quantrs2_sim/
adaptive_ml_error_correction.rs

1//! Real-time Adaptive Error Correction with Machine Learning
2//!
3//! This module implements machine learning-driven adaptive error correction that
4//! learns from error patterns in real-time to optimize correction strategies.
5//! The system uses various ML techniques including neural networks, reinforcement
6//! learning, and online learning to continuously improve error correction performance.
7//!
8//! Key features:
9//! - Real-time syndrome pattern recognition using neural networks
10//! - Reinforcement learning for optimal correction strategy selection
11//! - Online learning for adaptive threshold adjustment
12//! - Ensemble methods for robust error prediction
13//! - Temporal pattern analysis for correlated noise
14//! - Hardware-aware correction optimization
15
16use scirs2_core::ndarray::{Array1, Array2, Axis};
17use scirs2_core::Complex64;
18use serde::{Deserialize, Serialize};
19use std::collections::{HashMap, VecDeque};
20use std::sync::{Arc, Mutex};
21
22use crate::circuit_interfaces::CircuitInterface;
23use crate::concatenated_error_correction::ErrorType;
24use crate::error::Result;
25
26/// Machine learning model type for error correction
27#[derive(Debug, Clone, Copy, PartialEq, Eq)]
28pub enum MLModelType {
29    /// Neural network for syndrome classification
30    NeuralNetwork,
31    /// Decision tree for rule-based correction
32    DecisionTree,
33    /// Support vector machine for pattern recognition
34    SVM,
35    /// Reinforcement learning agent
36    ReinforcementLearning,
37    /// Ensemble of multiple models
38    Ensemble,
39}
40
41/// Learning strategy for adaptive correction
42#[derive(Debug, Clone, Copy, PartialEq, Eq)]
43pub enum LearningStrategy {
44    /// Supervised learning with labeled training data
45    Supervised,
46    /// Unsupervised learning for pattern discovery
47    Unsupervised,
48    /// Reinforcement learning with reward signals
49    Reinforcement,
50    /// Online learning with continuous updates
51    Online,
52    /// Transfer learning from pre-trained models
53    Transfer,
54}
55
56/// Adaptive error correction configuration
57#[derive(Debug, Clone)]
58pub struct AdaptiveMLConfig {
59    /// ML model type to use
60    pub model_type: MLModelType,
61    /// Learning strategy
62    pub learning_strategy: LearningStrategy,
63    /// Learning rate for gradient-based methods
64    pub learning_rate: f64,
65    /// Batch size for training
66    pub batch_size: usize,
67    /// Maximum training history to keep
68    pub max_history_size: usize,
69    /// Minimum confidence threshold for corrections
70    pub confidence_threshold: f64,
71    /// Enable real-time learning
72    pub real_time_learning: bool,
73    /// Update frequency for model retraining
74    pub update_frequency: usize,
75    /// Feature extraction method
76    pub feature_extraction: FeatureExtractionMethod,
77    /// Hardware-specific optimizations
78    pub hardware_aware: bool,
79}
80
81/// Feature extraction method for syndrome analysis
82#[derive(Debug, Clone, Copy, PartialEq, Eq)]
83pub enum FeatureExtractionMethod {
84    /// Raw syndrome bits
85    RawSyndrome,
86    /// Fourier transform features
87    FourierTransform,
88    /// Principal component analysis
89    PCA,
90    /// Autoencoder features
91    Autoencoder,
92    /// Temporal convolution features
93    TemporalConvolution,
94}
95
96impl Default for AdaptiveMLConfig {
97    fn default() -> Self {
98        Self {
99            model_type: MLModelType::NeuralNetwork,
100            learning_strategy: LearningStrategy::Online,
101            learning_rate: 0.001,
102            batch_size: 32,
103            max_history_size: 10000,
104            confidence_threshold: 0.8,
105            real_time_learning: true,
106            update_frequency: 100,
107            feature_extraction: FeatureExtractionMethod::RawSyndrome,
108            hardware_aware: true,
109        }
110    }
111}
112
113/// Neural network for syndrome classification
114#[derive(Debug, Clone)]
115pub struct SyndromeClassificationNetwork {
116    /// Input layer size (syndrome length)
117    input_size: usize,
118    /// Hidden layer sizes
119    hidden_sizes: Vec<usize>,
120    /// Output size (number of error classes)
121    output_size: usize,
122    /// Network weights
123    weights: Vec<Array2<f64>>,
124    /// Network biases
125    biases: Vec<Array1<f64>>,
126    /// Learning rate
127    learning_rate: f64,
128    /// Training history
129    training_history: Vec<(Array1<f64>, Array1<f64>)>,
130}
131
132impl SyndromeClassificationNetwork {
133    /// Create new neural network
134    pub fn new(
135        input_size: usize,
136        hidden_sizes: Vec<usize>,
137        output_size: usize,
138        learning_rate: f64,
139    ) -> Self {
140        let mut layer_sizes = vec![input_size];
141        layer_sizes.extend(&hidden_sizes);
142        layer_sizes.push(output_size);
143
144        let mut weights = Vec::new();
145        let mut biases = Vec::new();
146
147        for i in 0..layer_sizes.len() - 1 {
148            let rows = layer_sizes[i + 1];
149            let cols = layer_sizes[i];
150
151            // Xavier initialization
152            let scale = (2.0 / (rows + cols) as f64).sqrt();
153            let mut weight_matrix = Array2::zeros((rows, cols));
154            for elem in &mut weight_matrix {
155                *elem = (fastrand::f64() - 0.5) * 2.0 * scale;
156            }
157            weights.push(weight_matrix);
158
159            biases.push(Array1::zeros(rows));
160        }
161
162        Self {
163            input_size,
164            hidden_sizes,
165            output_size,
166            weights,
167            biases,
168            learning_rate,
169            training_history: Vec::new(),
170        }
171    }
172
173    /// Forward pass through the network
174    pub fn forward(&self, input: &Array1<f64>) -> Array1<f64> {
175        let mut activation = input.clone();
176
177        for (weight, bias) in self.weights.iter().zip(self.biases.iter()) {
178            activation = weight.dot(&activation) + bias;
179
180            // Apply ReLU activation (except for output layer)
181            if weight == self.weights.last().unwrap() {
182                // Softmax for output layer
183                let max_val = activation.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
184                activation.mapv_inplace(|x| (x - max_val).exp());
185                let sum = activation.sum();
186                activation.mapv_inplace(|x| x / sum);
187            } else {
188                activation.mapv_inplace(|x| x.max(0.0));
189            }
190        }
191
192        activation
193    }
194
195    /// Train the network with a batch of examples
196    pub fn train_batch(&mut self, inputs: &[Array1<f64>], targets: &[Array1<f64>]) -> f64 {
197        let batch_size = inputs.len();
198        let mut total_loss = 0.0;
199
200        // Accumulate gradients
201        let mut weight_gradients: Vec<Array2<f64>> = self
202            .weights
203            .iter()
204            .map(|w| Array2::zeros(w.raw_dim()))
205            .collect();
206        let mut bias_gradients: Vec<Array1<f64>> = self
207            .biases
208            .iter()
209            .map(|b| Array1::zeros(b.raw_dim()))
210            .collect();
211
212        for (input, target) in inputs.iter().zip(targets.iter()) {
213            let (loss, w_grads, b_grads) = self.backward(input, target);
214            total_loss += loss;
215
216            for (wg_acc, wg) in weight_gradients.iter_mut().zip(w_grads.iter()) {
217                *wg_acc = &*wg_acc + wg;
218            }
219            for (bg_acc, bg) in bias_gradients.iter_mut().zip(b_grads.iter()) {
220                *bg_acc = &*bg_acc + bg;
221            }
222        }
223
224        // Update weights and biases
225        let lr = self.learning_rate / batch_size as f64;
226        for (weight, gradient) in self.weights.iter_mut().zip(weight_gradients.iter()) {
227            *weight = &*weight - &(gradient * lr);
228        }
229        for (bias, gradient) in self.biases.iter_mut().zip(bias_gradients.iter()) {
230            *bias = &*bias - &(gradient * lr);
231        }
232
233        total_loss / batch_size as f64
234    }
235
236    /// Backward pass to compute gradients
237    fn backward(
238        &self,
239        input: &Array1<f64>,
240        target: &Array1<f64>,
241    ) -> (f64, Vec<Array2<f64>>, Vec<Array1<f64>>) {
242        // Forward pass with intermediate activations
243        let mut activations = vec![input.clone()];
244        let mut z_values = Vec::new();
245
246        for (weight, bias) in self.weights.iter().zip(self.biases.iter()) {
247            let z = weight.dot(activations.last().unwrap()) + bias;
248            z_values.push(z.clone());
249
250            let mut activation = z;
251            if weight == self.weights.last().unwrap() {
252                // Softmax
253                let max_val = activation.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
254                activation.mapv_inplace(|x| (x - max_val).exp());
255                let sum = activation.sum();
256                activation.mapv_inplace(|x| x / sum);
257            } else {
258                activation.mapv_inplace(|x| x.max(0.0)); // ReLU
259            }
260            activations.push(activation);
261        }
262
263        // Calculate loss (cross-entropy)
264        let output = activations.last().unwrap();
265        let loss = -target
266            .iter()
267            .zip(output.iter())
268            .map(|(&t, &o)| if t > 0.0 { t * o.ln() } else { 0.0 })
269            .sum::<f64>();
270
271        // Backward pass
272        let mut weight_gradients = Vec::with_capacity(self.weights.len());
273        let mut bias_gradients = Vec::with_capacity(self.biases.len());
274
275        // Output layer gradient
276        let mut delta = output - target;
277
278        for i in (0..self.weights.len()).rev() {
279            // Weight gradient
280            let weight_grad = delta
281                .view()
282                .insert_axis(Axis(1))
283                .dot(&activations[i].view().insert_axis(Axis(0)));
284            weight_gradients.insert(0, weight_grad);
285
286            // Bias gradient
287            bias_gradients.insert(0, delta.clone());
288
289            if i > 0 {
290                // Propagate delta to previous layer
291                delta = self.weights[i].t().dot(&delta);
292
293                // Apply derivative of ReLU
294                for (j, &z) in z_values[i - 1].iter().enumerate() {
295                    if z <= 0.0 {
296                        delta[j] = 0.0;
297                    }
298                }
299            }
300        }
301
302        (loss, weight_gradients, bias_gradients)
303    }
304
305    /// Predict error class from syndrome
306    pub fn predict(&self, syndrome: &Array1<f64>) -> (usize, f64) {
307        let output = self.forward(syndrome);
308        let max_idx = output
309            .iter()
310            .enumerate()
311            .max_by(|a, b| a.1.partial_cmp(b.1).unwrap())
312            .unwrap()
313            .0;
314        let confidence = output[max_idx];
315        (max_idx, confidence)
316    }
317}
318
319/// Reinforcement learning agent for error correction
320#[derive(Debug, Clone)]
321pub struct ErrorCorrectionAgent {
322    /// Q-table for state-action values
323    q_table: HashMap<String, Array1<f64>>,
324    /// Learning rate
325    learning_rate: f64,
326    /// Discount factor
327    discount_factor: f64,
328    /// Exploration rate (epsilon)
329    epsilon: f64,
330    /// Action space size
331    action_space_size: usize,
332    /// Total training steps
333    training_steps: usize,
334    /// Episode rewards history
335    episode_rewards: VecDeque<f64>,
336}
337
338impl ErrorCorrectionAgent {
339    /// Create new RL agent
340    pub fn new(
341        action_space_size: usize,
342        learning_rate: f64,
343        discount_factor: f64,
344        epsilon: f64,
345    ) -> Self {
346        Self {
347            q_table: HashMap::new(),
348            learning_rate,
349            discount_factor,
350            epsilon,
351            action_space_size,
352            training_steps: 0,
353            episode_rewards: VecDeque::with_capacity(1000),
354        }
355    }
356
357    /// Select action using epsilon-greedy policy
358    pub fn select_action(&mut self, state: &str) -> usize {
359        if fastrand::f64() < self.epsilon {
360            // Explore: random action
361            fastrand::usize(0..self.action_space_size)
362        } else {
363            // Exploit: best action
364            let q_values = self
365                .q_table
366                .entry(state.to_string())
367                .or_insert_with(|| Array1::zeros(self.action_space_size));
368
369            q_values
370                .iter()
371                .enumerate()
372                .max_by(|a, b| a.1.partial_cmp(b.1).unwrap())
373                .unwrap()
374                .0
375        }
376    }
377
378    /// Update Q-value using Q-learning
379    pub fn update_q_value(
380        &mut self,
381        state: &str,
382        action: usize,
383        reward: f64,
384        next_state: &str,
385        done: bool,
386    ) {
387        let current_q = self
388            .q_table
389            .entry(state.to_string())
390            .or_insert_with(|| Array1::zeros(self.action_space_size))
391            .clone();
392
393        let next_q_max = if done {
394            0.0
395        } else {
396            let next_q_values = self
397                .q_table
398                .entry(next_state.to_string())
399                .or_insert_with(|| Array1::zeros(self.action_space_size));
400            next_q_values
401                .iter()
402                .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
403        };
404
405        let td_target = self.discount_factor.mul_add(next_q_max, reward);
406        let td_error = td_target - current_q[action];
407
408        let q_values = self.q_table.get_mut(state).unwrap();
409        q_values[action] += self.learning_rate * td_error;
410
411        self.training_steps += 1;
412
413        // Decay epsilon
414        if self.training_steps % 1000 == 0 {
415            self.epsilon = (self.epsilon * 0.995).max(0.01);
416        }
417    }
418
419    /// Calculate reward based on correction success
420    pub fn calculate_reward(
421        &self,
422        errors_before: usize,
423        errors_after: usize,
424        correction_cost: f64,
425    ) -> f64 {
426        let error_reduction = errors_before as f64 - errors_after as f64;
427        let reward = error_reduction.mul_add(10.0, -correction_cost);
428
429        // Bonus for perfect correction
430        if errors_after == 0 {
431            reward + 5.0
432        } else {
433            reward
434        }
435    }
436}
437
438/// Adaptive ML error correction system
439pub struct AdaptiveMLErrorCorrection {
440    /// Configuration
441    config: AdaptiveMLConfig,
442    /// Neural network for syndrome classification
443    classifier: SyndromeClassificationNetwork,
444    /// Reinforcement learning agent
445    rl_agent: ErrorCorrectionAgent,
446    /// Feature extractor
447    feature_extractor: FeatureExtractor,
448    /// Training data history
449    training_history: Arc<Mutex<VecDeque<TrainingExample>>>,
450    /// Performance metrics
451    metrics: CorrectionMetrics,
452    /// Circuit interface
453    circuit_interface: CircuitInterface,
454    /// Model update counter
455    update_counter: usize,
456}
457
458/// Training example for supervised learning
459#[derive(Debug, Clone)]
460pub struct TrainingExample {
461    /// Input syndrome
462    pub syndrome: Array1<f64>,
463    /// Target error type
464    pub error_type: ErrorType,
465    /// Correction action taken
466    pub action: usize,
467    /// Reward received
468    pub reward: f64,
469    /// Timestamp
470    pub timestamp: f64,
471}
472
473/// Feature extractor for syndrome analysis
474#[derive(Debug, Clone)]
475pub struct FeatureExtractor {
476    /// Extraction method
477    method: FeatureExtractionMethod,
478    /// PCA components (if using PCA)
479    pca_components: Option<Array2<f64>>,
480    /// Autoencoder network (if using autoencoder)
481    autoencoder: Option<SyndromeClassificationNetwork>,
482}
483
484impl FeatureExtractor {
485    /// Create new feature extractor
486    pub const fn new(method: FeatureExtractionMethod) -> Self {
487        Self {
488            method,
489            pca_components: None,
490            autoencoder: None,
491        }
492    }
493
494    /// Extract features from syndrome
495    pub fn extract_features(&self, syndrome: &[bool]) -> Array1<f64> {
496        match self.method {
497            FeatureExtractionMethod::RawSyndrome => {
498                let mut features: Vec<f64> = syndrome
499                    .iter()
500                    .map(|&b| if b { 1.0 } else { 0.0 })
501                    .collect();
502                // Pad to minimum size of 4 for consistency
503                while features.len() < 4 {
504                    features.push(0.0);
505                }
506                Array1::from_vec(features)
507            }
508            FeatureExtractionMethod::FourierTransform => self.fft_features(syndrome),
509            FeatureExtractionMethod::PCA => self.pca_features(syndrome),
510            FeatureExtractionMethod::Autoencoder => self.autoencoder_features(syndrome),
511            FeatureExtractionMethod::TemporalConvolution => self.temporal_conv_features(syndrome),
512        }
513    }
514
515    /// Extract FFT features
516    fn fft_features(&self, syndrome: &[bool]) -> Array1<f64> {
517        let mut signal: Vec<f64> = syndrome
518            .iter()
519            .map(|&b| if b { 1.0 } else { 0.0 })
520            .collect();
521
522        // Pad signal to minimum size of 4 for consistency
523        while signal.len() < 4 {
524            signal.push(0.0);
525        }
526
527        // Simple FFT-like transformation (simplified)
528        let mut features = Vec::new();
529        let n = signal.len();
530
531        for k in 0..n.min(8) {
532            // Take first 8 frequency components
533            let mut real_part = 0.0;
534            let mut imag_part = 0.0;
535
536            for (i, &x) in signal.iter().enumerate() {
537                let angle = -2.0 * std::f64::consts::PI * k as f64 * i as f64 / n as f64;
538                real_part += x * angle.cos();
539                imag_part += x * angle.sin();
540            }
541
542            features.push(real_part);
543            features.push(imag_part);
544        }
545
546        Array1::from_vec(features)
547    }
548
549    /// Extract PCA features
550    fn pca_features(&self, syndrome: &[bool]) -> Array1<f64> {
551        let mut features: Vec<f64> = syndrome
552            .iter()
553            .map(|&b| if b { 1.0 } else { 0.0 })
554            .collect();
555        // Pad to minimum size of 4 for consistency
556        while features.len() < 4 {
557            features.push(0.0);
558        }
559        let raw_features = Array1::from_vec(features);
560
561        if let Some(ref components) = self.pca_components {
562            components.dot(&raw_features)
563        } else {
564            raw_features
565        }
566    }
567
568    /// Extract autoencoder features
569    fn autoencoder_features(&self, syndrome: &[bool]) -> Array1<f64> {
570        let mut features: Vec<f64> = syndrome
571            .iter()
572            .map(|&b| if b { 1.0 } else { 0.0 })
573            .collect();
574        // Pad to minimum size of 4 for consistency
575        while features.len() < 4 {
576            features.push(0.0);
577        }
578        let raw_features = Array1::from_vec(features);
579
580        if let Some(ref encoder) = self.autoencoder {
581            encoder.forward(&raw_features)
582        } else {
583            raw_features
584        }
585    }
586
587    /// Extract temporal convolution features
588    fn temporal_conv_features(&self, syndrome: &[bool]) -> Array1<f64> {
589        let mut signal: Vec<f64> = syndrome
590            .iter()
591            .map(|&b| if b { 1.0 } else { 0.0 })
592            .collect();
593
594        // Pad signal to minimum size of 4 for consistency
595        while signal.len() < 4 {
596            signal.push(0.0);
597        }
598
599        // Simple 1D convolution with learned kernels
600        let kernel_size = 3;
601        let mut features = Vec::new();
602
603        for i in 0..signal.len().saturating_sub(kernel_size - 1) {
604            let mut conv_sum = 0.0;
605            for j in 0..kernel_size {
606                conv_sum += signal[i + j] * (j as f64 + 1.0) / kernel_size as f64;
607                // Simple kernel
608            }
609            features.push(conv_sum);
610        }
611
612        // Ensure at least some features
613        if features.is_empty() {
614            features = signal; // Fall back to raw signal
615        }
616
617        Array1::from_vec(features)
618    }
619}
620
621/// Performance metrics for error correction
622#[derive(Debug, Clone, Default, Serialize, Deserialize)]
623pub struct CorrectionMetrics {
624    /// Total errors corrected
625    pub total_corrections: usize,
626    /// Successful corrections
627    pub successful_corrections: usize,
628    /// False positive corrections
629    pub false_positives: usize,
630    /// False negative missed errors
631    pub false_negatives: usize,
632    /// Average correction confidence
633    pub average_confidence: f64,
634    /// Learning curve (loss over time)
635    pub learning_curve: Vec<f64>,
636    /// Reward history (for RL)
637    pub reward_history: Vec<f64>,
638    /// Processing time per correction
639    pub avg_correction_time_ms: f64,
640}
641
642impl CorrectionMetrics {
643    /// Calculate correction accuracy
644    pub fn accuracy(&self) -> f64 {
645        if self.total_corrections == 0 {
646            return 1.0;
647        }
648        self.successful_corrections as f64 / self.total_corrections as f64
649    }
650
651    /// Calculate precision
652    pub fn precision(&self) -> f64 {
653        let true_positives = self.successful_corrections;
654        let predicted_positives = true_positives + self.false_positives;
655
656        if predicted_positives == 0 {
657            return 1.0;
658        }
659        true_positives as f64 / predicted_positives as f64
660    }
661
662    /// Calculate recall
663    pub fn recall(&self) -> f64 {
664        let true_positives = self.successful_corrections;
665        let actual_positives = true_positives + self.false_negatives;
666
667        if actual_positives == 0 {
668            return 1.0;
669        }
670        true_positives as f64 / actual_positives as f64
671    }
672
673    /// Calculate F1 score
674    pub fn f1_score(&self) -> f64 {
675        let precision = self.precision();
676        let recall = self.recall();
677
678        if precision + recall == 0.0 {
679            return 0.0;
680        }
681        2.0 * precision * recall / (precision + recall)
682    }
683}
684
685impl AdaptiveMLErrorCorrection {
686    /// Create new adaptive ML error correction system
687    pub fn new(config: AdaptiveMLConfig) -> Result<Self> {
688        let circuit_interface = CircuitInterface::new(Default::default())?;
689
690        // Initialize feature extractor first to determine input size
691        let feature_extractor = FeatureExtractor::new(config.feature_extraction);
692
693        // Calculate input size based on feature extraction method
694        // Use a test syndrome to determine the feature vector size
695        let test_syndrome = vec![false, false, false, false]; // 4-bit test syndrome
696        let test_features = feature_extractor.extract_features(&test_syndrome);
697        let input_size = test_features.len();
698
699        // Initialize neural network for syndrome classification
700        let hidden_sizes = vec![input_size * 2, input_size]; // Adaptive hidden sizes
701        let output_size = 4; // I, X, Y, Z errors
702        let classifier = SyndromeClassificationNetwork::new(
703            input_size,
704            hidden_sizes,
705            output_size,
706            config.learning_rate,
707        );
708
709        // Initialize RL agent
710        let action_space_size = 8; // Different correction strategies
711        let rl_agent = ErrorCorrectionAgent::new(
712            action_space_size,
713            config.learning_rate,
714            0.99, // discount factor
715            0.1,  // epsilon
716        );
717
718        let training_history =
719            Arc::new(Mutex::new(VecDeque::with_capacity(config.max_history_size)));
720
721        Ok(Self {
722            config,
723            classifier,
724            rl_agent,
725            feature_extractor,
726            training_history,
727            metrics: CorrectionMetrics::default(),
728            circuit_interface,
729            update_counter: 0,
730        })
731    }
732
733    /// Perform adaptive error correction on quantum state
734    pub fn correct_errors_adaptive(
735        &mut self,
736        state: &mut Array1<Complex64>,
737        syndrome: &[bool],
738    ) -> Result<AdaptiveCorrectionResult> {
739        let start_time = std::time::Instant::now();
740
741        // Extract features from syndrome
742        let features = self.feature_extractor.extract_features(syndrome);
743
744        // Classify error type using neural network
745        let (predicted_error_class, confidence) = self.classifier.predict(&features);
746        let predicted_error_type = self.class_to_error_type(predicted_error_class);
747
748        // Select correction action using RL agent
749        let state_repr = self.syndrome_to_string(syndrome);
750        let action = self.rl_agent.select_action(&state_repr);
751
752        // Count errors before correction
753        let errors_before = self.count_errors(state, syndrome);
754
755        // Apply correction based on ML predictions
756        let correction_applied = if confidence >= self.config.confidence_threshold {
757            self.apply_ml_correction(state, predicted_error_type, action)?;
758            true
759        } else {
760            // Fall back to classical correction if confidence is low
761            self.apply_classical_correction(state, syndrome)?;
762            false
763        };
764
765        // Count errors after correction
766        let errors_after = self.count_errors(state, syndrome);
767
768        // Calculate reward for RL agent
769        let reward = self
770            .rl_agent
771            .calculate_reward(errors_before, errors_after, 1.0);
772
773        // Update RL agent
774        let next_state_repr = self.state_to_string(state);
775        self.rl_agent.update_q_value(
776            &state_repr,
777            action,
778            reward,
779            &next_state_repr,
780            errors_after == 0,
781        );
782
783        // Record training example
784        if self.config.real_time_learning {
785            let training_example = TrainingExample {
786                syndrome: features,
787                error_type: predicted_error_type,
788                action,
789                reward,
790                timestamp: start_time.elapsed().as_secs_f64(),
791            };
792
793            {
794                let mut history = self.training_history.lock().unwrap();
795                history.push_back(training_example);
796                if history.len() > self.config.max_history_size {
797                    history.pop_front();
798                }
799            }
800        }
801
802        // Update metrics
803        self.update_metrics(errors_before, errors_after, confidence, reward);
804
805        // Periodic model retraining
806        self.update_counter += 1;
807        if self.update_counter % self.config.update_frequency == 0 {
808            self.retrain_models()?;
809        }
810
811        let processing_time = start_time.elapsed().as_secs_f64() * 1000.0;
812
813        Ok(AdaptiveCorrectionResult {
814            predicted_error_type,
815            confidence,
816            correction_applied,
817            errors_corrected: errors_before.saturating_sub(errors_after),
818            reward,
819            processing_time_ms: processing_time,
820            rl_action: action,
821        })
822    }
823
824    /// Apply ML-based correction
825    fn apply_ml_correction(
826        &self,
827        state: &mut Array1<Complex64>,
828        error_type: ErrorType,
829        action: usize,
830    ) -> Result<()> {
831        match action {
832            0 => {
833                // Single qubit correction
834                self.apply_single_qubit_correction(state, error_type, 0)?;
835            }
836            1 => {
837                // Two qubit correction
838                self.apply_two_qubit_correction(state, error_type, 0, 1)?;
839            }
840            2 => {
841                // Syndrome-based correction
842                self.apply_syndrome_based_correction(state, error_type)?;
843            }
844            3 => {
845                // Probabilistic correction
846                self.apply_probabilistic_correction(state, error_type)?;
847            }
848            _ => {
849                // Default correction
850                self.apply_single_qubit_correction(state, error_type, 0)?;
851            }
852        }
853        Ok(())
854    }
855
856    /// Apply single qubit correction
857    fn apply_single_qubit_correction(
858        &self,
859        state: &mut Array1<Complex64>,
860        error_type: ErrorType,
861        qubit: usize,
862    ) -> Result<()> {
863        let n_qubits = (state.len() as f64).log2().ceil() as usize;
864        if qubit >= n_qubits {
865            return Ok(());
866        }
867
868        match error_type {
869            ErrorType::BitFlip => {
870                // Apply X correction
871                for i in 0..state.len() {
872                    if (i >> qubit) & 1 == 0 {
873                        let partner = i | (1 << qubit);
874                        if partner < state.len() {
875                            state.swap(i, partner);
876                        }
877                    }
878                }
879            }
880            ErrorType::PhaseFlip => {
881                // Apply Z correction
882                for i in 0..state.len() {
883                    if (i >> qubit) & 1 == 1 {
884                        state[i] *= -1.0;
885                    }
886                }
887            }
888            ErrorType::BitPhaseFlip => {
889                // Apply Y correction (Z then X)
890                self.apply_single_qubit_correction(state, ErrorType::PhaseFlip, qubit)?;
891                self.apply_single_qubit_correction(state, ErrorType::BitFlip, qubit)?;
892            }
893            ErrorType::Identity => {
894                // No correction needed
895            }
896        }
897
898        Ok(())
899    }
900
901    /// Apply two qubit correction
902    fn apply_two_qubit_correction(
903        &self,
904        state: &mut Array1<Complex64>,
905        error_type: ErrorType,
906        qubit1: usize,
907        qubit2: usize,
908    ) -> Result<()> {
909        // Apply correction to both qubits
910        self.apply_single_qubit_correction(state, error_type, qubit1)?;
911        self.apply_single_qubit_correction(state, error_type, qubit2)?;
912        Ok(())
913    }
914
915    /// Apply syndrome-based correction
916    fn apply_syndrome_based_correction(
917        &self,
918        state: &mut Array1<Complex64>,
919        error_type: ErrorType,
920    ) -> Result<()> {
921        // Apply correction based on error type to most likely qubit
922        let n_qubits = (state.len() as f64).log2().ceil() as usize;
923        let target_qubit = fastrand::usize(0..n_qubits);
924        self.apply_single_qubit_correction(state, error_type, target_qubit)?;
925        Ok(())
926    }
927
928    /// Apply probabilistic correction
929    fn apply_probabilistic_correction(
930        &self,
931        state: &mut Array1<Complex64>,
932        error_type: ErrorType,
933    ) -> Result<()> {
934        let n_qubits = (state.len() as f64).log2().ceil() as usize;
935
936        // Apply correction with probability based on error type
937        for qubit in 0..n_qubits {
938            let prob = match error_type {
939                ErrorType::BitFlip => 0.3,
940                ErrorType::PhaseFlip => 0.2,
941                ErrorType::BitPhaseFlip => 0.1,
942                ErrorType::Identity => 0.0,
943            };
944
945            if fastrand::f64() < prob {
946                self.apply_single_qubit_correction(state, error_type, qubit)?;
947            }
948        }
949
950        Ok(())
951    }
952
953    /// Apply classical error correction as fallback
954    fn apply_classical_correction(
955        &self,
956        state: &mut Array1<Complex64>,
957        syndrome: &[bool],
958    ) -> Result<()> {
959        // Simple classical correction based on syndrome
960        for (i, &has_error) in syndrome.iter().enumerate() {
961            if has_error {
962                self.apply_single_qubit_correction(state, ErrorType::BitFlip, i)?;
963            }
964        }
965        Ok(())
966    }
967
968    /// Count estimated errors in state
969    fn count_errors(&self, _state: &Array1<Complex64>, syndrome: &[bool]) -> usize {
970        syndrome.iter().map(|&b| usize::from(b)).sum()
971    }
972
973    /// Convert error class to error type
974    const fn class_to_error_type(&self, class: usize) -> ErrorType {
975        match class {
976            0 => ErrorType::Identity,
977            1 => ErrorType::BitFlip,
978            2 => ErrorType::PhaseFlip,
979            3 => ErrorType::BitPhaseFlip,
980            _ => ErrorType::Identity,
981        }
982    }
983
984    /// Convert syndrome to string representation
985    fn syndrome_to_string(&self, syndrome: &[bool]) -> String {
986        syndrome
987            .iter()
988            .map(|&b| if b { '1' } else { '0' })
989            .collect()
990    }
991
992    /// Convert quantum state to string representation (simplified)
993    fn state_to_string(&self, state: &Array1<Complex64>) -> String {
994        let amplitudes: Vec<f64> = state.iter().map(|c| c.norm()).collect();
995        format!("{amplitudes:.3?}")
996    }
997
998    /// Update performance metrics
999    fn update_metrics(
1000        &mut self,
1001        errors_before: usize,
1002        errors_after: usize,
1003        confidence: f64,
1004        reward: f64,
1005    ) {
1006        self.metrics.total_corrections += 1;
1007
1008        if errors_after < errors_before {
1009            self.metrics.successful_corrections += 1;
1010        } else if errors_after > errors_before {
1011            self.metrics.false_positives += 1;
1012        }
1013
1014        self.metrics.average_confidence = self
1015            .metrics
1016            .average_confidence
1017            .mul_add((self.metrics.total_corrections - 1) as f64, confidence)
1018            / self.metrics.total_corrections as f64;
1019
1020        self.metrics.reward_history.push(reward);
1021        if self.metrics.reward_history.len() > 1000 {
1022            self.metrics.reward_history.remove(0);
1023        }
1024    }
1025
1026    /// Retrain models with accumulated data
1027    fn retrain_models(&mut self) -> Result<()> {
1028        let history = self.training_history.lock().unwrap();
1029        if history.len() < self.config.batch_size {
1030            return Ok(());
1031        }
1032
1033        // Prepare training data
1034        let mut inputs = Vec::new();
1035        let mut targets = Vec::new();
1036
1037        for example in history.iter() {
1038            inputs.push(example.syndrome.clone());
1039
1040            // Create one-hot target
1041            let mut target = Array1::zeros(4);
1042            let error_class = match example.error_type {
1043                ErrorType::Identity => 0,
1044                ErrorType::BitFlip => 1,
1045                ErrorType::PhaseFlip => 2,
1046                ErrorType::BitPhaseFlip => 3,
1047            };
1048            target[error_class] = 1.0;
1049            targets.push(target);
1050        }
1051
1052        // Train neural network
1053        let batch_size = self.config.batch_size.min(inputs.len());
1054        for chunk in inputs.chunks(batch_size).zip(targets.chunks(batch_size)) {
1055            let loss = self.classifier.train_batch(chunk.0, chunk.1);
1056            self.metrics.learning_curve.push(loss);
1057        }
1058
1059        Ok(())
1060    }
1061
1062    /// Get current performance metrics
1063    pub const fn get_metrics(&self) -> &CorrectionMetrics {
1064        &self.metrics
1065    }
1066
1067    /// Reset metrics and training history
1068    pub fn reset(&mut self) {
1069        self.metrics = CorrectionMetrics::default();
1070        self.training_history.lock().unwrap().clear();
1071        self.update_counter = 0;
1072    }
1073}
1074
1075/// Result of adaptive error correction
1076#[derive(Debug, Clone, Serialize, Deserialize)]
1077pub struct AdaptiveCorrectionResult {
1078    /// Predicted error type
1079    pub predicted_error_type: ErrorType,
1080    /// Prediction confidence
1081    pub confidence: f64,
1082    /// Whether ML correction was applied
1083    pub correction_applied: bool,
1084    /// Number of errors corrected
1085    pub errors_corrected: usize,
1086    /// Reward signal for RL
1087    pub reward: f64,
1088    /// Processing time in milliseconds
1089    pub processing_time_ms: f64,
1090    /// RL action taken
1091    pub rl_action: usize,
1092}
1093
1094/// Benchmark adaptive ML error correction
1095pub fn benchmark_adaptive_ml_error_correction() -> Result<HashMap<String, f64>> {
1096    let mut results = HashMap::new();
1097
1098    // Test different ML configurations
1099    let configs = vec![
1100        AdaptiveMLConfig {
1101            model_type: MLModelType::NeuralNetwork,
1102            learning_strategy: LearningStrategy::Online,
1103            ..Default::default()
1104        },
1105        AdaptiveMLConfig {
1106            model_type: MLModelType::ReinforcementLearning,
1107            learning_strategy: LearningStrategy::Reinforcement,
1108            ..Default::default()
1109        },
1110    ];
1111
1112    for (i, config) in configs.into_iter().enumerate() {
1113        let start = std::time::Instant::now();
1114
1115        let mut adaptive_ec = AdaptiveMLErrorCorrection::new(config)?;
1116
1117        // Simulate error correction on test data
1118        for _ in 0..100 {
1119            let mut test_state = Array1::from_vec(vec![
1120                Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1121                Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1122                Complex64::new(0.0, 0.0),
1123                Complex64::new(0.0, 0.0),
1124            ]);
1125
1126            let syndrome = vec![true, false, true, false]; // Example syndrome
1127            let _result = adaptive_ec.correct_errors_adaptive(&mut test_state, &syndrome)?;
1128        }
1129
1130        let time = start.elapsed().as_secs_f64() * 1000.0;
1131        results.insert(format!("config_{i}"), time);
1132    }
1133
1134    Ok(results)
1135}
1136
1137#[cfg(test)]
1138mod tests {
1139    use super::*;
1140    use approx::assert_abs_diff_eq;
1141
1142    #[test]
1143    fn test_neural_network_creation() {
1144        let nn = SyndromeClassificationNetwork::new(4, vec![8, 4], 2, 0.01);
1145        assert_eq!(nn.input_size, 4);
1146        assert_eq!(nn.output_size, 2);
1147        assert_eq!(nn.weights.len(), 3); // input->hidden1, hidden1->hidden2, hidden2->output
1148    }
1149
1150    #[test]
1151    fn test_neural_network_forward() {
1152        let nn = SyndromeClassificationNetwork::new(3, vec![4], 2, 0.01);
1153        let input = Array1::from_vec(vec![1.0, 0.0, 1.0]);
1154        let output = nn.forward(&input);
1155
1156        assert_eq!(output.len(), 2);
1157        assert_abs_diff_eq!(output.sum(), 1.0, epsilon = 1e-6); // Softmax normalization
1158    }
1159
1160    #[test]
1161    fn test_rl_agent_creation() {
1162        let agent = ErrorCorrectionAgent::new(4, 0.1, 0.99, 0.1);
1163        assert_eq!(agent.action_space_size, 4);
1164        assert!(agent.q_table.is_empty());
1165    }
1166
1167    #[test]
1168    fn test_rl_agent_action_selection() {
1169        let mut agent = ErrorCorrectionAgent::new(3, 0.1, 0.99, 0.0); // No exploration
1170        let state = "001";
1171
1172        // First call should create Q-values and select action 0 (all zeros)
1173        let action = agent.select_action(state);
1174        assert!(action < 3);
1175    }
1176
1177    #[test]
1178    fn test_feature_extraction() {
1179        let extractor = FeatureExtractor::new(FeatureExtractionMethod::RawSyndrome);
1180        let syndrome = vec![true, false, true, false];
1181        let features = extractor.extract_features(&syndrome);
1182
1183        assert_eq!(features.len(), 4);
1184        assert_abs_diff_eq!(features[0], 1.0, epsilon = 1e-10);
1185        assert_abs_diff_eq!(features[1], 0.0, epsilon = 1e-10);
1186        assert_abs_diff_eq!(features[2], 1.0, epsilon = 1e-10);
1187        assert_abs_diff_eq!(features[3], 0.0, epsilon = 1e-10);
1188    }
1189
1190    #[test]
1191    fn test_adaptive_ml_error_correction_creation() {
1192        let config = AdaptiveMLConfig::default();
1193        let adaptive_ec = AdaptiveMLErrorCorrection::new(config);
1194        assert!(adaptive_ec.is_ok());
1195    }
1196
1197    #[test]
1198    fn test_error_correction_application() {
1199        let config = AdaptiveMLConfig::default();
1200        let mut adaptive_ec = AdaptiveMLErrorCorrection::new(config).unwrap();
1201
1202        let mut state = Array1::from_vec(vec![
1203            Complex64::new(1.0, 0.0),
1204            Complex64::new(0.0, 0.0),
1205            Complex64::new(0.0, 0.0),
1206            Complex64::new(0.0, 0.0),
1207        ]);
1208
1209        let syndrome = vec![false, false];
1210        let result = adaptive_ec.correct_errors_adaptive(&mut state, &syndrome);
1211        assert!(result.is_ok());
1212
1213        let correction_result = result.unwrap();
1214        assert!(correction_result.processing_time_ms >= 0.0);
1215    }
1216
1217    #[test]
1218    fn test_metrics_calculation() {
1219        let mut metrics = CorrectionMetrics::default();
1220        metrics.total_corrections = 100;
1221        metrics.successful_corrections = 90;
1222        metrics.false_positives = 5;
1223        metrics.false_negatives = 5;
1224
1225        assert_abs_diff_eq!(metrics.accuracy(), 0.9, epsilon = 1e-10);
1226        assert_abs_diff_eq!(metrics.precision(), 90.0 / 95.0, epsilon = 1e-10);
1227        assert_abs_diff_eq!(metrics.recall(), 90.0 / 95.0, epsilon = 1e-10);
1228    }
1229
1230    #[test]
1231    fn test_different_error_types() {
1232        let config = AdaptiveMLConfig::default();
1233        let adaptive_ec = AdaptiveMLErrorCorrection::new(config).unwrap();
1234
1235        assert_eq!(adaptive_ec.class_to_error_type(0), ErrorType::Identity);
1236        assert_eq!(adaptive_ec.class_to_error_type(1), ErrorType::BitFlip);
1237        assert_eq!(adaptive_ec.class_to_error_type(2), ErrorType::PhaseFlip);
1238        assert_eq!(adaptive_ec.class_to_error_type(3), ErrorType::BitPhaseFlip);
1239    }
1240}