1use scirs2_core::ndarray::{Array1, Array2};
8use scirs2_core::Complex64;
9use serde::{Deserialize, Serialize};
10use std::collections::{HashMap, VecDeque};
11use std::time::{Duration, Instant};
12
13use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
14use crate::error::{Result, SimulatorError};
15use scirs2_core::random::prelude::*;
16
17#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
19pub enum AdvancedOptimizerType {
20 SPSA,
22 NaturalGradient,
24 QuantumNaturalGradient,
26 QuantumAdam,
28 LBFGS,
30 BayesianOptimization,
32 ReinforcementLearning,
34 EvolutionaryStrategy,
36 QuantumParticleSwarm,
38 MetaLearningOptimizer,
40}
41
42#[derive(Debug, Clone, Serialize, Deserialize)]
44pub enum VariationalAnsatz {
45 HardwareEfficient {
47 layers: usize,
48 entangling_gates: Vec<InterfaceGateType>,
49 rotation_gates: Vec<InterfaceGateType>,
50 },
51 UCCSD {
53 num_electrons: usize,
54 num_orbitals: usize,
55 include_triples: bool,
56 },
57 QAOA {
59 problem_hamiltonian: ProblemHamiltonian,
60 mixer_hamiltonian: MixerHamiltonian,
61 layers: usize,
62 },
63 Adaptive {
65 max_layers: usize,
66 growth_criterion: GrowthCriterion,
67 #[serde(skip)]
68 operator_pool: Vec<InterfaceGate>,
69 },
70 QuantumNeuralNetwork {
72 hidden_layers: Vec<usize>,
73 activation_type: QuantumActivation,
74 connectivity: NetworkConnectivity,
75 },
76 TensorNetworkAnsatz {
78 bond_dimension: usize,
79 network_topology: TensorTopology,
80 compression_method: CompressionMethod,
81 },
82}
83
84#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
86pub struct ProblemHamiltonian {
87 pub terms: Vec<HamiltonianTerm>,
88 pub problem_type: OptimizationProblemType,
89}
90
91#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
93pub struct MixerHamiltonian {
94 pub terms: Vec<HamiltonianTerm>,
95 pub mixer_type: MixerType,
96}
97
98#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
100pub struct HamiltonianTerm {
101 pub coefficient: Complex64,
102 pub pauli_string: String,
103 pub qubits: Vec<usize>,
104}
105
106#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
108pub enum OptimizationProblemType {
109 MaxCut,
110 TSP,
111 BinPacking,
112 JobShop,
113 PortfolioOptimization,
114 VehicleRouting,
115 GraphColoring,
116 Boolean3SAT,
117 QuadraticAssignment,
118 CustomCombinatorial,
119}
120
121#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
123pub enum MixerType {
124 XMixer,
126 XYMixer,
128 RingMixer,
130 CustomMixer,
132}
133
134#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
136pub enum GrowthCriterion {
137 GradientThreshold(f64),
139 ImprovementStagnation,
141 VarianceThreshold(f64),
143 QuantumFisherInformation,
145}
146
147#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
149pub enum QuantumActivation {
150 RotationActivation,
152 ControlledRotation,
154 EntanglingActivation,
156 QuantumReLU,
158}
159
160#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
162pub enum NetworkConnectivity {
163 FullyConnected,
164 NearestNeighbor,
165 Random,
166 SmallWorld,
167 ScaleFree,
168}
169
170#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
172pub enum TensorTopology {
173 MPS,
174 MERA,
175 TTN,
176 PEPS,
177 Hierarchical,
178}
179
180#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
182pub enum CompressionMethod {
183 SVD,
184 QR,
185 Variational,
186 DMRG,
187}
188
189#[derive(Debug, Clone)]
191pub struct VQAConfig {
192 pub max_iterations: usize,
194 pub convergence_tolerance: f64,
196 pub optimizer: AdvancedOptimizerType,
198 pub learning_rate: f64,
200 pub shots: Option<usize>,
202 pub gradient_clipping: Option<f64>,
204 pub regularization: f64,
206 pub parameter_bounds: Option<(f64, f64)>,
208 pub warm_restart: Option<WarmRestartConfig>,
210 pub hardware_aware: bool,
212 pub noise_aware: bool,
214}
215
216impl Default for VQAConfig {
217 fn default() -> Self {
218 Self {
219 max_iterations: 1000,
220 convergence_tolerance: 1e-6,
221 optimizer: AdvancedOptimizerType::QuantumAdam,
222 learning_rate: 0.01,
223 shots: None,
224 gradient_clipping: Some(1.0),
225 regularization: 0.0,
226 parameter_bounds: None,
227 warm_restart: None,
228 hardware_aware: true,
229 noise_aware: true,
230 }
231 }
232}
233
234#[derive(Debug, Clone)]
236pub struct WarmRestartConfig {
237 pub restart_period: usize,
238 pub restart_factor: f64,
239 pub min_learning_rate: f64,
240}
241
242#[derive(Debug, Clone, Serialize, Deserialize)]
244pub struct VQAResult {
245 pub optimal_parameters: Vec<f64>,
247 pub optimal_cost: f64,
249 pub cost_history: Vec<f64>,
251 pub parameter_history: Vec<Vec<f64>>,
253 pub gradient_norms: Vec<f64>,
255 pub iterations: usize,
257 pub optimization_time: Duration,
259 pub converged: bool,
261 pub final_state: Option<Array1<Complex64>>,
263 pub expectation_values: HashMap<String, f64>,
265}
266
267#[derive(Debug, Clone)]
269pub struct VQATrainerState {
270 pub parameters: Vec<f64>,
272 pub current_cost: f64,
274 pub optimizer_state: OptimizerState,
276 pub iteration: usize,
278 pub best_parameters: Vec<f64>,
280 pub best_cost: f64,
282 pub learning_rate: f64,
284}
285
286#[derive(Debug, Clone)]
288pub struct OptimizerState {
289 pub momentum: Vec<f64>,
291 pub velocity: Vec<f64>,
293 pub fisher_matrix: Option<Array2<f64>>,
295 pub lbfgs_history: VecDeque<(Vec<f64>, Vec<f64>)>,
297 pub bayesian_model: Option<BayesianModel>,
299}
300
301#[derive(Debug, Clone)]
303pub struct BayesianModel {
304 pub kernel_hyperparameters: Vec<f64>,
305 pub observed_points: Vec<Vec<f64>>,
306 pub observed_values: Vec<f64>,
307 pub acquisition_function: AcquisitionFunction,
308}
309
310#[derive(Debug, Clone, Copy, PartialEq, Eq)]
312pub enum AcquisitionFunction {
313 ExpectedImprovement,
314 UpperConfidenceBound,
315 ProbabilityOfImprovement,
316 Entropy,
317}
318
319pub struct AdvancedVQATrainer {
321 config: VQAConfig,
323 state: VQATrainerState,
325 cost_function: Box<dyn CostFunction + Send + Sync>,
327 ansatz: VariationalAnsatz,
329 gradient_calculator: Box<dyn GradientCalculator + Send + Sync>,
331 stats: VQATrainingStats,
333}
334
335pub trait CostFunction: Send + Sync {
337 fn evaluate(&self, parameters: &[f64], circuit: &InterfaceCircuit) -> Result<f64>;
339
340 fn get_observables(&self) -> Vec<String>;
342
343 fn is_variational(&self) -> bool;
345}
346
347pub trait GradientCalculator: Send + Sync {
349 fn calculate_gradient(
351 &self,
352 parameters: &[f64],
353 cost_function: &dyn CostFunction,
354 circuit: &InterfaceCircuit,
355 ) -> Result<Vec<f64>>;
356
357 fn method_name(&self) -> &str;
359}
360
361#[derive(Debug, Clone, Serialize, Deserialize)]
363pub struct VQATrainingStats {
364 pub total_time: Duration,
366 pub iteration_times: Vec<Duration>,
368 pub function_evaluations: Vec<usize>,
370 pub gradient_evaluations: Vec<usize>,
372 pub memory_usage: Vec<usize>,
374 pub circuit_depths: Vec<usize>,
376 pub parameter_update_magnitudes: Vec<f64>,
378}
379
380impl AdvancedVQATrainer {
381 pub fn new(
383 config: VQAConfig,
384 ansatz: VariationalAnsatz,
385 cost_function: Box<dyn CostFunction + Send + Sync>,
386 gradient_calculator: Box<dyn GradientCalculator + Send + Sync>,
387 ) -> Result<Self> {
388 let num_parameters = Self::count_parameters(&ansatz)?;
389
390 let state = VQATrainerState {
391 parameters: Self::initialize_parameters(num_parameters, &config)?,
392 current_cost: f64::INFINITY,
393 optimizer_state: OptimizerState {
394 momentum: vec![0.0; num_parameters],
395 velocity: vec![0.0; num_parameters],
396 fisher_matrix: None,
397 lbfgs_history: VecDeque::new(),
398 bayesian_model: None,
399 },
400 iteration: 0,
401 best_parameters: vec![0.0; num_parameters],
402 best_cost: f64::INFINITY,
403 learning_rate: config.learning_rate,
404 };
405
406 Ok(Self {
407 config,
408 state,
409 cost_function,
410 ansatz,
411 gradient_calculator,
412 stats: VQATrainingStats {
413 total_time: Duration::new(0, 0),
414 iteration_times: Vec::new(),
415 function_evaluations: Vec::new(),
416 gradient_evaluations: Vec::new(),
417 memory_usage: Vec::new(),
418 circuit_depths: Vec::new(),
419 parameter_update_magnitudes: Vec::new(),
420 },
421 })
422 }
423
424 pub fn train(&mut self) -> Result<VQAResult> {
426 let start_time = Instant::now();
427 let mut cost_history = Vec::new();
428 let mut parameter_history = Vec::new();
429 let mut gradient_norms = Vec::new();
430
431 for iteration in 0..self.config.max_iterations {
432 let iter_start = Instant::now();
433 self.state.iteration = iteration;
434
435 let circuit = self.generate_circuit(&self.state.parameters)?;
437
438 let cost = self
440 .cost_function
441 .evaluate(&self.state.parameters, &circuit)?;
442 self.state.current_cost = cost;
443
444 if cost < self.state.best_cost {
446 self.state.best_cost = cost;
447 self.state.best_parameters = self.state.parameters.clone();
448 }
449
450 let gradient = self.gradient_calculator.calculate_gradient(
452 &self.state.parameters,
453 self.cost_function.as_ref(),
454 &circuit,
455 )?;
456
457 let gradient_norm = gradient.iter().map(|g| g.powi(2)).sum::<f64>().sqrt();
458 gradient_norms.push(gradient_norm);
459
460 let clipped_gradient = if let Some(clip_value) = self.config.gradient_clipping {
462 if gradient_norm > clip_value {
463 gradient
464 .iter()
465 .map(|g| g * clip_value / gradient_norm)
466 .collect()
467 } else {
468 gradient
469 }
470 } else {
471 gradient
472 };
473
474 let parameter_update = self.update_parameters(&clipped_gradient)?;
476
477 cost_history.push(cost);
479 parameter_history.push(self.state.parameters.clone());
480 self.stats.iteration_times.push(iter_start.elapsed());
481 self.stats.function_evaluations.push(1); self.stats.gradient_evaluations.push(1); self.stats.parameter_update_magnitudes.push(
484 parameter_update
485 .iter()
486 .map(|u| u.powi(2))
487 .sum::<f64>()
488 .sqrt(),
489 );
490
491 if gradient_norm < self.config.convergence_tolerance {
493 break;
494 }
495
496 if let Some(ref restart_config) = self.config.warm_restart {
498 if iteration % restart_config.restart_period == 0 && iteration > 0 {
499 self.state.learning_rate = (self.state.learning_rate
500 * restart_config.restart_factor)
501 .max(restart_config.min_learning_rate);
502 }
503 }
504 }
505
506 let total_time = start_time.elapsed();
507 self.stats.total_time = total_time;
508
509 let final_circuit = self.generate_circuit(&self.state.best_parameters)?;
511 let final_state = self.simulate_circuit(&final_circuit)?;
512
513 let expectation_values = self.calculate_expectation_values(&final_state)?;
515
516 let converged = gradient_norms
517 .last()
518 .is_some_and(|&norm| norm < self.config.convergence_tolerance);
519
520 Ok(VQAResult {
521 optimal_parameters: self.state.best_parameters.clone(),
522 optimal_cost: self.state.best_cost,
523 cost_history,
524 parameter_history,
525 gradient_norms,
526 iterations: self.state.iteration + 1,
527 optimization_time: total_time,
528 converged,
529 final_state: Some(final_state),
530 expectation_values,
531 })
532 }
533
534 fn generate_circuit(&self, parameters: &[f64]) -> Result<InterfaceCircuit> {
536 match &self.ansatz {
537 VariationalAnsatz::HardwareEfficient {
538 layers,
539 entangling_gates,
540 rotation_gates,
541 } => self.generate_hardware_efficient_circuit(
542 parameters,
543 *layers,
544 entangling_gates,
545 rotation_gates,
546 ),
547 VariationalAnsatz::UCCSD {
548 num_electrons,
549 num_orbitals,
550 include_triples,
551 } => self.generate_uccsd_circuit(
552 parameters,
553 *num_electrons,
554 *num_orbitals,
555 *include_triples,
556 ),
557 VariationalAnsatz::QAOA {
558 problem_hamiltonian,
559 mixer_hamiltonian,
560 layers,
561 } => self.generate_qaoa_circuit(
562 parameters,
563 problem_hamiltonian,
564 mixer_hamiltonian,
565 *layers,
566 ),
567 VariationalAnsatz::Adaptive {
568 max_layers,
569 growth_criterion,
570 operator_pool,
571 } => self.generate_adaptive_circuit(
572 parameters,
573 *max_layers,
574 growth_criterion,
575 operator_pool,
576 ),
577 VariationalAnsatz::QuantumNeuralNetwork {
578 hidden_layers,
579 activation_type,
580 connectivity,
581 } => {
582 self.generate_qnn_circuit(parameters, hidden_layers, activation_type, connectivity)
583 }
584 VariationalAnsatz::TensorNetworkAnsatz {
585 bond_dimension,
586 network_topology,
587 compression_method,
588 } => self.generate_tensor_network_circuit(
589 parameters,
590 *bond_dimension,
591 network_topology,
592 compression_method,
593 ),
594 }
595 }
596
597 fn generate_hardware_efficient_circuit(
599 &self,
600 parameters: &[f64],
601 layers: usize,
602 entangling_gates: &[InterfaceGateType],
603 rotation_gates: &[InterfaceGateType],
604 ) -> Result<InterfaceCircuit> {
605 let num_qubits = self.infer_num_qubits_from_parameters(parameters.len(), layers)?;
606 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
607 let mut param_idx = 0;
608
609 for layer in 0..layers {
610 for qubit in 0..num_qubits {
612 for gate_type in rotation_gates {
613 match gate_type {
614 InterfaceGateType::RX(_) => {
615 circuit.add_gate(InterfaceGate::new(
616 InterfaceGateType::RX(parameters[param_idx]),
617 vec![qubit],
618 ));
619 param_idx += 1;
620 }
621 InterfaceGateType::RY(_) => {
622 circuit.add_gate(InterfaceGate::new(
623 InterfaceGateType::RY(parameters[param_idx]),
624 vec![qubit],
625 ));
626 param_idx += 1;
627 }
628 InterfaceGateType::RZ(_) => {
629 circuit.add_gate(InterfaceGate::new(
630 InterfaceGateType::RZ(parameters[param_idx]),
631 vec![qubit],
632 ));
633 param_idx += 1;
634 }
635 _ => {
636 circuit.add_gate(InterfaceGate::new(gate_type.clone(), vec![qubit]));
637 }
638 }
639 }
640 }
641
642 for qubit in 0..num_qubits - 1 {
644 for gate_type in entangling_gates {
645 match gate_type {
646 InterfaceGateType::CNOT => {
647 circuit.add_gate(InterfaceGate::new(
648 InterfaceGateType::CNOT,
649 vec![qubit, qubit + 1],
650 ));
651 }
652 InterfaceGateType::CZ => {
653 circuit.add_gate(InterfaceGate::new(
654 InterfaceGateType::CZ,
655 vec![qubit, qubit + 1],
656 ));
657 }
658 InterfaceGateType::CRZ(_) => {
659 circuit.add_gate(InterfaceGate::new(
660 InterfaceGateType::CRZ(parameters[param_idx]),
661 vec![qubit, qubit + 1],
662 ));
663 param_idx += 1;
664 }
665 _ => {
666 circuit.add_gate(InterfaceGate::new(
667 gate_type.clone(),
668 vec![qubit, qubit + 1],
669 ));
670 }
671 }
672 }
673 }
674 }
675
676 Ok(circuit)
677 }
678
679 fn generate_uccsd_circuit(
681 &self,
682 parameters: &[f64],
683 num_electrons: usize,
684 num_orbitals: usize,
685 include_triples: bool,
686 ) -> Result<InterfaceCircuit> {
687 let num_qubits = 2 * num_orbitals; let mut circuit = InterfaceCircuit::new(num_qubits, 0);
689 let mut param_idx = 0;
690
691 for i in 0..num_electrons {
693 circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![i]));
694 }
695
696 for i in 0..num_electrons {
698 for a in num_electrons..num_qubits {
699 if param_idx < parameters.len() {
700 let theta = parameters[param_idx];
702
703 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(theta), vec![i]));
705 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, a]));
706 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(-theta), vec![a]));
707
708 param_idx += 1;
709 }
710 }
711 }
712
713 for i in 0..num_electrons {
715 for j in i + 1..num_electrons {
716 for a in num_electrons..num_qubits {
717 for b in a + 1..num_qubits {
718 if param_idx < parameters.len() {
719 let theta = parameters[param_idx];
721
722 circuit.add_gate(InterfaceGate::new(
724 InterfaceGateType::RY(theta),
725 vec![i],
726 ));
727 circuit
728 .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
729 circuit
730 .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![j, a]));
731 circuit
732 .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![a, b]));
733 circuit.add_gate(InterfaceGate::new(
734 InterfaceGateType::RY(-theta),
735 vec![b],
736 ));
737
738 param_idx += 1;
739 }
740 }
741 }
742 }
743 }
744
745 if include_triples {
747 }
749
750 Ok(circuit)
751 }
752
753 fn generate_qaoa_circuit(
755 &self,
756 parameters: &[f64],
757 problem_hamiltonian: &ProblemHamiltonian,
758 mixer_hamiltonian: &MixerHamiltonian,
759 layers: usize,
760 ) -> Result<InterfaceCircuit> {
761 let num_qubits = self.extract_num_qubits_from_hamiltonian(problem_hamiltonian)?;
762 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
763 let mut param_idx = 0;
764
765 for qubit in 0..num_qubits {
767 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
768 }
769
770 for _layer in 0..layers {
772 if param_idx < parameters.len() {
774 let gamma = parameters[param_idx];
775 self.apply_hamiltonian_evolution(&mut circuit, problem_hamiltonian, gamma)?;
776 param_idx += 1;
777 }
778
779 if param_idx < parameters.len() {
781 let beta = parameters[param_idx];
782 self.apply_hamiltonian_evolution_mixer(&mut circuit, mixer_hamiltonian, beta)?;
783 param_idx += 1;
784 }
785 }
786
787 Ok(circuit)
788 }
789
790 fn apply_hamiltonian_evolution(
792 &self,
793 circuit: &mut InterfaceCircuit,
794 hamiltonian: &ProblemHamiltonian,
795 parameter: f64,
796 ) -> Result<()> {
797 for term in &hamiltonian.terms {
798 let angle = parameter * term.coefficient.re;
799
800 match term.pauli_string.as_str() {
803 "ZZ" if term.qubits.len() == 2 => {
804 circuit.add_gate(InterfaceGate::new(
805 InterfaceGateType::CNOT,
806 term.qubits.clone(),
807 ));
808 circuit.add_gate(InterfaceGate::new(
809 InterfaceGateType::RZ(angle),
810 vec![term.qubits[1]],
811 ));
812 circuit.add_gate(InterfaceGate::new(
813 InterfaceGateType::CNOT,
814 term.qubits.clone(),
815 ));
816 }
817 "Z" if term.qubits.len() == 1 => {
818 circuit.add_gate(InterfaceGate::new(
819 InterfaceGateType::RZ(angle),
820 term.qubits.clone(),
821 ));
822 }
823 _ => {
824 }
826 }
827 }
828 Ok(())
829 }
830
831 fn apply_hamiltonian_evolution_mixer(
833 &self,
834 circuit: &mut InterfaceCircuit,
835 mixer: &MixerHamiltonian,
836 parameter: f64,
837 ) -> Result<()> {
838 match mixer.mixer_type {
839 MixerType::XMixer => {
840 for i in 0..circuit.num_qubits {
842 circuit.add_gate(InterfaceGate::new(
843 InterfaceGateType::RX(parameter),
844 vec![i],
845 ));
846 }
847 }
848 MixerType::XYMixer => {
849 for i in 0..circuit.num_qubits - 1 {
851 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
853 circuit.add_gate(InterfaceGate::new(
854 InterfaceGateType::RY(parameter),
855 vec![i + 1],
856 ));
857 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
858 }
859 }
860 MixerType::RingMixer => {
861 for i in 0..circuit.num_qubits {
863 let next = (i + 1) % circuit.num_qubits;
864 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
865 circuit.add_gate(InterfaceGate::new(
866 InterfaceGateType::RY(parameter),
867 vec![next],
868 ));
869 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
870 }
871 }
872 MixerType::CustomMixer => {
873 for term in &mixer.terms {
875 let angle = parameter * term.coefficient.re;
876 if !term.qubits.is_empty() {
878 circuit.add_gate(InterfaceGate::new(
879 InterfaceGateType::RX(angle),
880 vec![term.qubits[0]],
881 ));
882 }
883 }
884 }
885 }
886 Ok(())
887 }
888
889 fn generate_adaptive_circuit(
891 &self,
892 parameters: &[f64],
893 max_layers: usize,
894 growth_criterion: &GrowthCriterion,
895 operator_pool: &[InterfaceGate],
896 ) -> Result<InterfaceCircuit> {
897 let num_qubits = self.infer_num_qubits_from_pool(operator_pool)?;
898 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
899 let mut param_idx = 0;
900
901 let current_layers = self.determine_adaptive_layers(max_layers, growth_criterion)?;
903
904 for layer in 0..current_layers {
905 if param_idx < parameters.len() {
906 let operator_idx = (layer * 13) % operator_pool.len(); let mut selected_gate = operator_pool[operator_idx].clone();
909
910 match &mut selected_gate.gate_type {
912 InterfaceGateType::RX(_) => {
913 selected_gate.gate_type = InterfaceGateType::RX(parameters[param_idx]);
914 }
915 InterfaceGateType::RY(_) => {
916 selected_gate.gate_type = InterfaceGateType::RY(parameters[param_idx]);
917 }
918 InterfaceGateType::RZ(_) => {
919 selected_gate.gate_type = InterfaceGateType::RZ(parameters[param_idx]);
920 }
921 _ => {}
922 }
923
924 circuit.add_gate(selected_gate);
925 param_idx += 1;
926 }
927 }
928
929 Ok(circuit)
930 }
931
932 fn generate_qnn_circuit(
934 &self,
935 parameters: &[f64],
936 hidden_layers: &[usize],
937 activation_type: &QuantumActivation,
938 connectivity: &NetworkConnectivity,
939 ) -> Result<InterfaceCircuit> {
940 let num_qubits = *hidden_layers.iter().max().unwrap_or(&4).max(&4);
941 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
942 let mut param_idx = 0;
943
944 for qubit in 0..num_qubits {
946 if param_idx < parameters.len() {
947 circuit.add_gate(InterfaceGate::new(
948 InterfaceGateType::RY(parameters[param_idx]),
949 vec![qubit],
950 ));
951 param_idx += 1;
952 }
953 }
954
955 for (layer_idx, &layer_size) in hidden_layers.iter().enumerate() {
957 for neuron in 0..layer_size.min(num_qubits) {
958 match activation_type {
960 QuantumActivation::RotationActivation => {
961 if param_idx < parameters.len() {
962 circuit.add_gate(InterfaceGate::new(
963 InterfaceGateType::RY(parameters[param_idx]),
964 vec![neuron],
965 ));
966 param_idx += 1;
967 }
968 }
969 QuantumActivation::ControlledRotation => {
970 if neuron > 0 && param_idx < parameters.len() {
971 circuit.add_gate(InterfaceGate::new(
972 InterfaceGateType::CRY(parameters[param_idx]),
973 vec![neuron - 1, neuron],
974 ));
975 param_idx += 1;
976 }
977 }
978 QuantumActivation::EntanglingActivation => {
979 if neuron < num_qubits - 1 {
980 circuit.add_gate(InterfaceGate::new(
981 InterfaceGateType::CNOT,
982 vec![neuron, neuron + 1],
983 ));
984 }
985 }
986 QuantumActivation::QuantumReLU => {
987 if param_idx < parameters.len() {
989 circuit.add_gate(InterfaceGate::new(
990 InterfaceGateType::RY(parameters[param_idx].max(0.0)),
991 vec![neuron],
992 ));
993 param_idx += 1;
994 }
995 }
996 }
997
998 match connectivity {
1000 NetworkConnectivity::FullyConnected => {
1001 for other in 0..num_qubits {
1002 if other != neuron {
1003 circuit.add_gate(InterfaceGate::new(
1004 InterfaceGateType::CNOT,
1005 vec![neuron, other],
1006 ));
1007 }
1008 }
1009 }
1010 NetworkConnectivity::NearestNeighbor => {
1011 if neuron > 0 {
1012 circuit.add_gate(InterfaceGate::new(
1013 InterfaceGateType::CNOT,
1014 vec![neuron - 1, neuron],
1015 ));
1016 }
1017 if neuron < num_qubits - 1 {
1018 circuit.add_gate(InterfaceGate::new(
1019 InterfaceGateType::CNOT,
1020 vec![neuron, neuron + 1],
1021 ));
1022 }
1023 }
1024 _ => {
1025 }
1027 }
1028 }
1029 }
1030
1031 Ok(circuit)
1032 }
1033
1034 fn generate_tensor_network_circuit(
1036 &self,
1037 parameters: &[f64],
1038 bond_dimension: usize,
1039 network_topology: &TensorTopology,
1040 compression_method: &CompressionMethod,
1041 ) -> Result<InterfaceCircuit> {
1042 let num_qubits = (parameters.len() as f64).sqrt().ceil() as usize;
1043 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
1044 let mut param_idx = 0;
1045
1046 match network_topology {
1047 TensorTopology::MPS => {
1048 for qubit in 0..num_qubits {
1050 if param_idx < parameters.len() {
1051 circuit.add_gate(InterfaceGate::new(
1052 InterfaceGateType::RY(parameters[param_idx]),
1053 vec![qubit],
1054 ));
1055 param_idx += 1;
1056 }
1057
1058 if qubit < num_qubits - 1 {
1059 circuit.add_gate(InterfaceGate::new(
1060 InterfaceGateType::CNOT,
1061 vec![qubit, qubit + 1],
1062 ));
1063
1064 if param_idx < parameters.len() {
1065 circuit.add_gate(InterfaceGate::new(
1066 InterfaceGateType::RY(parameters[param_idx]),
1067 vec![qubit + 1],
1068 ));
1069 param_idx += 1;
1070 }
1071 }
1072 }
1073 }
1074 TensorTopology::MERA => {
1075 let mut current_level = num_qubits;
1077 while current_level > 1 {
1078 for i in (0..current_level).step_by(2) {
1079 if i + 1 < current_level && param_idx < parameters.len() {
1080 circuit.add_gate(InterfaceGate::new(
1081 InterfaceGateType::RY(parameters[param_idx]),
1082 vec![i],
1083 ));
1084 param_idx += 1;
1085 circuit.add_gate(InterfaceGate::new(
1086 InterfaceGateType::CNOT,
1087 vec![i, i + 1],
1088 ));
1089 }
1090 }
1091 current_level = current_level.div_ceil(2);
1092 }
1093 }
1094 _ => {
1095 return Err(SimulatorError::UnsupportedOperation(format!(
1097 "Tensor network topology {network_topology:?} not implemented"
1098 )));
1099 }
1100 }
1101
1102 Ok(circuit)
1103 }
1104
1105 fn update_parameters(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1107 match self.config.optimizer {
1108 AdvancedOptimizerType::SPSA => self.update_spsa(gradient),
1109 AdvancedOptimizerType::QuantumAdam => self.update_quantum_adam(gradient),
1110 AdvancedOptimizerType::NaturalGradient => self.update_natural_gradient(gradient),
1111 AdvancedOptimizerType::QuantumNaturalGradient => {
1112 self.update_quantum_natural_gradient(gradient)
1113 }
1114 AdvancedOptimizerType::LBFGS => self.update_lbfgs(gradient),
1115 AdvancedOptimizerType::BayesianOptimization => self.update_bayesian(gradient),
1116 AdvancedOptimizerType::ReinforcementLearning => {
1117 self.update_reinforcement_learning(gradient)
1118 }
1119 AdvancedOptimizerType::EvolutionaryStrategy => {
1120 self.update_evolutionary_strategy(gradient)
1121 }
1122 AdvancedOptimizerType::QuantumParticleSwarm => {
1123 self.update_quantum_particle_swarm(gradient)
1124 }
1125 AdvancedOptimizerType::MetaLearningOptimizer => self.update_meta_learning(gradient),
1126 }
1127 }
1128
1129 fn update_spsa(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1131 let learning_rate = self.state.learning_rate;
1132 let mut updates = Vec::new();
1133
1134 for i in 0..self.state.parameters.len() {
1136 let perturbation = if thread_rng().gen::<f64>() > 0.5 {
1137 1.0
1138 } else {
1139 -1.0
1140 };
1141 let update = learning_rate * perturbation;
1142 self.state.parameters[i] += update;
1143 updates.push(update);
1144 }
1145
1146 Ok(updates)
1147 }
1148
1149 fn update_quantum_adam(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1151 let beta1 = 0.9;
1152 let beta2 = 0.999;
1153 let epsilon = 1e-8;
1154 let learning_rate = self.state.learning_rate;
1155 let mut updates = Vec::new();
1156
1157 for i in 0..self.state.parameters.len() {
1158 self.state.optimizer_state.momentum[i] =
1160 beta1 * self.state.optimizer_state.momentum[i] + (1.0 - beta1) * gradient[i];
1161
1162 self.state.optimizer_state.velocity[i] = beta2 * self.state.optimizer_state.velocity[i]
1164 + (1.0 - beta2) * gradient[i].powi(2);
1165
1166 let m_hat = self.state.optimizer_state.momentum[i]
1168 / (1.0 - beta1.powi(self.state.iteration as i32 + 1));
1169
1170 let v_hat = self.state.optimizer_state.velocity[i]
1172 / (1.0 - beta2.powi(self.state.iteration as i32 + 1));
1173
1174 let quantum_factor = 1.0 / 0.1f64.mul_add((self.state.iteration as f64).sqrt(), 1.0);
1176 let effective_lr = learning_rate * quantum_factor;
1177
1178 let update = effective_lr * m_hat / (v_hat.sqrt() + epsilon);
1180 self.state.parameters[i] -= update;
1181 updates.push(update);
1182 }
1183
1184 Ok(updates)
1185 }
1186
1187 fn update_natural_gradient(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1189 if self.state.optimizer_state.fisher_matrix.is_none() {
1191 self.state.optimizer_state.fisher_matrix =
1192 Some(self.compute_fisher_information_matrix()?);
1193 }
1194
1195 let fisher_matrix = self.state.optimizer_state.fisher_matrix.as_ref().unwrap();
1196
1197 let natural_gradient = self.solve_linear_system(fisher_matrix, gradient)?;
1199
1200 let mut updates = Vec::new();
1201 for i in 0..self.state.parameters.len() {
1202 let update = self.state.learning_rate * natural_gradient[i];
1203 self.state.parameters[i] -= update;
1204 updates.push(update);
1205 }
1206
1207 Ok(updates)
1208 }
1209
1210 fn update_quantum_natural_gradient(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1212 let qfi_matrix = self.compute_quantum_fisher_information_matrix()?;
1214
1215 let regularized_qfi = self.regularize_matrix(&qfi_matrix, 1e-6)?;
1217
1218 let natural_gradient = self.solve_linear_system(®ularized_qfi, gradient)?;
1219
1220 let mut updates = Vec::new();
1221 for i in 0..self.state.parameters.len() {
1222 let update = self.state.learning_rate * natural_gradient[i];
1223 self.state.parameters[i] -= update;
1224 updates.push(update);
1225 }
1226
1227 Ok(updates)
1228 }
1229
1230 fn update_lbfgs(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1232 let max_history = 10;
1233
1234 if !self.state.optimizer_state.lbfgs_history.is_empty() {
1236 let (prev_params, prev_grad) = self.state.optimizer_state.lbfgs_history.back().unwrap();
1237 let s = self
1238 .state
1239 .parameters
1240 .iter()
1241 .zip(prev_params)
1242 .map(|(x, px)| x - px)
1243 .collect::<Vec<_>>();
1244 let y = gradient
1245 .iter()
1246 .zip(prev_grad)
1247 .map(|(g, pg)| g - pg)
1248 .collect::<Vec<_>>();
1249
1250 self.state.optimizer_state.lbfgs_history.push_back((s, y));
1251
1252 if self.state.optimizer_state.lbfgs_history.len() > max_history {
1253 self.state.optimizer_state.lbfgs_history.pop_front();
1254 }
1255 }
1256
1257 let mut q = gradient.to_vec();
1259 let mut alphas = Vec::new();
1260
1261 for (s, y) in self.state.optimizer_state.lbfgs_history.iter().rev() {
1263 let sy = s.iter().zip(y).map(|(si, yi)| si * yi).sum::<f64>();
1264 if sy.abs() > 1e-10 {
1265 let alpha = s.iter().zip(&q).map(|(si, qi)| si * qi).sum::<f64>() / sy;
1266 alphas.push(alpha);
1267 for i in 0..q.len() {
1268 q[i] -= alpha * y[i];
1269 }
1270 } else {
1271 alphas.push(0.0);
1272 }
1273 }
1274
1275 alphas.reverse();
1280 for ((s, y), alpha) in self
1281 .state
1282 .optimizer_state
1283 .lbfgs_history
1284 .iter()
1285 .zip(alphas.iter())
1286 {
1287 let sy = s.iter().zip(y).map(|(si, yi)| si * yi).sum::<f64>();
1288 if sy.abs() > 1e-10 {
1289 let beta = y.iter().zip(&q).map(|(yi, qi)| yi * qi).sum::<f64>() / sy;
1290 for i in 0..q.len() {
1291 q[i] += (alpha - beta) * s[i];
1292 }
1293 }
1294 }
1295
1296 let mut updates = Vec::new();
1298 for i in 0..self.state.parameters.len() {
1299 let update = self.state.learning_rate * q[i];
1300 self.state.parameters[i] -= update;
1301 updates.push(update);
1302 }
1303
1304 self.state
1306 .optimizer_state
1307 .lbfgs_history
1308 .push_back((self.state.parameters.clone(), gradient.to_vec()));
1309
1310 Ok(updates)
1311 }
1312
1313 fn update_bayesian(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1315 if self.state.optimizer_state.bayesian_model.is_none() {
1317 self.state.optimizer_state.bayesian_model = Some(BayesianModel {
1318 kernel_hyperparameters: vec![1.0, 1.0], observed_points: Vec::new(),
1320 observed_values: Vec::new(),
1321 acquisition_function: AcquisitionFunction::ExpectedImprovement,
1322 });
1323 }
1324
1325 if let Some(ref mut model) = self.state.optimizer_state.bayesian_model {
1327 model.observed_points.push(self.state.parameters.clone());
1328 model.observed_values.push(self.state.current_cost);
1329 }
1330
1331 let next_parameters = self
1333 .state
1334 .parameters
1335 .iter()
1336 .map(|p| p + (thread_rng().gen::<f64>() - 0.5) * 0.1)
1337 .collect::<Vec<_>>();
1338
1339 let updates = next_parameters
1340 .iter()
1341 .zip(&self.state.parameters)
1342 .map(|(new, old)| new - old)
1343 .collect();
1344
1345 self.state.parameters = next_parameters;
1346
1347 Ok(updates)
1348 }
1349
1350 fn update_reinforcement_learning(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1352 let reward = -self.state.current_cost; let baseline = self.compute_baseline_reward()?;
1355 let advantage = reward - baseline;
1356
1357 let mut updates = Vec::new();
1358 for i in 0..self.state.parameters.len() {
1359 let update = self.state.learning_rate * gradient[i] * advantage;
1361 self.state.parameters[i] += update;
1362 updates.push(update);
1363 }
1364
1365 Ok(updates)
1366 }
1367
1368 fn update_evolutionary_strategy(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1370 let population_size = 20;
1371 let sigma = 0.1; let mut population = Vec::new();
1373 let mut fitness_values = Vec::new();
1374
1375 for _ in 0..population_size {
1377 let mut candidate = self.state.parameters.clone();
1378 for param in &mut candidate {
1379 *param += sigma * (thread_rng().gen::<f64>() - 0.5) * 2.0;
1380 }
1381 population.push(candidate);
1382 }
1383
1384 for candidate in &population {
1386 let circuit = self.generate_circuit(candidate)?;
1387 let fitness = -self.cost_function.evaluate(candidate, &circuit)?; fitness_values.push(fitness);
1389 }
1390
1391 let mut indices: Vec<usize> = (0..population_size).collect();
1393 indices.sort_by(|&a, &b| fitness_values[b].partial_cmp(&fitness_values[a]).unwrap());
1394
1395 let top_n = population_size / 4;
1397 let mut new_parameters = vec![0.0; self.state.parameters.len()];
1398 let mut total_weight = 0.0;
1399
1400 for &idx in indices.iter().take(top_n) {
1401 let weight = fitness_values[idx];
1402 total_weight += weight;
1403 for i in 0..new_parameters.len() {
1404 new_parameters[i] += weight * population[idx][i];
1405 }
1406 }
1407
1408 for param in &mut new_parameters {
1409 *param /= total_weight;
1410 }
1411
1412 let updates = new_parameters
1413 .iter()
1414 .zip(&self.state.parameters)
1415 .map(|(new, old)| new - old)
1416 .collect();
1417
1418 self.state.parameters = new_parameters;
1419
1420 Ok(updates)
1421 }
1422
1423 fn update_quantum_particle_swarm(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1425 let inertia = 0.9;
1427 let cognitive = 2.0;
1428 let social = 2.0;
1429
1430 for i in 0..self.state.parameters.len() {
1432 let quantum_factor = (2.0 * std::f64::consts::PI * thread_rng().gen::<f64>())
1433 .cos()
1434 .abs();
1435
1436 self.state.optimizer_state.momentum[i] = (social * thread_rng().gen::<f64>()).mul_add(
1438 self.state.best_parameters[i] - self.state.parameters[i],
1439 inertia * self.state.optimizer_state.momentum[i]
1440 + cognitive
1441 * thread_rng().gen::<f64>()
1442 * (self.state.best_parameters[i] - self.state.parameters[i])
1443 * quantum_factor,
1444 );
1445 }
1446
1447 let mut updates = Vec::new();
1449 for i in 0..self.state.parameters.len() {
1450 let update = self.state.optimizer_state.momentum[i];
1451 self.state.parameters[i] += update;
1452 updates.push(update);
1453 }
1454
1455 Ok(updates)
1456 }
1457
1458 fn update_meta_learning(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1460 let gradient_norm = gradient.iter().map(|g| g.powi(2)).sum::<f64>().sqrt();
1462
1463 if self.state.iteration > 10 {
1465 let recent_gradients = &self.stats.parameter_update_magnitudes;
1466 let recent_avg = recent_gradients.iter().rev().take(5).sum::<f64>() / 5.0;
1467
1468 if gradient_norm > 2.0 * recent_avg {
1469 self.state.learning_rate *= 0.8; } else if gradient_norm < 0.5 * recent_avg {
1471 self.state.learning_rate *= 1.1; }
1473 }
1474
1475 self.update_quantum_adam(gradient)
1477 }
1478
1479 fn count_parameters(ansatz: &VariationalAnsatz) -> Result<usize> {
1481 match ansatz {
1482 VariationalAnsatz::HardwareEfficient {
1483 layers,
1484 rotation_gates,
1485 ..
1486 } => {
1487 Ok(layers * rotation_gates.len() * 4) }
1490 VariationalAnsatz::UCCSD {
1491 num_electrons,
1492 num_orbitals,
1493 include_triples,
1494 } => {
1495 let singles = num_electrons * (2 * num_orbitals - num_electrons);
1496 let doubles = num_electrons
1497 * (num_electrons - 1)
1498 * (2 * num_orbitals - num_electrons)
1499 * (2 * num_orbitals - num_electrons - 1)
1500 / 4;
1501 let triples = if *include_triples { doubles / 10 } else { 0 }; Ok(singles + doubles + triples)
1503 }
1504 VariationalAnsatz::QAOA { layers, .. } => {
1505 Ok(2 * layers) }
1507 VariationalAnsatz::Adaptive { max_layers, .. } => Ok(*max_layers),
1508 VariationalAnsatz::QuantumNeuralNetwork { hidden_layers, .. } => {
1509 Ok(hidden_layers.iter().sum::<usize>())
1510 }
1511 VariationalAnsatz::TensorNetworkAnsatz { bond_dimension, .. } => {
1512 Ok(bond_dimension * 4) }
1514 }
1515 }
1516
1517 fn initialize_parameters(num_parameters: usize, config: &VQAConfig) -> Result<Vec<f64>> {
1518 let mut parameters = Vec::with_capacity(num_parameters);
1519
1520 for _ in 0..num_parameters {
1521 let param = if let Some((min, max)) = config.parameter_bounds {
1522 (max - min).mul_add(thread_rng().gen::<f64>(), min)
1523 } else {
1524 (thread_rng().gen::<f64>() - 0.5) * 2.0 * std::f64::consts::PI
1525 };
1526 parameters.push(param);
1527 }
1528
1529 Ok(parameters)
1530 }
1531
1532 fn infer_num_qubits_from_parameters(&self, num_params: usize, layers: usize) -> Result<usize> {
1533 Ok((num_params as f64 / layers as f64).sqrt().ceil() as usize)
1535 }
1536
1537 fn extract_num_qubits_from_hamiltonian(
1538 &self,
1539 hamiltonian: &ProblemHamiltonian,
1540 ) -> Result<usize> {
1541 Ok(hamiltonian
1542 .terms
1543 .iter()
1544 .flat_map(|term| &term.qubits)
1545 .max()
1546 .unwrap_or(&0)
1547 + 1)
1548 }
1549
1550 fn infer_num_qubits_from_pool(&self, operator_pool: &[InterfaceGate]) -> Result<usize> {
1551 Ok(operator_pool
1552 .iter()
1553 .flat_map(|gate| &gate.qubits)
1554 .max()
1555 .unwrap_or(&0)
1556 + 1)
1557 }
1558
1559 fn determine_adaptive_layers(
1560 &self,
1561 max_layers: usize,
1562 _growth_criterion: &GrowthCriterion,
1563 ) -> Result<usize> {
1564 let current_layers = (self.state.iteration / 10).min(max_layers);
1566 Ok(current_layers.max(1))
1567 }
1568
1569 fn simulate_circuit(&self, circuit: &InterfaceCircuit) -> Result<Array1<Complex64>> {
1570 let state_size = 1 << circuit.num_qubits;
1572 let mut state = Array1::zeros(state_size);
1573 state[0] = Complex64::new(1.0, 0.0); Ok(state)
1575 }
1576
1577 fn calculate_expectation_values(
1578 &self,
1579 _state: &Array1<Complex64>,
1580 ) -> Result<HashMap<String, f64>> {
1581 let mut expectations = HashMap::new();
1582
1583 for observable in self.cost_function.get_observables() {
1584 expectations.insert(observable, 0.0);
1586 }
1587
1588 Ok(expectations)
1589 }
1590
1591 fn compute_fisher_information_matrix(&self) -> Result<Array2<f64>> {
1592 let n = self.state.parameters.len();
1593 Ok(Array2::eye(n)) }
1595
1596 fn compute_quantum_fisher_information_matrix(&self) -> Result<Array2<f64>> {
1597 let n = self.state.parameters.len();
1598 Ok(Array2::eye(n)) }
1600
1601 fn regularize_matrix(&self, matrix: &Array2<f64>, regularization: f64) -> Result<Array2<f64>> {
1602 let mut regularized = matrix.clone();
1603 for i in 0..matrix.nrows() {
1604 regularized[[i, i]] += regularization;
1605 }
1606 Ok(regularized)
1607 }
1608
1609 fn solve_linear_system(&self, matrix: &Array2<f64>, rhs: &[f64]) -> Result<Vec<f64>> {
1610 Ok(rhs.to_vec())
1612 }
1613
1614 fn optimize_acquisition_function(&self, _model: &BayesianModel) -> Result<Vec<f64>> {
1615 Ok(self.state.parameters.clone())
1617 }
1618
1619 const fn compute_baseline_reward(&self) -> Result<f64> {
1620 Ok(0.0)
1622 }
1623}
1624
1625pub struct IsingCostFunction {
1628 pub problem_hamiltonian: ProblemHamiltonian,
1629}
1630
1631impl CostFunction for IsingCostFunction {
1632 fn evaluate(&self, _parameters: &[f64], circuit: &InterfaceCircuit) -> Result<f64> {
1633 let num_qubits = circuit.num_qubits;
1635 let mut cost = 0.0;
1636
1637 for term in &self.problem_hamiltonian.terms {
1639 match term.pauli_string.as_str() {
1640 "ZZ" if term.qubits.len() == 2 => {
1641 cost += term.coefficient.re; }
1643 "Z" if term.qubits.len() == 1 => {
1644 cost += term.coefficient.re; }
1646 _ => {}
1647 }
1648 }
1649
1650 Ok(cost)
1651 }
1652
1653 fn get_observables(&self) -> Vec<String> {
1654 self.problem_hamiltonian
1655 .terms
1656 .iter()
1657 .map(|term| term.pauli_string.clone())
1658 .collect()
1659 }
1660
1661 fn is_variational(&self) -> bool {
1662 true
1663 }
1664}
1665
1666pub struct FiniteDifferenceGradient {
1669 pub epsilon: f64,
1670}
1671
1672impl GradientCalculator for FiniteDifferenceGradient {
1673 fn calculate_gradient(
1674 &self,
1675 parameters: &[f64],
1676 cost_function: &dyn CostFunction,
1677 circuit: &InterfaceCircuit,
1678 ) -> Result<Vec<f64>> {
1679 let mut gradient = Vec::with_capacity(parameters.len());
1680
1681 for i in 0..parameters.len() {
1682 let mut params_plus = parameters.to_vec();
1683 let mut params_minus = parameters.to_vec();
1684
1685 params_plus[i] += self.epsilon;
1686 params_minus[i] -= self.epsilon;
1687
1688 let cost_plus = cost_function.evaluate(¶ms_plus, circuit)?;
1690 let cost_minus = cost_function.evaluate(¶ms_minus, circuit)?;
1691
1692 let grad = (cost_plus - cost_minus) / (2.0 * self.epsilon);
1693 gradient.push(grad);
1694 }
1695
1696 Ok(gradient)
1697 }
1698
1699 fn method_name(&self) -> &'static str {
1700 "FiniteDifference"
1701 }
1702}
1703
1704pub struct ParameterShiftGradient;
1706
1707impl GradientCalculator for ParameterShiftGradient {
1708 fn calculate_gradient(
1709 &self,
1710 parameters: &[f64],
1711 cost_function: &dyn CostFunction,
1712 circuit: &InterfaceCircuit,
1713 ) -> Result<Vec<f64>> {
1714 let shift = std::f64::consts::PI / 2.0;
1715 let mut gradient = Vec::with_capacity(parameters.len());
1716
1717 for i in 0..parameters.len() {
1718 let mut params_plus = parameters.to_vec();
1719 let mut params_minus = parameters.to_vec();
1720
1721 params_plus[i] += shift;
1722 params_minus[i] -= shift;
1723
1724 let cost_plus = cost_function.evaluate(¶ms_plus, circuit)?;
1726 let cost_minus = cost_function.evaluate(¶ms_minus, circuit)?;
1727
1728 let grad = (cost_plus - cost_minus) / 2.0;
1729 gradient.push(grad);
1730 }
1731
1732 Ok(gradient)
1733 }
1734
1735 fn method_name(&self) -> &'static str {
1736 "ParameterShift"
1737 }
1738}
1739
1740pub fn benchmark_advanced_vqa() -> Result<HashMap<String, f64>> {
1742 let mut results = HashMap::new();
1743
1744 let start = Instant::now();
1746 let ansatz = VariationalAnsatz::HardwareEfficient {
1747 layers: 3,
1748 entangling_gates: vec![InterfaceGateType::CNOT],
1749 rotation_gates: vec![InterfaceGateType::RY(0.0)],
1750 };
1751
1752 let config = VQAConfig::default();
1753 let cost_function = Box::new(IsingCostFunction {
1754 problem_hamiltonian: ProblemHamiltonian {
1755 terms: vec![HamiltonianTerm {
1756 coefficient: Complex64::new(-1.0, 0.0),
1757 pauli_string: "ZZ".to_string(),
1758 qubits: vec![0, 1],
1759 }],
1760 problem_type: OptimizationProblemType::MaxCut,
1761 },
1762 });
1763 let gradient_calculator = Box::new(FiniteDifferenceGradient { epsilon: 1e-4 });
1764
1765 let mut trainer = AdvancedVQATrainer::new(config, ansatz, cost_function, gradient_calculator)?;
1766 let _result = trainer.train()?;
1767
1768 let hardware_efficient_time = start.elapsed().as_millis() as f64;
1769 results.insert(
1770 "hardware_efficient_vqa".to_string(),
1771 hardware_efficient_time,
1772 );
1773
1774 Ok(results)
1775}
1776
1777#[cfg(test)]
1778mod tests {
1779 use super::*;
1780
1781 #[test]
1782 fn test_vqa_trainer_creation() {
1783 let ansatz = VariationalAnsatz::HardwareEfficient {
1784 layers: 2,
1785 entangling_gates: vec![InterfaceGateType::CNOT],
1786 rotation_gates: vec![InterfaceGateType::RY(0.0)],
1787 };
1788
1789 let config = VQAConfig::default();
1790 let cost_function = Box::new(IsingCostFunction {
1791 problem_hamiltonian: ProblemHamiltonian {
1792 terms: vec![],
1793 problem_type: OptimizationProblemType::MaxCut,
1794 },
1795 });
1796 let gradient_calculator = Box::new(FiniteDifferenceGradient { epsilon: 1e-4 });
1797
1798 let trainer = AdvancedVQATrainer::new(config, ansatz, cost_function, gradient_calculator);
1799 assert!(trainer.is_ok());
1800 }
1801
1802 #[test]
1803 fn test_parameter_counting() {
1804 let ansatz = VariationalAnsatz::HardwareEfficient {
1805 layers: 3,
1806 entangling_gates: vec![InterfaceGateType::CNOT],
1807 rotation_gates: vec![InterfaceGateType::RY(0.0)],
1808 };
1809
1810 let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1811 assert!(count > 0);
1812 }
1813
1814 #[test]
1815 fn test_uccsd_ansatz() {
1816 let ansatz = VariationalAnsatz::UCCSD {
1817 num_electrons: 2,
1818 num_orbitals: 4,
1819 include_triples: false,
1820 };
1821
1822 let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1823 assert!(count > 0);
1824 }
1825
1826 #[test]
1827 fn test_qaoa_ansatz() {
1828 let ansatz = VariationalAnsatz::QAOA {
1829 problem_hamiltonian: ProblemHamiltonian {
1830 terms: vec![],
1831 problem_type: OptimizationProblemType::MaxCut,
1832 },
1833 mixer_hamiltonian: MixerHamiltonian {
1834 terms: vec![],
1835 mixer_type: MixerType::XMixer,
1836 },
1837 layers: 3,
1838 };
1839
1840 let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1841 assert_eq!(count, 6); }
1843
1844 #[test]
1845 fn test_finite_difference_gradient() {
1846 let gradient_calc = FiniteDifferenceGradient { epsilon: 1e-4 };
1847 assert_eq!(gradient_calc.method_name(), "FiniteDifference");
1848 }
1849
1850 #[test]
1851 fn test_parameter_shift_gradient() {
1852 let gradient_calc = ParameterShiftGradient;
1853 assert_eq!(gradient_calc.method_name(), "ParameterShift");
1854 }
1855
1856 #[test]
1857 fn test_ising_cost_function() {
1858 let cost_function = IsingCostFunction {
1859 problem_hamiltonian: ProblemHamiltonian {
1860 terms: vec![HamiltonianTerm {
1861 coefficient: Complex64::new(-1.0, 0.0),
1862 pauli_string: "ZZ".to_string(),
1863 qubits: vec![0, 1],
1864 }],
1865 problem_type: OptimizationProblemType::MaxCut,
1866 },
1867 };
1868
1869 assert!(cost_function.is_variational());
1870 assert!(!cost_function.get_observables().is_empty());
1871 }
1872
1873 #[test]
1874 fn test_optimizer_types() {
1875 let optimizers = [
1876 AdvancedOptimizerType::SPSA,
1877 AdvancedOptimizerType::QuantumAdam,
1878 AdvancedOptimizerType::NaturalGradient,
1879 AdvancedOptimizerType::BayesianOptimization,
1880 ];
1881
1882 for optimizer in &optimizers {
1883 println!("Testing optimizer: {optimizer:?}");
1884 }
1885 }
1886}