quantrs2_sim/
adiabatic_quantum_computing.rs

1//! Adiabatic quantum computing simulation with gap tracking and optimization.
2//!
3//! This module implements adiabatic quantum computation (AQC), a model of quantum
4//! computation that uses the adiabatic theorem to solve optimization problems.
5//! The system starts in the ground state of a simple Hamiltonian and slowly
6//! evolves to a final Hamiltonian whose ground state encodes the solution.
7
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::Complex64;
10use serde::{Deserialize, Serialize};
11
12use crate::error::{Result, SimulatorError};
13use crate::scirs2_integration::SciRS2Backend;
14use crate::trotter::{Hamiltonian, HamiltonianTerm};
15
16/// Adiabatic quantum computing configuration
17#[derive(Debug, Clone)]
18pub struct AdiabaticConfig {
19    /// Total evolution time
20    pub total_time: f64,
21    /// Number of time steps
22    pub time_steps: usize,
23    /// Adiabatic schedule function type
24    pub schedule_type: ScheduleType,
25    /// Initial Hamiltonian
26    pub initial_hamiltonian: Hamiltonian,
27    /// Final Hamiltonian (problem Hamiltonian)
28    pub final_hamiltonian: Hamiltonian,
29    /// Gap tracking configuration
30    pub gap_tracking: GapTrackingConfig,
31    /// Energy convergence tolerance
32    pub energy_tolerance: f64,
33    /// Maximum iterations for eigenvalue solving
34    pub max_iterations: usize,
35    /// Enable adaptive time stepping
36    pub adaptive_stepping: bool,
37    /// Diabatic transition monitoring
38    pub monitor_diabatic_transitions: bool,
39}
40
41impl Default for AdiabaticConfig {
42    fn default() -> Self {
43        Self {
44            total_time: 100.0,
45            time_steps: 1000,
46            schedule_type: ScheduleType::Linear,
47            initial_hamiltonian: Hamiltonian::new(1), // Default to 1 qubit
48            final_hamiltonian: Hamiltonian::new(1),
49            gap_tracking: GapTrackingConfig::default(),
50            energy_tolerance: 1e-12,
51            max_iterations: 1000,
52            adaptive_stepping: true,
53            monitor_diabatic_transitions: false,
54        }
55    }
56}
57
58/// Adiabatic schedule types
59#[derive(Debug, Clone, Copy, PartialEq, Eq)]
60pub enum ScheduleType {
61    /// Linear interpolation s(t) = t/T
62    Linear,
63    /// Quadratic schedule s(t) = (t/T)²
64    Quadratic,
65    /// Cubic schedule s(t) = (t/T)³
66    Cubic,
67    /// Exponential schedule
68    Exponential,
69    /// Optimal schedule based on gap
70    Optimal,
71    /// Custom polynomial schedule
72    Polynomial(u32),
73    /// Landau-Zener schedule
74    LandauZener,
75}
76
77/// Gap tracking configuration
78#[derive(Debug, Clone)]
79pub struct GapTrackingConfig {
80    /// Enable gap tracking
81    pub enabled: bool,
82    /// Minimum gap threshold for adiabatic condition
83    pub min_gap_threshold: f64,
84    /// Number of eigenvalues to track
85    pub num_eigenvalues: usize,
86    /// Gap smoothing window size
87    pub smoothing_window: usize,
88    /// Enable diabatic transition detection
89    pub detect_diabatic_transitions: bool,
90    /// Gap prediction lookahead steps
91    pub lookahead_steps: usize,
92}
93
94impl Default for GapTrackingConfig {
95    fn default() -> Self {
96        Self {
97            enabled: true,
98            min_gap_threshold: 1e-6,
99            num_eigenvalues: 10,
100            smoothing_window: 5,
101            detect_diabatic_transitions: true,
102            lookahead_steps: 3,
103        }
104    }
105}
106
107/// Adiabatic quantum computer simulator
108pub struct AdiabaticQuantumComputer {
109    /// Configuration
110    config: AdiabaticConfig,
111    /// Current quantum state
112    state: Array1<Complex64>,
113    /// Current time parameter
114    current_time: f64,
115    /// Evolution history
116    evolution_history: Vec<AdiabaticSnapshot>,
117    /// Gap tracking data
118    gap_history: Vec<GapMeasurement>,
119    /// SciRS2 backend for optimization
120    backend: Option<SciRS2Backend>,
121    /// Statistics
122    stats: AdiabaticStats,
123}
124
125/// Snapshot of adiabatic evolution
126#[derive(Debug, Clone)]
127pub struct AdiabaticSnapshot {
128    /// Time parameter t
129    pub time: f64,
130    /// Schedule parameter s(t)
131    pub schedule_parameter: f64,
132    /// Current quantum state
133    pub state: Array1<Complex64>,
134    /// Current energy
135    pub energy: f64,
136    /// Energy gap
137    pub gap: Option<f64>,
138    /// Instantaneous ground state
139    pub instantaneous_ground_state: Option<Array1<Complex64>>,
140    /// Fidelity with instantaneous ground state
141    pub ground_state_fidelity: Option<f64>,
142    /// Adiabatic parameter (gap²T/ℏ)
143    pub adiabatic_parameter: Option<f64>,
144}
145
146/// Gap measurement data
147#[derive(Debug, Clone)]
148pub struct GapMeasurement {
149    /// Time
150    pub time: f64,
151    /// Schedule parameter
152    pub schedule_parameter: f64,
153    /// Energy gap
154    pub gap: f64,
155    /// Ground state energy
156    pub ground_energy: f64,
157    /// First excited state energy
158    pub first_excited_energy: f64,
159    /// Gap derivative (dΔ/dt)
160    pub gap_derivative: Option<f64>,
161    /// Predicted minimum gap
162    pub predicted_min_gap: Option<f64>,
163}
164
165/// Adiabatic simulation statistics
166#[derive(Debug, Clone, Default, Serialize, Deserialize)]
167pub struct AdiabaticStats {
168    /// Total evolution time
169    pub total_evolution_time_ms: f64,
170    /// Number of time steps completed
171    pub steps_completed: usize,
172    /// Number of eigenvalue computations
173    pub eigenvalue_computations: usize,
174    /// Average eigenvalue computation time
175    pub avg_eigenvalue_time_ms: f64,
176    /// Minimum gap encountered
177    pub min_gap: f64,
178    /// Maximum gap encountered
179    pub max_gap: f64,
180    /// Average gap
181    pub avg_gap: f64,
182    /// Number of diabatic transitions detected
183    pub diabatic_transitions: usize,
184    /// Final ground state fidelity
185    pub final_ground_state_fidelity: f64,
186    /// Success probability (for optimization problems)
187    pub success_probability: f64,
188}
189
190impl AdiabaticQuantumComputer {
191    /// Create new adiabatic quantum computer
192    pub fn new(config: AdiabaticConfig) -> Result<Self> {
193        // Initialize state in ground state of initial Hamiltonian
194        let num_qubits = config.initial_hamiltonian.get_num_qubits();
195        let state_size = 1 << num_qubits;
196
197        let mut state = Array1::zeros(state_size);
198        state[0] = Complex64::new(1.0, 0.0); // Start with |0...0⟩
199
200        Ok(Self {
201            config,
202            state,
203            current_time: 0.0,
204            evolution_history: Vec::new(),
205            gap_history: Vec::new(),
206            backend: None,
207            stats: AdiabaticStats::default(),
208        })
209    }
210
211    /// Initialize with SciRS2 backend
212    pub fn with_backend(mut self) -> Result<Self> {
213        self.backend = Some(SciRS2Backend::new());
214        Ok(self)
215    }
216
217    /// Set initial state to ground state of initial Hamiltonian
218    pub fn initialize_ground_state(&mut self) -> Result<()> {
219        let initial_matrix = self.build_hamiltonian_matrix(&self.config.initial_hamiltonian)?;
220        let (eigenvalues, eigenvectors) = self.compute_eigendecomposition(&initial_matrix)?;
221
222        // Find ground state (lowest eigenvalue)
223        let ground_idx = eigenvalues
224            .iter()
225            .enumerate()
226            .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
227            .map_or(0, |(idx, _)| idx);
228
229        // Set state to ground state
230        self.state = eigenvectors.column(ground_idx).to_owned();
231
232        Ok(())
233    }
234
235    /// Run adiabatic evolution
236    pub fn evolve(&mut self) -> Result<AdiabaticResult> {
237        let start_time = std::time::Instant::now();
238
239        // Initialize in ground state
240        self.initialize_ground_state()?;
241
242        // Take initial snapshot
243        let initial_snapshot = self.take_snapshot(0.0)?;
244        self.evolution_history.push(initial_snapshot);
245
246        let dt = self.config.total_time / self.config.time_steps as f64;
247
248        for step in 1..=self.config.time_steps {
249            let step_start = std::time::Instant::now();
250
251            let t = step as f64 * dt;
252            let s = self.schedule_function(t);
253
254            // Adaptive time stepping based on gap
255            let actual_dt = if self.config.adaptive_stepping {
256                self.calculate_adaptive_timestep(t, dt)?
257            } else {
258                dt
259            };
260
261            // Build interpolated Hamiltonian
262            let hamiltonian = self.interpolate_hamiltonian(s)?;
263
264            // Evolve state
265            self.evolve_step(&hamiltonian, actual_dt)?;
266
267            // Track gap if enabled
268            if self.config.gap_tracking.enabled {
269                let gap_measurement = self.measure_gap(t, s, &hamiltonian)?;
270
271                // Check for diabatic transitions
272                if self.config.monitor_diabatic_transitions {
273                    self.check_diabatic_transition(&gap_measurement)?;
274                }
275
276                self.gap_history.push(gap_measurement);
277            }
278
279            // Take snapshot
280            if step % 10 == 0 || step == self.config.time_steps {
281                let snapshot = self.take_snapshot(t)?;
282                self.evolution_history.push(snapshot);
283            }
284
285            self.current_time = t;
286            self.stats.steps_completed += 1;
287
288            let step_time = step_start.elapsed().as_secs_f64() * 1000.0;
289            println!(
290                "Step {}/{}: t={:.3}, s={:.3}, time={:.2}ms",
291                step, self.config.time_steps, t, s, step_time
292            );
293        }
294
295        // Compute final statistics
296        self.compute_final_statistics()?;
297
298        let total_time = start_time.elapsed().as_secs_f64() * 1000.0;
299        self.stats.total_evolution_time_ms = total_time;
300
301        Ok(AdiabaticResult {
302            final_state: self.state.clone(),
303            evolution_history: self.evolution_history.clone(),
304            gap_history: self.gap_history.clone(),
305            total_time_ms: total_time,
306            success_probability: self.stats.success_probability,
307            min_gap: self.stats.min_gap,
308            final_energy: self.calculate_current_energy()?,
309        })
310    }
311
312    /// Schedule function s(t)
313    fn schedule_function(&self, t: f64) -> f64 {
314        let s = t / self.config.total_time;
315
316        match self.config.schedule_type {
317            ScheduleType::Linear => s,
318            ScheduleType::Quadratic => s * s,
319            ScheduleType::Cubic => s * s * s,
320            ScheduleType::Exponential => s.exp_m1() / 1f64.exp_m1(),
321            ScheduleType::Polynomial(n) => s.powi(n as i32),
322            ScheduleType::LandauZener => {
323                // Landau-Zener formula: optimized for avoiding diabatic transitions
324                if s < 0.5 {
325                    2.0 * s * s
326                } else {
327                    (2.0 * (1.0 - s)).mul_add(-(1.0 - s), 1.0)
328                }
329            }
330            ScheduleType::Optimal => {
331                // Would implement optimal control based on gap
332                s // Fallback to linear for now
333            }
334        }
335    }
336
337    /// Interpolate between initial and final Hamiltonians
338    fn interpolate_hamiltonian(&self, s: f64) -> Result<Hamiltonian> {
339        let num_qubits = self
340            .config
341            .initial_hamiltonian
342            .get_num_qubits()
343            .max(self.config.final_hamiltonian.get_num_qubits());
344        let mut interpolated = Hamiltonian::new(num_qubits);
345
346        // H(s) = (1-s) * H_initial + s * H_final
347        for term in &self.config.initial_hamiltonian.terms {
348            let scaled_term = match term {
349                HamiltonianTerm::SinglePauli {
350                    qubit,
351                    pauli,
352                    coefficient,
353                } => HamiltonianTerm::SinglePauli {
354                    qubit: *qubit,
355                    pauli: pauli.clone(),
356                    coefficient: coefficient * (1.0 - s),
357                },
358                HamiltonianTerm::TwoPauli {
359                    qubit1,
360                    qubit2,
361                    pauli1,
362                    pauli2,
363                    coefficient,
364                } => HamiltonianTerm::TwoPauli {
365                    qubit1: *qubit1,
366                    qubit2: *qubit2,
367                    pauli1: pauli1.clone(),
368                    pauli2: pauli2.clone(),
369                    coefficient: coefficient * (1.0 - s),
370                },
371                HamiltonianTerm::PauliString {
372                    qubits,
373                    paulis,
374                    coefficient,
375                } => HamiltonianTerm::PauliString {
376                    qubits: qubits.clone(),
377                    paulis: paulis.clone(),
378                    coefficient: coefficient * (1.0 - s),
379                },
380                HamiltonianTerm::Custom {
381                    qubits,
382                    matrix,
383                    coefficient,
384                } => HamiltonianTerm::Custom {
385                    qubits: qubits.clone(),
386                    matrix: matrix.clone(),
387                    coefficient: coefficient * (1.0 - s),
388                },
389            };
390            interpolated.add_term(scaled_term);
391        }
392
393        for term in &self.config.final_hamiltonian.terms {
394            let scaled_term = match term {
395                HamiltonianTerm::SinglePauli {
396                    qubit,
397                    pauli,
398                    coefficient,
399                } => HamiltonianTerm::SinglePauli {
400                    qubit: *qubit,
401                    pauli: pauli.clone(),
402                    coefficient: coefficient * s,
403                },
404                HamiltonianTerm::TwoPauli {
405                    qubit1,
406                    qubit2,
407                    pauli1,
408                    pauli2,
409                    coefficient,
410                } => HamiltonianTerm::TwoPauli {
411                    qubit1: *qubit1,
412                    qubit2: *qubit2,
413                    pauli1: pauli1.clone(),
414                    pauli2: pauli2.clone(),
415                    coefficient: coefficient * s,
416                },
417                HamiltonianTerm::PauliString {
418                    qubits,
419                    paulis,
420                    coefficient,
421                } => HamiltonianTerm::PauliString {
422                    qubits: qubits.clone(),
423                    paulis: paulis.clone(),
424                    coefficient: coefficient * s,
425                },
426                HamiltonianTerm::Custom {
427                    qubits,
428                    matrix,
429                    coefficient,
430                } => HamiltonianTerm::Custom {
431                    qubits: qubits.clone(),
432                    matrix: matrix.clone(),
433                    coefficient: coefficient * s,
434                },
435            };
436            interpolated.add_term(scaled_term);
437        }
438
439        Ok(interpolated)
440    }
441
442    /// Evolve system for one time step
443    fn evolve_step(&mut self, hamiltonian: &Hamiltonian, dt: f64) -> Result<()> {
444        // Build Hamiltonian matrix
445        let h_matrix = self.build_hamiltonian_matrix(hamiltonian)?;
446
447        // Compute evolution operator U = exp(-i H dt / ℏ)
448        let evolution_operator = self.compute_evolution_operator(&h_matrix, dt)?;
449
450        // Apply evolution operator to state
451        self.state = evolution_operator.dot(&self.state);
452
453        // Renormalize (to handle numerical errors)
454        let norm: f64 = self.state.iter().map(|x| x.norm_sqr()).sum::<f64>().sqrt();
455        if norm > 1e-15 {
456            self.state.mapv_inplace(|x| x / norm);
457        }
458
459        Ok(())
460    }
461
462    /// Build Hamiltonian matrix from Hamiltonian terms
463    fn build_hamiltonian_matrix(&self, hamiltonian: &Hamiltonian) -> Result<Array2<Complex64>> {
464        let num_qubits = hamiltonian.get_num_qubits();
465        let dim = 1 << num_qubits;
466        let mut matrix = Array2::zeros((dim, dim));
467
468        for term in &hamiltonian.terms {
469            let (term_matrix, coefficient) = self.build_term_matrix(term, num_qubits)?;
470            matrix = matrix + term_matrix.mapv(|x| x * coefficient);
471        }
472
473        Ok(matrix)
474    }
475
476    /// Build matrix for a single Hamiltonian term
477    fn build_term_matrix(
478        &self,
479        term: &HamiltonianTerm,
480        num_qubits: usize,
481    ) -> Result<(Array2<Complex64>, f64)> {
482        let dim = 1 << num_qubits;
483
484        match term {
485            HamiltonianTerm::SinglePauli {
486                qubit,
487                pauli,
488                coefficient,
489            } => {
490                let mut matrix = Array2::eye(dim);
491                let pauli_matrix = self.get_pauli_matrix(pauli)?;
492                matrix = self.apply_single_qubit_to_full_matrix(
493                    &matrix,
494                    &pauli_matrix,
495                    *qubit,
496                    num_qubits,
497                )?;
498                Ok((matrix, *coefficient))
499            }
500            HamiltonianTerm::TwoPauli {
501                qubit1,
502                qubit2,
503                pauli1,
504                pauli2,
505                coefficient,
506            } => {
507                let mut matrix = Array2::eye(dim);
508                let pauli1_matrix = self.get_pauli_matrix(pauli1)?;
509                let pauli2_matrix = self.get_pauli_matrix(pauli2)?;
510
511                matrix = self.apply_single_qubit_to_full_matrix(
512                    &matrix,
513                    &pauli1_matrix,
514                    *qubit1,
515                    num_qubits,
516                )?;
517                matrix = self.apply_single_qubit_to_full_matrix(
518                    &matrix,
519                    &pauli2_matrix,
520                    *qubit2,
521                    num_qubits,
522                )?;
523                Ok((matrix, *coefficient))
524            }
525            HamiltonianTerm::PauliString {
526                qubits,
527                paulis,
528                coefficient,
529            } => {
530                let mut matrix = Array2::eye(dim);
531
532                for (qubit, pauli) in qubits.iter().zip(paulis.iter()) {
533                    let pauli_matrix = self.get_pauli_matrix(pauli)?;
534                    matrix = self.apply_single_qubit_to_full_matrix(
535                        &matrix,
536                        &pauli_matrix,
537                        *qubit,
538                        num_qubits,
539                    )?;
540                }
541                Ok((matrix, *coefficient))
542            }
543            HamiltonianTerm::Custom {
544                qubits: _,
545                matrix: _,
546                coefficient,
547            } => {
548                // For now, return identity with the coefficient
549                Ok((Array2::eye(dim), *coefficient))
550            }
551        }
552    }
553
554    /// Get Pauli matrix for a given Pauli string
555    fn get_pauli_matrix(&self, pauli: &str) -> Result<Array2<Complex64>> {
556        match pauli.to_uppercase().as_str() {
557            "I" => Ok(Array2::eye(2)),
558            "X" => Ok(Array2::from_shape_vec(
559                (2, 2),
560                vec![
561                    Complex64::new(0.0, 0.0),
562                    Complex64::new(1.0, 0.0),
563                    Complex64::new(1.0, 0.0),
564                    Complex64::new(0.0, 0.0),
565                ],
566            )
567            .unwrap()),
568            "Y" => Ok(Array2::from_shape_vec(
569                (2, 2),
570                vec![
571                    Complex64::new(0.0, 0.0),
572                    Complex64::new(0.0, -1.0),
573                    Complex64::new(0.0, 1.0),
574                    Complex64::new(0.0, 0.0),
575                ],
576            )
577            .unwrap()),
578            "Z" => Ok(Array2::from_shape_vec(
579                (2, 2),
580                vec![
581                    Complex64::new(1.0, 0.0),
582                    Complex64::new(0.0, 0.0),
583                    Complex64::new(0.0, 0.0),
584                    Complex64::new(-1.0, 0.0),
585                ],
586            )
587            .unwrap()),
588            _ => Err(SimulatorError::InvalidInput(format!(
589                "Unknown Pauli operator: {pauli}"
590            ))),
591        }
592    }
593
594    /// Apply single-qubit operator to full system matrix
595    fn apply_single_qubit_to_full_matrix(
596        &self,
597        full_matrix: &Array2<Complex64>,
598        single_qubit_op: &Array2<Complex64>,
599        target_qubit: usize,
600        num_qubits: usize,
601    ) -> Result<Array2<Complex64>> {
602        let dim = 1 << num_qubits;
603        let mut result = Array2::zeros((dim, dim));
604
605        for i in 0..dim {
606            for j in 0..dim {
607                let i_bit = (i >> target_qubit) & 1;
608                let j_bit = (j >> target_qubit) & 1;
609
610                result[[i, j]] = full_matrix[[i, j]] * single_qubit_op[[i_bit, j_bit]];
611            }
612        }
613
614        Ok(result)
615    }
616
617    /// Compute evolution operator exp(-i H dt / ℏ)
618    fn compute_evolution_operator(
619        &self,
620        hamiltonian: &Array2<Complex64>,
621        dt: f64,
622    ) -> Result<Array2<Complex64>> {
623        // For small systems, use matrix exponentiation
624        // For larger systems, would use Trotterization
625
626        let dim = hamiltonian.dim().0;
627        if dim <= 64 {
628            // Direct matrix exponentiation
629            self.matrix_exponential(hamiltonian, -Complex64::new(0.0, dt))
630        } else {
631            // Use Trotter decomposition for larger systems
632            self.trotter_evolution(hamiltonian, dt)
633        }
634    }
635
636    /// Direct matrix exponentiation (for small systems)
637    fn matrix_exponential(
638        &self,
639        matrix: &Array2<Complex64>,
640        factor: Complex64,
641    ) -> Result<Array2<Complex64>> {
642        let dim = matrix.dim().0;
643
644        // Scale matrix
645        let scaled_matrix = matrix.mapv(|x| x * factor);
646
647        // Use series expansion: exp(A) = I + A + A²/2! + A³/3! + ...
648        let mut result = Array2::eye(dim);
649        let mut term = Array2::eye(dim);
650
651        for n in 1..=20 {
652            // Limit iterations for convergence
653            term = term.dot(&scaled_matrix) / (n as f64);
654            let term_norm: f64 = term.iter().map(|x| x.norm_sqr()).sum::<f64>().sqrt();
655
656            result += &term;
657
658            // Check convergence
659            if term_norm < 1e-15 {
660                break;
661            }
662        }
663
664        Ok(result)
665    }
666
667    /// Trotter evolution for large systems
668    fn trotter_evolution(
669        &self,
670        hamiltonian: &Array2<Complex64>,
671        dt: f64,
672    ) -> Result<Array2<Complex64>> {
673        // Placeholder: would implement proper Trotter decomposition
674        self.matrix_exponential(hamiltonian, -Complex64::new(0.0, dt))
675    }
676
677    /// Measure energy gap
678    fn measure_gap(&mut self, t: f64, s: f64, hamiltonian: &Hamiltonian) -> Result<GapMeasurement> {
679        let start_time = std::time::Instant::now();
680
681        let h_matrix = self.build_hamiltonian_matrix(hamiltonian)?;
682        let (eigenvalues, _) = self.compute_eigendecomposition(&h_matrix)?;
683
684        // Sort eigenvalues
685        let mut sorted_eigenvalues = eigenvalues;
686        sorted_eigenvalues.sort_by(|a, b| a.partial_cmp(b).unwrap());
687
688        let ground_energy = sorted_eigenvalues[0];
689        let first_excited_energy = sorted_eigenvalues.get(1).copied().unwrap_or(ground_energy);
690        let gap = first_excited_energy - ground_energy;
691
692        // Update statistics
693        if self.stats.min_gap == 0.0 || gap < self.stats.min_gap {
694            self.stats.min_gap = gap;
695        }
696        if gap > self.stats.max_gap {
697            self.stats.max_gap = gap;
698        }
699
700        let gap_count = self.gap_history.len() as f64;
701        self.stats.avg_gap = self.stats.avg_gap.mul_add(gap_count, gap) / (gap_count + 1.0);
702
703        let computation_time = start_time.elapsed().as_secs_f64() * 1000.0;
704        self.stats.avg_eigenvalue_time_ms = self
705            .stats
706            .avg_eigenvalue_time_ms
707            .mul_add(self.stats.eigenvalue_computations as f64, computation_time)
708            / (self.stats.eigenvalue_computations + 1) as f64;
709        self.stats.eigenvalue_computations += 1;
710
711        Ok(GapMeasurement {
712            time: t,
713            schedule_parameter: s,
714            gap,
715            ground_energy,
716            first_excited_energy,
717            gap_derivative: self.estimate_gap_derivative(gap),
718            predicted_min_gap: self.predict_minimum_gap(),
719        })
720    }
721
722    /// Estimate gap derivative
723    fn estimate_gap_derivative(&self, current_gap: f64) -> Option<f64> {
724        if self.gap_history.len() < 2 {
725            return None;
726        }
727
728        let prev_gap = self.gap_history.last().unwrap().gap;
729        let prev_time = self.gap_history.last().unwrap().time;
730        let dt = self.current_time - prev_time;
731
732        if dt > 1e-15 {
733            Some((current_gap - prev_gap) / dt)
734        } else {
735            None
736        }
737    }
738
739    /// Predict minimum gap using extrapolation
740    fn predict_minimum_gap(&self) -> Option<f64> {
741        if self.gap_history.len() < 3 {
742            return None;
743        }
744
745        // Simple quadratic extrapolation
746        let n = self.gap_history.len();
747        let recent_gaps: Vec<f64> = self.gap_history[n - 3..].iter().map(|g| g.gap).collect();
748        let recent_times: Vec<f64> = self.gap_history[n - 3..].iter().map(|g| g.time).collect();
749
750        // Fit quadratic and find minimum
751        // For simplicity, just return the minimum of recent measurements
752        recent_gaps.into_iter().fold(f64::INFINITY, f64::min).into()
753    }
754
755    /// Check for diabatic transitions
756    fn check_diabatic_transition(&mut self, gap_measurement: &GapMeasurement) -> Result<()> {
757        // Landau-Zener criterion: P_diabatic ≈ exp(-2π Δ²/(ℏ |dH/dt|))
758        if let Some(gap_derivative) = gap_measurement.gap_derivative {
759            let gap = gap_measurement.gap;
760            let dt = self.config.total_time / self.config.time_steps as f64;
761
762            // Estimate diabatic transition probability
763            let diabatic_prob = if gap_derivative.abs() > 1e-15 {
764                (-2.0 * std::f64::consts::PI * gap * gap / gap_derivative.abs()).exp()
765            } else {
766                0.0
767            };
768
769            // Threshold for detecting diabatic transition
770            if diabatic_prob > 0.01 {
771                // 1% threshold
772                self.stats.diabatic_transitions += 1;
773                println!(
774                    "Warning: Potential diabatic transition detected at t={:.3}, P_diabatic={:.4}",
775                    gap_measurement.time, diabatic_prob
776                );
777            }
778        }
779
780        Ok(())
781    }
782
783    /// Calculate adaptive time step based on gap
784    fn calculate_adaptive_timestep(&self, t: f64, default_dt: f64) -> Result<f64> {
785        if self.gap_history.is_empty() {
786            return Ok(default_dt);
787        }
788
789        let current_gap = self.gap_history.last().unwrap().gap;
790
791        // Smaller time steps when gap is small
792        let gap_factor = (current_gap / self.config.gap_tracking.min_gap_threshold).sqrt();
793        let adaptive_dt = default_dt * gap_factor.min(2.0).max(0.1); // Clamp between 0.1 and 2.0 times default
794
795        Ok(adaptive_dt)
796    }
797
798    /// Take snapshot of current state
799    fn take_snapshot(&mut self, t: f64) -> Result<AdiabaticSnapshot> {
800        let s = self.schedule_function(t);
801        let energy = self.calculate_current_energy()?;
802
803        // Get current gap
804        let gap = self.gap_history.last().map(|g| g.gap);
805
806        // Calculate instantaneous ground state if gap tracking is enabled
807        let (instantaneous_ground_state, ground_state_fidelity, adiabatic_parameter) =
808            if self.config.gap_tracking.enabled {
809                let hamiltonian = self.interpolate_hamiltonian(s)?;
810                let h_matrix = self.build_hamiltonian_matrix(&hamiltonian)?;
811                let (eigenvalues, eigenvectors) = self.compute_eigendecomposition(&h_matrix)?;
812
813                // Find ground state
814                let ground_idx = eigenvalues
815                    .iter()
816                    .enumerate()
817                    .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
818                    .map_or(0, |(idx, _)| idx);
819
820                let ground_state = eigenvectors.column(ground_idx).to_owned();
821
822                // Calculate fidelity
823                let fidelity = self.calculate_fidelity(&self.state, &ground_state);
824
825                // Calculate adiabatic parameter
826                let adiabatic_param = gap.map(|g| g * g * self.config.total_time);
827
828                (Some(ground_state), Some(fidelity), adiabatic_param)
829            } else {
830                (None, None, None)
831            };
832
833        Ok(AdiabaticSnapshot {
834            time: t,
835            schedule_parameter: s,
836            state: self.state.clone(),
837            energy,
838            gap,
839            instantaneous_ground_state,
840            ground_state_fidelity,
841            adiabatic_parameter,
842        })
843    }
844
845    /// Calculate current energy expectation value
846    fn calculate_current_energy(&self) -> Result<f64> {
847        let s = self.schedule_function(self.current_time);
848        let hamiltonian = self.interpolate_hamiltonian(s)?;
849        let h_matrix = self.build_hamiltonian_matrix(&hamiltonian)?;
850
851        // E = ⟨ψ|H|ψ⟩
852        let h_psi = h_matrix.dot(&self.state);
853        let energy: Complex64 = self
854            .state
855            .iter()
856            .zip(h_psi.iter())
857            .map(|(psi, h_psi)| psi.conj() * h_psi)
858            .sum();
859
860        Ok(energy.re)
861    }
862
863    /// Calculate fidelity between two states
864    fn calculate_fidelity(&self, state1: &Array1<Complex64>, state2: &Array1<Complex64>) -> f64 {
865        let overlap: Complex64 = state1
866            .iter()
867            .zip(state2.iter())
868            .map(|(a, b)| a.conj() * b)
869            .sum();
870
871        overlap.norm_sqr()
872    }
873
874    /// Compute eigendecomposition
875    fn compute_eigendecomposition(
876        &self,
877        matrix: &Array2<Complex64>,
878    ) -> Result<(Vec<f64>, Array2<Complex64>)> {
879        // Simplified eigenvalue computation
880        // In practice, would use LAPACK or similar high-performance library
881
882        let dim = matrix.dim().0;
883        if dim > 16 {
884            // For large matrices, use iterative methods or approximations
885            return self.compute_approximate_eigenvalues(matrix);
886        }
887
888        // For small matrices, use simple power iteration for dominant eigenvalue
889        let mut eigenvalues = Vec::new();
890        let mut eigenvectors = Array2::eye(dim);
891
892        // Simplified: just compute diagonal elements as eigenvalue approximation
893        for i in 0..dim {
894            eigenvalues.push(matrix[[i, i]].re);
895        }
896
897        // Sort eigenvalues
898        eigenvalues.sort_by(|a, b| a.partial_cmp(b).unwrap());
899
900        Ok((eigenvalues, eigenvectors))
901    }
902
903    /// Compute approximate eigenvalues for large matrices
904    fn compute_approximate_eigenvalues(
905        &self,
906        matrix: &Array2<Complex64>,
907    ) -> Result<(Vec<f64>, Array2<Complex64>)> {
908        let dim = matrix.dim().0;
909
910        // Use Lanczos algorithm or similar for large sparse matrices
911        // For now, just return diagonal approximation
912        let mut eigenvalues = Vec::new();
913        for i in 0..dim.min(self.config.gap_tracking.num_eigenvalues) {
914            eigenvalues.push(matrix[[i, i]].re);
915        }
916
917        eigenvalues.sort_by(|a, b| a.partial_cmp(b).unwrap());
918        let eigenvectors = Array2::eye(dim);
919
920        Ok((eigenvalues, eigenvectors))
921    }
922
923    /// Compute final statistics
924    fn compute_final_statistics(&mut self) -> Result<()> {
925        // Calculate final ground state fidelity
926        if let Some(final_snapshot) = self.evolution_history.last() {
927            if let Some(fidelity) = final_snapshot.ground_state_fidelity {
928                self.stats.final_ground_state_fidelity = fidelity;
929            }
930        }
931
932        // For optimization problems, estimate success probability
933        // This would depend on the specific problem encoding
934        self.stats.success_probability = self.stats.final_ground_state_fidelity;
935
936        Ok(())
937    }
938
939    /// Get current state
940    pub const fn get_state(&self) -> &Array1<Complex64> {
941        &self.state
942    }
943
944    /// Get evolution history
945    pub fn get_evolution_history(&self) -> &[AdiabaticSnapshot] {
946        &self.evolution_history
947    }
948
949    /// Get gap history
950    pub fn get_gap_history(&self) -> &[GapMeasurement] {
951        &self.gap_history
952    }
953
954    /// Get statistics
955    pub const fn get_stats(&self) -> &AdiabaticStats {
956        &self.stats
957    }
958
959    /// Reset the simulator
960    pub fn reset(&mut self) -> Result<()> {
961        let num_qubits = self.config.initial_hamiltonian.get_num_qubits();
962        let state_size = 1 << num_qubits;
963
964        self.state = Array1::zeros(state_size);
965        self.state[0] = Complex64::new(1.0, 0.0);
966        self.current_time = 0.0;
967        self.evolution_history.clear();
968        self.gap_history.clear();
969        self.stats = AdiabaticStats::default();
970
971        Ok(())
972    }
973}
974
975/// Adiabatic evolution result
976#[derive(Debug, Clone)]
977pub struct AdiabaticResult {
978    /// Final quantum state
979    pub final_state: Array1<Complex64>,
980    /// Complete evolution history
981    pub evolution_history: Vec<AdiabaticSnapshot>,
982    /// Gap tracking history
983    pub gap_history: Vec<GapMeasurement>,
984    /// Total evolution time in milliseconds
985    pub total_time_ms: f64,
986    /// Success probability
987    pub success_probability: f64,
988    /// Minimum gap encountered
989    pub min_gap: f64,
990    /// Final energy
991    pub final_energy: f64,
992}
993
994/// Adiabatic quantum computing utilities
995pub struct AdiabaticUtils;
996
997impl AdiabaticUtils {
998    /// Create Max-Cut problem Hamiltonian
999    pub fn create_max_cut_hamiltonian(
1000        graph_edges: &[(usize, usize)],
1001        weights: &[f64],
1002    ) -> Hamiltonian {
1003        let max_vertex = graph_edges
1004            .iter()
1005            .flat_map(|&(u, v)| [u, v])
1006            .max()
1007            .unwrap_or(0)
1008            + 1;
1009        let mut hamiltonian = Hamiltonian::new(max_vertex);
1010
1011        for (i, &(u, v)) in graph_edges.iter().enumerate() {
1012            let weight = weights.get(i).copied().unwrap_or(1.0);
1013
1014            // Add term: w_ij * (I - Z_i Z_j) / 2
1015            // For Max-Cut, we want to maximize the number of edges cut
1016            // This corresponds to minimizing -weight/2 * (1 - Z_i Z_j) = -weight/2 + weight/2 * Z_i Z_j
1017            // So we add the ZZ interaction term with positive coefficient
1018            hamiltonian
1019                .add_two_pauli(u, v, "Z", "Z", weight / 2.0)
1020                .unwrap();
1021        }
1022
1023        hamiltonian
1024    }
1025
1026    /// Create 3-SAT problem Hamiltonian
1027    pub fn create_3sat_hamiltonian(clauses: &[Vec<i32>]) -> Hamiltonian {
1028        let max_var = clauses
1029            .iter()
1030            .flat_map(|clause| clause.iter())
1031            .map(|&lit| lit.unsigned_abs() as usize)
1032            .max()
1033            .unwrap_or(0)
1034            + 1;
1035        let mut hamiltonian = Hamiltonian::new(max_var);
1036
1037        for clause in clauses {
1038            if clause.len() != 3 {
1039                continue; // Skip non-3-SAT clauses
1040            }
1041
1042            // For clause (x_i ∨ x_j ∨ x_k), add penalty when all literals are false
1043            // This is a simplified implementation - in practice would need more sophisticated encoding
1044
1045            // Add penalty for clause being unsatisfied
1046            // For now, add pairwise interactions between variables in the clause
1047            for i in 0..clause.len() {
1048                for j in i + 1..clause.len() {
1049                    let var1 = clause[i].unsigned_abs() as usize;
1050                    let var2 = clause[j].unsigned_abs() as usize;
1051
1052                    // Add weak coupling between variables in the same clause
1053                    if var1 < max_var && var2 < max_var {
1054                        hamiltonian
1055                            .add_two_pauli(var1, var2, "Z", "Z", 0.1)
1056                            .unwrap();
1057                    }
1058                }
1059            }
1060        }
1061
1062        hamiltonian
1063    }
1064
1065    /// Create transverse field Ising model (TFIM) Hamiltonian
1066    pub fn create_tfim_hamiltonian(
1067        num_qubits: usize,
1068        j_coupling: f64,
1069        h_field: f64,
1070    ) -> Hamiltonian {
1071        let mut hamiltonian = Hamiltonian::new(num_qubits);
1072
1073        // ZZ coupling terms
1074        for i in 0..num_qubits - 1 {
1075            hamiltonian
1076                .add_two_pauli(i, i + 1, "Z", "Z", -j_coupling)
1077                .unwrap();
1078        }
1079
1080        // X field terms
1081        for i in 0..num_qubits {
1082            hamiltonian.add_single_pauli(i, "X", -h_field).unwrap();
1083        }
1084
1085        hamiltonian
1086    }
1087
1088    /// Create mixing Hamiltonian (typically all X)
1089    pub fn create_mixing_hamiltonian(num_qubits: usize) -> Hamiltonian {
1090        let mut hamiltonian = Hamiltonian::new(num_qubits);
1091
1092        for i in 0..num_qubits {
1093            hamiltonian.add_single_pauli(i, "X", 1.0).unwrap();
1094        }
1095
1096        hamiltonian
1097    }
1098
1099    /// Benchmark adiabatic quantum computing
1100    pub fn benchmark_adiabatic_qc() -> Result<AdiabaticBenchmarkResults> {
1101        let mut results = AdiabaticBenchmarkResults::default();
1102
1103        // Test different problem sizes and schedules
1104        let problem_sizes = vec![4, 6, 8];
1105        let schedule_types = vec![
1106            ScheduleType::Linear,
1107            ScheduleType::Quadratic,
1108            ScheduleType::LandauZener,
1109        ];
1110
1111        for &num_qubits in &problem_sizes {
1112            for &schedule_type in &schedule_types {
1113                // Create simple TFIM problem
1114                let initial_h = Self::create_mixing_hamiltonian(num_qubits);
1115                let final_h = Self::create_tfim_hamiltonian(num_qubits, 1.0, 0.1);
1116
1117                let config = AdiabaticConfig {
1118                    total_time: 10.0,
1119                    time_steps: 100,
1120                    schedule_type,
1121                    initial_hamiltonian: initial_h,
1122                    final_hamiltonian: final_h,
1123                    gap_tracking: GapTrackingConfig {
1124                        enabled: true,
1125                        min_gap_threshold: 1e-3,
1126                        ..Default::default()
1127                    },
1128                    ..Default::default()
1129                };
1130
1131                let mut adiabatic_qc = AdiabaticQuantumComputer::new(config)?;
1132
1133                let start = std::time::Instant::now();
1134                let result = adiabatic_qc.evolve()?;
1135                let execution_time = start.elapsed().as_secs_f64() * 1000.0;
1136
1137                let key = format!("{num_qubits}q_{schedule_type:?}");
1138                results.execution_times.push((key.clone(), execution_time));
1139                results
1140                    .success_probabilities
1141                    .push((key.clone(), result.success_probability));
1142                results.min_gaps.push((key, result.min_gap));
1143            }
1144        }
1145
1146        Ok(results)
1147    }
1148}
1149
1150/// Adiabatic benchmark results
1151#[derive(Debug, Clone, Default)]
1152pub struct AdiabaticBenchmarkResults {
1153    /// Execution times by configuration
1154    pub execution_times: Vec<(String, f64)>,
1155    /// Success probabilities by configuration
1156    pub success_probabilities: Vec<(String, f64)>,
1157    /// Minimum gaps by configuration
1158    pub min_gaps: Vec<(String, f64)>,
1159}
1160
1161#[cfg(test)]
1162mod tests {
1163    use super::*;
1164    use approx::assert_abs_diff_eq;
1165
1166    #[test]
1167    fn test_adiabatic_qc_creation() {
1168        let config = AdiabaticConfig::default();
1169        let adiabatic_qc = AdiabaticQuantumComputer::new(config);
1170        assert!(adiabatic_qc.is_ok());
1171    }
1172
1173    #[test]
1174    fn test_schedule_functions() {
1175        let config = AdiabaticConfig {
1176            total_time: 10.0,
1177            schedule_type: ScheduleType::Linear,
1178            ..Default::default()
1179        };
1180        let adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1181
1182        assert_abs_diff_eq!(adiabatic_qc.schedule_function(0.0), 0.0, epsilon = 1e-10);
1183        assert_abs_diff_eq!(adiabatic_qc.schedule_function(5.0), 0.5, epsilon = 1e-10);
1184        assert_abs_diff_eq!(adiabatic_qc.schedule_function(10.0), 1.0, epsilon = 1e-10);
1185    }
1186
1187    #[test]
1188    fn test_hamiltonian_interpolation() {
1189        let mut initial_h = Hamiltonian::new(1);
1190        initial_h.add_pauli_term(1.0, &[(0, 'X')]).unwrap();
1191
1192        let mut final_h = Hamiltonian::new(1);
1193        final_h.add_pauli_term(1.0, &[(0, 'Z')]).unwrap();
1194
1195        let config = AdiabaticConfig {
1196            initial_hamiltonian: initial_h,
1197            final_hamiltonian: final_h,
1198            ..Default::default()
1199        };
1200
1201        let adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1202
1203        let h_mid = adiabatic_qc.interpolate_hamiltonian(0.5).unwrap();
1204        assert_eq!(h_mid.terms.len(), 2); // Should have both X and Z terms
1205    }
1206
1207    #[test]
1208    fn test_tfim_hamiltonian() {
1209        let hamiltonian = AdiabaticUtils::create_tfim_hamiltonian(3, 1.0, 0.5);
1210
1211        // Should have ZZ coupling terms and X field terms
1212        let num_zz_terms = hamiltonian.terms.iter().filter(|t| {
1213            matches!(t, HamiltonianTerm::TwoPauli { pauli1, pauli2, .. } if pauli1 == "Z" && pauli2 == "Z")
1214        }).count();
1215
1216        let num_x_terms = hamiltonian
1217            .terms
1218            .iter()
1219            .filter(|t| matches!(t, HamiltonianTerm::SinglePauli { pauli, .. } if pauli == "X"))
1220            .count();
1221
1222        assert_eq!(num_zz_terms, 2); // 2 ZZ coupling terms for 3 qubits
1223        assert_eq!(num_x_terms, 3); // 3 X field terms
1224    }
1225
1226    #[test]
1227    fn test_max_cut_hamiltonian() {
1228        let edges = vec![(0, 1), (1, 2), (2, 0)]; // Triangle graph
1229        let weights = vec![1.0, 1.0, 1.0];
1230
1231        let hamiltonian = AdiabaticUtils::create_max_cut_hamiltonian(&edges, &weights);
1232        assert!(!hamiltonian.terms.is_empty());
1233    }
1234
1235    #[test]
1236    fn test_mixing_hamiltonian() {
1237        let hamiltonian = AdiabaticUtils::create_mixing_hamiltonian(2);
1238
1239        let num_x_terms = hamiltonian
1240            .terms
1241            .iter()
1242            .filter(|t| matches!(t, HamiltonianTerm::SinglePauli { pauli, .. } if pauli == "X"))
1243            .count();
1244
1245        assert_eq!(num_x_terms, 2); // Should have X on both qubits
1246    }
1247
1248    #[test]
1249    fn test_adiabatic_evolution() {
1250        let initial_h = AdiabaticUtils::create_mixing_hamiltonian(2);
1251        let final_h = AdiabaticUtils::create_tfim_hamiltonian(2, 1.0, 0.1);
1252
1253        let config = AdiabaticConfig {
1254            total_time: 1.0,
1255            time_steps: 10,
1256            initial_hamiltonian: initial_h,
1257            final_hamiltonian: final_h,
1258            gap_tracking: GapTrackingConfig {
1259                enabled: false, // Disable for simple test
1260                ..Default::default()
1261            },
1262            ..Default::default()
1263        };
1264
1265        let mut adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1266        let result = adiabatic_qc.evolve();
1267        assert!(result.is_ok());
1268
1269        let evolution_result = result.unwrap();
1270        assert_eq!(evolution_result.evolution_history.len(), 2); // Initial + final snapshots
1271    }
1272
1273    #[test]
1274    fn test_gap_tracking() {
1275        let initial_h = AdiabaticUtils::create_mixing_hamiltonian(2);
1276        let final_h = AdiabaticUtils::create_tfim_hamiltonian(2, 1.0, 0.1);
1277
1278        let config = AdiabaticConfig {
1279            total_time: 1.0,
1280            time_steps: 5,
1281            initial_hamiltonian: initial_h,
1282            final_hamiltonian: final_h,
1283            gap_tracking: GapTrackingConfig {
1284                enabled: true,
1285                ..Default::default()
1286            },
1287            ..Default::default()
1288        };
1289
1290        let mut adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1291        let result = adiabatic_qc.evolve();
1292        assert!(result.is_ok());
1293
1294        let evolution_result = result.unwrap();
1295        assert!(!evolution_result.gap_history.is_empty());
1296        assert!(evolution_result.min_gap >= 0.0);
1297    }
1298
1299    #[test]
1300    fn test_energy_calculation() {
1301        let initial_h = AdiabaticUtils::create_mixing_hamiltonian(1);
1302        let final_h = AdiabaticUtils::create_tfim_hamiltonian(1, 1.0, 0.1);
1303
1304        let config = AdiabaticConfig {
1305            initial_hamiltonian: initial_h,
1306            final_hamiltonian: final_h,
1307            ..Default::default()
1308        };
1309
1310        let adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1311        let energy = adiabatic_qc.calculate_current_energy();
1312        assert!(energy.is_ok());
1313    }
1314
1315    #[test]
1316    fn test_fidelity_calculation() {
1317        let config = AdiabaticConfig::default();
1318        let adiabatic_qc = AdiabaticQuantumComputer::new(config).unwrap();
1319
1320        let state1 = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
1321        let state2 = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
1322
1323        let fidelity = adiabatic_qc.calculate_fidelity(&state1, &state2);
1324        assert_abs_diff_eq!(fidelity, 1.0, epsilon = 1e-10);
1325    }
1326}