_state.momentum[i]
1168                / (1.0 - beta1.powi(self.state.iteration as i32 + 1));
1169
1170            // Compute bias-corrected second raw moment estimate
1171            let v_hat = self.state.optimizer_state.velocity[i]
1172                / (1.0 - beta2.powi(self.state.iteration as i32 + 1));
1173
1174            // Quantum-aware learning rate adaptation
1175            let quantum_factor = 1.0 / 0.1f64.mul_add((self.state.iteration as f64).sqrt(), 1.0);
1176            let effective_lr = learning_rate * quantum_factor;
1177
1178            // Update parameters
1179            let update = effective_lr * m_hat / (v_hat.sqrt() + epsilon);
1180            self.state.parameters[i] -= update;
1181            updates.push(update);
1182        }
1183
1184        Ok(updates)
1185    }
1186
1187    /// Natural gradient parameter update
1188    fn update_natural_gradient(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1189        // Compute Fisher information matrix if not cached
1190        if self.state.optimizer_state.fisher_matrix.is_none() {
1191            self.state.optimizer_state.fisher_matrix =
1192                Some(self.compute_fisher_information_matrix()?);
1193        }
1194
1195        let fisher_matrix = self.state.optimizer_state.fisher_matrix.as_ref().unwrap();
1196
1197        // Solve Fisher * update = gradient
1198        let natural_gradient = self.solve_linear_system(fisher_matrix, gradient)?;
1199
1200        let mut updates = Vec::new();
1201        for i in 0..self.state.parameters.len() {
1202            let update = self.state.learning_rate * natural_gradient[i];
1203            self.state.parameters[i] -= update;
1204            updates.push(update);
1205        }
1206
1207        Ok(updates)
1208    }
1209
1210    /// Quantum natural gradient parameter update
1211    fn update_quantum_natural_gradient(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1212        // Quantum natural gradient uses quantum Fisher information
1213        let qfi_matrix = self.compute_quantum_fisher_information_matrix()?;
1214
1215        // Regularized inversion to handle singular matrices
1216        let regularized_qfi = self.regularize_matrix(&qfi_matrix, 1e-6)?;
1217
1218        let natural_gradient = self.solve_linear_system(&regularized_qfi, gradient)?;
1219
1220        let mut updates = Vec::new();
1221        for i in 0..self.state.parameters.len() {
1222            let update = self.state.learning_rate * natural_gradient[i];
1223            self.state.parameters[i] -= update;
1224            updates.push(update);
1225        }
1226
1227        Ok(updates)
1228    }
1229
1230    /// L-BFGS parameter update
1231    fn update_lbfgs(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1232        let max_history = 10;
1233
1234        // Store gradient and parameter differences
1235        if !self.state.optimizer_state.lbfgs_history.is_empty() {
1236            let (prev_params, prev_grad) = self.state.optimizer_state.lbfgs_history.back().unwrap();
1237            let s = self
1238                .state
1239                .parameters
1240                .iter()
1241                .zip(prev_params)
1242                .map(|(x, px)| x - px)
1243                .collect::<Vec<_>>();
1244            let y = gradient
1245                .iter()
1246                .zip(prev_grad)
1247                .map(|(g, pg)| g - pg)
1248                .collect::<Vec<_>>();
1249
1250            self.state.optimizer_state.lbfgs_history.push_back((s, y));
1251
1252            if self.state.optimizer_state.lbfgs_history.len() > max_history {
1253                self.state.optimizer_state.lbfgs_history.pop_front();
1254            }
1255        }
1256
1257        // L-BFGS two-loop recursion (simplified)
1258        let mut q = gradient.to_vec();
1259        let mut alphas = Vec::new();
1260
1261        // First loop
1262        for (s, y) in self.state.optimizer_state.lbfgs_history.iter().rev() {
1263            let sy = s.iter().zip(y).map(|(si, yi)| si * yi).sum::<f64>();
1264            if sy.abs() > 1e-10 {
1265                let alpha = s.iter().zip(&q).map(|(si, qi)| si * qi).sum::<f64>() / sy;
1266                alphas.push(alpha);
1267                for i in 0..q.len() {
1268                    q[i] -= alpha * y[i];
1269                }
1270            } else {
1271                alphas.push(0.0);
1272            }
1273        }
1274
1275        // Scale by initial Hessian approximation (identity)
1276        // In practice, would use a better scaling
1277
1278        // Second loop
1279        alphas.reverse();
1280        for ((s, y), alpha) in self
1281            .state
1282            .optimizer_state
1283            .lbfgs_history
1284            .iter()
1285            .zip(alphas.iter())
1286        {
1287            let sy = s.iter().zip(y).map(|(si, yi)| si * yi).sum::<f64>();
1288            if sy.abs() > 1e-10 {
1289                let beta = y.iter().zip(&q).map(|(yi, qi)| yi * qi).sum::<f64>() / sy;
1290                for i in 0..q.len() {
1291                    q[i] += (alpha - beta) * s[i];
1292                }
1293            }
1294        }
1295
1296        // Update parameters
1297        let mut updates = Vec::new();
1298        for i in 0..self.state.parameters.len() {
1299            let update = self.state.learning_rate * q[i];
1300            self.state.parameters[i] -= update;
1301            updates.push(update);
1302        }
1303
1304        // Store current state for next iteration
1305        self.state
1306            .optimizer_state
1307            .lbfgs_history
1308            .push_back((self.state.parameters.clone(), gradient.to_vec()));
1309
1310        Ok(updates)
1311    }
1312
1313    /// Bayesian optimization parameter update
1314    fn update_bayesian(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1315        // Initialize Bayesian model if not present
1316        if self.state.optimizer_state.bayesian_model.is_none() {
1317            self.state.optimizer_state.bayesian_model = Some(BayesianModel {
1318                kernel_hyperparameters: vec![1.0, 1.0], // length scale, variance
1319                observed_points: Vec::new(),
1320                observed_values: Vec::new(),
1321                acquisition_function: AcquisitionFunction::ExpectedImprovement,
1322            });
1323        }
1324
1325        // Add current observation
1326        if let Some(ref mut model) = self.state.optimizer_state.bayesian_model {
1327            model.observed_points.push(self.state.parameters.clone());
1328            model.observed_values.push(self.state.current_cost);
1329        }
1330
1331        // Find next point using acquisition function (simplified)
1332        let next_parameters = self
1333            .state
1334            .parameters
1335            .iter()
1336            .map(|p| p + (thread_rng().gen::<f64>() - 0.5) * 0.1)
1337            .collect::<Vec<_>>();
1338
1339        let updates = next_parameters
1340            .iter()
1341            .zip(&self.state.parameters)
1342            .map(|(new, old)| new - old)
1343            .collect();
1344
1345        self.state.parameters = next_parameters;
1346
1347        Ok(updates)
1348    }
1349
1350    /// Reinforcement learning parameter update
1351    fn update_reinforcement_learning(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1352        // Simple policy gradient approach
1353        let reward = -self.state.current_cost; // Negative cost as reward
1354        let baseline = self.compute_baseline_reward()?;
1355        let advantage = reward - baseline;
1356
1357        let mut updates = Vec::new();
1358        for i in 0..self.state.parameters.len() {
1359            // Policy gradient: ∇θ log π(a|s) * advantage
1360            let update = self.state.learning_rate * gradient[i] * advantage;
1361            self.state.parameters[i] += update;
1362            updates.push(update);
1363        }
1364
1365        Ok(updates)
1366    }
1367
1368    /// Evolutionary strategy parameter update
1369    fn update_evolutionary_strategy(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1370        let population_size = 20;
1371        let sigma = 0.1; // Mutation strength
1372        let mut population = Vec::new();
1373        let mut fitness_values = Vec::new();
1374
1375        // Generate population around current parameters
1376        for _ in 0..population_size {
1377            let mut candidate = self.state.parameters.clone();
1378            for param in &mut candidate {
1379                *param += sigma * (thread_rng().gen::<f64>() - 0.5) * 2.0;
1380            }
1381            population.push(candidate);
1382        }
1383
1384        // Evaluate fitness (simplified - would need parallel evaluation)
1385        for candidate in &population {
1386            let circuit = self.generate_circuit(candidate)?;
1387            let fitness = -self.cost_function.evaluate(candidate, &circuit)?; // Negative cost
1388            fitness_values.push(fitness);
1389        }
1390
1391        // Select best candidates
1392        let mut indices: Vec<usize> = (0..population_size).collect();
1393        indices.sort_by(|&a, &b| fitness_values[b].partial_cmp(&fitness_values[a]).unwrap());
1394
1395        // Update parameters using weighted average of top candidates
1396        let top_n = population_size / 4;
1397        let mut new_parameters = vec![0.0; self.state.parameters.len()];
1398        let mut total_weight = 0.0;
1399
1400        for &idx in indices.iter().take(top_n) {
1401            let weight = fitness_values[idx];
1402            total_weight += weight;
1403            for i in 0..new_parameters.len() {
1404                new_parameters[i] += weight * population[idx][i];
1405            }
1406        }
1407
1408        for param in &mut new_parameters {
1409            *param /= total_weight;
1410        }
1411
1412        let updates = new_parameters
1413            .iter()
1414            .zip(&self.state.parameters)
1415            .map(|(new, old)| new - old)
1416            .collect();
1417
1418        self.state.parameters = new_parameters;
1419
1420        Ok(updates)
1421    }
1422
1423    /// Quantum particle swarm parameter update
1424    fn update_quantum_particle_swarm(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1425        // Quantum-enhanced PSO with superposition of positions
1426        let inertia = 0.9;
1427        let cognitive = 2.0;
1428        let social = 2.0;
1429
1430        // Update velocity with quantum enhancement
1431        for i in 0..self.state.parameters.len() {
1432            let quantum_factor = (2.0 * std::f64::consts::PI * thread_rng().gen::<f64>())
1433                .cos()
1434                .abs();
1435
1436            // Update velocity (stored in momentum)
1437            self.state.optimizer_state.momentum[i] = (social * thread_rng().gen::<f64>()).mul_add(
1438                self.state.best_parameters[i] - self.state.parameters[i],
1439                inertia * self.state.optimizer_state.momentum[i]
1440                    + cognitive
1441                        * thread_rng().gen::<f64>()
1442                        * (self.state.best_parameters[i] - self.state.parameters[i])
1443                        * quantum_factor,
1444            );
1445        }
1446
1447        // Update position
1448        let mut updates = Vec::new();
1449        for i in 0..self.state.parameters.len() {
1450            let update = self.state.optimizer_state.momentum[i];
1451            self.state.parameters[i] += update;
1452            updates.push(update);
1453        }
1454
1455        Ok(updates)
1456    }
1457
1458    /// Meta-learning optimizer parameter update
1459    fn update_meta_learning(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1460        // Adapt learning rate based on gradient history and cost landscape
1461        let gradient_norm = gradient.iter().map(|g| g.powi(2)).sum::<f64>().sqrt();
1462
1463        // Meta-learning rule: adapt learning rate based on gradient consistency
1464        if self.state.iteration > 10 {
1465            let recent_gradients = &self.stats.parameter_update_magnitudes;
1466            let recent_avg = recent_gradients.iter().rev().take(5).sum::<f64>() / 5.0;
1467
1468            if gradient_norm > 2.0 * recent_avg {
1469                self.state.learning_rate *= 0.8; // Reduce learning rate for large gradients
1470            } else if gradient_norm < 0.5 * recent_avg {
1471                self.state.learning_rate *= 1.1; // Increase learning rate for small gradients
1472            }
1473        }
1474
1475        // Use adaptive Adam-like update with meta-learned parameters
1476        self.update_quantum_adam(gradient)
1477    }
1478
1479    /// Helper methods
1480    fn count_parameters(ansatz: &VariationalAnsatz) -> Result<usize> {
1481        match ansatz {
1482            VariationalAnsatz::HardwareEfficient {
1483                layers,
1484                rotation_gates,
1485                ..
1486            } => {
1487                // Simplified parameter counting
1488                Ok(layers * rotation_gates.len() * 4) // Assume 4 qubits
1489            }
1490            VariationalAnsatz::UCCSD {
1491                num_electrons,
1492                num_orbitals,
1493                include_triples,
1494            } => {
1495                let singles = num_electrons * (2 * num_orbitals - num_electrons);
1496                let doubles = num_electrons
1497                    * (num_electrons - 1)
1498                    * (2 * num_orbitals - num_electrons)
1499                    * (2 * num_orbitals - num_electrons - 1)
1500                    / 4;
1501                let triples = if *include_triples { doubles / 10 } else { 0 }; // Rough estimate
1502                Ok(singles + doubles + triples)
1503            }
1504            VariationalAnsatz::QAOA { layers, .. } => {
1505                Ok(2 * layers) // gamma and beta for each layer
1506            }
1507            VariationalAnsatz::Adaptive { max_layers, .. } => Ok(*max_layers),
1508            VariationalAnsatz::QuantumNeuralNetwork { hidden_layers, .. } => {
1509                Ok(hidden_layers.iter().sum::<usize>())
1510            }
1511            VariationalAnsatz::TensorNetworkAnsatz { bond_dimension, .. } => {
1512                Ok(bond_dimension * 4) // Simplified
1513            }
1514        }
1515    }
1516
1517    fn initialize_parameters(num_parameters: usize, config: &VQAConfig) -> Result<Vec<f64>> {
1518        let mut parameters = Vec::with_capacity(num_parameters);
1519
1520        for _ in 0..num_parameters {
1521            let param = if let Some((min, max)) = config.parameter_bounds {
1522                (max - min).mul_add(thread_rng().gen::<f64>(), min)
1523            } else {
1524                (thread_rng().gen::<f64>() - 0.5) * 2.0 * std::f64::consts::PI
1525            };
1526            parameters.push(param);
1527        }
1528
1529        Ok(parameters)
1530    }
1531
1532    fn infer_num_qubits_from_parameters(&self, num_params: usize, layers: usize) -> Result<usize> {
1533        // Simple heuristic - would need proper calculation based on ansatz
1534        Ok((num_params as f64 / layers as f64).sqrt().ceil() as usize)
1535    }
1536
1537    fn extract_num_qubits_from_hamiltonian(
1538        &self,
1539        hamiltonian: &ProblemHamiltonian,
1540    ) -> Result<usize> {
1541        Ok(hamiltonian
1542            .terms
1543            .iter()
1544            .flat_map(|term| &term.qubits)
1545            .max()
1546            .unwrap_or(&0)
1547            + 1)
1548    }
1549
1550    fn infer_num_qubits_from_pool(&self, operator_pool: &[InterfaceGate]) -> Result<usize> {
1551        Ok(operator_pool
1552            .iter()
1553            .flat_map(|gate| &gate.qubits)
1554            .max()
1555            .unwrap_or(&0)
1556            + 1)
1557    }
1558
1559    fn determine_adaptive_layers(
1560        &self,
1561        max_layers: usize,
1562        _growth_criterion: &GrowthCriterion,
1563    ) -> Result<usize> {
1564        // Simplified adaptive layer determination
1565        let current_layers = (self.state.iteration / 10).min(max_layers);
1566        Ok(current_layers.max(1))
1567    }
1568
1569    fn simulate_circuit(&self, circuit: &InterfaceCircuit) -> Result<Array1<Complex64>> {
1570        // Simplified simulation - would integrate with actual simulator
1571        let state_size = 1 << circuit.num_qubits;
1572        let mut state = Array1::zeros(state_size);
1573        state[0] = Complex64::new(1.0, 0.0); // |0...0> state
1574        Ok(state)
1575    }
1576
1577    fn calculate_expectation_values(
1578        &self,
1579        _state: &Array1<Complex64>,
1580    ) -> Result<HashMap<String, f64>> {
1581        let mut expectations = HashMap::new();
1582
1583        for observable in self.cost_function.get_observables() {
1584            // Simplified expectation value calculation
1585            expectations.insert(observable, 0.0);
1586        }
1587
1588        Ok(expectations)
1589    }
1590
1591    fn compute_fisher_information_matrix(&self) -> Result<Array2<f64>> {
1592        let n = self.state.parameters.len();
1593        Ok(Array2::eye(n)) // Simplified - would compute actual FIM
1594    }
1595
1596    fn compute_quantum_fisher_information_matrix(&self) -> Result<Array2<f64>> {
1597        let n = self.state.parameters.len();
1598        Ok(Array2::eye(n)) // Simplified - would compute actual QFIM
1599    }
1600
1601    fn regularize_matrix(&self, matrix: &Array2<f64>, regularization: f64) -> Result<Array2<f64>> {
1602        let mut regularized = matrix.clone();
1603        for i in 0..matrix.nrows() {
1604            regularized[[i, i]] += regularization;
1605        }
1606        Ok(regularized)
1607    }
1608
1609    fn solve_linear_system(&self, matrix: &Array2<f64>, rhs: &[f64]) -> Result<Vec<f64>> {
1610        // Simplified linear system solver - would use proper numerical methods
1611        Ok(rhs.to_vec())
1612    }
1613
1614    fn optimize_acquisition_function(&self, _model: &BayesianModel) -> Result<Vec<f64>> {
1615        // Simplified acquisition function optimization
1616        Ok(self.state.parameters.clone())
1617    }
1618
1619    const fn compute_baseline_reward(&self) -> Result<f64> {
1620        // Simplified baseline - would use value function approximation
1621        Ok(0.0)
1622    }
1623}
1624
1625/// Example implementations of cost functions
1626/// Ising model cost function for QAOA
1627pub struct IsingCostFunction {
1628    pub problem_hamiltonian: ProblemHamiltonian,
1629}
1630
1631impl CostFunction for IsingCostFunction {
1632    fn evaluate(&self, _parameters: &[f64], circuit: &InterfaceCircuit) -> Result<f64> {
1633        // Simplified Ising model evaluation
1634        let num_qubits = circuit.num_qubits;
1635        let mut cost = 0.0;
1636
1637        // Evaluate each term in the Hamiltonian
1638        for term in &self.problem_hamiltonian.terms {
1639            match term.pauli_string.as_str() {
1640                "ZZ" if term.qubits.len() == 2 => {
1641                    cost += term.coefficient.re; // Simplified
1642                }
1643                "Z" if term.qubits.len() == 1 => {
1644                    cost += term.coefficient.re; // Simplified
1645                }
1646                _ => {}
1647            }
1648        }
1649
1650        Ok(cost)
1651    }
1652
1653    fn get_observables(&self) -> Vec<String> {
1654        self.problem_hamiltonian
1655            .terms
1656            .iter()
1657            .map(|term| term.pauli_string.clone())
1658            .collect()
1659    }
1660
1661    fn is_variational(&self) -> bool {
1662        true
1663    }
1664}
1665
1666/// Example gradient calculators
1667/// Finite difference gradient calculator
1668pub struct FiniteDifferenceGradient {
1669    pub epsilon: f64,
1670}
1671
1672impl GradientCalculator for FiniteDifferenceGradient {
1673    fn calculate_gradient(
1674        &self,
1675        parameters: &[f64],
1676        cost_function: &dyn CostFunction,
1677        circuit: &InterfaceCircuit,
1678    ) -> Result<Vec<f64>> {
1679        let mut gradient = Vec::with_capacity(parameters.len());
1680
1681        for i in 0..parameters.len() {
1682            let mut params_plus = parameters.to_vec();
1683            let mut params_minus = parameters.to_vec();
1684
1685            params_plus[i] += self.epsilon;
1686            params_minus[i] -= self.epsilon;
1687
1688            // Would need to regenerate circuits with new parameters
1689            let cost_plus = cost_function.evaluate(&params_plus, circuit)?;
1690            let cost_minus = cost_function.evaluate(&params_minus, circuit)?;
1691
1692            let grad = (cost_plus - cost_minus) / (2.0 * self.epsilon);
1693            gradient.push(grad);
1694        }
1695
1696        Ok(gradient)
1697    }
1698
1699    fn method_name(&self) -> &'static str {
1700        "FiniteDifference"
1701    }
1702}
1703
1704/// Parameter shift rule gradient calculator
1705pub struct ParameterShiftGradient;
1706
1707impl GradientCalculator for ParameterShiftGradient {
1708    fn calculate_gradient(
1709        &self,
1710        parameters: &[f64],
1711        cost_function: &dyn CostFunction,
1712        circuit: &InterfaceCircuit,
1713    ) -> Result<Vec<f64>> {
1714        let shift = std::f64::consts::PI / 2.0;
1715        let mut gradient = Vec::with_capacity(parameters.len());
1716
1717        for i in 0..parameters.len() {
1718            let mut params_plus = parameters.to_vec();
1719            let mut params_minus = parameters.to_vec();
1720
1721            params_plus[i] += shift;
1722            params_minus[i] -= shift;
1723
1724            // Would need to regenerate circuits with new parameters
1725            let cost_plus = cost_function.evaluate(&params_plus, circuit)?;
1726            let cost_minus = cost_function.evaluate(&params_minus, circuit)?;
1727
1728            let grad = (cost_plus - cost_minus) / 2.0;
1729            gradient.push(grad);
1730        }
1731
1732        Ok(gradient)
1733    }
1734
1735    fn method_name(&self) -> &'static str {
1736        "ParameterShift"
1737    }
1738}
1739
1740/// Benchmark function for VQA performance
1741pub fn benchmark_advanced_vqa() -> Result<HashMap<String, f64>> {
1742    let mut results = HashMap::new();
1743
1744    // Test hardware-efficient ansatz
1745    let start = Instant::now();
1746    let ansatz = VariationalAnsatz::HardwareEfficient {
1747        layers: 3,
1748        entangling_gates: vec![InterfaceGateType::CNOT],
1749        rotation_gates: vec![InterfaceGateType::RY(0.0)],
1750    };
1751
1752    let config = VQAConfig::default();
1753    let cost_function = Box::new(IsingCostFunction {
1754        problem_hamiltonian: ProblemHamiltonian {
1755            terms: vec![HamiltonianTerm {
1756                coefficient: Complex64::new(-1.0, 0.0),
1757                pauli_string: "ZZ".to_string(),
1758                qubits: vec![0, 1],
1759            }],
1760            problem_type: OptimizationProblemType::MaxCut,
1761        },
1762    });
1763    let gradient_calculator = Box::new(FiniteDifferenceGradient { epsilon: 1e-4 });
1764
1765    let mut trainer = AdvancedVQATrainer::new(config, ansatz, cost_function, gradient_calculator)?;
1766    let _result = trainer.train()?;
1767
1768    let hardware_efficient_time = start.elapsed().as_millis() as f64;
1769    results.insert(
1770        "hardware_efficient_vqa".to_string(),
1771        hardware_efficient_time,
1772    );
1773
1774    Ok(results)
1775}
1776
1777#[cfg(test)]
1778mod tests {
1779    use super::*;
1780
1781    #[test]
1782    fn test_vqa_trainer_creation() {
1783        let ansatz = VariationalAnsatz::HardwareEfficient {
1784            layers: 2,
1785            entangling_gates: vec![InterfaceGateType::CNOT],
1786            rotation_gates: vec![InterfaceGateType::RY(0.0)],
1787        };
1788
1789        let config = VQAConfig::default();
1790        let cost_function = Box::new(IsingCostFunction {
1791            problem_hamiltonian: ProblemHamiltonian {
1792                terms: vec![],
1793                problem_type: OptimizationProblemType::MaxCut,
1794            },
1795        });
1796        let gradient_calculator = Box::new(FiniteDifferenceGradient { epsilon: 1e-4 });
1797
1798        let trainer = AdvancedVQATrainer::new(config, ansatz, cost_function, gradient_calculator);
1799        assert!(trainer.is_ok());
1800    }
1801
1802    #[test]
1803    fn test_parameter_counting() {
1804        let ansatz = VariationalAnsatz::HardwareEfficient {
1805            layers: 3,
1806            entangling_gates: vec![InterfaceGateType::CNOT],
1807            rotation_gates: vec![InterfaceGateType::RY(0.0)],
1808        };
1809
1810        let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1811        assert!(count > 0);
1812    }
1813
1814    #[test]
1815    fn test_uccsd_ansatz() {
1816        let ansatz = VariationalAnsatz::UCCSD {
1817            num_electrons: 2,
1818            num_orbitals: 4,
1819            include_triples: false,
1820        };
1821
1822        let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1823        assert!(count > 0);
1824    }
1825
1826    #[test]
1827    fn test_qaoa_ansatz() {
1828        let ansatz = VariationalAnsatz::QAOA {
1829            problem_hamiltonian: ProblemHamiltonian {
1830                terms: vec![],
1831                problem_type: OptimizationProblemType::MaxCut,
1832            },
1833            mixer_hamiltonian: MixerHamiltonian {
1834                terms: vec![],
1835                mixer_type: MixerType::XMixer,
1836            },
1837            layers: 3,
1838        };
1839
1840        let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1841        assert_eq!(count, 6); // 2 parameters per layer
1842    }
1843
1844    #[test]
1845    fn test_finite_difference_gradient() {
1846        let gradient_calc = FiniteDifferenceGradient { epsilon: 1e-4 };
1847        assert_eq!(gradient_calc.method_name(), "FiniteDifference");
1848    }
1849
1850    #[test]
1851    fn test_parameter_shift_gradient() {
1852        let gradient_calc = ParameterShiftGradient;
1853        assert_eq!(gradient_calc.method_name(), "ParameterShift");
1854    }
1855
1856    #[test]
1857    fn test_ising_cost_function() {
1858        let cost_function = IsingCostFunction {
1859            problem_hamiltonian: ProblemHamiltonian {
1860                terms: vec![HamiltonianTerm {
1861                    coefficient: Complex64::new(-1.0, 0.0),
1862                    pauli_string: "ZZ".to_string(),
1863                    qubits: vec![0, 1],
1864                }],
1865                problem_type: OptimizationProblemType::MaxCut,
1866            },
1867        };
1868
1869        assert!(cost_function.is_variational());
1870        assert!(!cost_function.get_observables().is_empty());
1871    }
1872
1873    #[test]
1874    fn test_optimizer_types() {
1875        let optimizers = [
1876            AdvancedOptimizerType::SPSA,
1877            AdvancedOptimizerType::QuantumAdam,
1878            AdvancedOptimizerType::NaturalGradient,
1879            AdvancedOptimizerType::BayesianOptimization,
1880        ];
1881
1882        for optimizer in &optimizers {
1883            println!("Testing optimizer: {optimizer:?}");
1884        }
1885    }
1886}